+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

6 основных типов диодов и принцип их работы | ASUTPP

Без преувеличения можно утверждать, что бурное развитие радиоэлектроники началось с момента изобретения диода. Первыми на свет появились вакуумные диодные лампы.

Но их очень быстро вытеснили полупроводниковые диоды, которые оказались экономичнее, а главное – они открыли путь к миниатюризации электронных устройств. Учитывая популярность этих полупроводников, рассмотрим 6 основных типов диодов и принцип их работы.

Строение полупроводникового диода и принцип действия

Диод состоит из двух разных полупроводников: n-типа и p-типа, к которым подсоединены электроды – анод и катод. Вся эта конструкция заключена в металлический, стеклянный или в пластиковый корпус.

Благодаря тому, что полупроводники обладают разными типами проводимостей (электронная и дырочная) они при контакте образуют зону p-n перехода (Рис. 1). С одной стороны скапливаются положительный ионы, а с другой – электроны.

Рисунок 1. Распределение зарядов в n-p переходе

Если катод подсоединить к негативному полюсу источника питания, а анод к позитивному, то под действием ЭДС произойдёт рекомбинация дырок в зоне с n-проводимостью и нейтрализация электронов в зоне с p-проводимостью.

Барьер, между двумя полупроводниками разрушится и цепь замкнётся. То есть, устройство пропустит ток от катода к аноду (на самом деле электроны устремятся к плюсовой клемме). Схема процесса изображена на рисунке 2 а.

При обратном напряжении (рис. 2 б) зона p-n перехода только усилится. Ток не потечёт. Диод при таком подключении будет находиться в закрытом состоянии. На этом принципе построена работа всех выпрямительных (силовых) радиодеталей.

Рисунок 2

Выпрямительные диоды

Данный тип электронных вентилей чаще всего встречается в блоках питания различных устройств. Диодные мостики на их основе служат для преобразования синусоидального тока в постоянный.

Рисунок 3. Выпрямительный диод большой мощности

В зависимости от типов применяемых полупроводниковых материалов, степени насыщения их различными донорами и акцепторами, полупроводники могут менять свои свойства. Это позволило создавать различные типы полупроводниковых изделий с необходимыми параметрами.

Стабилитроны

Диод, который обладает высокой проводимостью при заданном напряжении, называется стабилитроном. При достижении уровня напряжения стабилитрона, он открывается и пропускает ток почти без сопротивления. Как только разница потенциалов упадёт до заданного минимума, стабилитрон закроется и отсечёт поток электронов.

Данное свойство используется для стабилизации напряжения в электронных устройствах. Отсюда и название – стабилитрон. Один из наиболее часто встречающихся стабилитронов изображён на рис. 4.

Рисунок 4. Стабилитрон

Туннельные диоды

Благодаря множеству присадок образуется узкий p-n переход, способствующий пропускать ток в обе стороны. Это свойство отличает его от других типов вентилей. На схемах радиодетали данного типа изображаются так, как показано на рис. 5.

Рисунок 5. Туннельный диод

Варикапы

Разновидность диодов с переменной ёмкостью называют варикапами. Барьерная ёмкость этих радиодеталей зависит от обратного напряжения.

Их применяют для настройки частот генераторов, управляемых напряжением. Обозначение на схемах показано на рис. 6.

Рисунок 6. Обозначения варикапов на схемах

Светодиоды

Их ещё называют СИД или LED. (рис. 7). Эти диоды, при подаче на электроды прямого напряжения, излучают холодный свет в разных спектрах. Сегодня LED-освещение активно вытесняет традиционные источники света.

Рисунок 7. Светодиод

Фотодиод

Проводимость проводников данного типа управляется световым потоком. В темноте свойства фотодиода такие же, как в обычного вентиля. Обратный ток прямо пропорционален уровню освещения, в т. ч. инфракрасного. Применяется в качестве датчика, принимающего сигналы от пульта дистанционного управления.

Рисунок 8. Фотодиод

Различные типы диодов и их использование

В этом уроке мы узнаем о различных типах диодов. К ним относятся диоды слабых сигналов, стабилитроны, светоизлучающие диоды, диоды Шоттки, туннельные диоды, лавинные диоды и т. д. Это будет краткая заметка о различных типах диодов с базовой функциональностью и символе на схеме.

Введение

Диоды — это электронные компоненты, функционирующие как односторонний клапан, это означает, что он позволяет току течь в одном направлении.

Эти диоды изготовлены из полупроводниковых материалов германия, кремния и селена. Работу диода можно классифицировать двумя способами: если он допускает ток, то он включен в прямом направлении, в противном случае он включен в обратном направлении.

Различные типы диодов имеют разные требования к напряжению. Для кремниевых диодов прямое напряжение составляет 0,7 В, а для германия — 0,3 В. В кремниевом диоде темная полоса обозначает катодную клемму, а другая клемма является анодной. Обычно диоды используются в качестве защиты от переполюсовки и защиты от переходных процессов. Существует много типов диодов, и некоторые из них перечислены ниже. Купить выпрямительный диодможно на сайте https://k206.net/.

Давайте теперь кратко рассмотрим несколько распространенных типов диодов.

1. Диод слабых сигналов

Это небольшое устройство с диспропорциональными характеристиками, применение которого в основном относится к высокочастотным устройствам и устройствам с очень малым током, таким как радиоприемники, телевизоры и т. д. Чтобы защитить диод от загрязнения, он покрыт стеклом, поэтому его также называют пассивированным диодом.

Внешний вид сигнального диода очень мал по сравнению с силовым диодом. Для обозначения катодного вывода один край помечен черным или красным цветом. Для применений на высоких частотах производительность маленького сигнального диода очень эффективна.

Что касается функциональных частот сигнального диода, то пропускная способность по току и мощности очень мала, а максимальная — почти 150 мА и 500 мВт.

Сигнальный диод представляет собой кремниевый полупроводниковый диод или германиевый диод, но в зависимости от легирующего материала характеристики диода изменяются. В сигнальном диоде характеристики кремниевого легированного диода приблизительно противоположны германиевому легированному диоду.

Кремниевый сигнальный диод имеет высокое падение напряжения на соединении примерно от 0,6 до 0,7 вольт, поэтому он имеет очень высокое сопротивление, но низкое прямое сопротивление. С другой стороны, германиевый сигнальный диод имеет низкое сопротивление из-за низкого падения напряжения почти на 0,2–0,3 В и высокого прямого сопротивления. Из-за слабого сигнала функциональная точка в маленьком сигнальном диоде не нарушается.

2. Силовые диоды

Эти диоды имеют большой слой PN перехода. Таким образом, преобразование переменного напряжения в постоянное напряжение не ограничено. Это также увеличивает текущую пропускную способность и обратное блокирующее напряжение. Он не подходит для высокочастотных применений.

Основное применение этих диодов в устройствах зарядки аккумулятора, таких как инверторы. В этих диодах диапазон прямого сопротивления находится в омах, а обратное сопротивление блокировки — в мегомах. Поскольку он обладает высокими характеристиками тока и напряжения, их можно использовать в электрических устройствах, которые используются для подавления высоких пиковых напряжений.

3. Стабилитрон

Это пассивный элемент, работающий по принципу пробоя стабилитрона. Впервые произведенный Кларенсом Зинером в 1934 году. Он похож на обычный диод в прямом направлении, он также пропускает ток в обратном направлении, когда приложенное напряжение достигает напряжения пробоя. Он предназначен для предотвращения мгновенных импульсов напряжения на других полупроводниковых устройствах. Он действует как регулятор напряжения.

4. Светоизлучающий диод (СИД)

Эти диоды преобразуют электрическую энергию в энергию света. Первое производство началось в 1968 году. Он подвергается электролюминесцентному процессу, в котором дырки и электроны рекомбинируются для производства энергии в форме света в состоянии прямого включения.

Раньше они использовались в индукторных лампах, но теперь в недавних приложениях они используются в окружающей среде и задачах. В основном используется в таких приложениях, как авиационное освещение, светофоры, вспышки камер.

5. Диоды постоянного тока

Функция диода регулирует напряжение при определенном токе.

Он функционирует как двухполюсный ограничитель тока. Символ диода постоянного тока показан ниже.

6. Диод Шоттки

В этом типе диода соединение образуется при контакте полупроводникового материала с металлом. За счет этого прямое падение напряжения уменьшается до минимума. Полупроводниковый материал представляет собой кремний N-типа, который действует как анод, а металл действует как катод, чьи материалы — хром, платина, вольфрам и т. д.

Благодаря металлическому переходу эти диоды имеют высокую токопроводимость, поэтому время переключения сокращается. Таким образом, Шоттки более широко используется для переключения приложений. Главным образом из-за перехода металл-полупроводник падение напряжения низкое, что, в свою очередь, повышает производительность диода и снижает потери мощности. Таким образом, они используются в высокочастотных выпрямительных устройствах. Символ диода Шоттки показан ниже.

7. Диод Шокли

Это было изобретение первых полупроводниковых приборов, оно имеет четыре слоя. Он также называется диодом PNPN. Он равен тиристору без клеммы затвора, что означает, что клемма затвора отключена. Поскольку триггерных входов нет, единственным способом, которым диод может управлять, является подача прямого напряжения.

Диод имеет два рабочих состояния: проводящее и непроводящее. В непроводящем состоянии диод проводит с меньшим напряжением.

8. Туннельный диод

Он также называется отсоединяемым диодом или аккумулятором. Это особый тип диодов, который сохраняет заряд от положительного импульса и использует в отрицательном импульсе синусоидальные сигналы. Время нарастания импульса тока равно времени привязки. Благодаря этому явлению он имеет скорость восстановления импульсов.

Применения этих диодов находятся в умножителях высшего порядка и в схемах формирователя импульсов. Частота среза этих диодов очень высока и составляет порядка гигагерца.

В качестве множителя этот диод имеет диапазон частоты среза от 200 до 300 ГГц. В операциях, которые выполняются в диапазоне 10 ГГц, эти диоды играют жизненно важную роль. Эффективность высока для множителей более низкого порядка. Символ для этого диода показан ниже.

Он используется как высокоскоростной переключатель порядка наносекунд. Благодаря эффекту туннелирования он работает очень быстро в области микроволновых частот. Это двухконтактное устройство, в котором концентрация присадок слишком высока.

10. Варикап

Он действует как переменный конденсатор. Операции выполняются в основном только в состоянии обратного смещения. Эти диоды очень известны благодаря своей способности изменять диапазоны емкости в цепи при наличии постоянного напряжения.

Они могут варьировать емкость до высоких значений. Эти диоды имеют множество применений в качестве генератора, управляемого напряжением для сотовых телефонов, спутниковых предварительных фильтров и т. д. Символ варакторного диода приведен ниже.

11. Лазерный диод

Аналогично светодиоду, в котором активная область образована pn-переходом. Электрически лазерный диод — это пин-диод, в котором активная область находится во внутренней области. Используется в оптоволоконных коммуникациях, считывателях штрих-кодов, лазерных указках, считывании и записи CD / DVD / Blu-ray, лазерной печати.

12. Диод подавления переходного напряжения

В полупроводниковых приборах из-за внезапного изменения состояния будут возникать переходные напряжения. Они повредят выходной отклик устройства. Для решения этой проблемы используются диоды для подавления напряжения. Работа диода подавления напряжения аналогична работе диода Зенера.

Работа этих диодов является нормальной, как у диодов с pn-переходом, но во время переходного напряжения его работа меняется. В нормальных условиях сопротивление диода высокое. Когда в цепи возникает какое-либо переходное напряжение, диод входит в область лавинного пробоя, в которой обеспечивается низкое сопротивление.

Это спонтанно и очень быстро, потому что продолжительность пробоя лавины колеблется в пикосекундах. Диод подавления переходного напряжения будет фиксировать напряжение до фиксированных уровней, в основном его напряжение зажима находится в минимальном диапазоне.

13. Легированные золотом диоды

В этих диодах золото используется в качестве легирующей добавки. Эти диоды быстрее, чем другие диоды. В этих диодах ток утечки в состоянии обратного смещения также меньше. Даже при более высоком падении напряжения это позволяет диоду работать на частотах сигнала.

14. Супер Барьерные Диоды

Это выпрямительный диод с низким падением прямого напряжения в качестве диода Шоттки, способный выдерживать скачки напряжения и малый обратный ток утечки в качестве диода с pn-переходом. Он был разработан для приложений с высокой мощностью, быстрым переключением и низким уровнем потерь. Супербарьерные выпрямители — это выпрямители следующего поколения с более низким прямым напряжением, чем диод Шоттки.

15. Диод Пельтье

В этом типе диода в соединении двух материалов полупроводника он генерирует тепло, которое течет от одного контакта к другому. Этот поток осуществляется только в одном направлении, которое равно направлению тока.

Это тепло производится за счет электрического заряда, возникающего при рекомбинации неосновных носителей заряда. Это в основном используется в системах охлаждения и отопления. Этот тип диодов используется в качестве датчика и теплового двигателя для термоэлектрического охлаждения.

16. Хрустальный диод

Его работа зависит от давления контакта между полупроводниковым кристаллом и точкой. При этом присутствует металлическая проволока, которая прижимается к полупроводниковому кристаллу. При этом полупроводниковый кристалл действует как катод, а металлическая проволока — как анод. Эти диоды устарели по своей природе. В основном используется в микроволновых приемниках и детекторах.

17. Лавинный диод

Это пассивный элемент, работающий по принципу лавинного пробоя. Он работает в режиме обратного смещения. Это приводит к большим токам из-за ионизации, вызванной pn-переходом во время обратного смещения.

Эти диоды специально разработаны для пробоя при определенном обратном напряжении, чтобы предотвратить повреждение. Символ лавинного диода показан ниже:

18. Кремниевый выпрямитель

Он состоит из трех клемм: анода, катода и затвора. Это почти равно диоду Шокли. Как видно из названия, он в основном используется для целей управления, когда в цепи подается небольшое напряжение. Символ кремниевого выпрямителя, как показано ниже:

19. Вакуумные диоды

Вакуумные диоды состоят из двух электродов, которые будут действовать как анод и катод. Катод состоит из вольфрама, который испускает электроны в направлении анода. Всегда поток электронов будет происходить только от катода к аноду. Таким образом, он действует как переключатель.

Если катод покрыт оксидным материалом, то способность к эмиссии электронов высока. Анод немного длиннее по размеру, а в некоторых случаях его поверхность шероховата, чтобы снизить температуру, возникающую в диоде. Диод будет работать только в одном случае, когда анод положителен относительно катодной клеммы. Символ как показано на рисунке:

20. PIN-диод

Улучшенная версия обычного PN-диода дает PIN-диод. В ПИН-диодах допирование не нужно. Собственный материал означает, что материал, который не имеет носителей заряда, вставлен между областями P и N, которые увеличивают площадь обедненного слоя.

Когда мы прикладываем прямое напряжение смещения, дырки и электроны выталкиваются в собственный слой. В какой-то момент из-за этого высокого уровня инжекции электрическое поле также будет проходить через собственный материал.

4.4. Специальные типы диодов.

Кроме рассмотренных выше диодов, предназначенных как правило для выпрямления переменного тока или использования в иных преобразователях,

существуют также диоды, предназначенные для выполнения иных функций.

Условные обозначения, особенности ВАХ и основные функции этих диодов сведены в таблице 4.3.

Таблица 4.3.

Тип диода

Условное

обозначение

ВАХ

Область

примененния, литература

1

Стабилитрон

Применяется в стабилизаторах, источниках опорного напряжения, ограничителях перенапряжений. Подробная информация [1], с.118 [2], с. 59

[5] с. 2-9

2

Туннельный

диод

Схемы усиления, генераторы электрических сигналов

Подробная информация [1], с. 117, [2] с.60, [6].

3

Светодиод

Системы освещения, хвостовые сигнальные фонари вагонов, системы индикации и сигнализации, деталь оптронов и оптоволоконных линий связи [2], с.60

4

Фотодиод

Датчики света и датчики положения, компьютерные мыши, детали оптронов и оптоволоконных линий [2], с.60

5

Варикап

Применяются в качестве электрически управляемых конденсаторов [4], с.9

6

Обращенный диод

Применяется в специальных услових в системах управления

Информацию по диодам специального типа можно найти в указанных источниках

5.

Транзисторы

Транзистор – это полностью управляемый полупроводниковый прибор, позволяющий производить усиление электрических сигналов.

Транзисторы бывают следующих видов:

5.1. Биполярные транзисторы

Наиболее часто в технике применяются биполярные транзисторы.

Конструктивно биполярный транзистор представляет собой трехслойную структуру с проводимостью типа n-p-n или p-n-p.

Выводы биполярного транзистора называются соответственно эмиттером, коллектором и базой. Исторически первые биполярные танзисторы были получены в 1949 году В. Шокли. Первые транзисторы были преимущественно p-n-p типа и изготавливались по сплавной технологии. В настоящее время большинство транзисторов n-p-n типа, так как они более удобны схемотехнически

Транзистор строится таким образом, чтоб в трехслойной структуре наиболее тонким слоем был базовый – его ширина не превышает длины свободного пробега носителей заряда — 10-20 мкм. При этом концентрация примесей (степень легирования) в базе значительно ниже, чем в эмиттере и в коллекторе.

Основное свойство такой трехслойной структуры заключается в том, что поводя через переход база- эмиттер небольшой ток, можно изменять ток коллектора, значительно превышающий ток базы.

Принцип действия транзистора обычно поясняется на следующей схеме:

Источники ЭДС Еб и Ек подключены к эмиттеру и коллектору соответственно, общей точкой является база.

Когда величина напряжения на базе равна нулю, то ток в цепи коллектора пе протекает (так как переход б-к смещен в обратном направлении ) что соответствует обратному включению диода. При ненулевом значении э.д.с. в цепи базы через базу начинает протекать ток. Этот ток в основном состоит из дырок р-обрасти (эмиттера), а величина тока определяется вольтамперной характеристикой перехода база-эмиттер. Так как толщина базового слоя очень мала, то дырки (транзистор типа р-n –р) или электроны ( транзистор n-p-n) могут попасть в зону действия электрического поля перехода база-коллектор. Собственно ток вывода базы невелик. (ранее упоминалось, что толщина базы меньше длины свободного пробега носителей заряда). Попавшие в слой базы неосновные носители захватываются электрически полем коллектора и перебрасываются в область коллектора, где они являются основными .Регулируя ток базы, можно увеличить количество инжектированных в область базы носителей, и соответственно уменьшить сопротивление перехода база-коллектор. Отношение тока коллектора к току эмиттера называется статическим коэффициентом передачи тока эмиттера

(5.1.)

При работе с малыми переменными сигналами обычно используется дифференциальный коэффициент передачи тока эмиттера

(5.2)

Считается , что при небольшом сигнале, т.е. небольшом изменении тока базы =А.

В современных транзисторах  = 0. 95- 0.99

Приведенная схема включения транзистора называется схемой с общей базой. Такая схема удобна для пояснения принципа действия транзистора, и хороша для усиления напряжения, но не тока. Она не обеспечивает усиления слабого сигнала, так как полный ток коллектора протекает по цепи источника Еб. Обычно же источник Еб не может обеспечить протекание полного тока эмиттера. Поэтому применяются другие схемы- с общим эмиттером и с общим коллектором

Схемы включения биполярных транзисторов

Статические характеристики транзистора

*Если принцип действия транзистора непонятен, то для представления можно использовать следующую модель. Она не дает 100% соответствия характеристик транзистора, но более удобна для понимания

Модель состоит из реостата (R), электродвигателя (Д) пружины (П), источников питания Eб и Ек, дополнительного внешнего сопротивления Rк. Модель работает следующим образом: При отсутствии тока базы (Iб=0) электродвигатель не создает момента, поэтому под действием пружины движок реостата перемещен вверх. Сопротивление реостата максимально, поэтому ток через сопротивление Rк (коллектора) минимален. Вольтамперная характеристика реостата (см. рис.) представляет собой прямую линию, идущую из центра координат , определяемую по закону Ома.() и представляет собой линию 1. При увеличении управляющего токаIб (базы) электродвигатель развивает момент и наматывая на вал шнур тянет движок реостата вниз, до достижения равновесия между силой пружины и силой создаваемой моментов двигателя. При этом вольтамперная прямая поднимается более круто(линия2). Изменяя ток двигателя, можно получить семейство вольтамперных характеристик.

Для примера на рисунке штриховыми линиями нанесены реальные вольтамперные характеристики транзистора (статические выходные). Основное их отличие от характеристик модели состоит в том, что они не являются линейными представляют кривые линии, так как сопротивление между коллектором и эмиттером само зависит от тока коллектора. Однако общий характер их изменения при изменении тока управления схож, как схожа и физическая сущность превращения энергии – как в реостате, так и в транзисторе она переходит только в тепло. Таким образом, правда с серьезными допущениями транзистор можно считать реостатом, управляемым током базы.

Другие специальные типы диодов

Добавлено 22 июля 2017 в 10:10

Сохранить или поделиться

Варикапы или варакторы

Диод с переменной емкостью известен как варикап или варактор. Если диод смещен в обратном направлении, между двумя полупроводниковыми слоями образуется изолирующая обедненная область. Во многих диодах толщина обедненной области может быть изменена путем изменения обратного смещения. Это меняет и емкость. Этот эффект усилен в варикапах. Условные графические обозначения показаны на рисунке ниже, одно из них соответствует сдвоенному диоду с общим катодом.

Варикап: вместе с обратным смещением меняется емкость. Это изменяет частоту резонансного контура.

Если варикап является частью резонансного контура, как показано на рисунке выше, то резонансную частоту можно изменять с помощью управляющего напряжения, Vупр. Конденсатор большой емкости с низким XC, включенный последовательно с варикапом, предотвращает замыкание Vупр через индуктивность L на корпус. Так как этот конденсатор имеет большую емкость, он оказывает минимальное влияние на частоту резонансного контура. Cдополн может использоваться для установки центральной резонансной частоты. Vупр может затем изменять частоту относительно этой точки. Обратите внимание, что на рисунке не показана активная схема, необходимая для генерации сигнала на резонансной частоте. Пример схемы настройки AM радиоприемника с помощью варикапа приведен в главе 9 («электронная настройка на варикапе»).

Некоторые варикапы при изменении обратного смещения очень резко изменяют емкость перехода. Эти диоды обеспечивают относительно большое изменение емкости. Это полезно, когда генераторы или фильтры перестраиваются в большом диапазоне частот. Изменение смещения в номинальном диапазоне у таких «резких» варикапов изменяет емкость в соотношении 4:1, у «гиперрезких» варикапов – 10:1, у «супер гиперрезких» варикапов – 20:1.

Варакторы могут использоваться в схемах умножителей частоты.

Диоды с накоплением заряда

Диоды с накоплением заряда (ДНЗ), также известные как SRD (step recovery diode) диоды, предназначены для использования в умножителях частоты с большими коэффициентами умножения на частотах до 20 ГГц. Когда диод смещен в прямом направлении, заряд сохраняется в PN переходе. Этот заряд вытекает, когда диод смещен в обратном направлении. При прямом смещении SRD диод выглядит как источник тока с низким внутренним сопротивлением. Когда прикладывается обратное смещение, он всё еще выглядит как источник с низким сопротивлением до тех пор, пока весь заряд не будет снят. Затем SRD диод «защелкивается» в состояние высокого импеданса, вызывая импульс напряжения, богатый гармониками. Применение SRD диодов – это генератор «гребенки», большого количества гармоник, и модифицированные умножители 2x и 4x.

PIN диоды

PIN диод представляет собой быстродействующий переключающий диод с низкой емкостью. Не путайте переключающий PIN диод с PIN фотодиодом. PIN диод изготавливается подобно переключающему кремниевому диоду с областью из собственного полупровдника, добавленной между слоями PN-перехода. Это дает более толстую обедненную область, изолирующий слой в переходе диода, к которому приложено обратное смещение. Это приводит к более низкой емкости, чему у переключающего диода с обратным смещением.

PIN диод: поперечное сечение и соответствующее ему условное обозначение

PIN диоды используются в качестве коммутирующих диодов в радиочастотных приложениях. Сообщается, что диод общего назначения 1n4007, 1000 В, 1 А можно использовать в качестве коммутирующего PIN диода. Высокое номинальное напряжение этого диода достигается за счет включения внутреннего слоя из собственного полупроводника, разделяющего PN-переход. Этот собственный слой делает 1n4007 PIN диодом. Другое применение PIN диода – антенный переключатель.

PIN диоды при изменении прямого смещения служат в качестве переменных резисторов. Одних из таких применений является аттенюатор переменного напряжения. Низкая емкость PIN диодов расширяет частотный диапазон аттенюатора до СВЧ диапазона.

Лавинно-пролетные диоды (IMPATT диоды)

Лавинно-пролетный диод (IMPATT, IMPact Avalanche Transit Time) – это мощный радиочастотный генератор, работающий на частотах от 3 до 100 ГГц. IMPATT диоды изготавливаются из кремния, арсенида галлия или карбида кремния.

К лавинно-пролетному (IMPATT) диоду прикладывается обратное смещение выше напряжения пробоя. Высокие уровни легирования дают тонкую обедненную область. Полученное высокое электрическое поле быстро ускоряет носители заряда, освобождающие других носителей заряда при столкновениях с кристаллической решеткой. Дырки попадают в область P+. Электроны дрейфуют в сторону N областей. Каскадный эффект создает лавинный ток, который увеличивается, даже когда напряжение на переходе уменьшается. Импульсы тока отстают от пиков напряжения на переходе. Эффект «отрицательного сопротивления» в сочетании с резонансным контуром создает колебания на высоких уровнях мощности (высоких для полупроводников).

Лавинно-пролетный (IMPATT) диод: схема генератора и сильно легированные P и N слои.

Резонансный контур на принципиальной схеме, изображенной на рисунке выше, представляет собой эквивалентную схему секции волновода, в которой установлен лавинно-пролетный (IMPATT) диод. Обратное смещение постоянным напряжением подается через дроссель, который предотвращает потери радиочастотного сигнала в источнике смещения. Это может быть секция волновода, известная как тройник смещения. Маломощные передатчики радаров могут использовать лавинно-пролетный (IMPATT) диод в качестве источника сигнала. Для использования в приемниках эти диоды слишком шумны.

Диод Ганна

Диод Ганна состоит исключительно из полупроводника N-типа. Таким образом, он не является настоящим диодом. На рисунке ниже показан слабо легированный слой N, окруженный сильно легированными слоями N+. Напряжение, прикладываемое к диоду Ганна из арсенида галлия N-типа, создает сильное электрическое поле в слабо легированном слое N.

Диод Ганна: схема генератора и поперечное сечение диода из полупроводника только N-типа.

По мере увеличения напряжения проводимость возрастает из-за электронов в низкоэнергетической зоне проводимости. Когда напряжение превысит порог, примерно равный 1 В, электроны начнут перемещаться из нижней зоны проводимости к более высокоэнергетической зоне проводимости, где они больше не способствуют провдимости. Другими словами, по мере увеличения напряжения ток уменьшается, явление отрицательного сопротивления. Частота колебаний определяется временем прохождения электронов проводимости, которое находится в обратной зависимости от толщины N слоя.

Частоту в некоторой степени можно контролировать, поместив диод Ганна в резонансный контур. Эквивалентная схема, показанная на рисунке выше, на самом деле является коаксиальной линией передачи или волноводом. Диоды Ганна из арсенида галлия способны работать в диапазоне от 10 до 200 ГГц при мощностях от 5 до 65 мВт. Диоды Ганна также могут служить в качестве усилителей.

Диод Шокли

Диод Шокли представляет собой четырехслойный тиристор, используемый для запуска больших тиристоров. Он проводит ток только в одном направление, когда он открыт напряжением, превышающим напряжение включения, около 20 В. Для более подробной информации смотрите главу 7 «Тиристоры», раздел «Диод Шокли». Двунаправленная версия называется динистором, диак.

Диоды постоянного тока (SRD диоды)

Диод постоянного тока, также известный как токоограничивающий диод, или токорегулирующий диод, или SRD диод, делает именно то, что подразумевает его название: он ограничивает протекающий через него ток до некоторого максимального уровня. Диод постоянного тока представляет собой двухвыводную версию полевого (JFET) транзистора. Если мы попытаемся увеличить ток, протекающий через этот диод, выше его точки регулирования, он будет просто «сдерживать» его, увеличивая падение напряжения. Если бы мы собрали схему на рисунке ниже (a) и построили бы график зависимости тока диода от напряжения на нем, то получили бы график, который сначала поднимается, а затем выравнивается в точке регулирования тока, как показано на рисунке ниже (b).

Диод постоянного тока (SRD диод): (a) тестовая схема, (b) вольт-амперная характеристика.

Применение диодов постоянного тока (SRD диода) заключается в автоматическом ограничении тока, протекающего через светодиод или лазерный диод, в широком диапазоне напряжения питания, как показано на рисунке ниже.

Применение SRD диода (токоограничивающего диода): управление питанием лазерного диода.

Конечно, точка регулирования токоограничивающего (SRD) диода должна быть выбрана так, чтобы соответствовать оптимальному прямому току светодиода или лазерного диода. Это особенно важно не для светодиодов, а для лазерных диодов, поскольку обычные светодиоды более терпимы к изменениям прямого тока.

Оригинал статьи:

Теги

PIN диодSRD диод (токоограничивающий диод)ВаракторВарикапДинистор / PNPN диод / диод ШоклиДиодДиод ГаннаДиод с накоплением зарядаЛавинно-пролетный диод (IMPATT диод)ОбучениеЭлектроника

Сохранить или поделиться

Полупроводниковые диоды — типы, принцип работы

Полупроводниковый диод — это электронный прибор, выполненный на основе полупроводникового кристалла.

Стоит заметить, что технологий изготовления диодов достаточно много, но рассмотрение принципа работы полупроводникового диода на молекулярно — электронном уровне целью данной статьи не является.

Дело в том, что для большинства практических целей достаточно знать основные параметры, назначение, общие принципы действия различных типов диодов, схемы подключения.

Области применения полупроводниковых диодов весьма разнообразны, ниже я их конспективно перечислю, а вопросы применения наиболее распространенных типов полупроводниковых диодов подробно рассмотрю на соответствующих страницах.

Выпрямительные диоды обладают высоким сопротивлением при обратном включении и низким — при прямом, то есть хорошо проводят ток только в одном направлении.

Высокочастотные и импульсные диоды имеют схожий принцип действия с предыдущим типом полупроводниковых приборов, однако, за счет малой собственной емкости могут работать на высоких частотах, что, собственно, следует из их названия.

Стабилитроны — при определенных значениях обратного напряжения обратный ток стабилитрона резко увеличивается, что позволяет использовать их как стабилизатор напряжения.

Светодиоды (LED диоды) преобразуют электрическую энергию в световую, широко используются как индикаторы и осветительные устройства (см., например, светодиодная лента).

Фотодиоды преобразуют оптическое излучение в электрический заряд. Могут использоваться как источники электроэнергии (солнечные батареи), кроме того, совместно со светодиодами применяются в пультах дистанционного управления, а также могут обеспечивать гальваническую развязку в электронных схемах.

Варикапы обладают зависимостью своей емкости от приложенного напряжения. Являются своего рода электронно управляемыми конденсаторами переменной емкости.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Характеристика диодов

История возникновения диода

Возникновение диода обязано ученому из Великобритании Фредерику Гутри и немецкому физику Карлу Фердинанду Брауну. В 1873 и 1874 годах они открыли принцип работы термионных диодов и принцип работы кристаллических диодов. Позже термионными диодами стали называть специализированные вакуумные лампы. В начале 1880 года Томас Эдиссон повторно задокументировал работу термионного диода, но развитие этого радиоэлектронного компонента произошло только через 9 лет, когда немецкий ученый Карл Браун показал действие выпрямителя на кристалле. В начале 20 века Гринлиф Пикард предъявил публике первый радиоприемник, в основе которого был положены свойства диода реагировать на электромагнитные колебания. Промышленный выпуск диодов термионного типа (ламповых диодов) был налажен в Британии с разрешения Джона Флеминга в 1904 году, а через 2 года американец Пикард запатентовал первый детектор из кристаллов кремния. Современную терминологию слова «диод» (от греч. «di» — два, «odos» — путь) ввел Вильям Генри Иклс в 1919 году. В СССР главную роль в развитии полупроводниковых компонентов сыграл физик Б. М. Вул.

Первое развитие получили ламповые диоды или кенотроны (электровакуумные диоды), а так же газонаполненные диоды (газотроны, стабилитроны, игнитроны). Однако основной вклад в развитие радиоэлектронных компонентов внесли полупроводниковые диоды на основе кремния и германия.

Физические основы работы диода

Открытый в 1882 году химический элемент «германий» Клеменсом Винклером в процессе изучения в электричестве позволил выявить эффект полупроводника тока. Эксперименты физиков для получения одностороннего проводника тока привели к такому результату, что если к германию присоединить акцепторную примесь (барий, алюминий, галлий или индий), способную захватывать электроны, накопленные в германии, то в результате получится электронный элемент, способный пропускать электроны только в одну сторону (от германия к акцепторной смеси). Как мы знаем, электрон – это отрицательно заряженная частица, притягивающаяся к положительной частице, однако в электронике принято обозначение перемещения тока от плюса к минусу. Таким образом, диод представляет собой смесь германия или кремния с акцепторным материалом. Германий, за счет накопленных электронов несет в себе отрицательный N заряд (N — negative), а акцепторная смесь насыщается положительными P ионами (P — positive).  Процесс протекания тока из P области в N область через место «соединения» или p-n переход и есть принцип работы диода. Его особенностью является возможность протекания тока только в одном направлении, поэтому диод является однонаправленным полупроводником. Отрицательно заряженную сторону с германием принято называть «катодом», а положительно заряженную половину «анодом». На схемах диод обозначается в виде направления протекания тока в виде стрелки к отрицательно заряженной стороне.

Когда диод не подключен к источнику питания, p-n переход находится в состоянии покоя. И в результате притягивания электронов к положительным ионам происходит их дрейф через переход. Такой процесс называется «диффузией», предусматривающий притягивание электронов через переход к «дыркам» положительных ионов. Диффузионное движение из-за постоянно меняющейся концентрации ионов и электронов происходит возле перехода постоянно.

При подключении к p-n структуре внешнего источника напряжения или напряжения смещения происходит изменение условий переноса заряда через переход. Важным фактором здесь становится полярность внешнего напряжения, подключенного к аноду и катоду диода.

Прямое подключение напряжения к p-n структуре

При прямом включении диода, когда плюс источника питания подключен к p-области, а минус к n-области происходит прямое протекание тока через переход. При этом электроны, находящиеся в n-области за счет подключенного минуса источника питания будут передвигаться ближе к переходу. Собственно, с положительно заряженными частицами в p-области будет происходить то же эффект. В результате p-n переход будет заполняться электронами в «дырках» (положительных ионах). Возникнет электрическое поле, которое позволит свободным электронам преодолеть сопротивление перехода, пройти барьерную зону и p-область к положительному контакту источника питания. В данной цепи возникнет электрический ток, который называют прямым током смещения перехода. Величина этого тока будет ограничена техническими характеристиками диода.

Момент, когда создается электрическое поле в p-n переходе на положительной ветви Вольт — Амперной Характеристики диода (ВАХ) отмечен некоторым напряжением ∆Ua. Это напряжение определено не только силой тока, но и сопротивлением самого p-n перехода. Чем ниже это сопротивление, тем меньше необходимо энергии для того, чтобы открыть переход, а так же его закрыть. Отступив от темы статьи, стоит сказать, что энергия в переходе при исчезновении питания моментально не пропадает. Происходит эффект рассасывания заряда, обусловленный емкостью перехода. Чем ниже эта емкость, тем быстрее диод перейдет в «выключенное» состояние с успокоением всех переходных процессов в p-n переходе. Этот параметр очень важен в частотных диодах, о которых мы расскажем ниже. В современных диодах значения напряжения ∆Ua варьируется от 0,3 до 1,2 вольта (кремний 0,8 – 1,2В., германий 0,3 – 0,6В.) в зависимости от мощности диода. Так же его называют падением напряжения p-n перехода.

Обратное подключение напряжения к p-n структуре

При подключении к диоду питания в обратном направлении происходит увеличение сопротивление p-n перехода и барьер возрастает, вследствие того, что электронам в n-области и свободным ионам в p-области легче соединиться с зарядом источника питания. При увеличении напряжения питания происходит лавинообразный отток заряженных частиц от перехода. В результате диод переходит в закрытое состояние из-за обратного напряжения.

На обратной ветви ВАХ участок 0 – 1 обусловлен небольшим обратным напряжением. При этом увеличение обратного тока наблюдается за счет уменьшения диффузионной составляющей. Другими словами в p и n областях присутствуют неосновные носители. Даже когда диод закрыт, через барьер при малом напряжении они могут протекать из одной области в другую. Значение этого тока несоизмеримо мало по сравнению с прямым током, поскольку количество неосновных носителей в разных областях p и n минимально. Начиная с точки 1 основные носители уже не способны преодолеть барьер, а диффузионные неосновные носители полностью рассасываются в свои области переходов. Этим объясняется отсутствие роста тока при увеличении обратного напряжения. Поскольку концентрация неосновных носителей заряда зависит от температуры сплава (иначе «кристалла»), то обратный ток будет увеличиваться в зависимости от увеличения температуры кристалла. Именно поэтому его называют тепловым. Это лавинообразный процесс и он подчиняется экспотенциальному закону. Именно из-за обратных токов диоды начинают греться и их устанавливают на теплоотводы. Если значение обратного тока будет выше предусмотренного диодом, то начнется неконтролируемый процесс так называемого теплового пробоя, после которого следует электрический пробой, приводящий диод в негодность. Стабильная работа кремниевых диодов возможна при температуре 130 – 135 градусов. Разрушение кристалла германиевых диодов происходит при температуре 50 – 60 градусов.

Полная вольт – амперная характеристика диода

Вольт – амперная характеристика отображает зависимость протекающего через диод тока от величины приложенного прямого и обратного напряжения. Чем круче и ближе к оси Y прямая ветвь и ближе к оси X его обратная ветвь, тем лучше выпрямительные свойства диода. При несоизмеримо большом обратном напряжении у диода наступает электрический пробой. При этом резко возрастает обратный ток. Нормальная работа диода возможна в том случае, если приложенное к нему обратное напряжение не превышает максимально допустимое, называемое пробивным напряжением. Как мы уже писали, токи диодов зависят от температуры кристалла. На каждый градус падение напряжения на p-n переходе изменяется на 2мВ. Если температура кристалла растет вверх, то обратный ток германиевых диодов увеличивается в 2 раза, у кремниевых диодов обратный ток растет в 2,5 раза на каждые 10 градусов. При этом пробивное напряжение при увеличении температуры понижается.

Конструктивное исполнение диодов

По технологическому исполнению диоды могут быть плоскостные и точечные. P-n переход плоскостных диодов (на рисунке б – плоскостной сплавной диод) выполняется на границе двух слоев в полупроводнике. Слои имеют электропроводимость разных типов. За счет большей площади перехода плоскостные диоды могут пропускать большие токи через себя. Их недостатком является большая переходная емкость , что ограничивает применение плоскостных диодов в высокочастотной технике. Однако, есть гибридные диоды, сочетающие в себе и малую емкость, и малое переходное сопротивление, и возможность пропускать большие токи. Примером может быть отечественный диод КД213.

У точечных диодов p-n переход изготовляется в месте контакта полупроводниковой пластины с острием металлической иглы. Современные диоды производят с применением германия, кремния, фосфида и арсенида галлия. 

Типы и характеристика диодов

Выпрямительные диоды

Выпрямительные диоды используются для выпрямления переменных токов на частотах, как правило, ниже 50 кГц. Конструктивное исполнение таких диодов преимущественно плоскостное. За счет этого диоды позволяют проводить через себя большие выпрямленные токи. Большей частью материалом изготовления выпрямительных диодов является кремний за счет устойчивости к температурным изменениям. Основными параметрами, определяющими характеристику диода, являются:

Uпр. – постоянное прямое напряжение на диоде при заданном постоянном прямом токе.

Uобр. – постоянное напряжение, приложенное к диоду в обратном направлении.

Iпр. – постоянный ток, протекающий через диод при подключении в прямом направлении.

Iобр. – постоянный ток, протекающий через диод, включенный в обратном направлении.

Iпр.ср. – прямой ток, усредненный за период.

Iобр.ср. – обратный ток, усредненный за период.

Rдиф. – отношение приращения напряжения на диоде к вызвавшему его малому приращению тока.

Кроме того, всех типов существуют ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ДИОДОВ, определяющие их максимальные технические возможности, к которым относятся:

Uобр.max – максимальное напряжение, приложенное при обратном включении диода.

Iпр.max – максимально допустимый постоянный прямой ток (один из важнейших параметров).

Iпр.ср.max – максимально допустимый средний прямой ток.

Iвп.ср.max – максимально допустимый средний выпрямленный ток.

К дополнительным параметрам относится интервал рабочих температур.

Выпрямительные диоды широко применены в электронной схемотехнике. На их основе нередко можно встретить диодные мосты для изменения формы тока из переменного в постоянный.

Современное развитие электроники невозможно без применения высокочастотных диодов.

Высокочастотные диоды

Данные диоды используются в широком диапазоне частот вплоть до нескольких сотен мегагерц и выше. Чаще всего их применяют для модуляции и детектирования, а так же в высокочастотных радиоцепях. В качестве высокочастотных диодов используются элементы, выполненные в точечном исполнении из-за малой емкости перехода.

Для таких диодов дополнительно важны две характеристики, это максимальная рабочая частота в МГц и емкость диода в пФ.

Импульсные диоды

Импульсные диоды предназначены для преобразования импульсных сигналов. В силовой схемотехнике мощные импульсные диоды могут работать в качестве выпрямителей. Примером может служить импульсный блок питания, где они используются во вторичной цепи после импульсного трансформатора. Так же импульсные диоды применяют в телевизионной технике (детекторах видеосигналов), в ключевых и логических устройствах. Различают двух и трех электродные импульсные диоды (спаренные). Трех электродные диоды могут быть с общим анодом или с общим катодом. Для импульсных диодов свойственны следующие дополнительные характеристики:

Uпр.и – пиковое прямое напряжение при заданном импульсе тока.

Uобр.и – соответственно, обратное напряжение в пике как однократное, так и периодически повторяющееся.

Сд – общая емкость диода при заданных напряжениях и частоте. Большой параметр Сд снижает частотные свойства диода. Так же от значения Сд напрямую зависит следующий параметр.

τ вос – время восстановления с момента окончания импульса тока в состояние заданного обратного запирающего напряжения (окончание переходных процессов рассасывания заряда в p-n переходе)

Qпк – часть накопленного заряда, вытекающего во внешнюю цепь при реверсивном изменении тока с прямого значения на обратное.

Одним из основных параметров диодов Шотки является

Iпр.и max – максимально допустимый ИМПУЛЬСНЫЙ прямой ток.

Стабилитроны и стабисторы

Данный тип диодов необходим в цепях стабилизации напряжения при изменении проходящего через диод тока. Его основными характеристиками является:

Uст — напряжение стабилизации.

Iст. max и Iст. min – максимальный и минимальный ток стабилизации.

Pmax – максимально допустимая рассеиваемая мощность.

Для стабилитронов рабочим является пробойный участок ВАХ. На рисунке он отмечен расстоянием между точками Iст.min и Iст.max. На этом участке напряжение на стабилитроне остается постоянным при существенном изменении значения тока. Для стабисторов рабочим является прямой участок ВАХ. Так же существуют двуханодные стабилитроны, включающие в себя два встречно включенных p-n перехода. Каждый из этих переходов является основным при изменении полярности его подключения.

Варикап

Специальный полупроводниковый диод. Его емкость p-n перехода изменяется в значительных пределах в зависимости от приложенного к нему обратного напряжения. В случае увеличения обратного напряжения, емкость перехода уменьшается и наоборот. Варикапы активно применяются в гетеродинах (радиоблоках, где необходима регулировка частоты). К примеру, варикап довольно часто можно встретить в FM – радиоприемниках. К основным характеристикам варикапа относятся:

Сн – измеренная емкость при заданном напряжении.

Кс – соотношение емкостей при минимальном и максимально допустимом напряжении.

Iобр – максимальный ток, протекающий через варикап в обратном напрявлении. (ток утечки).

Туннельный диод

Туннельный диод используется в высокочастотных усилителях и генераторах электрических колебаний (например телевизионных усилителях). Кроме того его применяют в различных импульсных устройствах. Его особенностью является участок А-В с отрицательным дифференциальным сопротивлением, определяющим отношение между изменением напряжения к приращению тока. К его дополнительным параметрам относятся:

Iп – прямой ток в точке максимума ВАХ, при котором приращение тока к напряжению равняется 0.

Lд – индуктивность диода, препятствующая прохождению высокочастотного сигнала.

Кш – шумовая составляющая диода.

Rп – сопротивление потерь туннельного диода.

Диод Шоттки

Популярный диод в радиотехнике за счет малого шума и высокого быстродействия. Его относят к подвиду импульсных диодов. Технологически диод Шоттки выполняется из структуры металл-полупроводник. Применение диодов с барьером Шоттки самое разнообразное, от ATX блоков питания ПК, до СВЧ устройств. Переход диода Шоттки выполнен по принципу p-i-n, где в качестве i выступает высокоомный слаболегированный полупроводник. Под действием напряжения изменяются его частотные характеристики, что позволяет использовать диод в схемах управления сигналами, например аттеньюаторах, ограничителях уровня, модуляторах. Мощные диоды Шоттки могут использоваться в качестве выпрямительных радиоэлементов частотных блоков питания.

Светодиод

Специальный тип диода, который может создавать некогенерентное излучение (испускание видимых фотонов света атомами p-n перехода). В зависимости от количества легирующего материала изменяют длину спектра. За счет этого светодиоды могут изготавливать разных цветов. Применение светодиода самое широкое: от сигнальных цепей оповещения, до бытового освещения. Кроме того, при использовании специальных материалов изготовления светодиод может излучать в инфракрасном спетре. Это свойство нашло ему применение в пультах дистанционного управления и других электронных устройствах. Современные светодиоды выполняются на большие мощности (до 10Вт.) p-n переход очень чувствителен к токовым изменениям, поэтому для его использования необходим специализированный драйвер, представляющий собой стабилизатор / регулятор тока.

Фотодиод

Часто применяется для приема инфракрасного светового спектра, а так же в цепях гальванической развязки. Кроме того, первые солнечные батареи использовали именно фотодиод. Совместно с излучающими диодами или транзисторами может организовывать единое устройство, называемое оптопарой. Работа фотодиода основана на фотогальваническом эффекте, при котором за счет разделения электронов и дырок в p-n переходе начинает появляться ЭДС. В зависимости от степени освещенности уровень вырабатываемой ЭДС в фотодиоде так же изменяется.

Типы лазерных диодов

Полупроводниковые лазеры

Полупроводниковые материалы принадлежат в основном III-VI группам периодической таблицы. Лазеры на основе полупроводников имеют большой диапазон излучения, компактны, имеют низкий рабочий ток, малые эксплуатационные расходы, при этом высокоэффективны и применяются практически повсеместно, от науки до медицины. Это один из самых широких классов лазерных источников. В статье будут рассматриваться свойства и преимущества лазеров и лазерных диодов Thorlabs.

Лазерные диоды с резонатором Фабри-Перо

Самым распространенным подвидом полупроводниковых лазеров являются лазерные диоды с резонатором Фабри-Перо (FP). Лазеры с резонатором Фабри-Перо работают в многомодовом режиме, генерируя излучение с отличными оптическими характеристиками в ближнем и среднем ИК диапазонах. Варьируя ширину гребня можно получить источник с одной поперечной модой.  

Конфигурация резонатора Фабри-Перо содержит два взаимопараллельных отражающих зеркала, полупроводник выступает в качестве усилительной среды. На зеркала наносятся оптические покрытия, позволяющие оптимизировать выходную мощность, причем одно из них имеет низкий коэффициент отражения, другое — высоким коэффициентом отражения, чтобы снизить общие потери зеркала.

Резонатор Фабри-Перо изготовлен так, что расстояние между продольными модами определяется формулой Δv = c/2nL, где c — скорость света, L — длина чипа лазерного диода, а n — групповой показатель преломления полупроводникового волновода. Часто удобно выражать интервал мод в длинах волн (Δλ = λ2/2nL).

Например, возьмем типичные значения группового показателя преломления n = 3,5 и длины резонатора L = 1 мм. По формуле получим расстояние между продольными модами Δλ = 0,05 нм при 635 нм и Δλ = 0,3 нм при 1550 нм. На количество продольных мод и их мощность влияет компоненты соединения, используемого для формирования полупроводниковой усилительной среды (AlGaAs, InGaAsP, AlGaInP и др.), а также ток смещения и температура. У лазеров с резонаторами Фабри-Перо на основе GaAs можно регулировать ток смещения и температуру таким образом, чтобы мощность продольной моды излучения доходила до 5-10 дБ.

Можно сказать, выходная мощность и длина волны излучения настраиваются путем изменения температуры и/или тока. Это характерно для лазерных диодов ИК диапазона, в котором небольшие изменения температуры влияют на параметры выходного излучения. Почти все лазерные диоды поддаются температурной перестройке, либо перестройки мощности на основе тока. Увеличение входного тока увеличивает стимулированное излучение до заданного значения; однако при превышении этого значения спонтанное излучение начинает «конкурировать» с вынужденным, растет расходимость и снижается степень поляризации. Для высокой эффективности поляризации (50:1 или более) рекомендуется поддерживать входной ток в заданном диапазоне, установленном технической документацией.

В первых лазерных диодах с резонатором Фабри-Перо использовали один полупроводниковый материал для формирования pn перехода (GaAs). Эти устройства впоследствии получили название «лазеры на гомопереходе». Первые полупроводниковые лазеры выходили из строя буквально через несколько минут, имели очень высокие параметры порогового тока, обладали низкой надежностью и КПД. Ввиду перегрева данный вид лазеров не отличался долговечностью, и не мог нормально функционировать, кроме как при температуре ниже комнатной. Для успешного функционирования при комнатной температуре нужно было снижать пороговый ток, Увеличение срока эксплуатации устройства потребовало создание лазеров на основе многослойных полупроводниковых структурах (они же лазеры на гетероструктуре), которые впоследствии вытеснили своих предшественников.

Рисунок 1. Микросхема чипа лазерного диода Фабри-Перо

На рис. 1 показан чип лазерного диода Фабри-Перо в корпусе (FPL2000C). Этот чип используется в конструкции резонаторов. Резонатор, оснащенный таким чипом, имеет спектральную полосу пропускания ~15 нм, мощность непрерывного излучения может достигать 30 мВт на длине волны 2000 нм.

Лазерные диоды на гетеросктруктуре

С введением гетероструктур лазеры могли работать непрерывно при комнатной температуре, отличались меньшим пороговым током и имели более высокий КПД. В результате лазеры на гетероструктурах вытеснили своих предшественников. Гетеролазеры вступили в массовое производство и нашли широкое применение в информатике и IT-технологиях. Еще больший результат показали лазеры на двойной гетероструктуре (см. рис.2).

Рисунок 2. Структура лазерного диода на двойной гетероструктуре

Лазерные диоды с двойной гетероструктурой состоят из тонкого активного слоя (толщиной 100-200 м), окруженного двумя более толстыми (1-2 мкм) слоями. В примере на рис. 2 активная область (GaAs) имеет толщину 0,15 мкм, обкладки — по 1 мкм (активный слой р Al0.3Ga0.7As и слой n Al0.3Ga0.7As). Многослойная конструкция на толстой подложке GaAs. Активный слой двойного гетеролазера на основе контакта двух полупроводников способен создавать потенциальные ямы.

Существенным недостатком лазерного диода на двойной гетероструктуре является строгое условие согласованности периодов решеток. Рассогласование решеток, превышающее 0,1%, может привести к межфазной деформации между активным слоем и слоем оболочки, вызывая безыизлучательную рекомбинацию «электронов» и «дырок». Это приводит к ограничению диапазона длин волн.

Лазерные диоды на квантовой яме

Лазерные диоды на квантовой яме — отдельный класс лазерных диодов с двойной гетероструктурой, в которых толщина активной области D приближается к длине волны де Бройля.

D = λde Broglie h/p

Лазеры на квантовых ямах имеют некоторые преимущества по сравнению с гетеролазерами. Например, благодаря изменению числа квантовых ям, возможно уменьшение порогового тока до его минимального значения. Имея большой КПД и маленькую мощность, они используются в волоконно-оптических линиях связи и оптических приборах.

Рисунок 3. Структура лазерного диода на квантовых ямах

На рис. 3 представлен лазер на квантовых ямах. Средний тонкий слой активной среды между слоями (AlGaAs) полупроводникового волновода представляет собой квантовые ямы. Она основана на полупроводниковых наноструктурах. Лазеры с квантовыми ямами имеют высокий КПД и маленькую мощность, широко используются в волоконно-оптических линиях связи и оптических приборах.

Рисунок 4. Энергетическая диаграмма лазера с множественными квантовыми ямами

Если в лазере присутствует более одного слоя, содержащего квантовые ямы, то его называют лазером с множественными квантовыми ямами. Значительно влияет на КПД лазерного диода с множественными квантовыми ямами ширина запрещенной зоны.

Лазерный диод с распределенной обратной связью (DFB – лазеры, РОС — лазеры)

В лазере с распределенной обратной связью (DFB) пропускающая дифракционная решетка установлена внутри самого лазерного диода (см. рис.5). Гофрированная периодическая структура, расположенная в непосредственной близости к активной среде, работает как отражатель Брэгга. Обратная связь, создаваемая периодической решеткой, является селективной, таким образом в лазере обеспечивается режим одномодовой генерации.

 

Рисунок 5. Структура лазерного диода с распределенной обратной связью

Лазерный диод с распределенной обратной связью показан на рис. 5. Активный слой InGaAsP, имеющий запрещенную зону λ = 1550 нм, окружен оболочкой из InGaAsP, имеющей несколько большую запрещённую зону (λ = 1300 нм). Один из слоев оболочки имеет переменную толщину периода Λ.

В слое оболочки показатель преломления neff меняется вдоль z-направления:

neff (z) = <n(x, z)>x

В скобках обозначено среднее значение координаты x. Поперечный профиль пучка по координате x имеет узкую ширину, почти полностью заключенную в пределы активной зоны. Можно наложить периодичность вдоль оси z на показатель преломления:

neff(z) = n0 +n1sin[(2πz/Λ) + φ]

где n0 и n1 — показатели преломления слоев оболочки и подложки, Λ — шаг изменения показателя преломления вдоль границы раздела, φ — фазовый коэффициент. Исходя из закона Брэгга, прямо и обратно распространяющиеся пучки от решетки или других периодических элементов связаны при условии:

λ = λB= 2<neff >Λ

где <neff> — средний показатель преломления вдоль оси Z. В рамках этой упрощенной модели наблюдается, что для заданного шага может существовать только одна длина волны Λ.

Thorlabs производит лазерные диоды с распределенной обратной связью, излучающих волны 1310 нм и 1550 нм.

Лазерные диоды с вертикальным резонатором и поверхностным излучением

Рисунок 6. Энергетическая диаграмма лазерного диода с вертикальным резонатором и поверхностным излучением

Вертикально-излучающие диоды — это уникальный класс лазерных диодов, где излучение происходит перпендикулярно плоскости активного слоя (перехода). Максимальное усиление обеспечивается в направлении, перпендикулярном гетеропереходу, а в плоскости перехода подавляется. Поскольку эффективный показатель усиления активной среды должен превышать 1000 см–1, то в активной области используются двойные гетероструктуры, содержащие набор квантовых ям, квантовых нитей или квантовых точек. Применение квантовых нитей потенциально очень перспективно, так как может обеспечить большой коэффициент усиления в направлении их осей. Однако технология получения активных сред на основе квантовых нитей требуемого качества пока не отработана. Поэтому активная область лазеров с вертикальным резонатором, как правило, содержит или набор квантовых ям, или квантовые точки, которые часто группируют в вертикальносвязанные квантовые точки.

Поскольку излучение этих лазерных диодов перпендикулярно плоскости перехода, высокая плотность излучателей может быть получена на небольшой площади. Кроме того, эти устройства могут быть сконфигурированы для применения с очень высокой плотностью упаковки, так как излучатели могут быть очень близко расположены по сравнению с типичными лазерными диодами Фабри-Перо. Рис. 7а показывает структуру формирования активной области вертикально-излучающего диода.

Рисунок 7а. Активная область вертикально-излучающего диода

Рисунок 7б. Резонатор вертикально-излучающего диода

 

Рисунок 7в. Структура вертикально-излучающего диода

Квантовые ямы, содержащиеся внутри слоев оболочки, показаны на рис. 7б. Толщина лазерного резонатора составляет примерно одну длину волны. Вертикально-излучающие диоды, работающие в ближнем ИК (λ = 1-3 мкм) имеют модовое расстояние Δλ ≈ 100 — 300 нм. Такое расстояние между модами позволяет лазеру излучать одиночную продольную моду при различных входных токах.

©Thorlabs

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Thorlabs на территории РФ 

различных типов диодов | Символы схем и их применение

В этом уроке мы узнаем о различных типах диодов. К ним относятся малосигнальные диоды, стабилитроны, светоизлучающие диоды, диоды Шоттки, туннельные диоды, лавинные диоды и т. Д. Это будет краткое примечание о различных типах диодов с основными функциями и обозначением их схемы.

Введение

Диоды — это электронные компоненты, работающие как односторонний клапан, что означает, что они пропускают ток в одном направлении. Эти диоды изготовлены из полупроводниковых материалов германия, кремния и селена. Работу диода можно классифицировать двумя способами: если он допускает ток, то он смещен в прямом направлении, в противном случае он смещен в обратном направлении.

У разных типов диодов разные требования к напряжению. Для кремниевых диодов прямое напряжение составляет 0,7 В, а для германия — 0,3 В. В кремниевом диоде темная полоса указывает катодный вывод, а другой вывод — анод. Обычно диоды используются в качестве предохранителей от обратной полярности и переходных процессов.Существует много типов диодов, и некоторые из них перечислены ниже.

Различные типы диодов

Давайте теперь кратко рассмотрим несколько широко используемых типов диодов.

1. Малый сигнальный диод

Это небольшое устройство с непропорциональными характеристиками, приложения которого в основном связаны с устройствами с высокой частотой и очень низким током, такими как радиоприемники, телевизоры и т. Д. Для защиты диода от загрязнения он окружен стеклом, поэтому его также называют Glass Passivated. Диод, который широко используется как 1N4148.

Внешний вид сигнального диода очень мал по сравнению с силовым диодом. Для обозначения катодного вывода один край маркируется черным или красным цветом. Для приложений на высоких частотах очень эффективны характеристики слабосигнального диода.

Что касается функциональных частот сигнального диода, допустимая нагрузка по току и мощности очень низкие, максимальные значения составляют примерно 150 мА и 500 мВт.

Сигнальный диод представляет собой полупроводниковый диод, легированный кремнием, или диод, легированный германием, но в зависимости от легирующего материала характеристики диода различаются.В сигнальном диоде характеристики диода, легированного кремнием, примерно противоположны характеристикам диода, легированного германием.

Кремниевый сигнальный диод имеет высокое падение напряжения на соединении от 0,6 до 0,7 В, поэтому он имеет очень высокое сопротивление, но низкое прямое сопротивление. С другой стороны, германиевый сигнальный диод имеет низкое сопротивление из-за низкого падения напряжения от 0,2 до 0,3 В и высокого прямого сопротивления. Из-за слабого сигнала функциональная точка не нарушается в малосигнальном диоде.

2.Большой сигнальный диод

Эти диоды имеют большой слой PN перехода. Таким образом, преобразование переменного напряжения в постоянное не ограничено. Это также увеличивает текущую прямую пропускную способность и обратное напряжение блокировки. Эти большие сигналы также нарушат функциональную точку. По этой причине он не подходит для высокочастотных приложений.

Основное применение этих диодов — в устройствах для зарядки аккумуляторов, таких как инверторы. В этих диодах диапазон прямого сопротивления находится в Ом, а обратное сопротивление блокировки — в мегаомах.Поскольку он имеет высокие характеристики по току и напряжению, их можно использовать в электрических устройствах, которые используются для подавления высоких пиковых напряжений.

3. Стабилитрон

Это пассивный элемент, работающий по принципу пробоя стабилитрона. Впервые изготовленный Кларенсом стабилитрон в 1934 году, он похож на нормальный диод в прямом направлении, он также пропускает ток в обратном направлении, когда приложенное напряжение достигает напряжения пробоя. Он предназначен для защиты других полупроводниковых устройств от кратковременных импульсов напряжения.Он действует как регулятор напряжения.

4. Светоизлучающий диод (LED)

Эти диоды преобразуют электрическую энергию в энергию света. Первое производство началось в 1968 году. Он подвергается процессу электролюминесценции, в котором дырки и электроны рекомбинируются для получения энергии в виде света в состоянии прямого смещения.

Раньше они использовались в индукционных лампах, но теперь в недавних приложениях они используются в окружающей среде и решении задач. В основном используется в таких приложениях, как авиационное освещение, светофоры, вспышки фотокамер.

5. Диоды постоянного тока

Он также известен как токорегулирующий диод, диод постоянного тока, токоограничивающий диод или транзистор с диодным соединением. Функция диода — регулировать напряжение при определенном токе.

Функционирует как ограничитель тока с двумя выводами. В этом JFET-транзисторе действует как ограничитель тока для достижения высокого выходного сопротивления. Символ диода постоянного тока показан ниже.

6. Диод Шоттки

В диодах этого типа переход формируется путем контакта полупроводникового материала с металлом.Благодаря этому прямое падение напряжения снижается до мин. Полупроводниковый материал представляет собой кремний N-типа, который действует как анод, а металл действует как катод, материалы которого — хром, платина, вольфрам и т. Д.

Благодаря металлическому переходу эти диоды обладают большой токопроводящей способностью, поэтому время переключения сокращается. Итак, Шоттки больше использует при переключении приложений. В основном из-за перехода металл-полупроводник падение напряжения невелико, что, в свою очередь, увеличивает характеристики диода и снижает потери мощности.Таким образом, они используются в высокочастотных выпрямителях. Символ диода Шоттки показан ниже.

7. Диод Шокли

Это было изобретение первых полупроводниковых приборов. Он имеет четыре слоя. Его также называют диодом PNPN. Он аналогичен тиристору без вывода затвора, что означает, что вывод затвора отключен. Поскольку нет триггерных входов, диод может проводить ток только путем подачи прямого напряжения.

Он остается на одном, когда он включен, и остается выключенным, когда он выключен.Диод имеет два рабочих состояния: проводящий и непроводящий. В непроводящем состоянии диод проводит с меньшим напряжением.

Обозначение диода Шокли следующее:

Применение диодов Шокли
  • Триггерные переключатели для SCR.
  • Действует как релаксирующий осциллятор.
8. Диоды пошагового восстановления

Его также называют отключающим диодом или диодом для накопления заряда. Это особый тип диодов, которые накапливают заряд положительного импульса и используют в отрицательном импульсе синусоидальных сигналов.Время нарастания текущего импульса равно времени щелчка. Из-за этого явления он имеет импульсы восстановления скорости.

Эти диоды используются в умножителях более высокого порядка и в схемах формирователя импульсов. Частота среза этих диодов очень высока, что составляет порядка гигагерц.

В качестве умножителя этот диод имеет диапазон частот среза от 200 до 300 ГГц. При работе в диапазоне 10 ГГц эти диоды играют жизненно важную роль. Эффективность высока для умножителей более низкого порядка.Символ этого диода показан ниже.

Туннельный диод

Используется как высокоскоростной переключатель порядка наносекунд. Благодаря туннельному эффекту он очень быстро работает в микроволновом диапазоне частот. Это двухполюсное устройство, в котором концентрация примесей слишком высока.

Переходная характеристика ограничивается емкостью перехода плюс паразитной емкостью проводки. В основном используется в СВЧ-генераторах и усилителях. Он действует как устройство с самой отрицательной проводимостью.Туннельные диоды можно настраивать как механически, так и электрически. Символ туннельного диода показан ниже.

Применение туннельных диодов
  1. Цепи колебательные.
  2. СВЧ-схемы.
  3. Устойчив к ядерной радиации.
10. Варакторный диод

Они также известны как диоды варикапа. Он действует как переменный конденсатор. Операции выполняются в основном только при обратном смещении. Эти диоды очень известны благодаря своей способности изменять диапазоны емкости в цепи при наличии постоянного напряжения.

Они могут изменять емкость до высоких значений. В варакторном диоде, изменяя напряжение обратного смещения, мы можем уменьшать или увеличивать обедненный слой. Эти диоды находят множество применений в качестве генераторов с регулируемым напряжением для сотовых телефонов, предварительных фильтров спутниковой связи и т. Д. Символ варакторного диода приведен ниже.

Применение варакторных диодов
  1. Конденсаторы с регулируемым напряжением.
  2. Генераторы, управляемые напряжением.
  3. Параметрические усилители.
  4. Умножители частоты.
  5. FM-передатчики и системы фазовой автоподстройки частоты в радио, телевизорах и сотовых телефонах.
11. Лазерный диод

Аналогичен светодиоду, в котором активная область образована p-n переходом. Электрически лазерный диод представляет собой p-i-n-диод, в котором активная область находится во внутренней области. Используется в волоконно-оптической связи, считывателях штрих-кода, лазерных указках, считывании и записи CD / DVD / Blu-ray, лазерной печати.

Типы лазерных диодов:
  1. Лазер с двойной гетероструктурой: Свободные электроны и дырки доступны одновременно в регионе.
  2. Лазеры на квантовых ямах: лазеров, имеющих более одной квантовой ямы, называются лазерами с несколькими квантовыми ямами.
  3. Квантово-каскадные лазеры: Это лазеры на гетеропереходе, обеспечивающие лазерное воздействие на относительно длинных волнах.
  4. Лазеры на гетероструктурах с раздельным ограничением: Чтобы компенсировать проблему тонких слоев в квантовых лазерах, мы выбираем лазеры на гетероструктурах с раздельным ограничением.
  5. Лазеры с распределенным брэгговским отражателем: Это могут быть лазеры с торцевым излучением или VCSELS.

Обозначение лазерного диода, как показано:

12. Диод подавления переходных процессов напряжения

В полупроводниковых приборах из-за резкого изменения состояния напряжения будут происходить переходные процессы. Они повредят выходной отклик устройства. Для решения этой проблемы используются диодные диоды для подавления напряжения. Принцип действия диода ограничения напряжения аналогичен работе стабилитрона.

Эти диоды работают нормально, как диоды с p-n переходом, но во время переходного напряжения их работа меняется.В нормальном состоянии сопротивление диода высокое. Когда в цепи возникает какое-либо переходное напряжение, диод входит в область лавинного пробоя, в которой обеспечивается низкий импеданс.

Самопроизвольно очень быстро, потому что продолжительность схода лавины колеблется в пикосекундах. Диод подавления переходных напряжений будет ограничивать напряжение до фиксированных уровней, в большинстве случаев его ограничивающее напряжение находится в минимальном диапазоне.

Они используются в области телекоммуникаций, медицины, микропроцессоров и обработки сигналов.Он реагирует на перенапряжение быстрее, чем варисторы или газоразрядные трубки.

Обозначение диода подавления переходного напряжения показано ниже.

Диод характеризуется

  • Ток утечки
  • Максимальное обратное противостояние напряжения
  • Напряжение пробоя
  • Напряжение зажима
  • Паразитная емкость
  • Паразитная индуктивность
  • Количество энергии, которое он может поглотить
13.Диоды легированные золотом

В этих диодах золото используется в качестве легирующей примеси. Эти диоды быстрее других диодов. В этих диодах ток утечки при обратном смещении также меньше. Даже при более высоком падении напряжения это позволяет диоду работать на частотах сигнала. В этих диодах золото способствует более быстрой рекомбинации неосновных носителей.

14. Супер барьерные диоды

Это выпрямительный диод с низким прямым падением напряжения, как диод Шоттки, с возможностью защиты от перенапряжения и низким обратным током утечки в качестве диода с p-n переходом.Он был разработан для приложений с высокой мощностью, быстрым переключением и низкими потерями. Супербарьерные выпрямители — это выпрямители следующего поколения с более низким прямым напряжением, чем диоды Шоттки.

15. Диод Пельтье

В этом типе диода на стыке двух материалов полупроводника он генерирует тепло, которое течет от одного вывода к другому. Этот поток осуществляется только в одном направлении, которое равно направлению текущего потока.

Это тепло производится за счет электрического заряда, возникающего в результате рекомбинации неосновных носителей заряда.В основном это используется в системах охлаждения и обогрева. Этот тип диодов используется как датчик и тепловой двигатель для термоэлектрического охлаждения.

16. Кристаллический диод

Это также известно как усы Кошки, которые представляют собой диод с точечным контактом. Его работа зависит от давления контакта полупроводникового кристалла и точки.

В нем присутствует металлическая проволока, которая прижимается к кристаллу полупроводника. При этом кристалл полупроводника действует как катод, а металлическая проволока действует как анод. Эти диоды являются устаревшими по своей природе. В основном используется в микроволновых приемниках и детекторах.

Применение кристаллического диода
  1. Кристаллический диод выпрямителя
  2. Кристаллический диодный детектор
  3. Радиоприемник Crystal
17. Лавинный диод

Это пассивный элемент, работающий по принципу лавинного разрушения. Он работает в режиме обратного смещения. Это приводит к большим токам из-за ионизации, производимой p-n-переходом в условиях обратного смещения.

Эти диоды специально разработаны для пробоя при определенном обратном напряжении, чтобы предотвратить повреждение. Обозначение лавинного диода показано ниже:

Использование лавинного диода
  1. Генерация ВЧ-шума: Он действует как источник ВЧ для мостов антенного анализатора, а также как генераторы белого шума. Используется в радиооборудовании, а также в аппаратных генераторах случайных чисел.
  2. Генерация микроволновой частоты: В этом случае диод действует как устройство отрицательного сопротивления.
  3. Однофотонный лавинный детектор: Это детекторы фотонов с высоким коэффициентом усиления, используемые для измерения уровня освещенности.
18. Кремниевый выпрямитель

Он состоит из трех выводов: анода, катода и затвора. Он почти равен диоду Шокли. Как видно из названия, он в основном используется для целей управления, когда в цепи прикладываются небольшие напряжения. Символ кремниевого выпрямителя показан ниже:

.

Режимы работы:
  1. Режим блокировки в прямом направлении (выключенное состояние): в этом j1 и j3 смещены в прямом направлении, а j2 смещены в обратном направлении.Он предлагает высокое сопротивление ниже напряжения отключения и, следовательно, считается выключенным.
  2. Режим прямой проводимости (включенное состояние): увеличивая напряжение на аноде и катоде или применяя положительный импульс на затворе, мы можем включить. Единственный способ выключить — уменьшить ток, протекающий через него.
  3. Режим блокировки обратного направления (выключенное состояние): SCR, блокирующий обратное напряжение, называется асимметричным SCR. В основном используется в инверторах источника тока.
19. Вакуумные диоды

Вакуумные диоды состоят из двух электродов, которые действуют как анод и катод.Катод состоит из вольфрама, который испускает электроны в направлении анода. Электронный поток всегда будет идти только от катода к аноду. Итак, он действует как переключатель.

Если катод покрыт оксидным материалом, то способность к эмиссии электронов высока. Анод немного длинноват, а в некоторых случаях его поверхность шероховатая, чтобы снизить температуру, возникающую в диоде. Диод будет проводить только в одном случае, когда анод положителен относительно вывода катода.Обозначение показано на рисунке:

.

20. PIN диод

Усовершенствованная версия обычного диода с P-N переходом дает PIN-диод. В PIN-диоде легирование не нужно. Собственный материал означает, что материал, не имеющий носителей заряда, вставлен между областями P и N, что увеличивает площадь обедненного слоя.

Когда мы прикладываем напряжение прямого смещения, дырки и электроны проталкиваются во внутренний слой. В какой-то момент из-за этого высокого уровня инжекции электрическое поле также будет проходить через внутренний материал.Это поле заставляло переносчиков течь из двух регионов. Символ PIN-диода показан ниже:

.

Применение диода ПИН-кода
:
  1. Переключатели RF: Штыревой диод используется как для выбора сигнала, так и для выбора компонентов. Например, штыревые диоды действуют как индукторы с переключателем диапазона в генераторах с низким фазовым шумом.
  2. Аттенюаторы: используется как мостовое и шунтирующее сопротивление в аттенюаторе типа «мост-Т».
  3. Фотодетекторы: обнаруживают фотоны рентгеновского и гамма-излучения.
21. Точечные контактные устройства

Золотая или вольфрамовая проволока используется в качестве точечного контакта для создания области PN-перехода путем пропускания через нее сильного электрического тока. Небольшая область PN-перехода создается вокруг края провода, который соединяется с металлической пластиной, как показано на рисунке.

В прямом направлении его работа очень похожа, но в режиме обратного смещения провод действует как изолятор. Поскольку этот изолятор находится между пластинами, диод действует как конденсатор.Обычно конденсатор блокирует токи постоянного тока, когда токи переменного тока протекают в цепи на высоких частотах. Таким образом, они используются для обнаружения высокочастотных сигналов.

22. Диод Ганна

Диод Ганна изготовлен только из полупроводникового материала n-типа. Область обеднения двух материалов N-типа очень тонкая. Когда напряжение в цепи увеличивается, увеличивается и ток. После определенного уровня напряжения ток будет экспоненциально уменьшаться, что проявляется в отрицательном дифференциальном сопротивлении.

Он имеет два электрода с арсенидом галлия и фосфидом индия, поэтому он имеет отрицательное дифференциальное сопротивление. Его также называют переносным электронным устройством. Он генерирует СВЧ-сигналы, поэтому в основном используется в СВЧ-устройствах. Его также можно использовать в качестве усилителя. Обозначение диода Ганна показано ниже:

ПРЕДЫДУЩАЯ — ХАРАКТЕРИСТИКИ ДИОДА

ДАЛЕЕ — ОБУЧЕНИЕ ПО СИГНАЛЬНЫМ ДИОДАМ

Типы диодов »Электроника

Существует много различных типов диодов, различающихся не только технологией, но и силовыми диодами, диодами для поверхностного монтажа и многим другим.


Diode Tutorial:
Типы диодов Характеристики и номиналы диодов PN переходный диод ВЕЛ PIN-диод Диод с барьером Шоттки Варактор / варикап Стабилитрон


Полупроводниковый диод — это широко используемый компонент электроники, который сегодня можно найти во многих конструкциях электронных схем.

Хотя существует много разных типов диодов, которые используют одну и ту же базовую структуру области материала p-типа, встречающейся с областью материала n-типа, разные типы оптимизированы для обеспечения различных характеристик, которые могут использоваться различными способами. во многих конструкциях электронных схем.

Независимо от типа диода, основная идея диода важна сегодня в электронной промышленности, будь то использование для производства коммерческого или промышленного оборудования, для использования любителями или для тех, кто изучает электронику.

Диоды используются в самых разных областях. Они могут быть для простого исправления сигнала; они могут использоваться в качестве силовых диодов для выпрямления мощности, обнаружения сигналов, различных форм радиочастотного проектирования, генерации света, генерации лазерного излучения, обнаружения света и многого другого.

Диоды также могут иметь множество различных корпусов: диоды для поверхностного монтажа, диоды с обычными выводами и некоторые силовые диоды могут даже быть прикреплены болтами к радиатору. Диоды бывают всех форм и размеров.

Диоды поверхностного монтажа на печатной плате

История создания полупроводниковых диодов

Первые использованные диоды были обнаружены еще в начале 1900-х годов, когда технология беспроводной связи только зарождалась. The Cat’s Whisker был одним из первых диодов, которые начали использовать.Он состоял из очень тонкого куска проволоки (самого кошачьего уса), который можно было поместить на кусок материала полупроводникового типа (обычно минеральный кристалл), чтобы получился диод точечного контакта. Это широко использовалось до середины и конца 1920-х годов, когда термоэлектронная или вентильная технология стала достаточно дешевой, чтобы ее можно было широко использовать в радиоприемниках.

Примерно во время Второй мировой войны для разрабатываемых радаров потребовались новые диоды. Полупроводниковые диоды предоставили один вариант, поскольку их размер означал, что они могли лучше работать на частотах, необходимых для радара.

Обозначение диодной цепи

Как и все электронные компоненты, диоды имеют обозначение цепи, которое используется в электронных схемах. Базовое обозначение диода представляет собой треугольник, острием которого соприкасается короткая линия, перпендикулярная проводу на принципиальной схеме.

Иногда треугольник и даже линия показаны просто контуром, а иногда они показаны как закрашенные черные фигуры.

Обозначение базовой диодной цепи

Иногда символ диодной цепи отображается только в виде контура и без закрашенных фигур.Форма контура также приемлема.

Альтернативный символ диодной цепи

Существует много различных типов диодов, и некоторые из них используют символы цепи, которые немного изменены по сравнению с основным символом диода для обозначения их функции: диод Шоттки, варакторный диод и ряд других попадают в эту категорию.

Устройства для поверхностного монтажа или с выводами

Диоды бывают всех форм и размеров. Традиционно многие из этих электронных компонентов помещались в небольшую стеклянную трубку, в которой заключался сам полупроводниковый диод. Сейчас диоды содержатся в самых разных корпусах.

Все еще существуют свинцовые корпуса и стеклянные диоды, но есть также много пластиковых корпусов. Они могут различаться по размеру в зависимости от требуемой рассеиваемой мощности.

В наши дни, когда большая часть печатных плат собирается с использованием технологии поверхностного монтажа, существует целый ряд диодов, доступных в качестве компонентов для поверхностного монтажа, SMD-диодов. Существует множество стандартных корпусов для SMD-диодов, включая корпус SOT-23, который используется для множества небольших дискретных диодов.Используются только два из трех имеющихся контактов, что позволяет правильно сориентировать диод.

Поскольку эти SMD-диоды имеют небольшие размеры, на диоде нет места для включения полного номера детали, и для их различения используется сокращенный номер.

Хотя в большинстве сборок печатных плат используется технология поверхностного монтажа, существуют и другие области производства электроники, которые нуждаются в диодах с гораздо более высокой токовой нагрузкой. Эти диоды могут содержаться в корпусах, которые крепятся болтами к радиаторам.

Типы диодов

Существует множество различных типов диодов, которые производятся и используются в различных конструкциях электронных схем, радиочастотных схемах, а также часто и в цифровых схемах. Каждый тип имеет разные свойства, что делает их подходящими для разных схем.

  • Обратный диод: Этот тип диода иногда также называют обратным диодом. Хотя этот диод не получил широкого распространения, он представляет собой разновидность диода с PN переходом, который очень похож на туннельный диод по своей работе.Он находит несколько специализированных приложений, где могут быть использованы его особые свойства, обычно на микроволновых частотах.

    Обратный диод — это, по сути, разновидность туннельного диода, в котором одна сторона перехода менее легирована, чем другая.


  • Диод BARITT: Эта форма диода получила свое название от слов «диод времени прохождения с инжекцией барьера». Он используется в микроволновых приложениях и имеет много общего с более широко используемым диодом IMPATT.


  • Диод Ганна: Этот тип диода не является диодом в форме PN перехода, но представляет собой полупроводниковое устройство с двумя выводами. Обычно он используется для генерации микроволновых сигналов и использовался во многих радиочастотных конструкциях в качестве простой и эффективной формы микроволнового генератора.

    Диоды Ганна

    также известны как устройства с переносом электронов или TED. Хотя этот электронный компонент называется диодом, он не имеет PN перехода и технически не является диодом в том смысле, в котором он используется в полупроводниковой технологии.Вместо этого устройство использует эффект, известный как эффект Ганна (названный в честь первооткрывателя Дж. Б. Ганна).

    Хотя диод Ганна обычно используется для генерации микроволновых радиочастотных сигналов, этот электронный компонент может также использоваться для усилителя в том, что иногда называют усилителем с переносом электронов или TEA.


  • Кошачий ус: Как уже упоминалось, этот тип диодов был первым типом, получившим широкое распространение.Он состоял из небольшой проволоки, помещенной на кусок минерального кристалла. Это привело к созданию небольшого точечного контактного диода, который, хотя и ненадежен, был достаточно хорош, чтобы можно было слышать радиопередачи при использовании в «кристаллическом наборе».

    Типичный кристаллический детектор / детектор кошачьих усов

    Хотя детекторы Cat Whisker не были особенно надежными, они были первой формой полупроводниковых диодов и указали путь к более поздним диодам. . . и принцип светодиода был даже соблюден Х. Дж. Раундом в 1908 году на одном из них.

  • Диод IMPATT: Диод IMPATT или СВЧ-диод IMPact с лавинной ионизацией и временем прохождения используется в некоторых радиочастотных конструкциях, где для микроволновых сигналов требуется простой генератор.

    Технология диодов IMPATT не так широко используется в наши дни, но этот электронный компонент может генерировать сигналы обычно от 3 до 100 ГГц или более. Одним из основных преимуществ этого микроволнового диода является относительно высокая мощность (часто десять ватт и более), которая намного выше, чем у многих других типов микроволновых диодов.Его выходная мощность намного выше, чем у диода Ганна.


  • Лазерный диод: Этот тип диода отличается от обычного светоизлучающего диода тем, что излучает лазерный (когерентный) свет. Эти электронные компоненты используются во многих приложениях, включая приводы для компакт-дисков и DVD-дисков. Хотя эти диоды намного дешевле, чем другие формы лазерных генераторов, они дороже обычных светодиодов.
  • Светодиоды: Светодиод или светодиод — это один из самых популярных типов диодов.При прямом смещении и токе, протекающем через переход, возникает свет. Первоначальный цвет этих диодов был красным, но сейчас доступно большинство цветов. Это достигается за счет использования различных смесей полупроводников по обе стороны от PN перехода.


  • Фотодиод: Когда свет попадает на PN-переход, он может создавать электроны и дырки, вызывая протекание тока. В результате можно использовать полупроводники для обнаружения света.Эти типы диодов также могут использоваться для выработки электроэнергии. Для некоторых приложений PIN-диоды очень хорошо работают в качестве фотоприемников.


  • PIN-диод: Этот тип диода имеет области кремния P-типа и N-типа, но между ними есть область собственного полупроводника (то есть без легирования). Это увеличивает размер так называемой области истощения. Этот тип диодов используется в ряде приложений, включая радиочастотные переключатели и фотодиоды.


  • Диод с точечным контактом: Этот тип диода работает так же, как и простой диод с PN переходом, но его конструкция намного проще. Они состоят из куска полупроводника n-типа, на который помещается острый конец металлической проволоки определенного типа (металл III группы для химиков). Часть металла мигрирует в полупроводник и образует PN-переход.

    Эти диоды имеют очень низкий уровень емкости и идеально подходят для многих радиочастотных (RF) приложений.У них также есть то преимущество, что они очень дешевы в производстве, хотя их характеристики не особенно воспроизводимы.

  • PN-переход: Стандартный PN-переход можно рассматривать как нормальный или стандартный тип используемых сегодня диодов. Этот электронный компонент встроен во многие конструкции электронных схем, а также используется во многих конструкциях радиочастотных схем. Эти диоды могут быть малосигнальными для использования в радиочастотах или других слаботочных приложениях, или другие типы могут быть сильноточными и высоковольтными, которые могут использоваться для силовых приложений.


  • Диоды Шоттки: Этот тип диодов имеет меньшее прямое падение напряжения, чем обычные кремниевые диоды с PN переходом. При низких токах падение может быть где-то между 0,15 и 0,4 вольт, в отличие от 0,6 вольт для кремниевого диода.

    Для достижения этих характеристик они сконструированы иначе, чем обычные диоды, имеющие контакт металл-полупроводник. Они широко используются в качестве ограничивающих диодов и в ВЧ конструкциях, часто как детекторы сигналов.Они также используются в качестве силовых диодов для выпрямления переменного тока в источниках питания и т.п. Меньшие потери, вызванные меньшим падением, имеют большое значение для повышения эффективности.


  • Ступенчатый восстанавливающий диод: Форма микроволнового диода, используемого для генерации и формирования импульсов на очень высоких частотах. Для работы этих диодов требуется очень быстрое выключение диода.


  • Диод TRAPATT: Этот тип диода имеет много общего с IMPATT и фактически принадлежит к тому же семейству.Он предлагает более низкий уровень шума, но не достигает таких высоких частот.


  • Туннельный диод: Хотя сегодня он не получил широкого распространения, туннельный диод использовался в микроволновых приложениях, где его характеристики превосходили характеристики других устройств того времени.
  • Варикапные или варакторные диоды: Этот тип диодов используется в радиочастотных (RF) приложениях. На диод помещено обратное смещение, поэтому ток через переход не протекает.Однако ширина обедненного слоя варьируется в зависимости от величины смещения, приложенного к нему.

    Диод можно представить как две обкладки конденсатора с обедненным слоем между ними. Поскольку емкость изменяется в соответствии с шириной обедненного слоя, и это можно изменять, изменяя обратное смещение на диоде, можно управлять емкостью диода.


  • Зенера опорный диод / напряжение диода: Стабилитрон очень полезный тип диода.Он работает под обратным смещением и при достижении определенного напряжения выходит из строя. Если ток ограничен резистором, это позволяет получить стабильное напряжение. Этот тип диода поэтому широко используется для обеспечения опорного напряжения в регулируемых источниках питания.


Существует очень много разных типов диодов, каждый из которых подходит для своего применения. Мало того, что технология различается для разных типов диодов, они также могут содержаться в разных корпусах: некоторые из них могут быть свинцовыми, а другие могут крепиться болтами на радиаторах, а в зависимости от количества сборки печатной платы, в которой используются автоматизированные производственные методы, диоды для поверхностного монтажа могут быть сейчас используется в огромных количествах.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Типы диодов — инструкции

Диод — это двухконтактное устройство с двумя активными электродами, между которыми он позволяет передавать ток только в одном направлении.Диоды известны своим свойством однонаправленного тока, при котором электрический ток может течь в одном направлении. В основном диоды используются для выпрямления сигналов и могут использоваться в источниках питания или в радиодетекторах. Их также можно использовать в схемах, где требуется «односторонний» эффект диода. Большинство диодов изготовлено из полупроводников, таких как кремний, однако иногда также используется германий. Диоды передают электрические токи в одном направлении, однако способ их передачи может варьироваться.Для использования в электронике доступны несколько типов диодов. Вот некоторые из различных типов:

Светоизлучающий диод (LED): Это один из самых популярных типов диодов, и когда этот диод позволяет передавать электрический ток между электродами, образуется свет. В большинстве диодов свет (инфракрасный) не виден, поскольку они находятся на частотах, которые не позволяют видеть. Когда диод включен или смещен в прямом направлении, электроны рекомбинируют с дырками и выделяют энергию в виде света (электролюминесценция).Цвет света зависит от запрещенной зоны полупроводника.

Лавинный диод: Этот тип диода работает в режиме обратного смещения, и для его работы используется лавинный эффект. Лавинный пробой происходит по всему PN-переходу, когда падение напряжения является постоянным и не зависит от тока. Обычно лавинный диод используется для фотодетектирования, при этом высокие уровни чувствительности могут быть получены с помощью лавинного процесса.

Лазерный диод : Этот тип диода отличается от светодиодного типа, поскольку он излучает когерентный свет.Эти диоды находят свое применение в приводах DVD и CD, лазерных указках и т. Д. Лазерные диоды дороже светодиодов. Однако они дешевле, чем другие формы лазерных генераторов. Кроме того, у этих лазерных диодов ограниченный срок службы.

Диоды Шоттки : Эти диоды имеют меньшее прямое падение напряжения по сравнению с обычными кремниевыми диодами с PN переходом. Падение напряжения может составлять от 0,15 до 0,4 В при малых токах по сравнению с 0,6 В для кремниевого диода.Для достижения этой характеристики эти диоды сконструированы иначе, чем обычные диоды, с контактом металл-полупроводник. Диоды Шоттки используются в радиочастотных приложениях, выпрямителях и ограничивающих диодах.

Стабилитрон: Этот тип диода обеспечивает стабильное опорное напряжение, таким образом, является очень полезным типом и используется в огромных количествах. Диод работает в режиме обратного смещения и выходит из строя при достижении определенного напряжения. Если ток через резистор ограничен, получается стабильное напряжение.В источниках питания, эти диоды широко используются для обеспечения опорного напряжения.

Фотодиод : Фотодиоды используются для обнаружения света и имеют широкие прозрачные переходы. Как правило, эти диоды работают с обратным смещением, при этом даже небольшие количества тока, протекающего от света, могут быть легко обнаружены. Фотодиоды также могут использоваться для выработки электроэнергии, в качестве солнечных элементов и даже в фотометрии.

Варикап-диод или варакторный диод : Этот тип диода имеет обратное смещение, наложенное на него, которое изменяет ширину обедненного слоя в соответствии с напряжением, подаваемым на диод.Этот диод действует как конденсатор, а обкладки конденсатора формируются за счет протяженности областей проводимости и области обеднения как изолирующего диэлектрика. Изменяя смещение на диоде, ширина обедненной области изменяется, тем самым изменяя емкость.

Выпрямительный диод : Эти диоды используются для выпрямления переменного тока на входе в источники питания. Они могут исправлять уровни тока от усилителя и выше. Если требуются низкие падения напряжения, то можно использовать диоды Шоттки, однако, как правило, эти диоды представляют собой диоды с PN переходом.

Диод слабого сигнала или малого тока — Эти диоды предполагают, что рабочая точка не изменяется из-за слабого сигнала.

· Большие сигнальные диоды — Рабочая точка в этих диодах изменяется при большом сигнале.

Диоды подавления переходного напряжения — Этот диод используется для защиты электроники, чувствительной к скачкам напряжения.

· Диоды, легированные золотом — Эти диоды используют золото в качестве легирующей примеси и могут работать на частотах сигнала, даже если прямое падение напряжения увеличивается.

· Супер барьерные диоды — Их также называют выпрямительными диодами. Эти диоды обладают свойством низкого обратного тока утечки, как у нормального диода с p-n переходом, и низкого прямого падения напряжения, как у диода Шоттки с возможностью обработки перенапряжения.

· Диоды с точечным контактом — Конструкция этого диода проще и используется в аналоговых приложениях и в качестве детектора в радиоприемниках. Этот диод состоит из полупроводника n — типа и нескольких проводящих металлов, которые находятся в контакте с полупроводником.Некоторые металлы перемещаются по направлению к полупроводнику, образуя небольшую область полупроводника p-tpye около контакта.

· Диоды Пельтье — Этот диод используется как тепловой двигатель и датчик для термоэлектрического охлаждения.

· Диод Ганна — Этот диод изготовлен из таких материалов, как GaAs или InP, которые имеют область отрицательного дифференциального сопротивления.

· Кристаллический диод — это тип диодов с точечным контактом, которые также называются усами Кота.Этот дидо состоит из тонкой заостренной металлической проволоки, которая прижимается к полупроводниковому кристаллу. Металлическая проволока является анодом, а полупроводящий кристалл — катодом. Эти диоды устарели.

· Лавинный диод — Этот диод работает в режиме обратного смещения, когда напряжение обратного смещения, приложенное к p-n переходу, создает волну ионизации, ведущую к протеканию большого тока. Эти дидо предназначены для пробоя при определенном обратном напряжении, чтобы избежать каких-либо повреждений.

· Кремниевый управляемый выпрямитель — Как следует из названия, этим диодом можно управлять или запускать его в состояние ВКЛ из-за приложения небольшого напряжения. Они принадлежат к семейству тиристоров и используются в различных областях управления двигателями постоянного тока, регулирования поля генератора, управления системами освещения и частотно-регулируемыми приводами. Это трехконтактное устройство с анодом, катодом и третьим управляемым выводом или затвором.

· Вакуумные диоды — Этот диод представляет собой двухэлектродную вакуумную лампу, которая может выдерживать высокие обратные напряжения.

Диоды широко используются в электронной промышленности, от разработки электроники до производства и ремонта. Помимо вышеупомянутых типов диодов, другими диодами являются PIN-диод, диод с точечным контактом, сигнальный диод, ступенчатый восстанавливающий диод, туннельный диод и диоды, легированные золотом. Тип диода для передачи электрического тока зависит от типа и мощности передачи, а также от конкретных приложений.

———————————————— —————- проголосуйте за меня пожалуйста —————————— —————————————

Источник: — https: // en.wikipedia.org

thanx ….

Диод: определение, символ и типы диодов

Что такое диод?

Диод определяется как двухконтактный электронный компонент, который проводит ток только в одном направлении (при условии, что он работает в пределах указанного уровня напряжения). Идеальный диод будет иметь нулевое сопротивление в одном направлении и бесконечное сопротивление в обратном направлении.

Хотя в реальных условиях диоды не могут добиться нулевого или бесконечного сопротивления.Вместо этого диод будет иметь пренебрежимо малое сопротивление в одном направлении (для обеспечения протекания тока) и очень высокое сопротивление в обратном направлении (до предотвращает протекание тока ). По сути, диод похож на вентиль в электрической цепи.

Полупроводниковые диоды — наиболее распространенный тип диодов. Эти диоды начинают проводить электричество только при наличии определенного порогового напряжения в прямом направлении (то есть в направлении «низкого сопротивления»). Диод называется « с прямым смещением », когда ток проходит в этом направлении.При подключении к схеме в обратном направлении (то есть в направлении «высокого сопротивления») диод называется « с обратным смещением ».

Диод называется « с прямым смещением » при проведении тока в этом направлении. При подключении к схеме в обратном направлении (то есть в направлении «высокого сопротивления») диод называется « с обратным смещением ».

Диод блокирует ток только в обратном направлении (т.е.е. когда он смещен в обратном направлении), в то время как обратное напряжение находится в заданном диапазоне. Выше этого диапазона происходит преодоление обратного барьера. Напряжение, при котором происходит этот пробой, называется «обратным напряжением пробоя».

Когда напряжение в цепи выше, чем напряжение обратного пробоя, диод может проводить электричество в обратном направлении (то есть в направлении «высокого сопротивления»). Вот почему на практике мы говорим, что диоды имеют высокое сопротивление в обратном направлении, а не бесконечное сопротивление.

PN переход — это простейшая форма полупроводникового диода. В идеальных условиях этот PN-переход ведет себя как короткое замыкание, когда он смещен в прямом направлении, и как разомкнутый контур, когда он смещен в обратном направлении. Название диод происходит от слова «диод», что означает устройство с двумя электродами. Диоды обычно используются во многих проектах в области электроники и включены во многие из лучших стартовых комплектов Arduino.

Символ диода

Символ диода показан ниже.Стрелка указывает в направлении обычного потока тока в состоянии прямого смещения. Это означает, что анод подключен к стороне p, а катод подключен к стороне n.

Мы можем создать простой диод с PN переходом, легируя пятивалентную или донорную примесь в одной части и трехвалентную или акцепторную примесь в другой части кристаллического блока кремния или германия.

Эти легирующие примеси образуют PN переход в средней части блока. Мы также можем сформировать PN-переход, соединив полупроводник p-типа и полупроводник n-типа вместе с помощью специальной технологии изготовления.Клемма, подключенная к р-типу, является анодом. Вывод, подключенный к стороне n-типа, является катодом.

Принцип работы диода

Принцип работы диода зависит от взаимодействия полупроводников n-типа и p-типа. Полупроводник n-типа имеет много свободных электронов и очень мало дырок. Другими словами, мы можем сказать, что концентрация свободных электронов высока, а дырок очень мала в полупроводнике n-типа.

Свободные электроны в полупроводнике n-типа называются основными носителями заряда, а дырки в полупроводнике n-типа называются неосновными носителями заряда.

Полупроводник p-типа имеет высокую концентрацию дырок и низкую концентрацию свободных электронов. Дырки в полупроводнике p-типа являются основными носителями заряда, а свободные электроны в полупроводнике p-типа являются неосновными носителями заряда.

Если вы предпочитаете видео-объяснение того, что такое диод, посмотрите видео ниже:

Несмещенный диод

Теперь давайте посмотрим, что происходит, когда одна область n-типа и одна область p-типа войти в контакт.Здесь из-за разницы концентраций большинство носителей диффундируют с одной стороны на другую. Поскольку концентрация дырок высока в области p-типа и низкая в области n-типа, дырки начинают диффундировать из области p-типа в область n-типа.

И снова концентрация свободных электронов высока в области n-типа и мала в области p-типа, и по этой причине свободные электроны начинают диффундировать из области n-типа в область p-типа.

Свободные электроны, диффундирующие в область p-типа из области n-типа, рекомбинируют с имеющимися там дырками и создают незакрытые отрицательные ионы в области p-типа.Точно так же дырки, диффундирующие в область n-типа из области p-типа, будут рекомбинировать со свободными электронами, доступными там, и создавать непокрытые положительные ионы в области n-типа.

Таким образом, будет слой отрицательных ионов на стороне p-типа, а слой положительных ионов в области n-типа появится вдоль линии соединения этих двух типов полупроводников. Слои непокрытых положительных ионов и непокрытых отрицательных ионов образуют область в середине диода, где нет носителей заряда, поскольку все носители заряда рекомбинируются здесь, в этой области.Из-за отсутствия носителей заряда эта область называется обедненной.

После образования обедненной области диффузия носителей заряда с одной стороны на другую в диоде больше не происходит. Это связано с тем, что электрическое поле, возникающее в обедненной области, предотвращает дальнейшую миграцию носителей заряда с одной стороны на другую.

Потенциал слоя непокрытых положительных ионов на стороне n-типа отталкивает дырки на стороне p-типа, а потенциал слоя непокрытых отрицательных ионов на стороне p-типа отталкивает свободные электроны на стороне p-типа. сторона n-типа.Это означает, что на переходе создается потенциальный барьер для предотвращения дальнейшей диффузии носителей заряда.

Диод с прямым смещением

Теперь давайте посмотрим, что произойдет, если положительный вывод источника подключен к стороне p-типа, а отрицательный вывод источника подключен к стороне n-типа диода, и если мы увеличим напряжение этого источника медленно с нуля.

Вначале через диод не протекает ток. Это связано с тем, что, хотя к диоду приложено внешнее электрическое поле, большинство носителей заряда все еще не получают достаточного влияния внешнего поля, чтобы пересечь область обеднения.Как мы уже говорили, область обеднения действует как потенциальный барьер против основных носителей заряда.

Этот потенциальный барьер называется прямым потенциальным барьером. Большинство носителей заряда начинают пересекать прямой потенциальный барьер только тогда, когда значение внешнего приложенного напряжения на переходе превышает потенциал прямого барьера. Для кремниевых диодов потенциал прямого барьера составляет 0,7 В, а для германиевых диодов — 0,3 В.

Когда внешнее прямое напряжение на диоде становится больше, чем прямой барьерный потенциал, свободные основные носители заряда начинают пересекать барьер и вносят свой вклад в прямой ток диода.В этой ситуации диод будет вести себя как короткозамкнутый путь, и прямой ток будет ограничиваться только внешними резисторами, подключенными к диоду.

Диод с обратным смещением

Теперь давайте посмотрим, что произойдет, если мы подключим отрицательную клемму источника напряжения к стороне p-типа, а положительную клемму источника напряжения к стороне n-типа диода. В этом состоянии из-за электростатического притяжения отрицательного потенциала источника дырки в области p-типа будут больше смещаться от перехода, оставляя больше открытых отрицательных ионов на переходе.

Таким же образом свободные электроны в области n-типа будут больше смещаться от перехода к положительному выводу источника напряжения, оставляя больше открытых положительных ионов в переходе.

В результате этого явления область истощения становится шире. Это состояние диода называется состоянием обратного смещения. В этом случае основные носители не пересекают перекресток, а вместо этого удаляются от перекрестка. Таким образом, диод блокирует прохождение тока при обратном смещении.

Как мы уже говорили в начале статьи, в полупроводнике p-типа всегда есть несколько свободных электронов, а в полупроводнике n-типа есть дырки. Эти противоположные носители заряда в полупроводнике называются неосновными носителями заряда.

В состоянии обратного смещения дырки, оказавшиеся на стороне n-типа, легко пересекли бы область обеднения с обратным смещением, поскольку поле в области обеднения не присутствует, а скорее помогает неосновным носителям заряда пересекать область обеднения.

В результате через диод протекает крошечный ток от положительной стороны к отрицательной. Амплитуда этого тока очень мала, так как количество неосновных носителей заряда в диоде очень мало. Этот ток называется током обратного насыщения.

Если обратное напряжение на диоде превышает безопасное значение из-за более высокой электростатической силы и из-за более высокой кинетической энергии неосновных носителей заряда, сталкивающихся с атомами, ряд ковалентных связей разрывается, что приводит к огромному количеству свободных электронов. -отверстие пары в диоде и процесс накопительный.

Огромное количество таких генерируемых носителей заряда способствовало бы возникновению большого обратного тока в диоде. Если этот ток не ограничен внешним сопротивлением, подключенным к цепи диода, диод может навсегда выйти из строя.

Типы диодов

Типы диодов включают:

  1. Стабилитрон
  2. PN переходной диод
  3. Туннельный диод
  4. Варакторный диод
  5. Диод Шоттки
  6. Фотодиод
  7. Лазерный диод
  8. PIN-диод
  9. Лавинный диод
  10. Светоизлучающий диод

Поставщики средств беспроводной связи и ресурсы

О мире беспроводной связи RF

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи.На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д. Эти ресурсы основаны на стандартах IEEE и 3GPP.Он также имеет академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Читать дальше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система очистки туалетов самолета. • Система измерения столкновений • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды. • Система Smart Grid • Система умного освещения на базе Zigbee • Интеллектуальная система парковки на базе Zigbee. • Система умной парковки на основе LoRaWAN


RF Статьи о беспроводной связи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЬИ ДЛЯ ССЫЛКИ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые и т. Д., Используемые в беспроводной связи. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается структурная схема сотового телефона 5G с внутренними модулями 5G Архитектура сотового телефона. Читать дальше➤


Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в совмещенном канале, Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются обучающие материалы по радиочастотам и беспроводной связи.Он охватывает учебники по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ >>


Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы по технологии 5G:
Учебное пособие по основам 5G Частотные диапазоны руководство по миллиметровым волнам Волновая рама 5G мм Зондирование волнового канала 5G мм 4G против 5G Испытательное оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


Этот учебник GSM охватывает основы GSM, архитектуру сети, элементы сети, системные спецификации, приложения, Типы пакетов GSM, структура или иерархия кадров GSM, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы работы с мобильным телефоном, Планирование RF, нисходящая линия связи PS-вызовов и восходящая линия связи PS-вызовов.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера ➤Конструкция радиочастотного фильтра ➤Система VSAT ➤Типы и основы микрополосковой печати ➤Основы работы с волноводом


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.УКАЗАТЕЛЬ испытаний и измерений >>
➤Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест устройства на соответствие WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в оптоволоконной связи. Оптические компоненты INDEX >>
➤Учебник по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Каркасная конструкция ➤SONET против SDH


Поставщики беспроводных радиочастотных устройств, производители

Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, микросхема резистора, микросхема конденсатора, индуктор микросхемы, ответвитель, оборудование ЭМС, программное обеспечение для проектирования радиочастот, диэлектрический материал, диод и т. д.Производители RF компонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. СПРАВОЧНЫЙ КОД ИСТОЧНИКА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


* Общая информация о здоровье населения *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
ДЕЛАТЬ ПЯТЬ
1. РУКИ: часто мойте их
2. КОЛЕНО: Откашляйтесь.
3. ЛИЦО: Не трогай его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, остановить распространение COVID-19, поскольку это заразное заболевание.


RF Беспроводные калькуляторы и преобразователи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц измерения. Сюда входят такие беспроводные технологии, как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤Калькулятор антенн Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


RF Wireless Tutorials



Различные типы датчиков


Поделиться страницей

Перевести страницу

Диод

| Определение, символ, типы и использование

Диод , электрический компонент, который позволяет току течь только в одном направлении.На принципиальных схемах диод представлен треугольником с линией, пересекающей одну вершину.

Самый распространенный тип диодов использует переход p n . В этом типе диода один материал ( n ), в котором электроны являются носителями заряда, примыкает ко второму материалу ( p ), в котором дырки (места, лишенные электронов, которые действуют как положительно заряженные частицы) действуют как носители заряда. На их границе образуется обедненная область, через которую электроны диффундируют, заполняя дырки на стороне p .Это останавливает дальнейший поток электронов. Когда этот переход смещен в прямом направлении (то есть к стороне p, приложено положительное напряжение), электроны могут легко перемещаться через переход, чтобы заполнить отверстия, и через диод протекает ток. Когда переход смещен в обратном направлении (то есть к стороне p, приложено отрицательное напряжение), область обеднения расширяется, и электроны не могут легко перемещаться по ней. Ток остается очень небольшим, пока не будет достигнуто определенное напряжение (напряжение пробоя), и ток внезапно не возрастет.

p-n характеристики перехода

(A) Вольт-амперные характеристики типичного кремниевого перехода p-n . (B) условия прямого смещения и (C) обратного смещения. (D) Обозначение соединения p-n .

Encyclopædia Britannica, Inc.

Светодиоды (LED) — это p n переходов, которые излучают свет, когда через них протекает ток. Несколько переходных диодов p n могут быть соединены последовательно для создания выпрямителя (электрического компонента, преобразующего переменный ток в постоянный).Стабилитроны имеют четко определенное напряжение пробоя, так что ток течет в обратном направлении при этом напряжении, и постоянное напряжение может поддерживаться, несмотря на колебания напряжения или тока. В варакторных (или варикапных) диодах изменение напряжения смещения вызывает изменение емкости диода; Эти диоды находят множество применений для передачи сигналов и используются в радио- и телеиндустрии. (Подробнее об этих и других типах диодов, см. полупроводниковый прибор.)

Ранние диоды представляли собой вакуумные лампы, вакуумные стеклянные или металлические электронные трубки, содержащие два электрода — отрицательно заряженный катод и положительно заряженный анод. Они использовались в качестве выпрямителей и детекторов в электронных схемах, таких как радио- и телевизионные приемники. Когда на анод (или пластину) подается положительное напряжение, электроны, испускаемые нагретым катодом, текут на пластину и возвращаются к катоду через внешний источник питания. Если к пластине приложено отрицательное напряжение, электроны не могут покинуть катод, и ток пластины не течет.Таким образом, диод позволяет электронам течь от катода к пластине, но не от пластины к катоду. Если на пластину подается переменное напряжение, ток течет только в то время, когда пластина является положительной. Считается, что переменное напряжение выпрямляется или преобразуется в постоянный ток.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас Типы диодов

— электронные схемы сборки

Диод — это компонент, который проводит электричество только в одном направлении.Обычно он используется для преобразования переменного тока (AC) в постоянный (DC).

Существует несколько типов диодов. И это может немного сбить с толку, если вы никогда раньше не работали с диодами.

Я хотел бы поделиться самыми стандартными типами диодов, которые обычно используются любителями.

Подробнее о диоде.

Самые стандартные диоды

Выпрямительный диод

Выпрямительный диод обычно используется для преобразования переменного тока в постоянный (DC).Обычно они выдерживают большие токи и напряжения. Иногда их называют силовыми диодами.

Сигнальный диод

Сигнальный диод работает так же, как выпрямительный диод. Но он может работать только с небольшими токами и напряжениями. Он быстрее выпрямительного диода и иногда его называют быстродействующим диодом.

Наиболее типичным сигнальным диодом является 1N4148.

Стабилитрон

Стабилитрон — это компонент, который становится очень проводящим (что означает, что он пропускает большой ток) при определенном напряжении.Это напряжение называется напряжением стабилитрона.

Это означает, что падение напряжения на стабилитроне не превышает напряжения стабилитрона. Стабилитрон часто используются в качестве опорного напряжения стабильного.

Другие типы диодов

Диод Шоттки

Диод Шоттки очень похож на стандартный малосигнальный диод. Разница в том, что диод Шоттки имеет меньшее падение напряжения на своих выводах. Нормальные диоды имеют падение напряжения около 0,7 В, а у Шоттки только 0.3В.

Он также намного быстрее и поэтому часто используется в радиочастотных цепях.

Светоизлучающий диод (LED)

Светоизлучающий диод или светодиод — это диод, излучающий свет при прямом смещении. Он доступен в нескольких цветах, даже в ультрафиолетовом и инфракрасном.

Подробнее о различных типах светодиодов.

Фотодиод

Фотодиод — это диод, который проводит при обнаружении света. Может использоваться для приема инфракрасных сигналов от пульта дистанционного управления.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *