+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Система защитного заземления: устройство системы. Полоса заземления — ОБО Беттерман

Системы заземления

Система защитного заземления обеспечивает защиту людей от поражения электрическим током, а также позволяет минимизировать последствия попадания в здание (объект) молнии которое может привести к выходу из строя электроприборов, систем связи и пр. В ее типовой состав входят кабели, металлические полосы (полоса заземления), уголки, и другие проводники, которые обеспечивают отвод «нежелательных» токов в землю.

Классификация систем заземления

Классификация систем защитного заземления осуществляется по таким параметрам, как способ, использующийся для организации заземления источника питания, открытых правящих элементов здания (электроустановки), а также по способу обустройства нулевого рабочего проводника и нулевого защитного. Исходя из сочетания этих параметров, Госстандартом РФ и МЭК выделяются следующие типы систем заземления:

  • TN.
    В этом случае нулевой рабочий проводник источника энергии в системе непосредственно (без включения в цепь сопротивления) соединен с землей (об этом говорит первая буква T), и потребители электроэнергии заземлены через единый с ним PEN-проводник. Также различают несколько подсистем этого типа, среди которых TN-C (в таком варианте функции нулевого рабочего и защитного проводников выполняет общий проводник), TN-S (используются раздельные проводники) и TN-C-S («симбиоз» двух предыдущих подсистем).
  • TT. Здесь также нулевой рабочий проводник источника, обеспечивающего потребителей из состава сети энергией, непосредственно соединяется с землей, но при этом используется раздельное заземление потребителей.
  • IT. Устройство системы заземления такого типа предусматривает соединение нейтрали источника энергии с землей с обязательным использованием сопротивления, и раздельной вариант заземления потребителей из состава сети.

Какой именно вариант использовать, зависит от особенностей объекта. Разобраться с этим Вам помогут технические специалисты компании ОБО Беттерманн.

Устройства заземления ОБО Беттерманн

Компания ОБО Беттерманн производит полный спектр элементов, необходимых для обустройства систем защитного заземления. Обратившись к официальным дистрибьюторам, Вы можете приобрести:

  • Проводники, с помощью которых обеспечивается отвод токов от молниеприемников и других компонентов на заземляющие стержни (элементы с круглым сечением, полосы заземления и пр.).
  • Заземлители различных типов для установки в грунт (пластинчатые, стержневые, трубчатые).
  • Соединительные и другие элементы.

При производстве этих изделий в ОБО Беттерманн уделяется особое внимание достижению высоких показателей защиты от коррозии и иных факторов. Это обеспечивает продолжительный срок службы всех компонентов и поддержание в установленных пределах величины сопротивления (не более 10 Ом). Вся продукция из ассортимента компании имеет необходимые сертификаты, подтверждающие ее качество и надёжность.

DEHN 478 051 Фиксированная точка заземления тип M M10/M12 NIRO(V4A) с осью St/tZn и уплотнительным элементом

Тип M, с запрессованной осью и дополнительным уплотнителем для защиты от проникновения капель воды в стену вдоль оси (испытано согласно ГОСТ Р МЭК 62561.5-2014 воздухом под давлением 5 бар и водой под давлением 1 бар).

 

ТипEFPM M10 12 V4A WS L245 VP STTZN
Арт. №478051
РезьбаM10 / M12
Материал пластиныNIRO (V4A)
№ материала1.4571 / 1.4404 / 1.4401
Материал осиSt/tZn
Диаметр соединительной пластины80 мм
Размеры соединительной пластины (Ø /длина)10 / 155 мм
Ток короткого замыкания (50 Гц) (1 с; ≤ 300 °C)3,7 кА
Материал уплотнителяPVC
СтандартГОСТ Р МЭК 62561. 1-2014
Минимальная длина болтов M1035 мм (длина резьбы 40 мм)
Минимальная длина болтов M1215 мм (длина резьбы 20 мм)
Вес370 g
Код GTIN4013364124448
Арт. №478051
Вы можете купить DEHN 478 051 Фиксированная точка заземления тип M M10/M12 NIRO(V4A) с осью St/tZn и уплотнительным элементом в компании «СвязьКомплект» по выгодной цене. DEHN 478 051: описание, фото, характеристики, инструкции, отзывы.
Смотрите аналоги 478 051 в категории: Точки заземления для фундамента

КВТ Комплект заземления для брони концевых муфт КБМ-К

КБМ-К-1(КВТ)Комплект
иное
1
16
25
Предназначены для концевых муфт рассчитанных на кабель без брони до 1 кВ при необходимости их использования на бронированный кабель. Тип муфты: 2ПКТп-1-16/25, 2ПКТп-1-16/25(Б), 3ПКТп-1-16/25, 3ПКТп 1 16/25(Б), 4ПКТп-1-16/25, 4ПКТп-1-16/25(Б), 4ПКТп-1-16/25нг-LS, 4ПКТп-1-16/25(Б)нг-LS, 5ПКТп-1-16/25, 5ПКТп-1-16/25(Б), 5ПКТп-1-16/25нг-LS, 5ПКТп-1-16/25(Б)нг-LS
КБМ-К-2(КВТ)Комплект
иное
1
25
35
50
Предназначены для концевых муфт рассчитанных на кабель без брони до 1 кВ при необходимости их использования на бронированный кабель. Тип муфты: 2ПКТп-1-25/50, 2ПКТп-1-25/50(Б), 3ПКТп-1-35/50, 3ПКТп 1 35/50(Б), (3+1)ПКТп-1-25/50, (3+1)ПКТп 1 25/50(Б), 4ПКТп-1-25/50, 4ПКТп-1-25/50(Б), 4ПКТп-1-25/50нг-LS, 4ПКТп-1-25/50(Б)нг-LS, 5ПКТп-1-25/50, 5ПКТп-1-25/50(Б), 5ПКТп-1-25/50нг-LS, 5ПКТп-1-25/50(Б)нг-LS
КБМ-К-3(КВТ)Комплект
иное
1
70
95
120
Предназначены для концевых муфт рассчитанных на кабель без брони до 1 кВ при необходимости их использования на бронированный кабель.
Тип муфты: 2ПКТп-1-70/120, 2ПКТп-1-70/120(Б), 3ПКТп-1-70/120, 3ПКТп 1 70/120(Б), (3+1)ПКТп-1-70/120, (3+1)ПКТп 1 70/120(Б), 4ПКТп-1-70/120, 4ПКТп-1-70/120(Б), 4ПКТп-1-70/120нг-LS, 4ПКТп-1-70/120(Б)нг-LS, 5ПКТп-1-70/120, 5ПКТп-1-70/120(Б), 5ПКТп-1-70/120нг-LS, 5ПКТп-1-70/120 (Б)нг-LS
КБМ-К-4(КВТ)Комплект
иное
1
150
185
240
Предназначены для концевых муфт рассчитанных на кабель без брони до 1 кВ при необходимости их использования на бронированный кабель. Тип муфты: 3ПКТп-1-150/240, 3ПКТп 1 150/240 (Б), (3+1)ПКТп-1-150/240, (3+1)ПКТп 1 150/240 (Б), 4ПКТп-1-150/240, 4ПКТп-1-150/240 (Б), 4ПКТп-1-150/240нг-LS, 4ПКТп-1-150/240(Б)нг-LS, 5ПКТп-1-150/240, 5ПКТп-1-150/240(Б), 5ПКТп-1-150/240нг-LS, 5ПКТп-1-150/240(Б)нг-LS

Система заземления тн — Всё о электрике

Системы заземления типа TN-S, TN-C, TN-C-S

Прежде чем разбираться в типах заземление, нужно правильно понять, что оно из себя представляет. Ведь при упоминании этого слова, у большинства в сознание всплывает картинка: идущая по фасаду здания металлическая лента, которая присоединяется к вбитому в землю стержню.

К сожалению такое малое знание о заземление ведет к тому, что часто встречаются ситуации, когда пытаясь найти в помещение отвод для заземления и не найдя его, совершаются ошибочные действия. А именно попытки произвести заземление путем подсоединения третьего провода к различным металлически предметам. Особенно при установке стиральной машинки. Это могут быть трубы отопления, стояки и что-то иное.

А ведь в принципе, действие это понятно, ведь считается, что трубы идут через землю и значит, что электричество уйдет туда. Но не все так радужно. Такой способ заземления очень опасный. Ведь если случится ситуация при которой произойдет электропробой на корпус стиральной машины, то электрические удары могут получить все люди, которые в этот момент принимали ванну или просто пользовались краном. При этом в любой из квартир расположенных по стояку.

А это может привести к летальному исходу.

Что такое заземление?

Поэтому чтобы производить заземление необходимо хорошо разбираться в этом деле и все делать согласно требованиям безопасности.

Что же такое заземление? По периметру здания вбивается ряд металлических стержней. Между собой они соединяются металлическими полосами. Так образуется контур заземления. К нему подсоединяется оборудование или электроустановки. Это и будет называться заземлением электроустановки (оборудования).

Существуют два вида заземления:

  1. Защитное – эти видом обеспечиваются все дома, к которым подведено электричество;
  2. Рабочее – присутствует на всех зданиях, оно служит главным образом для защиты от ударов молнии.

Чтобы организовать собственную систему подключения заземления, нужно определить тип системы заземления, которое подключено в конкретном здании. Существует общая точка, в которой соединяются обмотки трансформатора. Она имеет свое название – нейтраль или еще ее называют нулевая точка. Такое название получено из-за того, что при стабильной работе потенциал нагрузки равен всегда нулю.

Существует три типа заземления:

Чтобы понять, что они обозначают надо сделать расшифровку входящих в них букв. Первая буква будет обозначать, какой характер имеет заземление:

  • Т – нулевая точка (нейтраль) – соединена с землей;
  • I – все части проводящие ток, подвергнуты изоляции от земли.

По второй букве, можно определить какой характер заземления имеют открытые проводящие части входящих в здание электроустановок:

  • T – существующие части связанны с землей, вне зависимости от того какого характера существует связь;
  • N – части электроустановок связаны напрямую с землей, а для заземления потребителей существует отдельный PEN проводник.

Рассматривать их все стоит только при необходимости. Так как основным типом заземления, которое характеризуется низковольтностью – это до одной тысячи вольт. При этом используется система TN. Она включает в себя три подвида. Они имеют также буквенную аббревиатуру (буквенное обозначение систем заземления):

Следует расшифровать эти понятия.

Таблица 1.

CSC-S
В данном случаи нулевое защитное и рабочие проводники совмещены в одном проводнике по всей длине (PEN-проводник).нулевой рабочий проводник (N)и нулевой защитный проводник (РЕ) –имеют разделение.PEN проводник будет разделен на определенном участке сети на два раздельных PE и N проводника.

И так следует поподробнее рассмотреть эти три подтипа.

Система заземления TN-С

Система заземления TN-C распространена по всей территории бывшего СССР. И встречается практически во всех многоквартирных домах получивших название высших партийных деятелей.

В данной системе оба нулевых проводника (защитный и рабочий) объединены в один провод, имеющий название PEN. Далее провод подводился к распределительному устройству дома.

В данном случае существующая схема имеет следующий вид:

Схема системы заземления TN-C

По такой схеме видно, что имеются 2 вида проводки:

  • однофазная – имеет два провода;
  • трехфазная – имеет четыре провода.

В данном случае так распространенная сейчас евроразетка с заземляющим контактом просто бесполезна. Так как подсоединять его не к чему. Вообще такое тип подключения принято называть – занулением. Плюсом TN-C является то что он очень прост и дешев. Такое заземление защищает только от сверхтоков, в данном случае срабатывают автоматические выключатели. А вот устройства защитного отключения оказываются неработоспособными.

Опасен такой тип заземления тем, что при однофазном коротком замыкании зачастую происходит возгорание проводки. Но есть и еще большая опасность возможность от обрыва PEN проводника, еще это называется – отгорание нуля. В этом случае фазное напряжение появляется на корпусе электрооборудование. Такая ситуация случается из-за того, что происходит превышение норм потребление заложенных при проектировании.

В настоящее время применение такого типа заземления запрещено для новых строительств.

Система заземления TN-S

Система заземления TN-S. В данном случае нулевые проводники разделены на всем своем пути. Проще говоря, до источников потребления в доме или квартире прокладываются два провода. Это рабочий ноль (N) и защитный ноль (РЕ). В таких сетях также имеется угроза возникновения пробоя на корпус электрооборудования, что является угрозой для жизни.

Схема имеет такой вид:

Схема системы заземления TN-S

Но в отличие от TN-C заземления в данном случае имеется возможность использовать устройство защитного отключения. Благодаря этому такая система становится более безопасной.

В данной системе обрыв рабочего нуля не выводит на корпус фазное напряжение. Существенный недостаток TN-S заключается в ее дороговизне. Используется она преимущественно в странах западной Европы в частности в Великобритании.

Схема заземления TN-C-S

Попытки сделать систему TN-C более безопасной и при этом не сделать ее излишне дорогой. Так появилась система, которая соединила в себе TN-C и TN-S. В данной системе до входа в здания идет один общий РЕN проводник, который разделяется на два отдельных нуля – защитный и рабочий. Они подвергаются повторному заземлению.

К сожалению, на территории России и СНГ модернизацию заземление системы TN-C начали проводить сравнительно недавно. А вот в большинстве западных стран и США такая замена имела системный характер и началась в 60-е года прошлого века. При системе заземления TN-C-S, однофазная проводка имеет три провода, а трехфазная пять проводов.

Схема подсоединения TN-C-S заземления (при невозможности ее использовать применяют ТТ заземление):

Схема системы заземления TN-C-S

В данном случае в квартире к розетке подходят три провода. Благодаря этому появляется возможность подключить заземляющий контакт евророзетки. При использовании устройства защитного отключения на участке с TN-S обеспечивает хорошую безопасность. Но вот на участке TN-C имеется возможность отгорание нуля и выхода фазного напряжения. В этой ситуации должна использоваться дополнительная система уравнивания потенциалов. Но, к сожалению не все ее используют при замене электроснабжения в домах старой постройки.

Системы заземления TN-C-S, TN-C, TN-C, TT, IT

Всем известны системы энергоснабжения с напряжением до 1000 вольт, на уровне конечного потребителя. Они бывают всего двух видов:

  • трехфазная (три фазы и рабочий нуль), где напряжение между фазами составляет 380 вольт, а между каждой фазой и нулем — 220 вольт.
  • однофазная (одна из трех фаз с общего ввода на объект, и рабочий нуль), напряжение между каждой фазой и нулем составляет 220 вольт.

А вот с системами безопасности, ситуация гораздо сложнее. Для организации искусственного заземления, ГОСТ предусматривает 5 систем: TN-C, TN-S, TN-C-S, TT, IT.

Правила устройства электроустановок (ПУЭ) определяют условия, на основании которых проектировщики выбирают систему заземления объекта. Она отражается в проектной документации, и не может быть изменена после сдачи объекта в эксплуатацию.

В большинстве случаев, применяется система заземления TN, которая предусматривает обязательное заземление нейтрали источника питания. При этом открытые токоведущие части конечных электроустановок, могут быть соединены с нейтралью источника питания различными способами.

Каждая из предложенных систем искусственного заземления имеет свои преимущества и недостатки. При этом, любая из них направлена на решение вопросов безопасной эксплуатации электроустановок, и нахождения людей на объекте.

Условные обозначения

Для лучшего понимания материала, разберем принятые условные обозначения:

  • L1, L2, L3 — проводник, на который подключена фаза источника питания. В однофазных системах, обозначается буквой L.
  • N — рабочий нуль источника питания (нулевой проводник).
  • PE — защитный нуль: он же заземляющий проводник, соединенный с заземлителем.
  • PEN — проводник, совмещающий в себе рабочий и защитный нули.

Самая безопасная система, это TN-S.

Силовой кабель для соединения потребителя электроэнергии с источником питания, выполнен по пятижильной схеме: три фазы (L1, L2, L3), рабочий нуль (N) и рабочее заземление (PE). Объединение нуля и «земли» происходит на ближайшей подстанции. При аварийной ситуации, если рабочий нуль отгорит, корпуса электроустановок все равно остаются присоединенными к заземлению. Защита от поражения электротоком обеспечивается независимо от состояния нулевого провода. Соответственно, внутренняя разводка к потребителям выполняется трехжильным проводом (для однофазного подключения), либо тем же пятижильным (при наличии трехфазных электроустановок: например, электропечей или отопительных систем).

На вводных щитках в каждом помещении, монтируются по две раздельные клеммные колодки: рабочий нуль и защитная земля.

Причем после «земляной» колодки нельзя устанавливать коммутационные устройства: выключатели, защитные автоматы. По всей длине, заземляющий проводник от заземлителя до электроустановки, не должен иметь размыкающих устройств.

Вы спросите: «а как же розетка?» При извлечении из нее вилки, линия заземления действительно размыкается. Но при этом электроустановка полностью обесточивается, и перестает быть опасной.

Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.

В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.

Заземление TN-C не обеспечивает полной безопасности по следующей причине:

«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).

Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками — напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.

В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.

По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину — подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!

Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.

Металлический уголок длиной 50 см, забитый в палисадник у подъезда, заземлителем не является!

Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.

Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.

Как она устроена, и в чем отличие от TN-S?

В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.

На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.

В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.

Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.

При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.

Совет. При заключении договора с исполнителем работ по капитальному ремонту, необходимо заранее оговаривать вопрос заземления.

Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.

Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем — с системой отопления.

Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.

Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.

Вывод

Единственный безопасный способ — установить недалеко от подъезда контур заземления (согласно ПУЭ), и завести на объект надежный проводник.

После чего, можно развести полноценное заземление по квартирам. Разумеется, лучше поручить эту работу квалифицированным специалистам.

Видео по теме

Системы заземления TN-C, TN-S, TNC-S, TT, IT

Важнейшей частью проектирования, монтажа и дальнейшей эксплуатации оборудования и электроустановок является правильно выполненная система заземления. В зависимости от используемых заземляющих конструкций, заземление может быть естественным и искусственным. Естественные заземлители представлены всевозможными металлическими предметами, постоянно находящимися в земле. К ним относится арматура, трубы, сваи и прочие конструкции, способные проводить ток.

Но электрическое сопротивление и другие параметры, присущие этим предметам, невозможно точно проконтролировать, и спрогнозировать. Поэтому с таким заземлением нельзя нормально эксплуатировать любое электрооборудование. Нормативными документами предусматривается только искусственное заземление с использованием специальных заземляющих устройств.

Классификация систем заземления

В зависимости от схем электрических сетей и других условий эксплуатации, применяются системы заземления TN-S, TNC-S, TN-C, TT, IT, обозначаемые в соответствии с международной классификацией. Первый символ указывает на параметры заземления источника питания, а второй буквенный символ соответствует параметрам заземления открытых частей электроустановок.

Буквенные обозначения расшифровываются следующим образом:

  • Т (terre – земля) – означает заземление,
  • N (neuter – нейтраль) – соединение с нейтралью источника или зануление,
  • I (isole) соответствует изоляции.

Нулевые проводники в ГОСТе имеют такие обозначения:

  • N – является нулевым рабочим проводом,
  • РЕ – нулевым защитным проводником,
  • PEN – совмещенным нулевым рабочим и защитным проводом заземления.

Система заземления TN-C

Заземление TN относится к системам с глухозаземленной нейтралью. Одной из его разновидностей является заземляющая система TN-C. В ней объединяются функциональный и защитный нулевые проводники. Классический вариант представлен традиционной четырехпроводной схемой, в которой имеется три фазных и один нулевой провод. В качестве основной шины заземления используется глухозаземленная нейтраль, соединяемая со всеми токопроводящими открытыми деталями и металлическими частями, с помощью дополнительных нулевых проводов.

Главным недостатком системы TN-C является потеря защитных качеств при отгорании или обрыве нулевого проводника. Это приводит к появлению напряжения, опасного для жизни, на всех поверхностях корпусов устройств и оборудования, где отсутствует изоляция. В системе TN-C нет защитного заземляющего проводника РЕ, поэтому у всех подключенных розеток заземление также отсутствует. В связи с этим для всего используемого электрооборудования требуется устройство зануления – подключение деталей корпуса к нулевому проводу.

В случае касания фазного провода открытых частей корпуса, произойдет короткое замыкание и срабатывание автоматического предохранителя. Быстрое аварийное отключение устраняет опасность возгорания или поражения людей электрическим током. Категорически запрещается использовать в ванных комнатах дополнительные контуры, уравнивающие потенциалы, в случае эксплуатации заземляющей системы TN-C.

Несмотря на то что схема tn-c является наиболее простой и экономичной, она не используется в новых зданиях. Эта система сохранилась в домах старого жилого фонта и в уличном освещении, где вероятность поражения электрическим током крайне низкая.

Схема заземления TN-S, TN-C-S

Более оптимальной, но дорогостоящей схемой считается заземляющая система TN-S. Для снижения ее стоимости были разработаны практические меры, позволяющие использовать все преимущества данной схемы.

Суть этого способа заключается в том, что при подаче электроэнергии с подстанции, применяется комбинированный нулевой проводник PEN, соединяемый с глухозаземленной нейтралью. На вводе в здание он разделяется на два проводника: нулевой защитный РЕ и нулевой рабочий N.

Система tn-c-s обладает одним существенным недостатком. При отгорании или каком-либо другом повреждении проводника PEN на участке от подстанции до здания, на проводе РЕ и деталях корпуса приборов, связанных с ним, возникает опасное напряжение. Поэтому одним из требований нормативных документов по обеспечению безопасного использования системы TN-S, являются специальные мероприятия по защите провода PEN от повреждений.

Схема заземления TT

В некоторых случаях, когда электроэнергия подается по традиционным воздушным линиям, становится довольно проблематично защитить комбинированный заземляющий проводник PEN при использовании схемы TN-C-S. Поэтому в таких ситуациях применяется система заземления по схеме ТТ. Ее суть заключается в глухом заземлении нейтрали источника питания, а также использовании четырех проводов для передачи трехфазного напряжения. Четвертый проводник используется в качестве функционального нуля N.

Подключение модульно-штыревого заземлителя осуществляется чаще всего со стороны потребителей. Далее он соединяется со всеми защитными проводниками заземления РЕ, связанными с деталями корпусов приборов и оборудования.

Схема TT применяется сравнительно недавно и уже хорошо зарекомендовала себя в частных загородных домах. В городах система ТТ применяется на временных объектах, например, торговых точках. Подобный способ заземления требует использования защитных устройств в виде УЗО и выполнения технических мероприятий по защите от грозы.

Система заземления IT

Рассмотренные ранее системы с глухозаземленной нейтралью хотя и считаются достаточно надежными, однако обладают существенными недостатками. Значительно безопаснее и совершеннее являются схемы с нейтралью, полностью изолированной от земли. В некоторых случаях для ее заземления применяются приборы и устройства, обладающие значительным сопротивлением.

Подобные схемы используются в системе заземления IT. Они наилучшим образом подходят для медицинских учреждений, сохраняя бесперебойное питание оборудования жизнеобеспечения. Схемы IT хорошо зарекомендовали себя на энергетических и нефтеперерабатывающих предприятиях, других объектах, где имеются сложные высокочувствительные приборы.

Основной деталью системы IT является изолированная нейтраль источника I, а также контур защитного заземления Т, установленный на стороне потребителя. Подача напряжения от источника к потребителю производится с использованием минимального количества проводов. Кроме того, выполняется подключение к заземлителю всех токопроводящих деталей, имеющихся на корпусах оборудования, установленного у потребителя. В системе IT нет нулевого функционального проводника N на участке от источника до потребителя.

Таким образом, все системы заземления TN-C, TN-S, TNC-S, TT, IT обеспечивают надежное и безопасное функционирование приборов и электрооборудования, подключаемых к потребителям. Использование этих схем исключает поражение электротоком людей, пользующихся оборудованием. Каждая система применяется в конкретных условиях, что обязательно учитывается в процессе проектирования и последующего монтажа. За счет этого обеспечивается гарантированная безопасность, сохранение здоровья и жизни людей.

{SOURCE}

Системы заземления типа TN-S, TN-C, TN-C-S | ENARGYS.RU

Прежде чем разбираться в типах заземление, нужно правильно понять, что оно из себя представляет. Ведь при упоминании этого слова, у большинства в сознание всплывает картинка: идущая по фасаду здания металлическая лента, которая присоединяется к вбитому в землю стержню.

К сожалению такое малое знание о заземление ведет к тому, что часто встречаются ситуации, когда пытаясь найти в помещение отвод для заземления и не найдя его, совершаются ошибочные действия. А именно попытки произвести заземление путем подсоединения третьего провода к различным металлически предметам. Особенно при установке стиральной машинки. Это могут быть трубы отопления, стояки и что-то иное.

А ведь в принципе, действие это понятно, ведь считается, что трубы идут через землю и значит, что электричество уйдет туда. Но не все так радужно. Такой способ заземления очень опасный. Ведь если случится ситуация при которой произойдет электропробой на корпус стиральной машины, то электрические удары могут получить все люди, которые в этот момент принимали ванну или просто пользовались краном. При этом в любой из квартир расположенных по стояку. А это может привести к летальному исходу.

Что такое заземление?

Поэтому чтобы производить заземление необходимо хорошо разбираться в этом деле и все делать согласно требованиям безопасности.

Что же такое заземление? По периметру здания вбивается ряд металлических стержней. Между собой они соединяются металлическими полосами. Так образуется контур заземления. К нему подсоединяется оборудование или электроустановки. Это и будет называться заземлением электроустановки (оборудования).

Существуют два вида заземления:

  1. Защитное – эти видом обеспечиваются все дома, к которым подведено электричество;
  2. Рабочее – присутствует на всех зданиях, оно служит главным образом для защиты от ударов молнии.

Чтобы организовать собственную систему подключения заземления, нужно определить тип системы заземления, которое подключено в конкретном здании. Существует общая точка, в которой соединяются обмотки трансформатора. Она имеет свое название – нейтраль или еще ее называют нулевая точка. Такое название получено из-за того, что при стабильной работе потенциал нагрузки равен всегда нулю.

Существует три типа заземления:

  1. TN;
  2. ТТ;
  3. ІТ.

Чтобы понять, что они обозначают надо сделать расшифровку входящих в них букв. Первая буква будет обозначать, какой характер имеет заземление:

  • Т – нулевая точка (нейтраль) – соединена с землей;
  • I – все части проводящие ток, подвергнуты изоляции от земли.

По второй букве, можно определить какой характер заземления имеют открытые проводящие части входящих в здание электроустановок:

  • T – существующие части связанны с землей, вне зависимости от того какого характера существует связь;
  • N – части электроустановок связаны напрямую с землей, а для заземления потребителей существует отдельный PEN проводник.

Рассматривать их все стоит только при необходимости. Так как основным типом заземления, которое характеризуется низковольтностью – это до одной тысячи вольт. При этом используется система TN. Она включает в себя три подвида. Они имеют также буквенную аббревиатуру (буквенное обозначение систем заземления):

  1. TN-C;
  2. TN-S;
  3. TN-C-S.

Следует расшифровать эти понятия.

Таблица 1.




CSC-S
В данном случаи нулевое защитное и рабочие проводники совмещены в одном проводнике по всей длине (PEN-проводник).нулевой рабочий проводник (N)и нулевой защитный проводник (РЕ) –имеют разделение.PEN проводник будет разделен на определенном участке сети на два раздельных PE и N проводника.

И так следует поподробнее рассмотреть эти три подтипа.

Система заземления TN-С

Система заземления TN-C распространена по всей территории бывшего СССР. И встречается практически во всех многоквартирных домах получивших название высших партийных деятелей.

В данной системе оба нулевых проводника (защитный и рабочий) объединены в один провод, имеющий название PEN. Далее провод подводился к распределительному устройству дома.

В данном случае существующая схема имеет следующий вид:

Схема системы заземления TN-C

По такой схеме видно, что имеются 2 вида проводки:

  • однофазная – имеет два провода;
  • трехфазная – имеет четыре провода.

В данном случае так распространенная сейчас евроразетка с заземляющим контактом просто бесполезна. Так как подсоединять его не к чему. Вообще такое тип подключения принято называть – занулением. Плюсом TN-C является то что он очень прост и дешев. Такое заземление защищает только от сверхтоков, в данном случае срабатывают автоматические выключатели. А вот устройства защитного отключения оказываются неработоспособными.

Опасен такой тип заземления тем, что при однофазном коротком замыкании зачастую происходит возгорание проводки. Но есть и еще большая опасность возможность от обрыва PEN проводника, еще это называется – отгорание нуля. В этом случае фазное напряжение появляется на корпусе электрооборудование. Такая ситуация случается из-за того, что происходит превышение норм потребление заложенных при проектировании.

В настоящее время применение такого типа заземления запрещено для новых строительств.

Система заземления TN-S

Система заземления TN-S. В данном случае нулевые проводники разделены на всем своем пути. Проще говоря, до источников потребления в доме или квартире прокладываются два провода. Это рабочий ноль (N) и защитный ноль (РЕ). В таких сетях также имеется угроза возникновения пробоя на корпус электрооборудования, что является угрозой для жизни.

Схема имеет такой вид:

Схема системы заземления TN-S

Но в отличие от TN-C заземления в данном случае имеется возможность использовать устройство защитного отключения. Благодаря этому такая система становится более безопасной.

В данной системе обрыв рабочего нуля не выводит на корпус фазное напряжение. Существенный недостаток TN-S заключается в ее дороговизне. Используется она преимущественно в странах западной Европы в частности в Великобритании.

Схема заземления TN-C-S

Попытки сделать систему TN-C более безопасной и при этом не сделать ее излишне дорогой. Так появилась система, которая соединила в себе TN-C и TN-S. В данной системе до входа в здания идет один общий РЕN проводник, который разделяется на два отдельных нуля – защитный и рабочий. Они подвергаются повторному заземлению.

К сожалению, на территории России и СНГ модернизацию заземление системы TN-C начали проводить сравнительно недавно. А вот в большинстве западных стран и США такая замена имела системный характер и началась в 60-е года прошлого века. При системе заземления TN-C-S, однофазная проводка имеет три провода, а трехфазная пять проводов.

Схема подсоединения TN-C-S заземления (при невозможности ее использовать применяют ТТ заземление):

Схема системы заземления TN-C-S

В данном случае в квартире к розетке подходят три провода. Благодаря этому появляется возможность подключить заземляющий контакт евророзетки. При использовании устройства защитного отключения на участке с TN-S обеспечивает хорошую безопасность. Но вот на участке TN-C имеется возможность отгорание нуля и выхода фазного напряжения. В этой ситуации должна использоваться дополнительная система уравнивания потенциалов. Но, к сожалению не все ее используют при замене электроснабжения в домах старой постройки.

Системы заземления

Контакты

+79505799999
+79069854444



калькулятор сечения проводов

Система заземления определяет конфигурацию использующейся электросети. В буквенном обозначении указывается тип использования проводов (земля, ноль), их совмещение либо отдельное прохождение, вариант заземления потребителя, нейтрали. Тип заземления электроустановки (открытых ее частей) указывает вторая буква международной классификации. Характер заземления самого источника обозначает первая буква аббревиатуры. Две системы IT, TT не имеют подсистем, третья TN делится на три подкатегории – C-S, S, C. Латинскими символами в этих системах обозначены:

Первая буква:

  • T – Глухозаземленная нейтраль
  • I — Изолированная нейтраль
  • Вторая буква:

  • T – Непосредственное присоединение открытых проводящих частей к земле (защитное заземление)
  • N — Непосредственное присоединение открытых проводящих частей к глухозаземленной нейтрали источника питания (защитное зануление)
  • Последующие буквы:

  • S – Нулевой рабочий и защитный проводник работают раздельно на всем протяжении системы
  • C – Нулевой рабочий и защитный проводники объединены на всем протяжении системы
  • C – S – Нулевой рабочий и защитный проводники объединены на части протяжении системы

  • Согласно ГОСТ, нулевые проводники обозначаются маркировками:
  • совмещенные защитный, рабочий нулевой проводники – PEN
  • нулевой защитный проводник – PE
  • нулевой рабочий проводники – N

  • Принцип работы заземления

    При нормальной работе системы электроустановки ее отдельные элементы не должны находиться под напряжением для безопасности пользователей. В жилом здании такими частями установок являются:

  • корпуса бытовых приборов (металлические)
  • электрощиты, силовые шкафы
  • корпуса электрооборудования
  • Для обеспечения безопасности их соединяют с контуром заземления, возникший потенциал не причиняет вреда человеку, уходит в землю, обладающую значительной массой. Незначительное воздействие электрического тока при этом пользователь почувствует, однако, оно будет безопасно для организма.

    Типовые квартиры, частные коттеджи, построенные недавно, имеют заземление во всех розетках. В старом жилом фонде эти системы безопасности в электропроводке отсутствуют. Современные вилки бытовой аппаратуры, электроприборов так же имеют три контакта, поэтому, целесообразен перевод старых домов (там где это технически возможно) c системы питания TN-C на систему питания TN-C-S.

    Дома подключаются к промышленным источникам тока (трансформаторные подстанции), имеющим заземлители в обязательном порядке. Современные нормы СНиП так же обязывают застройщика обеспечить заземлением ВРУ (распределительные устройства ввода). На практике этими устройствами являются распределительные щиты, от которых необходимо обеспечить качественное соединение с вилками бытовых приборов. Причем, использовать для этих целей трубопроводы инженерных систем в большинстве случаев не удастся в силу следующих причин:

  • по трубам транспортируются воспламеняющиеся жидкости
  • современная разводка выполняется полимерными материалами, не проводящими электричество
  • Согласно европейским стандартам, к домам могут подходить три провода однофазной сети:

  • фазный проводник L
  • рабочий ноль N
  • защитный нулевой проводник РЕ
  • В трехфазной сети вместо одного проводника L присутствует три фазы L3, L2, L1. Это простейшая TN-S схема, обеспечивающая надежное заземление, в каждую квартиру приходит трехжильный провод с желто-зеленым проводником, подключенным в этажном щитке к РЕ проводу.

    В схеме TN-C-S разводка по квартирам осуществляется аналогичным образом, однако, при вводе в дом ноль дополнительно заземляется.

    TN система

    При «глухом» заземлении нейтрали источника с одновременным присоединением его открытых элементов к ней же защитными нулевыми проводами система именуется TN. В этом случае нейтраль присоединяется к заземляющему контуру возле подстанции, а, не к дугогосящему реактору.

    Подсистема TN-C
    Подсистема TN-C использует объединенные в общий провод нулевые проводники (защитный + рабочий), что обеспечивает простую схему, экономию материалов проводки. Недостатками являются:
  • отсутствие PE проводника
  • розетки жилого дома остаются без защитного заземления
  • В этом варианте вместо заземления, обеспечивающего безопасность касания к корпусу прибора под напряжением, используется защита обнуления – срабатывание автомата при резком увеличении тока в цепи (КЗ). Рабочий нулевой проводник в этой схеме обозначается PEN, присутствует в схеме TN-C. Слабым местом схемы является участок от квартиры до ввода в дом – нарушение целостности цепи (отгорание провода, подключение автомата, предохранителя в разрыв) гарантирует фазу на корпусе, несчастный случай при случайном контакте.

    Система заземления этого типа вынуждает дополнительно использовать схемы зануления. При КЗ (случайное попадаете фазы на корпус электроприбора) срабатывает автомат, происходит отключение энергии. Технология энергоснабжения присутствует в большинстве жилищ вторичного фонда, постепенно заменяется более совершенными схемами. Уравнивание потенциалов в этом случае запрещено в санузлах.

    Подсистема TN-S

    В подсистеме TN-S улучшена безопасность зданий, оборудования, пользователей за счет разделения защитного, рабочего проводников по всей длине. Однако, это приводит к увеличению бюджета строительства, так как, необходима прокладка трехжильного либо пятижильного кабеля от ТП для однофазных, трехфазных сетей, соответственно.

    Подсистема TN-C-S

    Подсистема TN-C-S является гибридной, в ней нулевые проводники (защитный + рабочий) объединены на расстоянии от подстанции до ввода в здание, расщепляются внутри него с использованием повторного заземления PE провода, N провода. Эта система заземления является универсальной – рекомендована при обустройстве новостроек, применяется для модернизации эксплуатируемых TN-C подсистем несложным улучшением подъездных стояков.

    ТТ система

    Отличительной особенностью схемы защиты открытых токопроводящих частей источника, которую использует система заземления TT, является независимая от заземлителя нейтраль. Система разрешена в России недавно, применяется лишь в случаях невозможности обеспечения электробезопасности домов, павильонов, мобильных зданий с помощью TN системы. Это обусловлено необходимостью повторного заземления высокого качества (обычно, модульно-штыревые конструкции в комбинации с УЗО), к контуру которого распределительный щит подключается непосредственно на объекте.

    IT схема

    Особенность схемы заземления IT состоит в заземленных открытых токопроводящих частях источника электроэнергии. Нейтраль в этих схемах безопасности либо заземлена через высокое сопротивление приборов, либо изолирована от земли, что позволяет свести к минимуму электромагнитные поля, наведенные токи. Схема оптимально подходит для учреждений медицины, лабораторий, использующих высокоточную аппаратуру. Не рекомендуется для жилых домов.


    Оставить коментарий


    proxyelite.biz
    TN-S это система, в которой на всем протяжении разделены нулевой защитный и нулевой рабочий проводники. Это самая безопасная, но и самая дорогая система.
      

    Для корректного отображения этого элемента вам необходимо установить FlashPlayer и включить в браузере Java Script.

    Наши Друзья

    Как нужно заземлять электрические схемы и приборы.

    Тип заземления системы — это понятие, которое определяет взаимоотношение заземления элементов электрической системы, состоящей из источника питания, линии электропередач и электроустановки здания. Существует пять систем в зависимости от построения связи открытых проводящих частей электроустановки здания с заземленными частями источника питания в сетях переменного тока: TN-C; TN-S; TN-C-S; ТТ и IT. У различных типов заземления системы есть свои буквенные обозначения, которые расшифровываются в ГОСТе Р 50571.2.

    Маркировка заземления.

     Первая буква определяет характер заземления токоведущих частей источника питания. Т — это одна из токоведущих частей источника питания. Обычно ей является нейтраль. Она бывает заземлена. Это означает, что все токоведущие части источника питания изолированы от земли. Также данная буква может означать, что заземление одной из токоведущих частей осуществляется через сопротивление. Вторая буква передает характер заземления открытых проводящих частей электроустановки здания. Кроме того, буква сообщает формацию, что есть связь между открытыми проводящими частями электроустановки здания и заземленной нейтралью источника питания. Т свидетельствует, что осуществлено заземление открытых проводящих частей электроустановки, независимо от того, заземлена ли нейтраль источника питания.

     N — свидетельствует, что у открытых проводящих частей электроустановки здания есть соединение с заземленной нейтралью источника питания. Буквы, которые идут после N подсказывают, как в системе, которая объединяет распределительную сеть и электроустановку здания, осуществляется устройство нулевых защитных и нулевых рабочих проводников.

     S —  обозначает, что функция нулевого защитного (РЕ) и нулевого рабочего (N) про водников осуществлена раздельными проводниками по всей системе.

    С — свидетельствует о том, что функции нулевого защитного и нулевого рабочего проводников по всей системе обеспечивает один общий проводник.

    C-S свидетельствует о том, что в головной части системы функции нулевого защитного и нулевого рабочего проводников обеспечивает РЕN-проводник. В части электроустановки здания функционируют раздельно нулевой защитный проводник и нулевой рабочий проводник.

    Виды заземления системы.

    Если используется тип заземления системы TN-C , то у трансформатора или источника питания есть заземленная спираль. Все открытые проводящие части электрооборудования связаны с защемленной нейтралью трансформатора PEN — проводником. В данном случае у РЕN-проводника функция защитного проводника. Он пронизывает систему распределен электроэнергии от источника питания до открытых проводящих частей электроустановки здания.

     В настоящее время в России система TN-С встречается очень часто. Основной вид электроустановок до 1 кВ — это электроустановки с глухозаземленной нейтралью. В таких электроустановках применяется зануление открытых проводящих частей для защиты от поражения электрическим током. Такие электроустановки считаются аналогом электроустановок, относящихся к системе TN-С.

     В том случае, когда в электроустановке с глухозаземленной нейтралью нулевые проводники, к которым присоединены открытые проводящие части, соответствуют требованиям стандарта комплекса ГОСТ р 50571 к РЕN проводникам, значит, электроустановка относится к системе TN-С.

     При использовании системы TN-С не удается обеспечить высокий уровень безопасности, который достигается при использовании систем TN-C-S; TN-S; ТТ. Рабочие токи протекают по РЕN-проводнику. Электрические токи оказывают воздействие на соединительные контакты, в результате нарушается качество соединений, может возникнуть потеря электрического контакта. Защитные и нулевые защитные проводники более надежны, чем РЕN-проводник. Соответственно, в тех случаях, когда применяются защитные и нулевые защитные проводники, есть возможность обеспечить более высокий уровень электробезопасности.

    Использование TN-S системы заземления здания.

     Если используется тип заземления системы TN-S, то в данном случае нейтраль трансформатора заземлена. У открытых проводящих частей электроустановки здания есть связь с заземленной нейтралью. Нулевые защитные проводники обеспечивают эту связь в системе.

     Когда используется система TN-S, то есть возможность обеспечить высокий уровень безопасности, так как применяется отдельный нулевой защитный проводник. По этому проводнику проходит ток. Величина электрического тока примерно равна суммарному току утечки электрооборудования класса 1, которое действует в настоящий момент. Ток меньше, чем рабочий ток, протекающий по РЕN-проводнику. Соответственно, незначительна вероятность нарушения непрерывности электрической цепи у нулевого защитного проводника по сравнению с РЕN-проводником.

    Несмотря на явные преимущества, система TN-S используется крайне редко, потому что для нее необходимы воздушные и кабельные линии, имеющие на один проводник больше по сравнению с системами TN-C, TN-C-S, п. Систему TN-S можно реализовать в том случае, если питание коттеджей осуществляется от собственных ПС. Если используется тип заземления системы TN-C-S, то у источника питания есть заземленная нейтраль. А открытые проводящие части электроустановки здания непосредственно связаны с ней. Связь обеспечивается РЕN-проводниками, которые используются в распределительной сети и на головном участке. В электрических цепях остальной части электроустановки здания применяются нулевые защитные проводники (РЕ).

     В одном проводнике объединяются функции нулевого защитного и нулевого рабочего проводников, но объединение осуществляется только в части электроустановки здания. Происходит деление РЕN-проводника в какой-то точке электроустановки здания на нулевой защитный проводник и нулевой рабочий проводник. Деление может осуществляться на вводе в здание, то есть на вводном зажиме или на нулевой защитной шине ВРУ.

     Деление может произойти и в других точках электроустановки здания. В результате деления в электроустановке здания используются два самостоятельных проводника, то есть нулевой защитный и нулевой рабочий, или в головной части электроустановки здания применяется РЕN-проводник, после точки разделения используется два нулевых проводника, защитный и рабочий. Происходит присоединение открытых проводящих частей электрооборудования оборудования класса 1 к нулевым защитным проводникам во всей электроустановке здания. Также присоединение может происходить в головной части электроустановки к РЕN-проводнику. В остальной части происходит их присоединение к нулевому защитному проводнику.

     У типа заземления системы TN-C-S есть целый ряд преимуществ. Можно использовать распределительные электрические сети без их реконструкции. Если в электроустановках зданий используется тип заземления системы TN-C-S, то без труда можно определить ошибки, которые могут быть допущены при коммутации нулевых защитных и нулевых рабочих проводников. В том случае, если использованы устройства защитного отключения для защиты от косвенного прикосновения в электроустановке, то произойдет отключение электрической цепи. И это станет сигналом о коммутационных ошибках.

    Использование системы TT заземления здания.

     Если в электроустановке жилого здания есть защитное заземление, то при использовании типа TN-C-S удается обеспечить высокий уровень безопасности. При этом затраты на строительство линии электропередач будет более низким, чем при использовании типа заземления системы TN-S.

     На практике достаточно легко использовать тип заземления системы TN-C-S. На вводных зажимах ВРУ следует осуществить разделение PEN — проводника. А во всей электроустановке дома используют нулевой защитный и нулевой рабочий проводники. У этих проводников между собой нет электрического соединения. Если используется тип заземления системы ТТ , то заземляется токоведущая часть источника питания. Кроме того, заземляются открытые проводящие части электроустановки здания. Защитное заземление осуществляется с помощью заземляющего устройства. При этом необходимо, чтобы заземлитель устройства не быть зависим от заземлителя источника питания.

    При использовании системы ТТ можно обеспечить высокий уровень безопасности в электроустановке. Согласно ГОСТу Р 50669, система ТТ — основная для электроустановок в зданиях из металла. Несомненным достоинством системы ТТ является то, что электрический потенциал в нормальном режиме электроустановки на открытых проводящих частях электрооборудования и сторонних проводящих частях здания из металла всегда равен потенциалу земли. Использовать систему ТТ можно только при подключении электроустановки здания к существующей распределительной электрической сети. Но очень часто бывает, что реализовать систему ТТ непросто. Это может быть связано с тем, что при развитой инфраструктуре в городских условиях тяжело осуществить монтаж электрически независимых заземлителей.

     Если используется система IT, то у источника питания нет заземленных токоведущих частей или какая-то токоведущая часть заземляется через сопротивление. Заземление открытых проводящих частей осуществляется с помощью собственного заземляющего устройства электроустановки здания. Электроустановки до 1 кВ с изолированной нейтралью по классификации ПУЭ можно назвать аналогом электроустановок, которые соответствуют типу заземления системы IT. Такие электроустановки используются в зданиях специального назначения, если должен быть обеспечен повышенный уровень электробезопасности.

     В качестве примера можно привести систему IT, где источник питания — разделительный трансформатор, который используется в части электроустановки здания, охватывающей электрооборудование операционных блоков больниц. Система IT не используются в электроустановках индивидуальных жилых домов.

     Если электроустановки зданий подключаются к одной и той же распределительной электрической сети, которая уже существует, то могут применяться три типа защемления системы — TN-C, TN-C-S, тт. для систем TN-С, TN-C-S у линии электропередач обязательно должен быть РЕN-проводник. Если необходимо реализовать тип заземления системы TN-S, тогда открытые проводящие части электроустановки здания должны быть соединены с источником питания с помощью нулевых защитных проводников. Вся система должна быть пронизана нулевыми защитными проводниками. Они должны присутствовать как в электроустановке  здания, так и в линии электропередачи.

    Консультации — Специалист по спецификациям | Заземление и соединение в коммерческих зданиях

    Автор: Сэм Р. Александер, PE, LEED AP BD + C, exp, Maitland, Fla. 15 августа 2012 г.

    Существуют различные преимущества для заземления и соединения систем передачи и распределения переменного тока. Основание для выбора того или иного типа системы заземления зависит от ее способности обеспечивать безопасность персонала и защиту оборудования. В первую очередь, электроэнергетика занимается снижением опасности поражения электрическим током и вспышкой для персонала, работающего с электрическими системами, ограничением повреждений компонентов электрической системы из-за переходных перенапряжений и сведением к минимуму прерывания коммерческих или промышленных процессов, которые поддерживает электрическая система.

    Основываясь на этих критериях, преобладающая философия проектирования заземления заключается в предоставлении заземленной системы вместо незаземленной для достижения этих целей. Тем не менее, понимание основных принципов работы каждого типа системы необходимо для согласования соответствующей топологии заземления с характеристиками электрической системы. Коммерческие здания, большая часть оборудования которых работает при напряжении 600 В и ниже, похоже, стандартизированы на основе надежного заземления и заземления. Правильное применение этого подхода осуществляется через призму Национального электротехнического кодекса.

    Причины появления заземленных и незаземленных систем

    Согласно NEC, существует две основные цели заземления электрической системы переменного тока: первая — стабилизировать напряжение системы относительно земли в нормальных условиях эксплуатации, обеспечивая систему отсчета земли для системы; другой — поддержание в допустимых пределах избыточных напряжений в системе из-за молний, ​​скачков напряжения в сети и случайного контакта с более высокими напряжениями. Эти две причины позволяют инженеру-проектировщику достичь двух основных целей — защиты оборудования и безопасности персонала для электрической системы.Третья цель заземления — позволить процессам, поддерживаемым электрической системой, продолжаться при наличии неисправного состояния. Обычно это достигается либо незаземленной системой, либо применением специальной формы заземления (заземление с высоким сопротивлением).

    Энергосистемы в 1950-х годах были незаземленными, трехфазными, трехпроводными, с трансформатором треугольника и генератором треугольника. Основное преимущество этой конфигурации заземления заключается в том, что она позволяет одному замыканию фазы на землю с болтовым соединением работать бесконечно без повреждений в месте повреждения и без срабатывания устройства защиты от сверхтоков.Это обеспечивает непрерывность работы, пока находится неисправный проводник, хотя и с риском поражения электрическим током для персонала. Однако большинство замыканий на землю имеют не болтовое соединение, а дуговое искрение низкого уровня (повторное зажигание). Эти повторные замыкания на землю из-за их относительно низких токов замыкания могут остаться незамеченными оборудованием для контроля замыканий на землю. Опасность здесь заключается в том, что повторные замыкания на землю вызывают возрастающие переходные перенапряжения на изоляцию проводящей системы. Если не контролировать, напряжение на изоляцию системы может привести к двойному замыканию линии на землю, что приведет к нежелательному срабатыванию устройств защиты от сверхтоков.Еще худший сценарий — это последствия опасности разрушительной дуги. По этой причине сейчас меньше шансов построить незаземленные системы, и они с большей вероятностью будут модернизированы с помощью системы с заземленным сопротивлением какого-либо типа.

    В электрической системе есть различные точки, доступные для заземления, например, средняя точка однофазного трансформатора, угол обмоток треугольником или центр обмоток звезды. Точки, которые считаются нейтральной точкой системы, чаще всего используются для заземления.Нейтральная точка влияет и, в свою очередь, одинаково влияет на три другие фазы в сбалансированной трехфазной системе. По своей природе эта точка представляет собой наилучшую возможность реализовать две основные цели заземления электроэнергетической системы. Описанные ниже методы заземления включают подключение к нейтральной точке звездообразной системы (генератора или трансформатора). Как правило, там, где нет нейтральных точек для заземления на обмотках генератора или трансформатора, как при соединении треугольником, используются заземляющие трансформаторы, такие как трансформаторы типа зигзаг или звезда-треугольник.Эти заземляющие трансформаторы эффективно создают нейтральное соединение, которое затем можно заземлить.

    Виды заземления

    Заземление с высоким сопротивлением (HRG) , с его применением в диапазоне напряжений от 480 В до 13,8 кВ, обеспечивает средства для ограничения проблем с переходными перенапряжениями, связанными с незаземленными системами, при этом обеспечивая преимущества непрерывности обслуживания. Идеальный диапазон напряжения — 5 кВ и меньше. Как правило, увеличение тока замыкания на землю улучшает контроль перенапряжения, но увеличивает вероятность повреждения при коротком замыкании.И наоборот, уменьшение тока замыкания на землю увеличивает перенапряжение, но снижает повреждение в месте повреждения. Правильное применение HRG в диапазоне среднего напряжения (MV) от 2,4 до 13,8 кВ потребует максимального предела для одиночного тока замыкания на землю в точке замыкания на землю до значения ниже 7 ампер. Кроме того, собственный емкостный зарядный ток между фазой и землей должен быть меньше или равен току через заземляющий резистор. Математически ток замыкания на землю представляет собой векторную сумму тока заземляющего резистора и тока емкостной зарядки.Емкостной зарядный ток — это функция электрической системы, которую необходимо предварительно оценить. При соблюдении этих величин и условий можно рассчитать диапазон токов замыкания на землю HRG.

    Схемы низкоомного заземления (LRG) предназначены для ограничения токов замыкания на землю в диапазоне от 100 до 400 ампер в системах с диапазонами напряжения от 480 В до 15 кВ. При таком увеличении величины тока замыкания на землю цель LRG состоит в том, чтобы исключить переходные процессы перенапряжения за счет увеличения повреждений в точках замыкания на землю.Однако, чтобы свести к минимуму эти повреждения, система защитных устройств формируется как часть схемы LRG. В идеале неисправность изолирована, а остальная электрическая система продолжает работать. При более высокой величине токов замыкания на землю емкостной зарядный ток относительно земли очень мало влияет на выбор резистора заземления. В этом случае это сопротивление представляет собой просто напряжение между фазой и нейтралью на заземляющем резисторе, деленное на ток замыкания на землю.

    Реактивное заземление (RG) — еще одна альтернатива, используемая в системах среднего напряжения в диапазоне 2.От 4 до 15кВ. В этой схеме заземления используется индуктор для ограничения протекания токов замыкания на землю. Было показано, что системы с реактивным заземлением создают переходные перенапряжения при гораздо более высоких токах замыкания на землю, чем системы с резистивным заземлением. Чтобы ограничить переходные перенапряжения до приемлемых пределов, результирующий ток замыкания на землю может составлять до 60% от трехфазного замыкания с болтовым соединением. Поскольку это намного выше, чем предел в 400 ампер для LRG в том же диапазоне напряжений, реактивное сопротивление не так широко используется в электротехнической промышленности, за исключением заземления с настроенным реактивным сопротивлением.

    Нейтрализатор замыкания на землю (GFN) — это еще одна форма заземления реактивного сопротивления, известная как заземление с настроенным реактивным сопротивлением. Как следует из названия, индуктивное реактивное сопротивление настраивается на естественный емкостной зарядный ток незаземленной фазы относительно земли. Этот эффект настройки за счет индуктивного реактивного сопротивления по существу нейтрализует (нейтрализует) вклад тока от емкостного зарядного тока. Это оставляет небольшую часть тока замыкания на землю, которая по сути является резистивной по своей природе. Этот резистивный ток нейтрали относительно земли находится в фазе с напряжением нейтрали относительно земли.Преимущество этого согласования фаз состоит в том, что дуговое замыкание на землю с меньшей вероятностью будет поддерживаться напряжением, когда переменный ток и напряжение одновременно достигают нулевого значения. Приложение GFN похоже на приложение HRG в том, что замыкание на землю может сохраняться, так что электрическое обслуживание продолжается. Обнаружение неисправности обеспечивается скоординированным набором реле защиты от замыканий на землю. Недостаток GFN аналогичен RG в том, что реактивное заземление в целом имеет тенденцию к увеличению переходных перенапряжений.Кроме того, цепь заземления должна быть перенастроена после того, как в электрической системе будет выполнено какое-либо переключение.

    Прочное заземление (SG) обычно было решением более 60 лет назад, когда инженеры искали альтернативу для решения проблемы переходных перенапряжений из-за дугового замыкания на землю в незаземленных системах. Несмотря на то, что его применение не было столь успешным в диапазоне от 2,4 до 13,8 кВ из-за высокой энергии в точке повреждения, SG даже сегодня постоянно применяется при напряжениях ниже 600 В.Система с глухозаземленной нейтралью будет производить максимальный ток повреждения для данного состояния повреждения. Таким образом, он предоставляет наилучшие возможности для раннего обнаружения опасности возникновения дугового разряда в электрических системах. Координация устройства максимального тока, которая является важной частью системы SG, гарантирует, что только неисправная цепь будет изолирована, в то время как остальная часть системы продолжает функционировать.

    Граница (зона заземления) электрической системы

    Эффекты замыкания на землю различных схем заземления, описанных выше, ограничены определенными областями электрических систем, известными как зоны заземления или системы заземления.Границы этих систем заземления образуются разграничениями, такими как первичные обмотки треугольником трансформаторов или точка постоянного тока инверторов и преобразователей переменного / постоянного тока. Эти системы, которые связаны друг с другом магнитным полем или электрически изолированы, за исключением некоторой формы соединения оборудования, считаются отдельными системами.

    На рисунке 1 трехфазная система на 480 В включает в себя первичные обмотки треугольником систем 2 и 4, двигатель с незаземленной звездой, глухо заземленный трансформатор звездой-звездой, генератор источника с незаземленной треугольной обмоткой и заземленную вторичную обмотку звездой. трансформатор источника.Система 2 имеет незаземленную вторичную обмотку трансформатора треугольником и незаземленную первичную обмотку однофазного трансформатора. Система 3 имеет незаземленную вторичную обмотку однофазного трансформатора, а Система 4 — заземленную вторичную обмотку трансформатора звездой.

    Когда отдельные системы разрабатывают свои собственные соединения и заземления, они называются отдельно производными системами (SDS). Источники питания, такие как трансформаторы и генераторы, обычно конфигурируются как SDS. Однако, когда они электрически подключены к другой системе, они становятся частью этой системы и классифицируются как не относящиеся к SDS.Трансформатор T1 и генератор G в системе заземления 1 (рисунок 1) не относятся к SDS.

    Твердое заземление трансформатора коммерческих зданий

    Трансформаторы для коммерческих зданий обычно подключаются как SDS. Основной характеристикой SDS является соединение заземленного нейтрального проводника с соединенным корпусом оборудования или с соединенной шиной заземления. Для трансформаторов существует две конфигурации твердого соединения нейтрали с землей. Первая конфигурация имеет это соединение на самом трансформаторе (см. Соединение A на трансформаторе на Рисунке 2).

    Вторая конфигурация имеет это соединение нейтрали с землей у первого средства отключения после трансформатора (см. Соединение C на панели 208 В на Рисунке 2). Эта вторая конфигурация заземления и соединения идентична тому, что требуется для служебного входного оборудования коммерческих зданий, которое обслуживается трансформатором электросети. В этом случае соединение нейтрали с землей называется основной перемычкой заземления. Также указано третье соединение B. Три соединения A, B, C нельзя использовать одновременно, так как это создаст параллельный путь для заземленного проводника.Однако любые два из трех соединений A, B, C будут соответствовать правилам установки на основе 250.30 (A) (1) NEC. В общем, установка заземления и заземления одиночного трансформатора в здании может быть расширена до нескольких трансформаторных схем, где на каждом этаже многоэтажного здания расположено несколько трансформаторов. Это достигается путем протягивания общего заземляющего электрода либо вертикально через полы, либо горизонтально внутри каждого этажа.

    Генератор для коммерческих зданий с твердым заземлением

    Заземление и заземляющие соединения генераторов для коммерческих зданий могут быть выполнены либо как SDS, либо как не-SDS.Выбор конфигурации для использования определяется выбором передающего оборудования, которое будет передавать силовые соединения от сети к генератору (генераторам) здания при потере питания от сети. Если передаточное оборудование (переключатель) позволяет переключать свои нейтральные соединения (т. Е. 4-полюсные), то генератор, подключенный к передаточному переключателю, должен быть подключен как SDS. Такое расположение обеспечит соответствие требованиям безопасности 250.6 (B), NEC (см. Рисунок 3). Если передаточный переключатель не позволяет переключить свои нейтральные соединения (т.е.е., 3-полюсный), то генератор должен быть подключен как без SDS, чтобы снова соответствовать 250.6 (B), NEC (см. рисунок 4). Несмотря на то, что на генераторе G2 нет соединения нейтрали с землей, генератор не считается незаземленным. Это связано с тем, что нейтральное соединение генератора, хотя оно и не связано с землей на самом генераторе, подключено к земле на оборудовании служебного входа MDP через безобрывный переключатель. Также корпус генератора заземлен вспомогательным заземляющим электродом в соответствии с 250.54, NEC. Этот заземляющий электрод обеспечивает для генератора те же преимущества, что и заземление электрической системы.

    Несколько генераторов, обслуживающих коммерческое здание, обычно подключаются как SDS. Это связано с требованиями к устройствам защиты от замыканий на землю на объектах, достаточно больших, чтобы требовать нескольких генераторов. Например, для правильного функционирования этих устройств защиты от замыканий на землю необходимо, чтобы генераторы были подключены как SDS. Параллельно подключенные генераторы создают особые проблемы с точки зрения способов заземления и защиты оборудования.Здесь достаточно сказать, что согласование электрических параметров этих параллельно включенных генераторов сводит к минимуму циркулирующие токи третьей гармоники, которые могут повлиять на устройства максимального тока замыкания на землю.

    Параллельное заземление генераторов может быть реализовано с помощью общей шины нейтрали, подключенной к одной шине заземления, или с помощью отдельных шин нейтрали, подключенных к соответствующим шинам заземления. Чтобы использовать параллельную схему с общей нейтральной шиной, распределительный щит с устройствами максимального тока генератора должен находиться рядом с самими генераторами.Это связано с тем, что соединение нейтрали с землей на SDS должно быть у генераторов или у первого средства отключения после генераторов (250,30 (A) (1) NEC). Согласно требованиям этого кодекса, если распределительный щит генератора должен быть расположен удаленно от самих генераторов, то соединение нейтрали с землей должно быть на встроенном устройстве максимального тока каждого генератора. Здесь необходимо подчеркнуть, что такое применение твердого заземления для генераторов, описанное выше, не является обычной практикой для генераторов с напряжением выше 600 В.Это связано с тем, что одиночные замыкания между фазой и землей при твердом заземлении при таких более высоких напряжениях, как правило, больше, чем трехфазные замыкания на болтах, с которыми производители генераторов проектируют свои генераторы.

    Независимо от того, заземлены ли генераторы или трансформаторы в виде паспортов безопасности или не-паспорта безопасности, если они обслуживают конкретный коммерческий объект, тогда все заземляющие электроды (250,50 NEC) должны быть соединены вместе, чтобы сформировать систему заземляющих электродов. Это увеличивает целостность системы заземления здания, не нарушая требований к различным зонам заземления, поскольку токопроводящие проводники не соединены между собой между зонами заземления.

    Заключение

    Существует несколько схем заземления и соединения трансформаторов и генераторов. К ним относятся незаземленные, заземленные по сопротивлению и надежно заземленные. Системы с заземленным сопротивлением подразделяются на системы с высоким сопротивлением, низким сопротивлением, реактивным сопротивлением и настроенным реактивным сопротивлением. Незаземленные системы, которые когда-то были одной из наиболее широко используемых систем заземления, в настоящее время являются наименее используемым методом заземления. Незаземленная система предназначена для того, чтобы первое замыкание на землю могло существовать неограниченное время, чтобы обеспечить непрерывность обслуживания при обнаружении места повреждения.К сожалению, система в этом состоянии имела тенденцию к возникновению переходных перенапряжений, которые приводили к нарушениям изоляции оборудования и проводов.

    В целях достижения баланса между непрерывностью обслуживания и снижением переходных перенапряжений были разработаны другие схемы импедансного заземления и надежного заземления. При напряжении выше 600 В твердое заземление не так широко используется из-за более высокого уровня энергии в точке повреждения. Однако при напряжении 600 В и менее надежное заземление является стандартом де-факто для трансформаторов и генераторов коммерческих зданий.При таком более низком напряжении сплошное заземление с включенными в него устройствами согласованной перегрузки по току предназначено для быстрой изоляции замыканий на землю. Таким образом, только неисправная часть системы выходит из строя, в то время как остальная часть системы продолжает работать.

    Пояснения к терминам

    Заземленная электрическая система — это система, в которой по крайней мере один проводник от системы или точка на проводящей системе соединен либо с землей, либо с каким-либо другим проводящим телом, которое служит вместо земли.Это соединение может быть с промежуточным устройством импеданса или без него. Считается, что с устройством с очень низким импедансом система надежно или эффективно заземлена. С помощью устройства импеданса система может быть заземлена либо резистивно, либо реактивно.

    Связанная электрическая система — это система, в которой нетоковедущие проводящие материалы электрической системы соединены вместе таким образом, что они представляют собой путь с низким импедансом для токов замыкания на землю.Это связанное соединение позволяет токам замыкания на землю в заземленной системе течь обратно к источнику электроэнергии для последующих мер безопасности со стороны системы. Из-за взаимосвязанности заземленной и связанной системы связанная система также способствует достижению цели заземленной системы.

    Незаземленная электрическая система не имеет прямого соединения между проводниками системы и землей или землей, за исключением очень высокого естественного реактивного сопротивления из-за емкостной связи между линией и землей.Независимо от значения названия, NEC по-прежнему требует, чтобы корпуса проводящего оборудования незаземленной системы были заземлены по той же причине, по которой заземленная система должна быть заземлена. Этот код также требует, чтобы незаземленная система была подключена аналогично заземленной системе, чтобы обеспечить путь с низким импедансом для межфазных токов замыкания, которые циркулируют обратно к источнику.

    Токи замыкания на землю — это нежелательное протекание электрических токов в электрической системе из-за непреднамеренного соединения между незаземленным проводником электрической цепи и землей.Замыкания на землю в среднем составляют 95% всех неисправностей в электрических системах, причем наиболее распространенным типом замыканий на землю является дуговое замыкание. Все формы заземления и соединения направлены на минимизацию или устранение замыканий на землю. Следовательно, различные упомянутые методы заземления будут рассматриваться в контексте обработки токов замыкания на землю.


    Александр — старший инженер-электрик с опытом работы. Его опыт в области электротехники для строительных систем, и он работает в основном в коммерческих и правительственных зданиях.


    Список литературы

    Л. Дж. Кингри, Р. Д. Пейнтер, A.S. Локер, «Применение заземления нейтрали с высоким сопротивлением в системах среднего напряжения», IEEE Trans. Ind. Appl., Vol. 47, № 3, май / июнь 2011 г.

    Д. Д. Шипп, Ф. Дж. Анджелини, «Характеристики методов нейтрального заземления различных энергосистем: факты и вымысел», Катлер-Хаммер, 1988.

    Д. Пол, С. Л. Венугопалан, «Метод заземления с низким сопротивлением для энергосистем среднего напряжения», ICF Kaiser Engineers, 1991.

    Б. Бриджер мл., «Заземление с высоким сопротивлением», IEEE Trans. Ind. Appl., Vol. IA-19, No. 1, январь / февраль 1983 г.

    Л. А. Бей, Дж. Айверсон, «Заземление генераторов переменного тока и переключение нейтрали в аварийных и резервных энергосистемах, части 1 и 2», Cummins Power Generation, 2006.

    K. J .S. Хунхун, Дж. Л. Кёпфингер, М. В. Хаддад, «Резонансное заземление (нейтрализатор замыкания на землю) подключенного генератора», IEEE Trans. Ind. Appl., Vol. ПАС-96, № 2, март / апрель 1997 г.

    Дж. Р. Дунки-Якобс, «Влияние дугового замыкания на землю на конструкцию низковольтной системы», IEEE Trans. Ind. Appl., Vol. 1A-8, No. 3, май / июнь 1972 г.

    Рекомендуемая практика IEEE для заземления промышленных и коммерческих энергосистем, IEEE Std 142, 2007.

    Рекомендуемая практика IEEE для систем аварийного и резервного питания для промышленных и коммерческих приложений, IEEE Std 446, 1995.

    Справочник национальных правил по электротехнике, Национальная ассоциация противопожарной защиты, 2011 г.

    Заземление коммерческих и промышленных энергосистем

    Заземление — важный аспект любой системы распределения электроэнергии.Правильно спроектированная и хорошо обслуживаемая система заземления значительно снижает вероятность поражения персонала электрическим током, электрических пожаров, повреждения оборудования и связанного с этим простоя. На этой странице рассматриваются основы заземления и указывается на необходимость регулярного планового технического обслуживания и тестирования систем заземления. Статья 250 Национального электротехнического кодекса (NEC) содержит особые требования к заземлению электроэнергетических систем и оборудования. Во всех случаях следует соблюдать требования NEC.Заземление более подробно рассматривается в Рекомендациях HSB по заземлению коммерческих и промышленных энергосистем.


    Основы заземления

    Для работы части электрического оборудования должен существовать полный путь для прохождения тока между источником питания и частью электрического оборудования. Для трехфазной системы (рисунок 1) ток течет между источником и частью оборудования по трехфазным проводникам фазы A, фазы B и фазы C.В однофазной системе (рис. 2) ток течет от источника к части оборудования по одному проводнику (иногда называемому «горячая ветвь») и возвращается к источнику по нейтральному или общему проводнику. Нейтральный или общий провод также можно использовать для создания опорного напряжения. Это необходимо для правильной работы определенных цепей. Нейтральный или общий провод можно заземлить, но нейтральный или общий провод не является защитным заземлением оборудования.

    Заземление электрооборудования — это намеренное соединение открытых металлических поверхностей электрооборудования с землей (землей) в целях безопасности персонала.Электрооборудование, такое как трансформаторы, двигатели, распределительное устройство, кабель и шина, содержит компоненты под напряжением и без него. Когда компонент, находящийся под напряжением, контактирует с металлическим корпусом или конструкцией части оборудования, это обычно известно

    как замыкание на землю. В случае замыкания на землю корпус или конструкция будут находиться под системным напряжением. Это очень опасная ситуация. Когда металлический объект или человек прикасаются к оборудованию, через объект или человека на землю проходит ток.Это может серьезно повредить или убить человека, а также серьезно повредить оборудование. Правильно спроектированная, установленная и обслуживаемая система заземления может предотвратить это.


    Виды оснований

    Система заземления состоит из заземления системы и заземления оборудования.

    Системное заземление — это заземляющий стержень (-ы), соединенный вместе и подключенный к источнику питания системы. Штанги заземления могут быть металлическими шипами, вбитыми в землю, арматурными стержнями, конструкционной строительной сталью и металлическими подземными трубами или любой их комбинацией.

    Заземление оборудования должно обеспечивать путь от оборудования к заземлению системы. Заземление оборудования может быть проводником, металлическим кабелепроводом или кабельным каналом.

    Помимо заземления оборудования для обеспечения безопасности персонала, электронного оборудования, такого как компьютеры и контрольное оборудование, может потребоваться дополнительное оборудование для правильной работы. Эти заземления должны быть подключены к земле в одной точке. Электронное оборудование не может иметь отдельную системную землю.


    Замыкания на землю

    Существует два типа замыканий на землю: сплошные замыкания на землю и периодические замыкания на землю.Прочные замыкания на землю возникают, когда компонент, находящийся под напряжением, входит в контакт и остается в контакте с землей. Этот тип замыкания на землю приводит к очень большому потреблению тока и обычно приводит к размыканию предохранителя или срабатыванию автоматического выключателя при перегрузке по току. Периодическое замыкание на землю будет периодически подключать находящийся под напряжением компонент к земле.

    Этот тип заземления вызывает значительно меньший ток короткого замыкания и не всегда вызывает срабатывание устройств защиты от сверхтоков. Эта неисправность приведет к возникновению дуги и нагреву, а также может привести к возгоранию и повреждению оборудования.Защита от замыканий на землю используется для защиты от замыканий на землю. Защита от замыкания на землю определяет состояние замыкания на землю и автоматически размыкает выключатель питания.


    Рекомендуемые работы по осмотру и техническому обслуживанию

    Со временем системы заземления, которые не обслуживаются, становятся менее эффективными. Это может быть связано с изменениями в электрической системе, изменением уровня грунтовых вод, неплотными соединениями, заменой подземных металлических труб на неметаллические трубы, коррозией или неправильной работой с электрической системой.Эта деградация может вызвать травмы, возгорание и повреждение оборудования в системах с ранее соответствующими системами заземления. После любого серьезного изменения в системе распределения электроэнергии, каждые три года (максимум) или при подозрении на проблемы, связанные с заземлением, квалифицированный подрядчик по электротехнике или профессиональный инженер должен убедиться, что система заземления соответствует статье 250 Национального электротехнического кодекса.


    © 2010 Хартфордская компания по инспекции и страхованию паровых котлов.Все права защищены. Используется с разрешения Hartford Steam Boiler Inspection and Insurance Company.

    Этот материал предоставлен только в информационных целях и не обеспечивает покрытие или гарантию предотвращения убытков. Примеры в этом материале предоставлены как гипотетические и только в целях иллюстрации. Ганноверская страховая компания и ее филиалы и дочерние компании («Ганновер») прямо отказываются от каких-либо гарантий или заявлений о том, что принятие любых рекомендаций, содержащихся в настоящем документе, сделает любые помещения или операции безопасными или в соответствии с любым законом или постановлением.Предоставляя вам эту информацию, The Hanover не берет на себя (и, в частности, отказывается от каких-либо обязательств) перед вами никаких обязательств или ответственности. Решение о принятии или выполнении любых рекомендаций или советов, содержащихся в этом материале, должно приниматься вами.

    LC март 2019 г. 2015-410
    171-9273 (16.03)

    Заземление 1910.269 — HSI

    Во-первых, давайте рассмотрим. Что такое «земля» и что «заземление»? Управление по охране труда и технике безопасности (OSHA) определяет каждый термин следующим образом:

    • Земля относится к проводящему телу, обычно к земле.
    • Заземление ‘инструмента или электрической системы означает намеренное создание пути с низким сопротивлением к земле. При правильном выполнении ток от короткого замыкания или молнии следует по этому пути, предотвращая накопление напряжения, которое в противном случае могло бы привести к поражению электрическим током, травмам и даже смерти.

    Для безопасной работы линий или оборудования в «обесточенном» состоянии OSHA обычно требует, чтобы рабочие заземляли линии или оборудование. Исключение составляют случаи, когда заземление нецелесообразно или представляет большую опасность, чем работа без заземления, например, в цепях, находящихся под напряжением.Даже если у рабочих есть обесточенные линии, они рискуют протечь током короткого замыкания в линиях. Чтобы защитить себя от опасности, рабочие должны предвидеть вероятную величину имеющегося тока короткого замыкания и его продолжительность, чтобы они могли установить соответствующие заземления.

    Общие причины опасных токов короткого замыкания

    • Случайное повторное включение
    • Индукция
    • Обратное питание
    • Физический контакт между линиями
    • Три основных принципа безопасной работы без напряжения:
    • Электротехники должны обесточить линии и оборудование.
    • Электротехники должны проверять нулевое напряжение с помощью подходящего измерителя.
    • Электротехники должны устанавливать заземления с надлежащими номинальными характеристиками.

    Перед тем, как линейный монтажник установит заземление, он должен проверить линии и оборудование на номинальное напряжение. Используйте испытания высокой мощности для оценки оборудования либо при номинальном напряжении оборудования, либо при более низких напряжениях. Во время тестирования они могут удалить основания. Но сначала они должны проинформировать коллег и изолировать себя и других от воздействия частей, находящихся под напряжением, и других опасностей.

    Оборудование защитного заземления, которое используют рабочие, должно выдерживать максимальный ток короткого замыкания, который может протекать через него, достаточно долго, чтобы устранить повреждение. Он также должен иметь достаточно низкий импеданс, который определяется как «видимое противодействие в электрической цепи протеканию переменного тока, которое аналогично действительному электрическому сопротивлению постоянному току и представляет собой отношение эффективной электродвижущей силы к эффективный ток », чтобы немедленно сработать, если линии или оборудование случайно оказались под напряжением.OSHA требует, чтобы все заземления имели допустимую нагрузку, равную, по крайней мере, кабелю AWG номер два.

    Отраслевые рекомендации помогают электрикам выйти за рамки минимальных требований OSHA и выбрать заземляющее оборудование, соответствующее имеющемуся току короткого замыкания на рабочем месте.

    Площадки должны размещаться с разным интервалом для разных видов работ. Эти интервалы устанавливаются согласованными отраслевыми стандартами, включая Национальный кодекс электробезопасности.

    Виды земель

    Есть два типа оснований, оба требуются строительным стандартом OSHA.

    1. Системное или служебное заземление : В этом типе заземления провод, называемый «нулевым проводом», заземляется на трансформаторе и снова на служебном входе в здание. Это в первую очередь предназначено для защиты машин, инструментов и изоляции от повреждений.
    2. Заземление оборудования : Предназначено для повышения защиты самих рабочих. Если из-за неисправности металлический каркас инструмента оказывается под напряжением, заземление оборудования обеспечивает другой путь для прохождения тока через инструмент к земле.

    Кроме того, у заземления есть один недостаток: обрыв системы заземления может произойти без ведома пользователя. Использование прерывателя цепи замыкания на землю (GFCI) является одним из способов устранения недостатков заземления.

    Зона безопасности системы

    Для воздушной передачи точки безопасности системы должны располагаться на расстоянии не более четырех миль друг от друга. Их можно расположить ближе. Если эти площадки расположены на расстоянии более одной мили друг от друга, электротехники должны использовать средства индивидуальной защиты (СИЗ), например перемычку, на рабочем месте.При воздушном распределении заземления системы безопасности для защиты сотрудников должны располагаться на расстоянии не более двух миль друг от друга. Для подземных распределительных сетей заземление системы безопасности должно быть подключено к нейтрали в ближайшей точке подключения. Лучше всего заземлить оба конца.

    Рабочему вредит не количество электричества; это когда они перекрывают разницу в электрическом потенциале. Таким образом, чтобы защитить себя и коллег от случайного преодоления таких разногласий, они хотят создать временные защитные площадки, чтобы создать «эквипотенциальную зону», в которой безопасно работать.Они также могут использовать изолирующие или заземляющие коврики и изолированную обувь, чтобы уменьшить потенциальную опасность шагов и прикосновений вблизи точки заземления.

    Электрическое заземление — Чтение электрического

    Электрическое заземление в системах распределения электроэнергии

    Требуется для максимального времени безотказной работы

    Reading Electric, ведущий поставщик электромеханического оборудования, услуг и решения проблем для промышленных и коммерческих клиентов на протяжении более 50 лет, предоставляет техническую информацию для жилого, коммерческого и промышленного сообщества региона.В этом бюллетене представлена ​​информация о важности хорошей системы с глухим заземлением при распределении электроэнергии.

    NEC довольно четко определяет определение электрического заземления: проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или с некоторым проводящим телом, которое служит вместо земли. Однако, когда вы начинаете проектировать систему электроснабжения, вы обнаруживаете, что слово «земля» имеет несколько модификаторов, которые описывают тип заземления, например:

    • Без заземления
    • Незаземленный
    • Сопротивление заземления
    • Реактивное заземление

    Наиболее часто используемая конфигурация заземления для промышленных, коммерческих и институциональных систем распределения электроэнергии — это система с глухим заземлением.Жесткое заземление означает соединение с землей без вставки резистора или импедансного устройства. NEC определяет, когда должна быть заземлена система распределения питания переменного тока. Как правило, за некоторыми исключениями, системы, которые работают от 50 до 1000 вольт переменного тока с напряжением между фазой и землей менее 150 вольт, и / или системы с нагрузкой между фазой и нейтралью должны быть заземлены. Системы с напряжением 1000 В переменного тока или выше разрешается заземлять, если они не питают мобильное или переносное оборудование, тогда это мобильное / переносное оборудование должно быть заземлено.

    Пороговое значение 150 вольт между фазой и землей, для которого требуется надежное заземление системы, основано на лабораторных экспериментах и ​​тематических исследованиях. Если на дуговом промежутке меньше 150 вольт, дуга редко может поддерживаться сама собой. Наличие системы с глухим заземлением увеличивает вероятность развития достаточного тока короткого замыкания, поэтому устройство защиты от перегрузки по току отключит неисправную цепь. Определение «прочно заземленное» относится к соединению с землей или землей и к слову «импеданс».Импеданс может состоять из сопротивления, индуктивности и емкости и ограничивает ток, основанный на общей величине импеданса, измеренного в Ом. Основная цель надежного заземления энергосистемы — обеспечить обратный путь с низким сопротивлением для тока короткого замыкания во время замыкания линии на землю. Это помогает производить ток с достаточно большой величиной, чтобы защитные устройства могли быстро устранить повреждение. Заземление также используется для стабилизации напряжения между линией и землей во время нормальной работы и ограничивает напряжение во время аномальных скачков напряжения, таких как молния или случайный контакт с линиями более высокого напряжения.

    NEC содержит специальные статьи, которые диктуют, когда вы должны заземлять, когда вы не должны заземлять, и когда вам разрешено — но не обязательно — заземлять. Эти нормативные требования основаны на различных факторах, таких как наличие или отсутствие подключенной фазы к нейтрали, обслуживание установки только квалифицированным персоналом и уровни рабочего напряжения. Все эти цели помогают повысить безопасность и минимизировать ущерб. Важно отметить, что простое выполнение требования NEC (25 Ом) для заземления не гарантирует, что уровень сопротивления будет достаточно низким, чтобы гарантировать правильную работу чувствительной электроники; Устройства TVSS и любые другие устройства, использующие ссылку на землю.Многие приложения требуют менее 5 Ом, а некоторые — всего 1 Ом. При любых обстоятельствах «чем меньше сопротивление, тем лучше» при работе с чувствительным оборудованием. Однако не все энергосистемы надежно заземлены. В зависимости от требований NEC для данной системы может быть выбор между типами заземления; поэтому необходимо учитывать достоинства и недостатки каждого из них. Независимо от того, является ли выбор надежным, незаземленным или заземленным по сопротивлению, тип используемого заземления будет влиять на многие переменные.Единственное самое большое влияние — это величина тока, который может протекать из-за замыкания на землю, и возможные повреждения, которые ток может вызвать. (Информация предоставлена ​​NEC Digest)

    Дополнительная информация

    Свяжитесь с нами сегодня, чтобы узнать о решениях по повышению эффективности электрического оборудования и о возможности воспользоваться более чем 50-летним опытом Reading Electric.

    Система электроснабжения

    с помощью устройств защиты от перенапряжения SPD

    Базовая система электроснабжения, используемая в электроснабжении для строительных проектов, представляет собой трехфазную трехпроводную и трехфазную четырехпроводную систему и т. Д., Но смысл этих терминов не очень строгий.Международная электротехническая комиссия (МЭК) разработала единые положения для этого, и это называется системой TT, системой TN и системой IT. Какая система TN делится на систему TN-C, TN-S, TN-C-S. Ниже приводится краткое введение в различные системы электропитания.

    система электропитания

    В соответствии с различными методами защиты и терминологиями, определенными МЭК, низковольтные системы распределения электроэнергии делятся на три типа в соответствии с различными методами заземления, а именно системы TT, TN и IT, и описываются как следует.



    Система электропитания TN-C

    Система электропитания в режиме TN-C использует линию рабочей нейтрали в качестве линии защиты от перехода через нуль, которую можно назвать линией защиты нейтрали и обозначить как PEN.

    Система электропитания TN-CS

    Для временного электропитания системы TN-CS, если передняя часть питается по методу TN-C, а строительный кодекс указывает, что строительная площадка должна использовать TN-S система электропитания, общая распределительная коробка может быть разделена в задней части системы.Помимо линии PE, система TN-CS имеет следующие особенности.

    1) Рабочая нулевая линия N соединена со специальной защитной линией PE. Когда несимметричный ток линии велик, на нулевую защиту электрооборудования влияет нулевой потенциал линии. Система TN-C-S может снизить напряжение корпуса двигателя на землю, но не может полностью устранить это напряжение. Величина этого напряжения зависит от дисбаланса нагрузки проводки и длины этой линии.Чем больше несимметрична нагрузка и чем длиннее проводка, тем больше смещение напряжения корпуса устройства относительно земли. Следовательно, требуется, чтобы ток неуравновешенности нагрузки не был слишком большим и чтобы линия защитного заземления заземлялась повторно.

    2) Линия PE не может войти в устройство защиты от утечки ни при каких обстоятельствах, потому что устройство защиты от утечки на конце линии вызовет срабатывание переднего устройства защиты от утечки и вызовет крупномасштабный сбой питания.

    3) В дополнение к линии PE необходимо подключать к линии N в общей коробке, линия N и линия PE не должны подключаться в других отсеках.На линии защитного заземления нельзя устанавливать переключатели и предохранители, и заземление не должно использоваться в качестве защитного заземления. линия.

    С помощью приведенного выше анализа система электропитания TN-C-S была временно изменена в системе TN-C. Когда трехфазный силовой трансформатор находится в хорошем рабочем состоянии заземления и трехфазная нагрузка относительно сбалансирована, влияние системы TN-C-S на использование электроэнергии в строительстве все еще возможно. Однако в случае несбалансированной трехфазной нагрузки и специального силового трансформатора на строительной площадке необходимо использовать систему электропитания TN-S.

    Система электропитания TN-S

    Система электропитания режима TN-S — это система электропитания, которая строго отделяет рабочую нейтраль N от выделенной защитной линии PE. Она называется системой питания TN-S. Характеристики системы питания TN-S следующие.

    1) Когда система работает нормально, на выделенной линии защиты нет тока, но есть несимметричный ток на рабочей нулевой линии. На линии PE относительно земли нет напряжения, поэтому нулевая защита металлического корпуса электрооборудования подключена к специальной линии защиты PE, которая является безопасной и надежной.

    2) Рабочая нейтральная линия используется только как цепь однофазной осветительной нагрузки.

    3) Специальная защитная линия PE не может разрывать линию и не может попасть в реле утечки.

    4) Если устройство защиты от утечки на землю используется на линии L, рабочая нулевая линия не должна повторно заземляться, а линия PE имеет повторное заземление, но она не проходит через устройство защиты от утечки на землю, поэтому устройство защиты от утечки также может быть установлен на линии L источника питания системы TN-S.

    5) Система питания TN-S безопасна и надежна, подходит для систем электроснабжения низкого напряжения, таких как промышленные и гражданские здания. Перед началом строительных работ необходимо использовать систему электроснабжения TN-S.

    Система электропитания TT ​​

    Метод TT относится к системе защиты, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT. Первый символ T указывает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую связана с землей, независимо от того, как заземлена система.Любое заземление нагрузки в системе ТТ называется защитным заземлением. Характеристики этой системы питания следующие.

    1) Когда металлический корпус электрического оборудования заряжен (фазовая линия касается корпуса или изоляция оборудования повреждена и протекает), защита от заземления может значительно снизить риск поражения электрическим током. Однако низковольтные автоматические выключатели (автоматические выключатели) не обязательно срабатывают, в результате чего напряжение утечки на землю устройства утечки превышает безопасное напряжение, которое является опасным.

    2) При относительно небольшом токе утечки даже предохранитель может не перегореть. Следовательно, для защиты также требуется устройство защиты от утечки. Поэтому популяризировать систему TT сложно.

    3) Заземляющее устройство системы TT потребляет много стали, и его трудно утилизировать, время и материалы.

    В настоящее время некоторые строительные единицы используют систему ТТ. Когда строительная единица заимствует источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.

    Отделите линию PE новой добавленной специальной защитной линии от рабочей нулевой линии N, которая характеризуется:

    1 Отсутствует электрическое соединение между общей линией заземления и рабочей нейтральной линией;

    2 При нормальной работе рабочая нулевая линия может иметь ток, а линия специальной защиты не имеет тока;

    3 Система TT подходит для мест с сильно разбросанным защитным покрытием.

    Система электропитания TN

    Система электропитания режима TN Этот тип системы электропитания представляет собой систему защиты, которая соединяет металлический корпус электрооборудования с рабочим нулевым проводом.Она называется системой нулевой защиты и представлена ​​TN. Его особенности заключаются в следующем.

    1) После подачи питания на устройство система защиты от перехода через ноль может увеличить ток утечки до тока короткого замыкания. Этот ток в 5,3 раза больше, чем у системы ТТ. Фактически, это однофазное короткое замыкание, и предохранитель предохранителя перегорел. Расцепитель низковольтного выключателя немедленно отключится и отключится, что сделает неисправное устройство более безопасным и отключенным.

    2) Система TN экономит материалы и человеко-часы и широко используется во многих странах и странах Китая. Это показывает, что система TT имеет много преимуществ. В системе питания с режимом TN он делится на TN-C и TN-S в зависимости от того, отделена ли линия защитного нуля от рабочей нулевой линии.

    Принцип работы:

    В системе TN открытые проводящие части всего электрического оборудования подключены к защитной линии и подключены к точке заземления источника питания.Эта точка заземления обычно является нейтральной точкой системы распределения электроэнергии. Система питания системы TN имеет одну точку, которая напрямую заземлена. Открытая электропроводящая часть электрического устройства подключается к этой точке через защитный провод. Система TN обычно представляет собой трехфазную сеть с заземленной нейтралью. Его особенность в том, что открытая проводящая часть электрооборудования напрямую подключена к точке заземления системы. Когда происходит короткое замыкание, ток короткого замыкания представляет собой замкнутый контур, образованный металлической проволокой.Образуется металлическое однофазное короткое замыкание, приводящее к достаточно большому току короткого замыкания, чтобы защитное устройство могло надежно срабатывать для устранения повреждения. Если рабочая нейтральная линия (N) повторно заземляется, при коротком замыкании корпуса часть тока может быть отведена в точку повторного заземления, что может привести к сбою надежной работы защитного устройства или во избежание отказа, тем самым расширяя неисправность. В системе TN, то есть трехфазной пятипроводной системе, линия N и линия PE прокладываются отдельно и изолированы друг от друга, а линия PE подключается к корпусу электрического устройства вместо N-линия.Поэтому самое важное, о чем мы заботимся, — это потенциал провода PE, а не потенциал провода N, поэтому повторное заземление в системе TN-S не является повторным заземлением провода N. Если линия PE и линия N заземлены вместе, поскольку линия PE и линия N соединены в повторяющейся точке заземления, линия между повторяющейся точкой заземления и рабочей точкой заземления распределительного трансформатора не имеет разницы между линией PE и линия N. Исходная линия — это линия N.Предполагаемый ток нейтрали разделяется линией N и линией PE, а часть тока шунтируется через повторяющуюся точку заземления. Поскольку можно считать, что на передней стороне повторяющейся точки заземления нет линии PE, только линия PEN, состоящая из исходной линии PE и линии N, включенных параллельно, преимущества исходной системы TN-S будут потеряны, поэтому линия PE и линия N не могут быть общим заземлением. По указанным выше причинам в соответствующих правилах четко указано, что нейтральная линия (т.е. линия N) не должна заземляться повторно, за исключением нейтральной точки источника питания.

    IT-система

    IT-система питания I показывает, что сторона источника питания не имеет рабочего заземления или заземлена с высоким сопротивлением. Вторая буква T означает, что электрическое оборудование на стороне нагрузки заземлено.

    Система электроснабжения в режиме IT отличается высокой надежностью и хорошей безопасностью, когда расстояние до источника питания невелико. Обычно он используется в местах, где отключение электроэнергии не разрешено, или в местах, где требуется строгое постоянное электроснабжение, например, в сталеплавильном производстве, в операционных в крупных больницах и в подземных шахтах.Условия электроснабжения в подземных шахтах относительно плохие, а кабели подвержены воздействию влаги. При использовании системы с питанием от IT, даже если нейтральная точка источника питания не заземлена, после утечки в устройстве относительный ток утечки на землю остается небольшим и не нарушит баланс напряжения источника питания. Следовательно, это безопаснее, чем система заземления нейтрали источника питания. Однако, если источник питания используется на большом расстоянии, распределенную емкость линии электропитания относительно земли нельзя игнорировать.Когда короткое замыкание или утечка нагрузки приводят к тому, что корпус устройства становится под напряжением, ток утечки образует путь через землю, и устройство защиты не обязательно срабатывает. Это опасно. Это безопаснее, только если расстояние от источника питания не слишком велико. На стройплощадке такой вид электроснабжения встречается редко.

    5 способов заземления печатных плат и 6 типов заземления в цепях

    Что такое заземление? Провод заземления или цепь заземления — это путь возврата тока к электрическому или электронному источнику питания.В цепи он действует как эталон или плоскость 0 В. Обычно все остальные напряжения измеряются относительно земли. Объем заземления не ограничивается только текущим обратным путем. В электроэнергетических системах правильное заземление важно для защиты людей и имущества. А печатная плата (PCB), имеющая заземляющий слой, блокирует электромагнитные помехи (EMI) и улучшает рассеивание тепла в электронике. Для правильной работы систем молниезащиты и защиты от перенапряжения необходимо надлежащее заземление.

    Способы заземления могут различаться в зависимости от области применения, местоположения и даже страны. Здесь мы собираемся обсудить методы заземления, используемые в электронной и электротехнической промышленности, а также все основные типы заземления.

    Какие методы используются для заземления печатных плат?

    Существует несколько методов заземления на печатных платах. Эти методы различаются в зависимости от схемы применения и практики проектирования инженеров печатных плат.

    • Метод первый: следы земли

    Все компоненты, которые подключаются к земле, соединены вместе с помощью общих проводов. Это часто встречается в старых и простых печатных платах.

    • Метод второй: Плоскость общего заземления

    Это наиболее распространенная практика при проектировании печатных плат. Свободное пространство печатной платы, не занятое дорожками или компонентами, закрывается с земли. Этот метод значительно улучшает тепловые характеристики печатной платы, а также помогает снизить электромагнитные помехи (EMI).

    • Метод третий: выделенный слой заземления

    Этот метод используется в многослойных печатных платах. Компоненты подключаются к заземляющей пластине через заземляющие переходные отверстия. Встречается в плотных сложных печатных платах с 3 и более слоями.

    • Метод четвертый: Заземление систем электроснабжения

    В установках энергосистемы все заземляющие соединения подключаются к шине заземления. Эта шина подключается к заземляющему проводу, который соединяется с заземляющим стержнем или сеткой.

    Шина заземления собирает все провода заземления всех установок в общую точку. Сопротивление заземления в этой точке должно быть ниже 5 Ом, чтобы обеспечить лучшее заземление. Для соединения шины заземления с заземляющим устройством используется провод большого сечения. (Земляной стержень и земляная сетка)

    • Метод пятый: эквипотенциальное заземление или заземление

    Эквипотенциальное заземление означает, что каждый проводящий элемент в защищенной зоне должен иметь одинаковый потенциал земли.Это достигается путем электрического соединения шасси оборудования, металлических труб и всех заземляющих устройств. Это гарантирует отсутствие значительной разницы потенциалов между любыми проводящими частями в зоне и предотвращает поражение электрическим током во время короткого замыкания.

    Типы разных оснований

    Это заземление является общим как для переменного, так и для постоянного напряжения. Это текущий обратный путь электронной схемы. Без заземления контур цепи не будет полным. На электронных схемах это заземление обозначается следующим символом.

    Компоненты, которые имеют ссылку на землю (0 В), обозначаются путем подключения его контрольного контакта к вышеуказанному символу. А в реализации все клеммы, которые подключены к земле (GND), соединены вместе. Так как заземляющих соединений предостаточно. Обычно печатные платы (PCB) имеют целую плоскость, предназначенную для земли, о которой мы поговорим позже в этой статье.

    Этот символ используется в электронике и крупных электроэнергетических системах для обозначения заземляющего соединения.На изображении ниже вы можете видеть, что большие трансформаторы привязаны к земле. Разница в том, что эти заземляющие соединения часто заземляются заземляющим стержнем или сеткой. Мы расскажем больше об этих типах заземления в разделе «Методы заземления энергосистемы».

    Сигнальная земля — ​​это ссылка на любой аналоговый или цифровой сигнал, который используется в цепи. В большинстве случаев земля сигнала равна силе заземления. Но в некоторых случаях сигналы в цепи используют другое изолированное заземление для возврата сигнальных токов.Это приводит к определению отдельной земли для сигналов. Их можно найти в чувствительном оборудовании и измерительных приборах.

    Этот тип заземления обычно используется в операционных усилителях. Точка виртуального заземления (узел) не подключается напрямую к пути возврата тока заземления (GND), но поддерживается в соответствии с опорным потенциалом земли. Виртуальная земля используется для анализа функциональности операционных усилителей.

    При рассмотрении потенциала виртуальной земли на землю и в предположении, что операционный усилитель не потребляет ток, получается следующее соотношение.

    • Заземление для защиты от перенапряжения и молний

    Системы молниезащиты (LPS) и системы защиты от перенапряжения нуждаются в надежном заземлении для безопасного рассеивания высоких токов. Эти пути заземления имеют очень низкое сопротивление и часто привариваются к конструкционной стали здания и заземляются с помощью нескольких стержней заземления или сетки заземления. Между землей электрического источника питания и землей LPS используется эквипотенциальное соединение, чтобы избежать разницы напряжений между клеммами заземления.

    • Заземление в системе электроснабжения

    Заземление в энергосистеме различается в зависимости от страны. Эти различные типы регулируются Международной электротехнической комиссией (IEC). Но в каждой стране есть свои практики и правила. Основная цель заземления в системе электроснабжения — обеспечение безопасности. Здесь мы говорим о заземлении низковольтных систем или системы распределения электроэнергии.

    Эти различные схемы заземления обозначаются двухбуквенными кодами.

    Первая буква указывает схему заземления источника питания. (Распределительный трансформатор)

    • T — Прямое подключение к земле
    • I — Нет прямого подключения к земле
    • T — Прямое подключение к земле. (Обычно заземляющий стержень или сетка)
    • N — Земля питается от электросети.

    Есть 3 основные категории, образованные из вышеупомянутых договоренностей. Это TT, TN и IT.

    Системы

    TN имеют 3 подкатегории, которые определяются расположением заземляющего проводника (PE) и нейтрального проводника.

    • TN-S — заземляющий провод и нейтраль идут как отдельные проводники и соединяются рядом с источником питания.
    • TN-C — Земля и нейтраль объединены в один провод, называемый PEN.
    • TN-C-S — Земля и нейтраль объединяются от источников питания как PEN, и когда он достигает здания потребителя, он разделяется на два отдельных проводника заземления и нейтрали.

      Плавающее заземление возникает, когда система не имеет надежного заземления. Следовательно, напряжение в заземляющих выводах и проводниках не определено. Непреднамеренное плавающее заземление считается неисправностью в системе (потенциальный разрыв в системе заземления). Но есть приложения, в которых плавающий грунт используется намеренно.

      В источниках низкого напряжения и испытательных приборах изолирующие трансформаторы используются для изоляции низковольтного заземления от основной системы заземления с целью повышения безопасности.Благодаря плавающему заземлению стороны низкого напряжения, он избегает пути тока заземления от основного источника питания. Это обеспечивает электробезопасность в случае неисправности на стороне низкого напряжения.

      Ищете надежного производителя печатных плат? — PCBONLINE

      Когда вы закончите проектирование печатной платы, вы можете спросить PCBONLINE для производства вашей печатной платы. Когда они получат ваш запрос предложения, они проверит ваши файлы Gerber, чтобы избежать таких проблем, как неправильное заземление.Это бесплатно. Причины выбора PCBONLINE — это их высококачественные печатные платы и сборки, комплексные услуги по производству электроники и быстрая доставка. Вы можете получить бесплатное предложение онлайн.


      Важность заземления | ASEA Power Systems

      Что такое заземление?

      В электрической системе переменного тока провод, отводящий токи короткого замыкания, называется заземляющим проводом. Заземление оборудования позволяет GFCI (прерыватель цепи замыкания на землю) отключать цепь и не позволяет току замыкания наэлектризовать заземленную поверхность.Существует три основных типа заземления, связанных с преобразованием энергии от берега.

      Наземное оборудование

      Как упоминалось выше, заземление оборудования необходимо для перенаправления тока короткого замыкания. Каждый береговой преобразователь мощности должен иметь собственный терминал заземления оборудования, подключенный к корпусу судна.

      Shore Ground

      Береговое заземление берет начало в доке и подключается только к защитному экрану входного трансформатора через соединение берегового заземления.

      LV Общий

      Общая земля LV используется для всех слабосигнальных цепей переменного и постоянного тока. Для параллельных преобразователей с конфигурацией TN-S этот тип заземления осуществляется через заземление оборудования. Для параллельных преобразователей в конфигурации IT это заземление выполняется с помощью отдельного трехжильного кабеля, проходящего между шкафами преобразователя.

      Почему это важно?

      Согласно статистике, предоставленной ESFI, в период с 2003 по 2007 год поражение электрическим током занимало 6-е место среди наиболее частых причин несчастных случаев со смертельным исходом на рабочем месте.Для борьбы с опасностью несчастных случаев, связанных с электричеством, OSHA опубликовало специальные правила заземления, включая требования, относящиеся к верфям и общим морским операциям.

      Безопасность и соответствие

      Когда береговая энергия поступает на лодку, она также может попасть в воду, окружающую лодку; это создает серьезную опасность поражения электрическим током для находящихся поблизости пловцов. Утечка тока короткого замыкания также может привести к электризации близлежащих поверхностей и подвергнуть опасности всех, кто находится на борту корабля, а также оборудование.Заземление электрических систем значительно снижает риск смертельного поражения электрическим током. Правильное заземление также защищает бортовое оборудование от серьезных повреждений.

      Проблемы, вызванные заземлением

      Хотя земля обеспечивает путь для возврата тока короткого замыкания к источнику, она также подвергает лодку электрогальваническому воздействию. Электро-гальваника вызывает гальваническую коррозию, разъедает дорогое металлическое оборудование. Для борьбы с этим побочным эффектом стало стандартной практикой использовать трансформаторы с гальванической развязкой, такие как те, что есть в каждом преобразователе мощности берегового питания ASEA.Изолирующие трансформаторы также обеспечивают непрямое соединение с лодкой через магнитное поле для повышения безопасности и защиты от поляризации.

      Узнайте больше о том, как изолирующие трансформаторы могут защитить вас и вашу лодку здесь.

      Итог

      Заземление необходимо для электрических систем на борту любого судна, чтобы:

      1. Предотвратить потенциально смертельные удары на борту и в воде.
      2. Защитите бортовое оборудование от дорогостоящих электрических повреждений.
      3. Соблюдайте с местными требованиями, чтобы избежать сборов и переделок.


      Список литературы

      Чао, Э. Л. (2002). Контроль опасности поражения электрическим током. Получено из Министерства труда США: https://www.osha.gov/Publications/3075.html

      ESFi. (2018). Статистика травм и смертельных случаев на рабочем месте. Получено из Международного фонда электробезопасности: https: //www.esfi.организация / статистика травм и смертей на рабочем месте

      OSCHA.

      Разное

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *