Что такое Ампер
Ампе́р (обозначение: А) — единица измерения силы электрического тока в системе СИ, а также единица магнитодвижущей силы и разности магнитных потенциалов (устаревшее наименование — ампер-виток).
1 Ампер это сила тока, при которой через проводник проходит заряд 1 Кл за 1 сек.
\[ \mbox{I} = \dfrac{\mbox{q}}{\mbox{t}} \qquad \qquad \mbox{1A} = \dfrac{\mbox{1Кл}}{\mbox{1c}} \]
Одним Ампером называется сила постоянного тока, текущего в каждом из двух параллельных бесконечно длинных бесконечно малого кругового сечения проводников в вакууме на расстоянии 1 метр, и создающая силу взаимодействия между ними 2×10−7 ньютонов на каждый метр длины проводника.
Ампер назван в честь французского физика Андре Ампера.
Сила тока – это такая физическая величина, которая показывает скорость прохождения заряда q через S поперечное сечение проводника за одну секунду t.
Сила тока – пожалуй, одна из самых основополагающих характеристик электрического тока.
Кратные и дольные единицы
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
101 А | декаампер | даА | daA | 10−1 А | дециампер | дА | dA |
102 А | гектоампер | гА | hA | 10−2 А | сантиампер | сА | cA |
103 А | килоампер | кА | kA | 10−3 А | миллиампер | мА | mA |
106 А | мегаампер | МА | MA | 10−6 А | микроампер | мкА | µA |
109 А | гигаампер | ГА | GA | 10−9 А | наноампер | нА | nA |
1012 А | тераампер | ТА | TA | 10−12 А | пикоампер | пА | pA |
1015 А | петаампер | ПА | PA | 10−15 А | фемтоампер | фА | fA |
1018 А | эксаампер | ЭА | EA | 10−18 А | аттоампер | аА | aA |
1021 А | зеттаампер | ЗА | ZA | 10−21 А | зептоампер | зА | zA |
1024 А | йоттаампер | ИА | YA | 10−24 А | йоктоампер | иА | yA |
применять не рекомендуется |
Физическое значение данного параметра состоит в следующем:
- Элементарные частицы постоянно текут по бесконечно тонким и длинным проводникам в одном направлении;
- Цепь находится в вакууме, и потенциалы расположены параллельно друг к другу с расстоянием в один метр;
- Сила притяжения или отталкивания между ними составляет 2*10-7 Ньютона.
На практике такие условия даже в лаборатории воспроизвести невозможно, поэтому для установления эталона и тарирования измерительных приборов специалисты мерили уровень взаимодействия, возникающий между двумя катушками с большим количеством проводов минимального сечения.
Связь с другими единицами СИ
Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.
Сокращённое русское обозначение а, международное А. Весьма малые токи (например, в радиолампах) измеряются в тысячных долях а — миллиамперах (ма или mА), а особо малые токи — в миллионных долях а — микроамперах (мка или μА). Человек начинает ощущать проходящий через его тело ток, если он не ниже 0,5 ма. Ток в 50 ма опасен для жизни человека. Квартирный ввод рассчитывается на ток силой от 5 до 20 а; ток ламп накаливания мощностью 60 вт при напряжении 127 в имеет около 0,5 а.
Ампер-час — единица количества электричества, применяемая для измерения ёмкости аккумуляторов и гальванических элементов. Сокращённое русское обозначение а-ч, международное Аh. Один а-ч равен количеству электричества, проходящему через проводник в течение 1 часа при токе в 1 ампер. 1 а-ч = 3600 кулонам (основным единицам количества электричества).
Упрощенно электрический ток можно рассматривать как течение воды по трубе, то есть протекание электрических зарядов по проводу можно сопоставить с протекание воды по трубе. Так вот, по сути, скорость этой «воды», а именно скорость зарядов в проводе, она и будет прямым образом связана с силой тока. И чем быстрее «вода» течет по «трубе», а именно чем быстрее вместе все носители заряда двигаются по поводу, тем сила тока будет больше.
Как вы думаете, большая ли это сила тока в 1 ампер? Да, это большая сила тока, но на практике можно встретить различные силы тока: и миллиамперы, и микроамперы, и амперы, и килоамперы, и все они довольно разные.
В вашем браузере отключен Javascript.Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
👍 Подписывайтесь на телеграм канал @upkitai ( ссылка t.me/upkitai )
Андрэ-Мари Ампер ввел в физику понятие «электрический ток», он так же в 1830 году ввел такой научный оборот, как «кибернетика», а в механике именно ему принадлежит термин «кинематика».
Андрэ-Мари Ампер был очень разноплановым и разносторонне развитым ученым, некоторые его исследования касались таких смежных с физикой наук, как химия, ботаника и даже философия! И именно А.М.Ампер изобрел такие важные и полезные для людей устройства, как электромагнитный телеграф и коммутатор.
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
- Сколько в ампере ватт, как перевести амперы в ватты и киловатты
Мощность – это скорость расходования энергии, выраженная в отношении энергии ко времени: 1 Вт = 1 Дж/1 с. Один ватт равен отношению одного джоуля (единице измерения работы) к одной секунде.
- Что такое Ватт
1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль.
- Что такое Вольт
- Что такое Сименс
Сименс — единица измерения электропроводности (проводимости) в системе СИ. Она эквивалентна ранее использовавшейся единице mho
1 ом представляет собой электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила.
- Сколько километров в узле?
Один морской узел равен одной тысяче восемьсот пятьдесят двум метрам или одному километру восемьсот пятьдесят двум метрам
- Таблица мер измерения
- Процент / доля от числа
- Закон Дальтона
Парциальное давление каждого газа, входящего в состав смеси, это давление, которое создавалось бы той же массой данного газа, если он будет занимать весь объем смеси при той же температуре.
- Как перевести число из десятичной системы в двоичную
- Классификация операционных систем
- Калькулятор калорий для похудения онлайн
1 ом представляет собой электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила.
Как повысить силу тока, не изменяя напряжения
Из статьи вы узнаете как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.
Что такое сила тока?
Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.
Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.
В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.
Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:
I=q/t, где I — сила тока, t — время, а q — заряд.
Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).
I=U/R.
Сила тока бывает двух видов — положительной и отрицательной.
Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.
Приведем проверенные рекомендации, которые позволят решить поставленные задачи.
От чего зависит сила тока?
Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:
- Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
- Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
- Напряженности магнитного поля. Чем она больше, тем выше напряжение.
- Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
- Мощности усилия, которое передается на ротор.
- Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
- Конструкции источника питания.
- Диаметра проводов статора и якоря, числа ампер-витков.
- Параметров генератора — рабочего тока, напряжения, частоты и скорости.
Как повысить силу тока в цепи?
Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.
Рассмотрим, как повысить силу тока с помощью простых приборов.
Для выполнения работы потребуется амперметр.
Вариант 1.
По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.
К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.
Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.
Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.
Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.
В быту источники постоянного U, объединенные в одну группу, называются батарейками.
Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.
В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.
Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.
Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.
Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.
Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).
Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.
Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.
Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.
В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.
Также читают — как действует электрический ток на организм человека.
Вариант 2.
Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:
I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:
- S — сечение провода;
- l — его длина;
- ρ — удельное электрическое сопротивление проводника.
Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.
Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.
Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.
Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.
Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.
Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.
Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.
Как повысить силу тока в блоке питания?
В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.
Ситуация №1.
Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.
Узнайте больше — как проверить транзистор мультиметром на исправность.
При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.
Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.
Кроме того, возможны следующие варианты:
- Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
- При наличии защиты по току снизить номинал резистора в цепочке управления.
Ситуация №2.
Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.
Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.
При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.
Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.
Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.
Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.
После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.
Как повысить силу тока в зарядном устройстве?
В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.
Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.
Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.
С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).
Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.
С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.
Для использования возможностей приложения достаточно скачать его, установить и запустить.
После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.
Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.
Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.
Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).
Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.
Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.
Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.
Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.
Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.
При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.
С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.
Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.
Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.
Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.
Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.
Как повысить силу тока в трансформаторе?
Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.
Здесь можно выделить следующие варианты:
- Установить второй трансформатор;
- Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
- Поднять U;
- Увеличить сечение сердечника;
- Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
- Купить новый трансформатор с подходящим током;
- Заменить сердечник ферромагнитным вариантом изделия (если это возможно).
В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.
Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.
С учетом сказанного выше можно сделать следующие выводы:
- Мощность трансформатора зависит от ширины постоянного магнита.
- Для увеличения тока в трансформаторе требуется снижение R нагрузки.
- Ток (А) зависит от диаметра обмотки и мощности устройства.
- В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.
Как повысить силу тока в генераторе?
Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.
Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.
Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).
Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.
Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.
Частота сети должна находиться на одном уровне (быть постоянной величиной).
Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.
Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.
Кроме того, сам диодный мост меняется на деталь большей производительности.
После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.
При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.
После припаивания место стыка изолируется термоусадкой.
Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.
Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).
После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.
Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).
Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.
Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.
Итоги
Как видно из статьи, повысить силу тока, не изменяя напряжение в сети, реально.
Главное — разобраться с особенностями конструкции устройства, которое подлежит корректировке, и иметь практические навыки работы с измерительными приборами и паяльником. Кроме того, важно осознавать потенциальные риски от внесения корректировок.
7.3: Электромоторы постоянного тока
Приводы — это механизмы, которые используются для воздействия на окружающую среду, обычно для перемещения механизмов или систем и управления ими. Приводы заставляют двигаться все элементы соревновательного робота, которые могут двигаться. Наиболее распространенным типом привода является электромотор, в частности, в роботах VEX используются электромоторы постоянного тока.
Электромоторы преобразуют электрическую энергию в механическую энергию путем использования электромагнитных полей и вращающихся проволочных катушек. При вводе напряжения в электромотор, последний выводит установленное количество механической мощности. Механическая мощность рассматривается как выход электромотора (обычно это ось, разъем или передача), вращающегося с определенной скоростью и при определенном крутящем моментe.
Нагружение электромотора
Электромоторы выводят крутящий момент только в ответ на нагружение. При отсутствии нагружения на выходе, электромотор будет вращаться очень быстро при нулевом крутящем моменте. Этого никогда не происходит в реальной жизни, так как в системе электромотора всегда присутствует трение, выполняющее роль нагрузки и заставляющее электромотор выводить крутящий момент для его преодоления. Чем больше нагрузка на электромотор, тем больше он «сопротивляется» с помощью противодействующего крутящего момента. Тем не менее, так как электромотор выводит заданное количество мощности, чем больше крутящий момент, выводимый электромотором, тем меньше его вращательная скорость. Чем больше работы должен произвести электромотор, тем медленнее он вращается. Если нагрузка на электромотор будет продолжать увеличиваться, в результате она превысит возможности электромотора и последний перестанет вращаться. Это называется «остановом».
Потребление электроэнергии
Электромотор потребляет определенное количество электрического тока (выражаемого в Амперах), которое зависит от количества приложенной к нему нагрузки. При повышении нагрузки на электромотор, потребление электроэнергии электромотором увеличивается пропорционально повышению производимого им крутящего момента.
Как показано на графике выше, ток прямо пропорционален нагружающему моменту (крутящий момент нагрузки). Чем больше нагружающий момент, тем больше потребление электроэнергии, при этом ток частота вращения обратно пропорциональны друг другу. Чем быстрее вращается электромотор, тем меньше электроэнергии он потребляет.
Ключевые характеристики электромотора
Электромоторы отличаются друг от друга и обладают различными свойствами, в зависимости от типа, конфигурации и способа производства. Существуют четыре основные характеристики, которыми обладают все электромоторы постоянного тока, используемые в соревновательной робототехнике.
Заданный крутящий момент (Н-м) — количество нагрузки, при приложении которого к электромотору последний перестанет двигаться.
Свободная скорость (об/мин) — максимальная частота вращения электромотора, работающего без нагрузки.
Ток заторможенного электромотора (Ампер) — количество электрического тока, потребляемого остановленным электромотором.
Свободный ток (Ампер) — количество электрического тока, потребляемого электромотором, работающим без нагрузки.
На этих взаимосвязях основывается концепция мощности. При заданном нагружении, электромотор может вращаться только с определенной скоростью.
Линейная и пропорциональная природа представленных выше взаимосвязей позволяет легко составлять графики «крутящий момент — скорость» и «крутящий момент — ток» для любого электромотора путем экспериментального определения двух точек на каждом графике.
Изменение мощности за счет напряжения
Выходная мощность электромотора постоянного тока зависит от входного напряжения. Это означает, что чем больше входное напряжение, тем больше мощности производится и тем быстрее может работать электромотор.
Если электромотор имеет заданное нагружение, что будет происходить при повышении напряжения (в результате увеличения мощности)? Электромотор будет вращаться быстрее! Для выполнения того же объема работы доступно большее количество мощности.
Это означает, что характеристики электромотора, приведенные выше, изменяются в зависимости от входного напряжения электромотора, поэтому их значения необходимо устанавливать при заданном напряжении (при испытаниях с напряжением 12 В). Эти четыре характеристики изменяются пропорционально входному напряжению. Например, если свободная скорость электромотора составляет 50 об/мин при напряжении 6 В, при удваивании напряжения до 12 В свободная скорость также удваивается и принимает значение 100 об/мин.
Значения этих характеристик при определенном напряжении могут быть рассчитаны в том случае, если известны их значения при другом напряжении, путем умножения известного значения на коэффициент значений напряжения. Этот подход не применим к определению свободного тока электромотора, так как его значение остается постоянным при любом напряжении.
Новое значение = Определенное значение х (Новое значение/Определенное значение)
Из примера выше видно, что свободная скорость электромотора составляет 50 об/мин при напряжении 6 В. Проектировщик планирует использовать электромотор при напряжении 8 В. Какова будет свободная скорость электромотора при этом напряжении?
Свободная скорость @ 8 В = Свободная скорость @ 6 В x (8 В / 6 В) = 50 об/мин x (8/6) = 66,66 об/мин
Как можно использовать изменение напряжения в управлении роботом? Электромоторы робота представляют собой не просто устройства, работающие по системе «вкл/откл». Проектировщик робота может изменять напряжение электромотора, работающего при нагрузке, для получения различных значений мощности и скорости. Для этого используются моторные контроллеры, регулирующие напряжение, поступающее к электромоторам.
Предельные значения и расчеты для электромотора
Означает ли это, что проектировщик может продолжать увеличивать напряжение электромотора до тех пор, пока последний не сможет выводить количество мощности, достаточное для выполнения задачи? Не совсем так. Электромоторы имеют ограничения. С одной стороны, приобретенная мощность будет слишком большой для электрических обмоток (как правило, обмотка начнет гореть, выделяя белый дым). К счастью, электромоторы VEX лишены подобных проблем, так как снабжены встроенными тепловыми реле, блокирующими поступление электрического тока в электромотор в случае его перегрева. Такое решение является очень удачным, так как электромотор не может перегореть, но при этом возникает новое условие для проектировщиков, выраженное в необходимости предотвращения срабатывания предохранителей электромотора. Как это сделать? Путем проектирования системы таким образом, чтобы исключить превышение установленного потребления тока электромотором за счет ограничения количества нагрузки на него.
Расчет нагрузки на руку
В примере, представленном выше, известный электромотор управляет движением руки робота при известном напряжении. В данном сценарии, какую максимальную массу может стабильно удерживать робот?
Чтобы решить эту задачу, проектировщик должен понимать, что максимальная масса, которую робот может удерживать стабильно, возникает при предельном перегрузочном моменте электромотора. Если электромотор находится в остановленном состоянии, он прикладывает к руке робота длиной 0,25 метра крутящий момент, равный 1 Н. Крутящий момент = Сила * Расстояние
Сила = Крутящий момент/Расстояние = 1 ньютон-метр/0,25 метра = 4 ньютона
Рука может удерживать до 4 ньютонов при остановленном электромоторе. При любом превышении, рука опрокинется.
Расчет крутящей нагрузки из предельного тока:
Это просто, но ситуация усложняется, когда необходимо учесть предельный ток. Например, в электромоторе из примера, представленного выше, установлен выключатель предельного тока, который сработает при потреблении свыше 2 ампер. Какова максимальная масса, которую робот может удерживать без срабатывания выключателя?
Теперь, электромотор не работает при предельном перегрузочном моменте — в режиме останова электромотор будет потреблять ток заторможенного электромотора, равный 3 амперам, что вызовет срабатывание предохранителя. Проектировщик должен выяснить, какую крутящую нагрузку должен испытывать электромотор, чтобы его потребление тока не достигало 2 ампер. Как это реализовать?
Глядя на график выше и помня о том, что взаимосвязи линейны, крутящая нагрузка при любом заданном потреблении тока может быть рассчитана с помощью уравнения.
Уравнение для линии: y = mx + b, где y — это значение по оси y, x — это значение по оси x, m — это уклон линии, и b — это место пересечения линии с осью y (точка пересечения с осью y).
Уклон линии может быть выражен как: m = (изменение по Y / изменение по X) = (ток заторможенного электромотора — свободный ток) / предельный перегрузочный момент
Точка пересечения с осью Y обозначает свободный ток.
Значение Y — это ток в заданной точке линии, и значение X — это крутящая нагрузка в этой точке.
Уравнение может быть представлено следующим образом:
Ток = ((ток заторможенного электромотора — свободны ток) / предельный перегрузочный момент) х крутящая нагрузка + свободный ток
Для крутящей нагрузки это же уравнение выглядит следующим образом:
Крутящая нагрузка = (ток — свободный ток) х предельный перегрузочный момент / (ток заторможенного электромотора — свободный ток)
С помощью параметров из примера выше может быть установлена крутящая нагрузка, при которой значение потребления тока будет равно 2 амперам.
Крутящая нагрузка = (2 ампера — 1 ампер) х 1 Н-м / (3 ампера — 1 ампер)
Крутящая нагрузка = (1,9 ампер) х 10 Н-м / (2,9 ампер)
Крутящая нагрузка = 0,655 Н-м
На основании данного расчета проектировщик может сделать вывод, что если значение крутящего момента электромотора превышает 0,655 Н-м, его потребление электричества превысит 2 ампера, при этом предохранитель сработает. Остается рассчитать количество силы, которой должна обладать рука.
Сила = Крутящий момент/Расстояние = 0,655 Н-м / 0,25 м = 2,62 Н
Если рука робота подбирает объект, масса которого превышает 2,62 Н, это спровоцирует срабатывание предохранителя.
Расчет скорости электромотора из крутящей нагрузки
В примере, представленном выше, какова скорость электромотора при предельном токе? На основании расчетов, выполненных на предыдущем этапе, проектировщик должен определить скорость электромотора при нагрузке 0,655 Н-м.
Глядя на график, изображенный выше, скорость электромотора при любой крутящей нагрузке может быть рассчитана с помощью уравнения, аналогичного уравнению для расчета потребления тока (предыдущий пример).
В этом случае, уклон линии выражается как m = (изменение по Y) / (изменение по X) = (свободная скорость) / (предельный перегрузочный момент).
Примечание: уклон имеет отрицательное значение.
Точка пересечения с осью Y обозначает свободную скорость.
Значение Y — это скорость в заданной точке линии, и значение X — это крутящая нагрузка в этой точке.
Уравнение выглядит следующим образом:
Скорость = (свободная скорость / предельный перегрузочный момент) х крутящая нагрузка + свободная скорость
С помощью параметров из примера выше может быть установлена скорость электромотора при крутящей нагрузке, равной 6,55 фунто-дюймов:
Скорость = -(100 об/мин / 1 Н-м) x 0,655 Н-м + 100 об/мин
Скорость = -(100 об/мин/Н-м) x 0,655 Н-м + 100 об/мин
Скорость = 65,5 об/мин + 100 об/мин = 34,5 об/мин
При потреблении 2 ампер тока и подъеме объекта массой 2,62 Н, электромотор будет вращаться со скоростью 34,5 об/мин при крутящей нагрузке 0,655 Н-м.
Несколько электромоторов
Если для выполнения задачи требуется больше мощности, чем может обеспечить один электромотор, у проектировщика есть три варианта действий:
- 1. Изменить проектные требования таким образом, чтобы для выполнения задачи было достаточно меньшей мощности.
2. Перейти на использование более мощного электромотора.
3. Увеличить количество электромоторов.
Что произойдет при использовании в проекте нескольких электромоторов? Очень просто — крутящая нагрузка будет распределена между ними. При крутящем моменте 2 Н-м, каждый электромотор будет иметь крутящую нагрузку 1 Н-м и реагировать соответственно.
Это можно представить так, что электромоторы принимают на себя характеристики супер-мотора, при этом характеристики отдельных электромоторов суммируются. Суммируются значения предельного перегрузочного момента, тока заторможенного электромотора, свободного тока, при этом свободная скорость остается неизменной.
В таблице выше представлены спецификации 2-проводного электромотора VEX 393, а также спецификации при комбинировании двух электромоторов для выполнения одной задачи.
В примере выше, сколько электромоторов VEX 393 необходимо для стабильного удерживания объекта?
Крутящая нагрузка на электромоторы рассчитывается следующим образом:
Крутящая нагрузка = сила х расстояние = 22 Н х 0,25 м = 5,5 Н-м
Данную крутящую нагрузку можно сравнить с предельным перегрузочным моментом электромотора VEX 393 и определить требуемое количество.
5,5 Н-м / 1,67 Н-м = 3,29 электромоторов
Таким образом, для удержания руки в поднятом положении (пример выше) необходимо 4 электромотора.
Полезная информация » Переводим Вольт-Амперы (ВА) в Ватты (Вт)
Нередко наши покупатели, видя в названии стабилизатора цифры, принимают их за мощность в Ваттах. На самом деле, как правило, производитель указывает полную мощность прибора в Вольт-Амперах, которая далеко не всегда равна мощности в Ваттах. Из-за этого нюанса возможны регулярные перегрузки стабилизатора по мощности, что в свою очередь приведет к его преждевременному выходу из строя.
Электрическая мощность включает в себя несколько понятий, из которых мы рассмотрим наиболее для нас важные:
Полная мощность (ВА) — величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт). Измеряется в Вольт-Амперах.
Активная мощность (Вт) — величина, равная произведению силы тока (Ампер) на напряжение в цепи (Вольт) и на коэффициент нагрузки (cos φ). Измеряется в Ваттах.
Коэффициент мощности (cos φ) — величина, характеризующая потребитель тока. Говоря простым языком, этот коэффициент показывает, скольно нужно полной мощности (Вольт-Ампер), чтобы «запихнуть» требуемую на совершение полезной работы мощность (Ватт) в потребитель тока. Этот коэффициент можно найти в технических характеристиках приборов-потребителей тока. На практике он может принимать значения от 0.6 (например, перфоратор) до 1 (нагревательные приборы). Cos φ может быть близок к единице в том случае, когда потребителями тока выступают тепловые (тэны и т.п.) и осветительные нагрузки. В остальных случаех его значение будет варьироваться. Для простоты это значение принято считать равным 0.8.
Активная мощность (Ватты) = Полная мощность (Вольт-Амперы) * Коэффициент мощности (Cos φ)
Т.е. при выборе стабилизатора напряжения на дом или на дачу в целом, его полную мощность в Вольт-Амперах (ВА) следует умножить на коэффициент мощности Cos φ = 0. 8. В результате мы получаем приблизительную мощностьв Ваттах (Вт) на которую рассчитан данный стабилизатор. Не забывайте в расчетах принять во внимание пусковые токи электродвигателей. В момент пуска их потребляемая можность может превысить номинальную от трёх до семи раз.
Для любознательных:
Электрическая мощность
Коэффициент мощности
Выбор тока для сварки электродами
Многим людям кажется, что подобрать качественные электроды, хороший сварочный инвертор и больше ничего не нужно для успешного сваривания. Однако эти люди в чем-то правы, а в чем-то и нет. Для успешного сваривания также необходимо подобрать нужный ток. От чего он зависит? Он зависит от толщины металла, диаметра электрода и материала, из которого изготовлен электрод. Как узнать такие параметры? – это не является тайной, и Вы можете без проблем это прочитать далее в статье.
Для начала Вам нужно определить, какой сварочный ток использовать: постоянный или переменный. При сварке постоянным током прямой полярности глубина приваривания снижается на 40 – 50%, а при сваривании переменным током, провар уменьшается на 15 – 20%.
После того как Вы определитесь с полярностью тока, Вам нужно подобрать ток для используемого диаметра электрода. Для каждого диаметра электродов есть и свой ток. Вот все основные диаметры электродов и ток, который нужен для должного сваривания:
- 1,6 миллиметра – 35 – 60 Ампер;
- 2,0 миллиметра – 30 – 80 Ампер;
- 2,5 миллиметра – 50 – 110 Ампер;
- 3,0 миллиметра – 70 – 130 Ампер;
- 3,2 миллиметра – 80 – 140 Ампер;
- 4,0 миллиметра – 110 – 170 Ампер;
- 5,0 миллиметра – 150 – 220 Ампер;
Исключением являются случаи, когда необходимо нужно сваривать тонкий металл. При сваривании тонкого металла (до 3 миллиметров) нужно использовать электроды толщиной 2 -2,5 при этом используя ток 30 – 70 Ампер. Также для каждого диаметра электродов есть и своя толщина свариваемого металла:
- 2 – 3 миллиметра толщина металла: 1,6; 2,0 – толщина электрода;
- 3 – 5 миллиметра толщина металла: 2,0; 2,5; 3,0; 3,2; 4,0 – толщина электрода;
- 5 – 8 миллиметров толщина металла: 3,0; 3,2; 4,0; 5,0 – толщина электрода;
Теперь, Вы, зная ток, толщину электрода и толщину металла можете приступать к свариванию. Однако для хорошего и качественного сваривания Вам необходимо иметь надежный и недорогой сварочный инвертор. Безусловно, лидерами продаж являются сварочные инверторы «Темп», но среди них не нужно выбирать для себя самый дешевый. Лучше всего покупать инвертор «Темп ИСА 200» или «Темп ИСА 180». Чем они отличаются от других сварочных аппаратов? Они отличаются тем, что имеют все, что нужно для качественного сварочного аппарата: долговечность, приемлемая цена, тянет электроды диаметром от 1,6 до 5,0.
Эти качества должны побудить Вас сделать правильный выбор. Теперь у нас остался один вопрос: где все это недорого купить? Сделать удачную покупку Вы можете у наших заводов-изготовителей, которые держат качество продукции на высоте уже долгое время. Наши заводы занимаются продажей только качественных сварочных материалов, поэтому для того чтобы начинать сварочные работы Вам нужно всего лишь сделать заказ всего, что Вам нужно и начинать сварочные работы.
Несмотря на кризис или другие неполадки, наши заводы стараются держать цены как можно ниже, чтобы любой желающий человек мог купить качественный сварочный материал по доступной цене. Помните: покупая только качественные товары у нас, Вы сможете без проблем провести все необходимые сварочные работы по низким ценам!
Как подобрать аккумулятор на..
Какой аккумулятор выбрать?
Если не хотите обращаться в сервис или к помощи продавца, то алгоритм выбора должен быть следующий.
Брать надо такую батарею, которая гарантированно уместится в отведенной ей нише, будь то моторный отсек, багажник или что-то еще. Согласитесь: глупо промахнуться на пару сантиметров! Одновременно определяем полярность: смотрим на старую батарею и соображаем, какая клемма у нее справа, а какая слева? Само собой, что если машина не европейская, то и сами клеммы могут отличаться от большинства привычных — как по форме, так и по расположению.
Так же стоит обратить внимание на корпус аккумуляторной батареи, их может быть несколько видов, но самые распространенные европейский и азиатский корпус, они отличаются размерами и расположением клемм на корпусе.
Подберем аккумулятор по характеристикам
Все автомобильные АКБ имеют три основные характеристики: напряжение, емкость и пусковой ток. Напряжение аккумулятора автомобиля для всех легковых моделей одинаково: 12 вольт. Конечно, есть и батареи с напряжением в 24 вольт, но это касается только грузовиков, и то не всех.
Следующая характеристика – емкость. Емкость аккумулятора – показатель времени, на протяжении которого батарея может выдавать при разряде свои эксплуатационные параметры. То есть чем больше емкость, тем дольше можно слушать музыку или оставлять световые приборы включенными при незаведенном двигателе.
Емкость автомобильных аккумуляторов измеряется в ампер-часах (Ач). Например, маркировка на корпусе 60 Ач говорит о том, что емкости данной батареи хватит на 1 час при нагрузке в 60 ампер или на 60 часов при нагрузке 1 ампер.
На разных моделях автомобилей завод-производитель рекомендует разную емкость батарей. К примеру, для малолитражек это 40-60 Ач, а для более объемных моторов около 60-100 Ач. Зависимость емкости аккумуляторов от объема двигателя исходит из того, что емкость напрямую связана с пусковым током.
А пусковой ток как раз и влияет на запуск. Чем больше объем двигателя, тем больше силы тока нужно, чтобы его провернуть стартером, соответственно, тем больший должен быть пусковой ток.
Пусковой (стартерный) ток – это способность батареи выдавать максимальную силу тока за короткий промежуток времени. Измеряется пусковой ток в амперах (А) и на корпусе будет обозначаться как 520 А, 710 А, 880 А и т. д.
Чтобы завести малолитражный бензиновый автомобиль при температуре в 0 °C, понадобится около 200-300 ампер. Если же в этих условиях заводить бензиновый автомобиль с объемом 2,5 и более литров, то пусковой ток нужен больше 400 ампер. При понижении температуры возрастает потребность в пусковом токе.
В сильный мороз для запуска понадобится чуть ли не в 2 раза больше пускового тока, чем при плюсовой температуре для одного и того же автомобиля. Нужно это учитывать при выборе батареи, особенно для регионов с холодным климатом.
Можно купить аккумулятор для машины с большим пусковым током, чем рекомендует производитель, но никак не меньшим. Больший пусковой ток будет плюсом. Например, при долгом простое автомобиля, особенно при отрицательной температуре, пусковой ток все еще будет достаточен для запуска двигателя, ведь аккумулятор выбирался «с запасом». И в такой же ситуации пускового тока может не хватить если эта характеристика выбрана «впритык».
Как уже понятно, пусковой ток – один из самых важных параметров аккумулятора, и чем он больше, тем лучше. Также пусковой ток влияет и на срок службы аккумулятора автомобиля, чем больше пусковой ток, тем аккумулятору легче крутить стартер, тем его разряд становится менее глубоким.
Глубокий разряд очень негативно сказывается на ресурсе АКБ. Обычно достаточно 2-3 раза полностью разрядить аккумулятор, и он уже не будет иметь своих начальных характеристик или вовсе выйдет из строя.
Пусковой ток маркируется по-разному, в зависимости от производителя. Маркировка бывает такой:
- EN – европейский вариант маркировки. В России может обозначаться как ГОСТ 959-2002. На корпусе выглядит так – 540А(EN), 620A(EN), 840A(EN) и т. д.;
- DIN – немецкий вариант маркировки. На корпусе выглядит так – 290А(DIN), 310A(DIN), 510A(DIN) и т. д.;
- SAE – американский вариант маркировки. На корпусе выглядит так – 560А(SAE), 640A(SAE), 880A(SAE) и т. д.
Таблица перевода тока холодного пуска EN, CCA, SAE, IEC, DIN
ССА — это аббревиатура от английского Cold Cranking Amps (CCA) означающая ток холодного пуска (ток холодной прокрутки) стартерной аккумуляторной батареи. Ток
холодной прокрутки измеряется в амперах по определенной методике измерения. Различают следующие отраслевые стандарты измерения тока холодной прокрутки (CCA):
SAE (JS537) /CCA
Американский стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до -18С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 7,2В в течение 30 секунд)
EN (EN50342.1A1) ГОСТ 959-2002
Европейский стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до -18С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 7,2В в течение 10 секунд)
IEC (60095-1)
Международная электротехническая комиссия (полностью заряженную батарею по методике SAE JS537 охлаждают до -18С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 8,4В в течение 60 секунд)
DIN
Немецкий стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до -18С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 9В в течение 30 секунд и 6В в течение 150 секунд)
JIS (D5301)
Японский индустриальный стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до -15С в течение 24 часов. Затем батарею нагружают силой тока 150-300А в течение 10-30 секунд. Тест считается пройденным, если напряжение батареи не упадет ниже 6В )
MCA (СА) — Морской стандарт (полностью заряженную батарею по методике SAE JS537 охлаждают до 0С в течение 24 часов. Затем батарею нагружают силой тока, равной номинальному CCA батареи. Тест считается пройденным, если напряжение батареи не упадет ниже 7,2В в течение 30 секунд)
ГОСТ Р 53165-2008 — ток холодной прокрутки (CCA) — это ток разряда, А, указанный изготовителем, который может обеспечить батарея для пуска двигателя в заданных условиях. ГОСТ Р 53165-2008 базируется на международном стандарте IEC 60095-1.
С права приведена таблица перевода тока холодного пуска (EN, CCA, SAE, IEC, DIN).
В России принято пользоваться именно ГОСТ 959-2002, то есть европейским стандартом (EN). При выборе нужно ориентироваться именно на этот стандарт. Если на корпусе аккумулятора нанесена маркировка DIN, то следует конвертировать данные в европейский стандарт по таблице приведенной выше.
Также можно приобрести и АКБ с большей емкостью, чем рекомендует производитель. Больше емкость – дольше автономная работа потребителей. Но с емкостью можно и переборщить.
Чем больше емкость, тем дольше такая батарея будет заряжаться после N количества дней простоя. А если автомобиль используется довольно редко и поездки, как правило, короткие, то батарея (с большей емкостью) может не успевать зарядиться на 100%. А эксплуатация недозаряженной батареи сильно влияет на срок её службы, и он становится существенно короче.
Если же в машине стоит аккумулятор с существенно большей емкостью и автомобиль эксплуатируется часто, не реже, чем через день и минимум по нескольку часов, то тогда проблем с недозарядом не будет и увеличенная емкость будет приносить только плюс.
При обычных условиях эксплуатации аккумуляторную батарею можно приобрести с емкостью не более +30% от рекомендуемой.
И финальная стадия подбора аккумулятора, выбираем бренд. Тут мы однозначно советуем руководствоваться списком наших лидеров по своим техническим свойствам и качеству сборки последних лет и никогда не «клевать» на новичков или аутсайдеров. Даже если их этикетки самые красивые. Вот некоторые имена из тех, которые обычно нас не подводили: Tyumen batbear (тюменские батареи), Varta, Bosch, Hankook, Crossfire, Tab, «АкТех» Завод производитель, «Зверь».
Ещё следует знать что напряжение на новом аккумуляторе должно быть не ниже 12.5 вольт, что соответствует 85-90% заряда согласно таблице:
100% – 12. 71в
95% – 12.65в
90% – 12.57в
85% – 12.53в
80% – 12.47в
78% – 12.41в
70% – 12.37в
65% – 12.33в
60% – 12.29в
55% – 12.25в
50% – 12.21в
40% – 12.13в
30% – 12.05в
20% – 11.99в
10% – 11.95в
Пусковой ток аккумулятора
При выборе аккумулятора нужно учесть несколько важнейших показателей, которые влияют на его мощность и соответствуют конкретной модели автомобиля. Это — габаритные размеры, емкость, полярность. Еще один ключевой показатель — пусковой ток, о котором мы расскажем в данном обзоре.
Распространено мнение, что чем выше пусковой ток аккумулятора, тем лучше. На самом деле это не совсем так.
Определение и важность пускового тока
При всей значимости остальных параметров, важность пускового тока можно выразить в одной фразе: если у него не будет достаточного значения (уровня), то машина попросту не заведется. Особенно — в холода.
Пусковой ток (сокращенно ПТ) АКБ имеет еще одно определение: ток холодной прокрутки. И именно в этом суть. В двигателе, который пребывает в холодном, не прогретом состоянии, вязкость масла на порядок больше. В самый момент запуска автомобиля стартер вынужден расходовать значительное количество энергии. Для приведения в движение маховика с поршнями необходимо подать от АКБ нужную «порцию» электричества.
Соответственно, если уровень тока холодной прокрутки будет не ниже стандарта, то завести машину можно без проблем.
Какие показатели считаются оптимальными
Показатель напряжения корректно работающей батареи практически неизменен, и равен 12 Вольт. И чем значительнее сила тока, тем выше мощность, которую в состоянии достичь двигатель стартера. Но не нужно гнаться за рекордами. Давайте определим, какой ПТ можно назвать оптимальным.
Пусковой ток — это тот максимум силы тока, который в состоянии отдать аккумулятор, причем, именно в минимальный временной интервал.
Так вот: для запуска двигателя легковой машины среднего класса требуется от 250 до 270 Ампер. Это и есть оптимальное значение ПТ.
Одного, универсального показателя тока не существует. Ведь он зависит от нескольких факторов: в каком климате идет эксплуатация, какова мощность автомобиля, какой тип двигателя.
На юге России ПТ не имеет такого значения, поскольку в условиях повышенных температур масло находится в нужном, жидком состоянии. Прямо противоположна ситуация в северных регионах, где из-за холода вязкость масла возрастает в разы, и требуются повышенные усилия для запуска. А следовательно, и больший пусковой ток.
Считается, что при температуре +5 (плюс-минус несколько градусов) ПТ может не превышать 230 Ампер, и даже быть на 10% меньше!
Если же автомобиль нужно завести при минусовой температуре порядка 15 градусов, потребуется уже 270-300 Ампер.
Оптимальные значения пускового тока — по оценкам экспертов
С учетом того, что бензиновые двигатели потребляют меньше, чем дизельные, в которых выше степень сжатия, можно вывести такую закономерность:
Среднее значение для бензиновых — 260 Ампер.
Среднее число для дизельных — порядка 290 Ампер.
Вот почему можно уверенно говорить о том, что цифра в 300 Ампер будет оптимальной для легкового автомобиля! Данных показателей вполне достаточно.
Если говорить о грузовом транспорте, то средние значения вывести сложнее: грузовые машины имеет большой разброс по мощности. Можно назвать цифру порядка 600-800 Ампер.
Стоит ли выбирать АКБ с большим током?
Существует заблуждение, что чем выше пусковой ток батареи, тем лучше. Те, кто так считает, часто попадаются на маркетинговые «ловушки». Многие производители заинтересованы пиарить АКБ с неоправданно мощными показателями и естественно, высокой ценой.
Так стоит ли вообще брать батареи с ПТ 500 Ампер и выше?
Эксперты отвечают: это не целесообразно!
И для такого заявления есть веские аргументы. Ток свыше 300 Ампер уже является излишеством. Какой смысл покупать батареи с огромным запасом, к тому же переплачивая?
Ну и главное: чем выше пусковой ток, тем меньше проработает батарея. Так как срок службы аккумуляторов с завышенным током меньше, чем со средним!
Подумайте сами: если вы купите АКБ с ненужным запасом ПТ сверх достаточного значения, то никак не используете «излишки», и к тому же будете вынуждены чаще менять батарею! То есть, чаще платить за новую.
Главный вывод: берите АКБ с пусковым током 250-300 Ампер, так как этих показателей более чем достаточно!
Что влияет на показатели пускового тока
Водители нередко считают, что определенной емкости соответствует тот или иной показатель пускового тока. Это не так.
При анализе аккумуляторных батарей с единым значением емкости, которые произведены в разных странах — выявляется такая особенность, как значительное различие в цифрах ПТ. Причем разница может превышать 35%! С чем это связано?
Ответ однозначен: причина различия кроется в применяемых технологиях. Вот список основных нюансов:
1. Увеличенное количество пластин. Если сравнить одинаковые по размеру корпуса, то лучшие показатели по ПТ будут у АКБ с большим числом пластин;
2. Использование чистого (или, по-другому, очищенного) свинца. Если он входит в состав (пусть и традиционных) кислотных батарей, это будет способствовать более быстрой зарядке. Озвученное относится и к разрядке. Следовательно, пусковые показатели будут лучше;
3. Повышенная пористость плюсовых пластин. Это приводит к накапливанию большего заряда;
4. Степень испарения электролита, которая напрямую зависит от уровня герметичности корпуса. Запаянные и герметичные АКБ исключают возможность испарения. Благодаря этому, в батарее сохраняется требуемый уровень, а пластины не оголяются;
5. Разница в количестве залитого электролита.
Отдельно стоит выделить применение инноваций. Если анализировать новейшие технологии, то лидерами по показателю отдачи ПТ будут аккумуляторы GEL и конечно, AGM. В данных АКБ показатели доходят до тысячи ампер в интервале 30 секунд. Это значительно больше (а именно в 3, иногда и в 4 раза) традиционных кислотных аналогов.
Но если смотреть объективно (и учитывать основной вывод нашей статьи), такие показатели нужны только для очень мощных джипов или скоростных премиальных авто с запредельными показателями лошадиных сил. Для средних авто покупка аккумуляторов даже в районе 500 (а тем более выше) Ампер — не имеет смысла: лишние амперы и снижение срока службы АКБ. К тому же, подобные батареи значительно дороже, что не оправдано.
Существует и такое понятие, как увязка со статусом: ведущие производители заявляют о гарантированном качестве (что далеко не всегда соответствует реальности). Зато это всегда сопровождается наценкой за бренд!
Классификация, принятая в мире
В мировой практике можно встретить разные классификации, по которым определяется пусковой ток конкретного аккумулятора. Для удобства разработана система маркировок: обнаружив те или иные буквы, вы сразу поймете, где произведена батарея. К основным классификациям ПТ относятся:
- В Германии — DIN
- В США — SAE
- В странах Европейского союза (за исключением Германии) — EN
- В России, на Украине и некоторых странах бывшего СССР распространены надписи «стартерный ток», а также «пусковой ток».
Если при покупке новой АКБ на корпусе отсутствуют данные показатели (что чрезвычайно редко), цифры пускового тока должны быть в инструкции/буклете.
Методики замеров пускового тока
Когда происходит снижение напряжения, вырастает потребление Ампер. Это взаимосвязанный процесс, и при методиках (вне зависимости от страны) идет фиксация величины потребления. То есть, имитируется пуск и таким образом замеряется значение пускового тока батареи. Что касается процесса охлаждения, он необходим для моделирования ситуации с низкой температурой и суровыми условиями эксплуатации.
— В европейских странах аккумуляторы охлаждают до значительной величины — минус 18 градусов. Затем их специально разряжают — на это отводится десять секунд. Разрядка допускается до показателя в 7,5 Вольт.
— В Германии охлаждение происходит до той же температуры, но на разрядку отводится в три раза больше: полминуты. Отличается и величина разрядки — до 9 Вольт.
— Точно такие же показатели используют в США, исключение составляет только глубина разряда. Она еще ниже: 7.2 Вольта.
— В России опираются на те же стандарты, что и в Германии: идентичны все показатели.
Единица электрического тока: ампер или ампер
Ампер или ампер — это единица измерения электрического тока в системе СИ, позволяющая определять величину тока в цепи.
Учебное пособие по электрическому току Включает:
Что такое электрический ток
Текущая единица — Ампер
ПЕРЕМЕННЫЙ ТОК
Важно иметь возможность количественно оценить величину тока, протекающего в цепи, поскольку это позволяет определить характеристики цепи и обеспечить работу цепи должным образом.
Для этого необходимо иметь блок, а это ампер или усилок. Аббревиатура для этого — «А». Ток в десять ампер можно записать как 10 ампер или 10 А.
Примечание: имя физика Ампера пишется с заглавной буквы A и с ударением, единицей измерения тока является ампер или ампер без заглавной буквы или ударения.
Единица тока; определение ампер
Ампер эквивалентен заряду в один кулон в секунду, протекающему в цепи. Хотя это практическая реализация ампера, формальное определение связывает уровень тока с основными параметрами SI.
Определение ампер:
Формальное определение ампера — это постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с незначительным круглым поперечным сечением и помещать на расстоянии одного метра в вакууме, создавал бы между этими проводниками силу, равную 2 × 10 −7 ньютон на метр длины.
Условия определения ампераАмпер — это единица измерения электрического тока в системе СИ и одна из семи основных единиц системы СИ
Интересно, что один ампер приблизительно эквивалентен приблизительно 6,24 × 10 18 элементарным зарядам, таким как электроны или дырки, проходящим мимо заданной точки или границы за одну секунду.
Физики считают, что ток течет от относительно положительных точек к относительно отрицательным точкам; это называется обычным током или током Франклина.
Это определение использует электромагнетизм для определения единицы тока. Это приводит к неявному определению значения магнитной постоянной µ 0 = 4 π 10 -7 Hm -1 = 4 π 10 -7 м кг с 2 A -2 . Следовательно, ампер базовой единицы — и, следовательно, все другие электрические единицы — связаны с базовыми единицами измерения, килограмма и секунды через эту фундаментальную константу.
История ампер
Единица измерения тока; Ампер назван в честь Андре-Мари Ампера, одного из первых пионеров в области электротехники.
Записка об Андре-Мари Ампере:
Андре-Мари Ампер (1775–1836) был французским математиком и физиком. Он провел много экспериментов, связанных с ранней наукой об электричестве, и в связи с его новаторской работой многие считают его отцом электродинамики.
Подробнее о Андре-Мари Ампер.
Ввиду действительно фундаментальной работы, проделанной Ампером, единицей измерения электрического тока, ампер был назван в его честь. Это было признанием его большого вклада в установление многих основ современной электротехники. Название «ампер» было установлено как стандартная единица измерения электрических величин на международной конвенции, подписанной в 1881 году.
Кратные и подмножественные значения для ампер
Диапазон тока, переносимого в различных сценариях, сильно различается — на много порядков. Следовательно, необходимо использовать стандартные кратные и подмножители.
Кратные и подмножители ампер | ||
---|---|---|
Текущий | Имя | Аббревиатура |
10 -15 ампер | фемтоампы | fA |
10 -12 ампер | пикоампер | pA |
10 -9 ампер | наноампер | нА |
10 -6 ампер | микроампер | мкА |
10 -3 ампер | миллиампер | мА |
Ампер | ампер | А |
10 3 ампер | килоампер | кА |
10 6 ампер | Мега ампер | MA |
Ток в амперах типовых устройств
Различные устройства используют разные уровни тока и часто задаются вопросом, сколько ампер может использовать устройство. В таблице ниже приведен список типичных значений тока в амперах, используемых рядом различных электрических и электронных устройств.
Типичный ток в амперах обычных устройств | ||
---|---|---|
Устройство | Детали | Типовой ток |
Электрокамин | Шина 1 кВт, работающая от сети 240 В | 4 ампера |
Настольный компьютер | Компьютер используется и не находится в режиме ожидания | ~ 0.5 ампер |
Чайник | Типовой чайник мощностью 2,5 кВт, работающий от 240 В | 10 ампер |
Портативный компьютер | Взимается | ~ 0,2 ампер |
Телевидение | Пример типичного 42-дюймового ЖК-телевизора с плоским экраном | ~ 0,3 ампер |
Ампер — одна из семи основных единиц СИ и, как таковая, является ключевой для электротехники и электроники, а также многих других областей науки. Определение основано на электромагнитном эффекте, который он вызывает, что дает ему фундаментальное определение.
Дополнительные основные понятия:
Напряжение
Текущий
Сопротивление
Емкость
Мощность
Трансформеры
Радиочастотный шум
Децибел, дБ
Q, добротность
Вернуться в меню «Основные понятия». . .
ампер: Введение | NIST
Кредит: Энергетическое управление Бонневилля / Министерство энергетики
Первые 10 миль линии электропередачи Макнари — Джон Дэй, шоссе 14, штат Вашингтон.Линии электропередачи обычно имеют высокое напряжение, до 750 000 вольт, но относительно низкие токи, до 1000 ампер.Ампер (А), основная единица измерения электрического тока в системе СИ, является привычной и незаменимой величиной в повседневной жизни. Он используется для определения потока электричества в фенах (15 ампер для модели на 1800 ватт), удлинителях (обычно от 1 до 20 ампер), домашних автоматических выключателях (от 15 до 20 ампер для одной линии), дуговой сварке ( примерно до 200 ампер) и более. В повседневной жизни мы испытываем широкий диапазон токов: светодиодная лампа, эквивалентная 60 Вт, потребляет небольшую долю ампер; молния может выдерживать 100 000 ампер и более.
468-пиксельный криогенный светодиодный картограф для сверхпроводящих детекторов фотонов. Светодиоды очень энергоэффективны; токи для маленького светодиода могут составлять всего несколько тысячных ампер.Ампер является всемирно признанной единицей измерения с 1908 года и со временем измеряется с все более высокой точностью, в последнее время с точностью до нескольких десятков миллионов.
Но определить ампер в лучшем случае было проблематично. До 2019 года его официальное определение — общая версия эксперимента, проведенного французским ученым Андре-Мари Ампером в 1820-х годах — указывало на полностью гипотетическую ситуацию:
Ампер — это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с незначительным круглым поперечным сечением и помещать на расстоянии 1 метра в вакууме, создавал бы между этими проводниками силу, равную 2 x 10 — 7 ньютон на метр длины.
Поскольку бесконечно длинные провода и вакуумные камеры, как правило, были недоступны, сила тока не могла быть физически реализована в соответствии с его собственным определением, хотя его можно было со значительными трудностями приблизительно определить в лабораторных условиях. Столь же неудовлетворительным было то, что усилитель, хотя и имел электрическую величину, определялся в механических терминах. Ньютон (единица силы в системе СИ, кг • м / с 2 ) был получен из единицы массы системы СИ: килограмма, хранящегося в Севре, Франция.Его значение массы менялось со временем, что ограничивало точность производных единиц.
Кредит: Ю. Ральченко / NIST
Гроза в Санта-Фе в 2013 году. Обычные молнии могут переносить электрический ток 100 000 ампер и более.Однако в ноябре 2018 года было одобрено новое определение ампера вместе с тремя другими базовыми единицами СИ: килограммом (массой), кельвином (температурой) и молями (количеством вещества). Начиная с 20 мая 2019 года, ампер основан на фундаментальной физической константе: элементарном заряде (е), который представляет собой количество электрического заряда в отдельном электроне (отрицательный) или протон (положительный).
Ампер — это мера количества электрического заряда , движущегося в единицу времени , то есть электрического тока. Но количество электрического заряда по самому , независимо от того, движется он или нет, выражается другой единицей СИ, кулоном (Кл). Один кулон равен примерно 6.241 x 10 18 электрических зарядов ( e ). Один ампер — это ток, при котором один кулон заряда проходит через заданную точку за 1 секунду.
Вот почему средняя молния несет около 5 кулонов заряда, даже если ее ток может составлять десятки тысяч ампер. Разница в этих числах возникает из-за того, что удар молнии длится всего несколько десятков миллисекунд (тысячных долей секунды).
Кредит: NIST
Микросхема одноэлектронного транспорта (SET), которая может использоваться для подсчета электронов в переопределенном амперах.Определение ампера исключительно с точки зрения элементарного заряда e можно рассматривать как своего рода результат хороших новостей и плохих новостей. С одной стороны, он четко определяет усилитель в терминах только одного инварианта природы, которому было присвоено точное фиксированное значение во время переопределения. После этого прямые измерения ампер превратились в подсчет прохождения отдельных электронов в устройстве с течением времени.
С другой стороны, e почти невообразимо мал — около десятой миллиардной миллиардной части заряда в токе в 1 ампер, который проходит через заданную точку за 1 секунду.Измерение отдельных электронов, прошедших определенную точку, является технически сложной задачей, и основная задача ученых состоит в том, чтобы получить ток отдельных электронов, который можно регулярно измерять и использовать в качестве эталона.
Итак, хотя новое определение, наконец, поставило ампер на более рациональную основу, оно ставит новые и серьезные проблемы для науки об измерениях.
Ампер (А), электрический блок
Определение ампер
Ампер или ампер (обозначение: A) — это единица измерения электрического тока.
Устройство Ampere названо в честь Андре-Мари Ампера из Франции.
Один ампер определяется как ток, протекающий с электрическими заряд одного кулона в секунду.
1 А = 1 К / с
Амперметр
Амперметр или амперметр — это электрический прибор, который используется для измерения электрического тока в амперах.
Когда мы хотим измерить электрический ток на нагрузке, амперметр подключается последовательно к нагрузке.
Сопротивление амперметра близко к нулю, поэтому он не будет влияют на измеряемую цепь.
Таблица префиксов единиц ампер
наименование | символ | преобразование | , пример |
---|---|---|---|
микроампер (микроампер) | мкА | 1 мкА = 10 -6 А | I = 50 мкА |
миллиампер (миллиампер) | мА | 1 мА = 10 -3 А | I = 3 мА |
ампер (амперы) | А | – | I = 10A |
килоампер (килоампер) | кА | 1кА = 10 3 А | I = 2кА |
Как преобразовать ампер в микроампер (мкА)
Ток I в микроамперах (мкА) равен току I в амперах (А), деленному на 1000000:
I (мкА) = I (A) /1000000
Как преобразовать амперы в миллиампера (мА)
Ток I в миллиамперах (мА) равен току I в амперах (А), деленному на 1000:
I (мА) = I (A) /1000
Как перевести ампер в килоампер (кА)
Ток I в килоамперах (мА) равен току I в амперах (А), умноженному на 1000:
I (кА) = I (A) ⋅ 1000
Как преобразовать амперы в ватты (Вт)
Мощность P в ваттах (Вт) равна току I в амперах (A), умноженному на напряжение V в вольтах (В):
P (Ш) = I (A) ⋅ В (В)
Как перевести ампер в вольты (В)
Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):
В (В) = P (Ш) / I (A)
Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):
В (В) = I (A) ⋅ R (Ом)
Как преобразовать амперы в Ом (Ом)
Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):
R (Ом) = В (В) / I (A)
Как перевести амперы в киловатты (кВт)
Мощность P в киловаттах (кВт) равна току I в амперах (A), умноженному на напряжение V в вольтах (В), деленному на 1000:
P (кВт) = I (A) ⋅ В (В) /1000
Как перевести ампер в киловольт-ампер (кВА)
Полная мощность S в киловольт-амперах (кВА) равна действующему току I RMS в амперах (A), умноженное на действующее значение напряжения V RMS в вольтах (В), деленное на 1000:
S (кВА) = I RMS (A) ⋅ В СКЗ (В) /1000
Как преобразовать амперы в кулоны (К)
Электрический заряд Q в кулонах (Кл) равен току I в амперах (А), умноженному на время протекания тока t в секундах (с):
Q (C) = I (A) ⋅ т (с)
См.
Такжеампер | Единицы измерения Wiki
На этой странице используются материалы из англоязычной Википедии .Оригинальная статья была в Ampere. Список авторов можно увидеть на страницах истории . Как и в случае с Вики-сайтом «Единицы измерения», текст Википедии доступен по лицензии Creative Commons, см. Wikia: Licensing. |
ампер (символ: A) — это базовая единица измерения электрического тока в системе СИ, равная одному кулону в секунду. Он назван в честь Андре-Мари Ампера, одного из главных первооткрывателей электромагнетизма.
Ампер — это постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с ничтожно малым круглым поперечным сечением и помещать на расстоянии 1 метра в вакууме, создает между этими проводниками силу, равную 2 -7 ньютон на метр длины.
Поскольку это базовый блок, определение ампера не привязано ни к какому другому электрическому блоку. Определение ампера эквивалентно установке значения проницаемости вакуума на μ 0 = 4π × 10 -7 Гн / м. До 1948 года использовался так называемый «международный ампер», определяемый как скорость электролитического осаждения серебра. Старший блок равен 0,999 85 А.
Ампер наиболее точно определяется с помощью баланса ампер, но на практике он поддерживается с помощью закона Ома из единиц напряжения и сопротивления, вольта и ома, поскольку последние два могут быть связаны с физическими явлениями, которые относительно легко поддаются измерению. воспроизводят джозефсоновский переход и квантовый эффект Холла соответственно.
Единица электрического заряда, кулон, определяется в амперах: один кулон — это количество электрического заряда (ранее количество электричества), переносимого током в один ампер, протекающим в течение одной секунды. Таким образом, ток (электричество) — это скорость, с которой заряд проходит через провод или поверхность. Один ампер тока (I) равен потоку одного кулона заряда (Q) в секунду времени (t):
Так как кулон примерно равен 6.24 × 10 18 элементарных зарядов, один ампер эквивалентен 6,24 × 10 18 элементарных зарядов, таких как электроны, движущихся через поверхность за одну секунду. Точнее, используя определения СИ для обычных значений постоянной Джозефсона и констант фон Клитцинга, ампер можно определить как точно 6,241 509 629 152 65x 10 18 элементарных зарядов в секунду. это?
Учебник по физике: Электрический ток
Если два требования электрической цепи выполнены, заряд будет проходить через внешнюю цепь.Говорят, что есть ток — поток заряда. Использование слова ток в этом контексте означает просто использовать его, чтобы сказать, что что-то происходит в проводах — заряд движется. Однако ток — это физическая величина, которую можно измерить и выразить численно. Как физическая величина, ток — это скорость, с которой заряд проходит через точку в цепи. Как показано на диаграмме ниже, ток в цепи можно определить, если можно измерить количество заряда Q , проходящего через поперечное сечение провода за время t .Ток — это просто соотношение количества заряда и времени.
Текущее — это величина ставки. В физике есть несколько скоростных величин. Например, скорость — это величина скорости — скорость, с которой объект меняет свое положение. Математически скорость — это отношение изменения положения к времени. Ускорение — это величина скорости — скорость, с которой объект меняет свою скорость. Математически ускорение — это отношение изменения скорости к времени. А мощность — это величина скорости — скорость, с которой работа выполняется на объекте.Математически мощность — это отношение работы к времени. В каждом случае величины скорости математическое уравнение включает некоторую величину во времени. Таким образом, ток как величина скорости будет математически выражен как
.Обратите внимание, что в приведенном выше уравнении используется символ I для обозначения величины тока.
Как обычно, когда количество вводится в Физическом классе, также вводится стандартная метрическая единица, используемая для выражения этой величины.Стандартная метрическая единица измерения силы тока — ампер . Ампер часто сокращается до Ампер и обозначается условным обозначением A . Ток в 1 ампер означает, что 1 кулон заряда проходит через поперечное сечение провода каждую 1 секунду.
1 ампер = 1 кулон / 1 секундаЧтобы проверить свое понимание, определите ток для следующих двух ситуаций. Обратите внимание, что в каждой ситуации дается некоторая посторонняя информация.Нажмите кнопку Проверить ответ , чтобы убедиться, что вы правы.
Провод изолируют поперечным сечением 2 мм и определяют, что заряд 20 C пройдет через него за 40 с. | Сечение провода длиной 1 мм изолируется, и определяется, что заряд 2 Кл проходит через него за 0,5 с. |
I = _____ Ампер | I = _____ Ампер |
Частицы, переносящие заряд по проводам в цепи, являются подвижными электронами.Направление электрического поля в цепи по определению является направлением, в котором проталкиваются положительные испытательные заряды. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю. Но в то время как электроны являются носителями заряда в металлических проводах, носителями заряда в других цепях могут быть положительные заряды, отрицательные заряды или и то, и другое. Фактически, носители заряда в полупроводниках, уличных фонарях и люминесцентных лампах одновременно являются как положительными, так и отрицательными зарядами, движущимися в противоположных направлениях.
Бен Франклин, проводивший обширные научные исследования статического и текущего электричества, считал положительные заряды носителями заряда. Таким образом, раннее соглашение о направлении электрического тока было установлено в том направлении, в котором будут двигаться положительные заряды. Это соглашение прижилось и используется до сих пор. Направление электрического тока условно является направлением, в котором должен двигаться положительный заряд. Таким образом, ток во внешней цепи направлен от положительной клеммы к отрицательной клемме батареи.Электроны действительно будут двигаться по проводам в противоположном направлении. Зная, что настоящими носителями заряда в проводах являются отрицательно заряженные электроны, это соглашение может показаться немного странным и устаревшим. Тем не менее, это соглашение, которое используется во всем мире, и к которому студент-физик может легко привыкнуть.
Зависимость тока от скорости дрейфаТок связан с количеством кулонов заряда, которые проходят точку в цепи за единицу времени. Из-за своего определения его часто путают со скоростью дрейфа количества. Скорость дрейфа означает среднее расстояние, пройденное носителем заряда за единицу времени. Как и скорость любого объекта, скорость дрейфа электрона, движущегося по проводу, — это отношение расстояния ко времени. Путь типичного электрона через проволоку можно описать как довольно хаотический зигзагообразный путь, характеризующийся столкновениями с неподвижными атомами. Каждое столкновение приводит к изменению направления электрона.Однако из-за столкновений с атомами в твердой сети металлического проводника на каждые три шага вперед приходится два шага назад. С электрическим потенциалом, установленным на двух концах цепи, электрон продолжает движение на вперед на . Прогресс всегда идет к положительной клемме. Однако общий эффект бесчисленных столкновений и высоких скоростей между столкновениями заключается в том, что общая скорость дрейфа электрона в цепи ненормально мала. Типичная скорость дрейфа может составлять 1 метр в час. Это медленно!
Тогда можно спросить: как может быть в цепи ток порядка 1 или 2 ампер, если скорость дрейфа составляет всего около 1 метра в час? Ответ таков: существует много-много носителей заряда, движущихся одновременно по всей длине цепи. Ток — это скорость, с которой заряд пересекает точку в цепи. Сильный ток является результатом нескольких кулонов заряда, пересекающих поперечное сечение провода в цепи. Если носители заряда плотно упакованы в провод, тогда не обязательно должна быть высокая скорость, чтобы иметь большой ток.То есть носителям заряда не нужно преодолевать большое расстояние за секунду, их просто должно быть много, проходящих через поперечное сечение. Ток не имеет отношения к тому, насколько далеко за секунду перемещаются заряды, а скорее к тому, сколько зарядов проходит через поперечное сечение провода в цепи.
Чтобы проиллюстрировать, насколько плотно упакованы носители заряда, мы рассмотрим типичный провод, который используется в цепях домашнего освещения — медный провод 14-го калибра. В срезе этой проволоки длиной 0,01 см (очень тонком) их будет целых 3.51 x 10 20 атомов меди. Каждый атом меди имеет 29 электронов; маловероятно, что даже 11 валентных электронов одновременно будут двигаться как носители заряда. Если мы предположим, что каждый атом меди вносит только один электрон, то на тонком 0,01-сантиметровом проводе будет целых 56 кулонов заряда. При таком большом количестве подвижного заряда в таком маленьком пространстве малая скорость дрейфа может привести к очень большому току.
Чтобы еще больше проиллюстрировать это различие между скоростью заноса и течением, рассмотрим аналогию с гонками.Предположим, что была очень большая гонка черепах с миллионами и миллионами черепах на очень широкой гоночной трассе. Черепахи не очень быстро двигаются — у них очень низкая скорость дрейф . Предположим, что гонка была довольно короткой — скажем, длиной 1 метр — и что значительный процент черепах достиг финишной черты в одно и то же время — через 30 минут после начала гонки. В таком случае течение будет очень большим — миллионы черепах пересекают точку за короткий промежуток времени.В этой аналогии скорость связана с тем, насколько далеко черепахи перемещаются за определенный промежуток времени; а ток зависит от того, сколько черепах пересекли финишную черту за определенный промежуток времени.
Природа потока зарядаКак только было установлено, что средняя скорость дрейфа электрона очень и очень мала, вскоре возникает вопрос: почему свет в комнате или в фонарике загорается сразу после включения переключателя? Разве не будет заметной задержки перед тем, как носитель заряда перейдет от переключателя к нити накала лампочки? Ответ — нет! и объяснение того, почему раскрывает значительную информацию о природе потока заряда в цепи.
Как упоминалось выше, носителями заряда в проводах электрических цепей являются электроны. Эти электроны просто поставляются атомами меди (или любого другого материала, из которого сделана проволока) внутри металлической проволоки. Как только переключатель переводится в положение на , цепь замыкается, и на двух концах внешней цепи устанавливается разность электрических потенциалов. Сигнал электрического поля распространяется почти со скоростью света ко всем мобильным электронам в цепи, приказывая им начать марш и марш .По получении сигнала электроны начинают двигаться по зигзагообразной траектории в обычном направлении. Таким образом, щелчок переключателя вызывает немедленную реакцию во всех частях схемы, заставляя носители заряда повсюду двигаться в одном и том же направлении. В то время как фактическое движение носителей заряда происходит с низкой скоростью, сигнал, который информирует о начале движения, движется со скоростью, составляющей долю от скорости света.
Электроны, которые зажигают лампочку в фонарике, не должны сначала пройти от переключателя через 10 см провода к нити накала.Скорее электроны, которые зажигают лампочку сразу после того, как переключатель повернут на на , являются электронами, которые присутствуют в самой нити. Когда переключатель повернут, все подвижные электроны повсюду начинают движение; и именно подвижные электроны, присутствующие в нити накала, непосредственно ответственны за зажигание ее колбы. Когда эти электроны покидают нить накала, в нее входят новые электроны, которые ответственны за зажигание лампы. Электроны движутся вместе, как вода в трубах дома.Когда кран поворачивается с на , вода в кране выходит из крана. Не нужно долго ждать, пока вода из точки входа в ваш дом пройдет по трубам к крану. Трубы уже заполнены водой, и вода во всем водном контуре одновременно приводится в движение.
Развиваемая здесь картина потока заряда представляет собой картину, в которой носители заряда подобны солдатам, идущим вместе, повсюду с одинаковой скоростью.Их движение начинается немедленно в ответ на установление электрического потенциала на двух концах цепи. В электрической цепи нет места, где носители заряда расходуются или расходуются. Хотя энергия, которой обладает заряд, может быть израсходована (или лучше сказать, что электрическая энергия преобразуется в другие формы энергии), сами носители заряда не распадаются, не исчезают или иным образом не удаляются из схема. И нет места в цепи, где бы носители заряда начали скапливаться или накапливаться.Скорость, с которой заряд входит во внешнюю цепь на одном конце, такая же, как скорость, с которой заряд выходит из внешней цепи на другом конце. Ток — скорость потока заряда — везде одинакова. Поток заряда подобен движению солдат, идущих вместе, повсюду с одинаковой скоростью.
Проверьте свое понимание1.Говорят, что ток существует всякий раз, когда _____.
а. провод заряженг. аккумулятор присутствует
г. электрические заряды несбалансированные
г. электрические заряды движутся по петле
2. У тока есть направление. По соглашению ток идет в направлении ___.
а. + заряды перемещаютсяг.- электроны движутся
г. + движение электронов
3. Скорость дрейфа подвижных носителей заряда в электрических цепях ____.
а. очень быстро; меньше, но очень близко к скорости светаг. быстрый; быстрее, чем самая быстрая машина, но далеко не скорость света
г. медленный; медленнее Майкла Джексона пробегает 220-метровую
г.очень медленно; медленнее улитки
4. Если бы электрическую цепь можно было сравнить с водяной цепью в аквапарке, то ток был бы аналогичен ____.
Выбор:
A. Напор воды | Б. галлонов воды, стекающей с горки в минуту |
С.вода | D. нижняя часть салазок |
E. водяной насос | F. верх горки |
5. На схеме справа изображен токопроводящий провод. Две площади поперечного сечения расположены на расстоянии 50 см друг от друга. Каждые 2,0 секунды через каждую из этих областей проходит заряд 10 ° C.Сила тока в этом проводе ____ А.
а. 0,10 | г. 0,25 | г. 0,50 | г. 1.0 |
e. 5,0 | ф. 20 | г. 10 | ч.40 |
и. ни один из этих |
6. Используйте диаграмму справа, чтобы заполнить следующие утверждения:
а. Ток в один ампер — это поток заряда со скоростью _______ кулонов в секунду.
г. Когда заряд 8 C проходит через любую точку цепи за 2 секунды, ток составляет ________ A.
г. Если за 10 секунд поток заряда проходит через точку A (диаграмма справа) на 5 ° C, то ток равен _________ A.
г. Если ток в точке D равен 2,0 А, то _______ C заряда проходит через точку D за 10 секунд.
e. Если 12 ° C заряда пройдет мимо точки A за 3 секунды, то 8 C заряда пройдут мимо точки E за ________ секунд.
ф. Верно или неверно:
Ток в точке E значительно меньше тока в точке A, поскольку в лампочках расходуется заряд.
Определение ампер по Merriam-Webster
am · pere | \ Am-ˌpir также -ˌper \1 : практическая единица измерения электрического тока метр-килограмм-секунда, которая эквивалентна потоку в один кулон в секунду или установившемуся току, создаваемому одним вольт, приложенным к сопротивлению в один ом.
2 : — базовая единица измерения электрического тока в Международной системе единиц, которая определяется установкой фиксированного числового значения элементарного заряда равным 1.602176634 x 10 -19 ампер-секунд Am · père | \ äⁿ-ˈper \Андре-Мари 1775–1836 французский физик
Определение— В чем разница между током и ампером?
Похоже, ваша книга устарела. Раньше ответ был B, но по состоянию на прошлый год A теперь правильный.
Определение ампера в 8-м издании SI было:
Ампер — это постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с ничтожно малым круглым поперечным сечением и помещать на расстоянии 1 метра в вакууме, создавал бы между этими проводниками силу, равную 2 × 10-7 ньютон. на метр длины.
Итак, как вы можете видеть, 8-е издание фактически определило ампер в терминах силы между двумя параллельными проводниками с током.{-19} $ электронов за секунду, проходящих мимо точки.
Ток — это скорость прохождения носителей заряда через определенное место, но ампер — это единица измерения тока, и поэтому ее можно в принципе определить с помощью любого эксперимента, который дает надежную величину тока. Теперь, с квантово-механическими стандартами сопротивления и напряжения, можно провести несколько различных экспериментов с достаточно высокой точностью, чтобы иметь смысл просто определить фиксированный элементарный заряд.
https: // www.bipm.org/en/publications/si-brochure/
По поводу разницы между током и ампером. Ампер — это единица измерения тока в системе СИ. Говорят, что ампер имеет размерность тока. Это похоже на идею о том, что метр — это единица измерения длины в системе СИ. Метр — это не длина, это единица длины, и есть другие единицы длины, не относящиеся к системе СИ, например миля и дюйм. Точно так же ампер — это не ток, это единица измерения тока в системе СИ, и существуют другие системы единиц, которые определяют ток по-другому.
.