+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Принцип работы термопары, определение, типы и виды термопар, схемы работы термопары, способы подключения

Термопара — термоэлектрический преобразователь — это два разных сплава металла (проводники) которые образуют замкнутую цепь (термоэлемент). Термопара — один из наиболее распространенных в промышленности температурный датчик. Применяется в любых сферах промышленности, автоматики, научных исследованиях, медицине — везде, где нужно измерять температуру. Так же применяется в термоэлектрических генераторах для преобразования тепловой энергии в электрическую.

Действие термопары основано на эффекте, который впервые был открыт и описан Томасам Зеебеком в 1822 г. — термоэлектрический эффект или эффект Зеебека. В замкнутой цепи, состоящей из разнородных проводников, возникает термоэлектрический эффект (термо-ЭДС), если места контактов поддерживают при разных температурах. Цепь, которая состоит только из двух различных проводников, называется термоэлементом или термопарой. В сочетании с электроизмерительным прибором (милливольтметром, потенциометром и т. п.), термопара образует термоэлектрический термометр.

Измерительный прибор подключают либо к концам термоэлектродов, либо в разрыв одного из них. В среду, которую контролируют, помещают рабочий спай, а свободные концы подсоединяются к измерительному прибору. Чем больше различие между свойствами проводников и тепловой перепад на концах, тем выше термо-ЭДС.

По-простому — термопара это две проволоки из разнородных металлов (например, Хромель и Копель), сваренных или скрученных между собой. Место сварки (скрутки) называется рабочий спай Т1, а места соединения с измерительным прибором Т2 называют холодными спаями. То есть рабочий спай помещают в среду, температуру которой необходимо измерить, а холодные спаи подключают к приборам (милливольтметр). Но надо знать прибор — например, ИРТ 7710 не меряет температуру рабочего спая, он меряет разницу температур холодного и рабочего спаев. Это значит простым милливольтметром (тестером) мы можем узнать, поступает ли сигнал с рабочего спая (есть обрыв или нет), узнать где у термопары плюс (+) а где (-), примерно узнать какой тип термопары (но для этого нужен точный милливольтметр).

Типы, виды термопар

Типы российских термопар приведены в ГОСТ 6616-94.

Почему российские термопары? Термопара ТХК, то есть Хромель-Копель была придумана в СССР и сейчас выпускается только у нас и в странах СНГ. Не известно почему, но везде пишут ХК (L) — в скобках подразумевается международный тип, но это не так — на западе тип L это (Fe-CuNi). Может быть, они чем то и похожи по названию металлов входящих в сплав, но самое главное — у них разные таблицы НСХ. Мы с этим столкнулись, заказывая термопару из Италии. Наш совет — когда закупаете термопарный провод или кабель, сравнивайте таблицы НСХ, т.е. номинальные статические характеристики преобразователя ГОСТ Р 8.585-2001.

Таблица соответствия типов отечественных и импортных термопар

Тип температурного датчика

Сплав элемента

Российская маркировка температурных датчиков

Температурный диапазон

 

Термопара типа ТХК — хромель, копель (производства СССР или РФ)

хромель, копель

-200 … 800 °C

Термопара типа U

медь-медьникелевые

 

-200 … 500 °C

Термопара типа L

хромель, копель

ТХК

-200 … 850 °C

Термопара типа B

платинородий — платинородиевые

ТПР

100 … 1800 °C

Термопара типа S

платинородий — платиновые

ТПП

0 … 1700 °C

Термопара типа R

платинородий — платиновые

ТПП

0 … 1700 °C

Термопара типа N

нихросил нисил

ТНН

-200 … 1300 °C

Термопара типа E

хромель-константановые

ТХКн

0 … 600 °C

Термопара типа T

медь — константановые

ТМК

-200 … 400 °C

Термопара типа J

железо — константановые

ТЖК

-100 … 1200 °C

Термопара типа K

хромель, алюмель

ТХА

-200 … 1300 °C


Таблица ANSI Code (Американский национальный институт стандартов) и IEC Code (Международная электротехническая комиссия — МЭК)

В настоящее время в её состав входят более 76 стран (наша в том числе).

eltermo.ru

принцип работы, устройство, типы и виды, проверка работы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю – «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С – керамика с повышенным содержанием Al2O3, свыше 1400°С – керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.

odinelectric.ru

Термопары. Виды и состав. Устройство и принцип действия

Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.

Устройство

На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.

Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик. Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку. С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.

Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.

Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость. Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500 градусов. Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.

В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.

Принцип действия

Работа рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.

Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.

При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.

Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед. Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения. Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.

Разновидности

Температурные датчики на основе термопары разделяются по типу применяемых металлов.

Термопары из неблагородных металлов
Железо-константановые
  • Достоинством стала низкая стоимость.
  • Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
  • После термического старения показатели измерений возрастают.
  • Наибольшая допустимая температура использования +500 градусов, при более высокой температуре выводы очень быстро окисляются и разрушаются.
  • Железо-константановый вид является наиболее подходящим для вакуумной среды.
Хромель-константановые
  • Способны работать при пониженных температурах.
  • Материалы электродов обладают термоэлектрической однородностью.
  • Их достоинство – повышенная чувствительность.
Медно-константановые термопары
  • Оба электрода отожжены для создания термоэлектрической однородности.
  • Не восприимчивы к высокой влажности.
  • Нецелесообразно применять при температурах, превышающих 400 градусов.
  • Допускается применение в среде с недостатком или избытком кислорода.
  • Допускается применение при температуре ниже 0 градусов.
Хромель-алюмелевые термопары

  • Серная среда вредно влияет на оба электрода термодатчика.
  • Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
  • Снижение показаний после термического старения.
  • Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
  • В интервале 200-500 градусов появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5 градусов.
  • Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.
Нихросил-нисиловые
  • Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
  • Повышенная стабильность функционирования при температурах 200-500 градусов. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
  • Допускается работа в течение короткого времени при температуре 1250 градусов.
  • Рекомендуемая температура эксплуатации не превышает 1200 градусов, и зависит от диаметра электродов.
  • Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.
Термодатчики из благородных металлов
Платинородий-платиновые

  • Наибольшая рекомендуемая температура эксплуатации 1350 градусов.
  • Допускается кратковременное использование при 1600 градусах.
  • Нецелесообразно использовать при температуре менее 400 градусов, так как ЭДС будет нелинейной и незначительной.
  • При температуре более 1000 градусов термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Способны работать в окислительной внешней среде.
  • Если температура работы более 900 градусов, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.
Платинородий-платинородиевые
  • Оптимальная наибольшая рабочая температура 1500 градусов.
  • Нецелесообразно использование при температуре менее 600 градусов, где ЭДС нелинейная и незначительная.
  • Допускается кратковременное использование при 1750 градусах.
  • Может применяться в окислительной внешней среде.
  • При температуре 1000 и более градусов термопара загрязняется кремнием, поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Загрязнение железом, медью и кремнием ниже, по сравнению с предыдущими видами.

Преимущества

  1. Прочность и надежность конструкции.
  2. Простой процесс изготовления.
  3. Спай датчика можно заземлять или соединять с объектом измерения.
  4. Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.

Недостатки

  • Материал электродов реагирует на химические вещества, и при плохой герметичности корпуса датчика, его работа зависит от атмосферы и агрессивных сред.
  • Градуировочная характеристика изменяется из-за коррозии и появления термоэлектрической неоднородности.
  • Требуется проверять температуру холодных спаев. В новых устройствах измерительных приборов на базе термодатчиков применяется измерение холодных спаев полупроводниковым сенсором или термистором.
  • На большой длине удлинительных и термопарных проводников может появляться эффект «антенны» для имеющихся электромагнитных полей.
  • ЭДС зависит от температуры по нелинейному графику, что затрудняет проектирование вторичных преобразователей сигнала.
  • Если серьезные требования предъявляются к времени термической инерции термодатчика, и требуется заземлять спай, то необходимо изолировать преобразователь сигнала, чтобы не было утечки тока в землю.
Рекомендации по эксплуатации

Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия:

  • Не допускать вибраций и механических натяжений термопарных проводников.
  • При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники.
  • Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта.
  • Использовать термодатчик только в интервале рабочих температур.
  • Избегать резких перепадов температуры по длине термодатчика.
  • При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода.
  • Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.
  • Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов.
  • Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур.
  • Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.
Похожие темы:

electrosam.ru

особенности, описание, виды и принцип работы термоэлектрических датчиков

Термопара — это термоэлектрический преобразователь. Иными словами – это прибор, используемый для измерения температур в разных областях: в медицине, в промышленности, науке, в системах автоматики, а также в быту. В настоящее время термопары широко распространены и применяются практически повсюду. На практике чаще всего ис­пользуются термопары K типа, а также J и Т. С их помощью измеряют температуры воды, воздуха, газов, смазочных материалов и так далее.

Классификация по типам

При желании возможно создать такой прибор даже самостоятельно. Однако следует все же знать некоторые особенности таких преобразователей, их различие по типу применяемых материалов. А классифицируются виды термопар так:

  1. Тип E. Используется сплав хромель – константан. Эти датчики обладают высокой чувствительностью – до 68 мкВ/°C. Подходят для криогенного использования. Температуры, при которых возможно применение, колеблются от -50 °C до +740 °C.
  2. Тип J. Здесь применяют состав железо – константан. Используются для условий в температурных диапазонах от -40 °C до +750 °C. Имеет повышенную производительность –50 мкВ / °С.
  3. Термопары типа K выполняются на основе сплава хромеля и алюминия. Это, несомненно, самые популярные датчики широкого назначения. Обладают производительностью до 41 мкВ/°C. Применяются в температурных диапазонах от -200 °С до +1350 °C. В неокисляющих и инертных условиях датчики типа K используются до 1260 °C.
  4. Тип M. Эти термопары применяются в основном в вакуумных печах. Используются при температурах до +1400 °C.
  5. Регуляторы типа N — никросил-нисиловые. Они стабильны и стойки к окислению, имеют производительность 39 мкВ/ °C. Поэтому их используют при температурах от -270 °C до +1300 °C.
  6. Устройства типов B, R и S выпускаются из сплава родия и платины. Класс B, R и S — датчики довольно дорогие и имеют низкую производительность: всего 10 мкВ/° C. Используются благодаря высокой надежности исключительно для измерения высоких температур.
  7. Датчики на основе сплавов рения и вольфрама. В основном они работают в автоматике промышленных процессов, в производстве водорода и так далее. Не рекомендуется применять в кислотных средах.

Технические характеристики прибора

Примечательно, что термопарам не нужны никакие дополнительные источники питания. Они применяются для измерения температур достаточно большого диапазона: от -200 °C до +2000 °C. При этом они обладают меняющимися параметрами. Проблематично еще и то, что надо учитывать влияние температуры свободных концов на заключительные результаты измерений. Помимо этого, низкое выходное напряжение требует достаточно точных усилителей.

Ярким примером использования приборов, созданных по принципу термопар, служат компактные цифровые термометры. В настоящее время — это основной и, пожалуй, самый массовый прибор для осуществления статических и динамических измерений.

Выходным сигналом термопары является постоянное напряжение. Он достаточно просто преобразуется в цифровой код. А затем его можно измерить с помощью простейших приборов. Для этих целей можно взять, к примеру, малогабаритный цифровой мультиметр.

Измерительные приборы на основе термопар отличает высокая точность и чувствительность, а также правильность характеристик преобразования. Обычно напряжение на выходе колеблется от 0 до 50 мВ, а типичная производительность — от 10 до 50 мкВ/°C. Все зависит от используемых в датчике материалов.

Основной принцип работы

В основу принципа работы термопары положен термоэлектрический эффект, называемый иначе эффект Зеебека. Он гласит, что когда проводник подвергается воздействию, соответственно изменяется его сопротивление и напряжение.

Принцип действия термопары состоит в том, что если соединить последовательно два разнородных металлических проводника, то при этом образуется замкнутая электрическая цепь. Если затем нагреть это соединение, то в цепи возникнет электродвижущая сила (термо-ЭДС). Под ее воздействием в замкнутой цепи и возникает электрический ток.

Место нагрева, как правило, называют горячим спаем, соответственно холодный спай не нагревается. Значение термо-ЭДС измеряется путем подключения в разрыв электрической цепи гальванометра или микровольтметра. То есть она напрямую зависит от разности температур между холодным и горячим спаем.

Вследствие нагревания места соединения проводников термопары между свободными концами образуется разность потенциалов. Она легко преобразовывается в цифровой код. Возникает возможность определения температуры нагрева на месте соединения проводников.

Для точности проведения измерений холодный спай должен всегда иметь неизменную температуру. Поскольку этого довольно сложно добиться, применяются компенсационные схемы.

Достоинства и недостатки

Термопары обладают многими достоинствами в сравнении с аналогичными термоэлектрическими датчиками температуры. К плюсам, например, относят:

  • простая конструкция;
  • прочность;
  • надёжность;
  • универсальность;
  • низкая стоимость;
  • можно пользоваться в самых разных условиях;
  • можно измерять самые разные температуры;
  • точность произведенных измерений.

Однако, как и любой другой прибор, эти датчики имеют свои недостатки:

  • довольно низкое напряжение на выходе;
  • нелинейность.

Измерение температур с использованием термопар, изобретенное еще в XIX веке, достаточно широко применяется в современном производстве. Кроме того, существуют такие сферы деятельности, где применение этих датчиков становится порой единственным возможным способом получения необходимых измерений.

220v.guru

принцип действия, схемы, таблица типов термопар и т.д.

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара
Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными. Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр

kipiavp.ru

Все, что нужно знать о термопарах


НОВИНКА!

Термопара (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики для измерения температуры. Термопара (термоэлектрический преобразователь) — это два проводника из разных материалов, спаянных с одной стороны (горячий спай) и свободных с другой стороны (холодный спай- условный спай). Приспособление несложное, и принцип действия тоже – когда термопара нагревается или охлаждается, разные металлы меняют температуру с разной скоростью, и разница позволяет возникнуть термоэлектродвижущей силе (ЭДС), или, говоря другими словами, происходит эффект Зеебека. Благодаря этому удается измерить температуру.

Непосредственное участие в измерении ложится на горячий спай, а свободные концы подключаются к измерительному прибору. Главной характеристикой термопар, является их Тип, который определяется разновидностью спаянных металлов.

На прибор от термопары поступает напряжение в милливольтах, которое он сопоставляет с таблицей напряжений (согласно типу термопары), таблица заложена в памяти прибора и отражает текущее значение измерения.

Таблица для Тип K (NiCr-Ni)

Typ K

Temp. oC

0 -10 -20 -30 -40 -50 -60 -70 -80 -90
-200.00 -5,891 -6,035 -6,158 -6,262 -6,344 -6,404 -6,441 -6,458    
-100.00 -3,553 -3,852 -4,138 -4,410 -4,669 -4,912 -5,141 -5,354 -5,550 -5,730
0   -0,392 -0,777 -1,156 -1,527 -1,889 -2,243 -2,586 -2,920 -3,242
  0 10 20 30 40 50 60 70 80 90
0   0,397 0,796 1,203 1,611 2,022 2,436 2,850 3,266 3,681
100 4,095 5,549 4,919 5,327 5,733 6,137 6,539 6,939 7,338 7,737
200 8,137 8,537 8,938 9,341 9,745 10,151 10,560 10,969 11,381 11,793
300 12,207 12,623 13,039 13,456 13,874 14,292 14,712 15,132 15,552 15,974
400 16,395 16,818 17,241 17,664 18,088 18,513 18,938 19,363 19,788 20,214
500 20,640 21,066 21,493 21,911 22,346 22,772 23,198 23,624 24,050 24,476
600 24,902 25,327 25,751 26,176 26,599 27,022 27,445 27,867 28,288 28,709
700 29,128 29,547 29,965 30,383 30,799 31,214 31,629 32,042 32,455 32,866
800 33,277 33,686 34,095 34,502 34,909 35,314 35,718 36,121 36,524 36,925
900 37,325 37,724 38,122 38,519 38,915 39,310 39,703 40,096 40,488 40,879
1000 41,269 41,657 42,045 42,432 42,817 43,202 43,585 43,968 44,349 44,729
1100 45,108 45,486 45,863 46,238 46,612 46,985 47,356 47,726 48,095 48,462
1200 48,828 49,192 49,555 49,916 50,276 50,633 50,990 51,344 51,697 52,049
1300 52,398 52,747 53,093 53,439 53,782 54,125 54,466 54,807    
Таблица для Тип J (Fe-CuNi)

Typ J

Temp. oC

0 -10 -20 -30 -40 -50 -60 -70 -80 -90
-200,00 -7,890 -8,096                
-100,00 -4,632 -5,016 -5,426 -5,801 -6,159 -6,499 -6,821 -7,122 -7,402 -7,659
0 0,000 -0,501 -0,995 -1,481 -1,960 -2,431 -2,892 -3,344 -3,785 -4,215
  0 10 20 30 40 50 60 70 80 90
0 0 0,507 1,190 1,536 2,058 2,585 3,115 3,649 4,186 4,725
100 5,269 5,812 6,590 6,907 7,457 8,008 8,560 9,113 9,667 10,222
200 10,777 11,332 11,887 12,442 12,998 13,553 14,108 14,663 15,217 15,771
300 16,325 16,879 17,432 17,984 18,537 19,089 19,640 20,192 20,743 21,295
400 21,846 22,397 22,949 23,501 24,054 24,607 25,161 25,716 26,272 26,829
500 27,388 27,949 28,511 29,075 29,642 30,210 30,782 31,356 31,933 32,513
600 33,096 33,683 34,273 34,867 35,464 36,066 36,671 37,280 37,893 38,510
700 39,130 39,754 40,382 41,013 41,647 42,283 42,922 43,563 44,207 44,852
800 45,498 46,144 46,790 47,434 48,076 48,716 49,354 49,989 50,621 51,249
900 51,875 52,496 53,115 53,729 54,341 54,948 55,553 50,155 56,753 57,349
1000 57,942 58,533 59,121 59,708 60,293 60,876 61,459 62,039 62,619 63,199
1100 63,777 64,355 64,933 65,510 66,087 66,664 67,240 67,815 68,390 68,964
1200 69,536                  
Таблица для Тип L (Fe-CuNi)

Typ L

Temp. oC

0 -10 -20 -30 -40 -50 -60 -70 -80 -90
-200,00 -8,15                  
-100,00 -4,75 -5,15 -5,53 -5,9 -6,26 -6,6 -6,93 -7,25 -7,56 -7,86
0 0 -0,51 -1,02 -1,53 -2,03 -2,51 -2,98 -3,44 -3,89 -4,33
  0 10 20 30 40 50 60 70 80 90
0 0 -0,52 -1,05 -1,58 -2,11 -2,65 -3,19 -3,73 -4,27 -4,82
100 5,37 5,92 6,47 7,03 7,59 8,15 8,71 9,27 9,83 10,39
200 10,95 11,51 12,07 12,63 13,19 13,75 14,31 14,88 15,44 16
300 16,56 17,12 17,68 18,24 18,8 19,36 19,92 20,48 21,04 21,6
400 22,16 22,72 23,29 23,86 24,43 25 25,57 26,14 26,71 27,28
500 27,85 28,43 29,01 29,59 30,17 30,75 31,33 31,91 32,49 33,08
600 33,67 34,26 34,85 35,44 36,04 36,64 37,25 37,85 38,47 39,09
700 39,72 40,35 40,98 41,62 42,27 42,92 43,57 44,23 44,89 45,55
800 46,22 46,89 47,57 48,25 48,94 49,63 50,32 51,02 51,72 52,43

Периодически у многих клиентов возникают проблемы с определением типа термопары, когда нет описательных характеристик и необходимо подобрать замену или аналог. Решить ее довольно просто, главное знать принципы классификации термопар. В системе классификации термоэлементов есть цветовая маркировка изоляции проводников.

Например, европейская классификация по сплавам для термопар Тип L (Fe-CuNi) и Тип J (Fe-CuNi) одинаковая, очень важно понимать что они не взаимозаменяемые и напряжение на выходе при одной и той же температуре у этих термопар будет разное. Таблица стандартов по цветовой маркировке изоляции проводов будет очень полезна в определении типа термопары, если нет никакой маркировки.

Также необходимо отметить разновидность исполнения сенсорной части (горячего спая) термопар. Они бывают с изолированным и неизолированным рабочим спаем.

Показатель быстродействия при измерении температуры у неизолированной термопары выше, чем у изолированной. Но при этом усложняется схема подключения и требуются изолированные модули ввода. Поскольку разница в быстродействии не столь существенна, в основном используются термопары с изолированным спаем.

Как и все измерители температуры, термопары имеют классификацию по точности.

Для примера классы точности Тип K и Тип J, самых распространенных в использовании термопар

Класс 1: ±1.5 °C или ±0.004 x T (Тип K: -40 до +1000 °C), (Тип J :-40 до +750 °C)

Класс 2: ±2.5 °C или ±0.0075 x T (Тип K: -40 до +1200 °C), (Тип J :-40 до +750 °C)

Технические характеристики наиболее популярных термоэлектрических преобразователей (термопар) в соответствии с ГОСТ 3044 приведены в таблице:

Тип термопары НСХ термопары Материал положительного термоэлектрода Материал отрицательного термоэлектрода Диапазон измеряемых температур, °C Рабочий диапазон температур, °C

ТХК

Тип L

XK (L) Сплав хромель НХ9,5 (90,5% Ni + 9,5% Cr) Сплав копель МНМц 43-0,5 (56% Cu + 44% Ni) -200…800 -200…600

ТХA

Тип K

ХА (K) Сплав хромель НХ9,5(90,5% Ni + 9,5% Cr) Сплав алюмель НМц АК 2-2-1 (94,5% Ni + 5,5% Al, Si, Mn, Co) -200…1300 -200…1000

ТЖК

Тип J

ЖК (J) Железо (Fe) Сплав константан (55% Cu + 45% Ni, Mn, Fe) -200…900 -200…700

ТПП

Тип S

ПП (S) Сплав платинородий ПР-10 (90% Pt + 10% Rh) Платина (Pt) 0…1600 0…1300

ТПР

Тип B

ПР (B) Сплав платинородий ПР-30 (70% Pt + 30% Rh) Сплав платинородий ПР-6 (94% Pt + 4% Rh) 300…1800 300…1600

Многие клиенты заблуждаются в том, что если типу термопары соответствует рабочий диапазон, например, 1200оС, то все модели термопары с этим типом будут работать в данном диапазоне. Незащищенный спай термопары быстро выгорит, и термопара выйдет из строя. Именно поэтому, сообразно задачам в измерении и рабочим диапазонам, есть разные по конструктиву и степени защиты модели термопар. Самой распространенной защитой для спая/термопары является металлический чехол или гильза из сплава Инконель 600 (2.4816, жаропрочный сплав на никелевой основе). Изоляцией для спая служит окись магния (MgO), сжатая под давлением. Такая защита делает термопару устойчивой к самым экстремальным условиям эксплуатации (повышенное давление, вибрация, сотрясения), позволяет выдерживать высокие механические нагрузки и обеспечивает долгий срок службы термопары, а также в зависимости от диаметра позволяет термопаре быть гибкой.

Ярким примером такой термопары, которая достаточно универсальна в своем прикладном характере, является термопара в жаропрочной оболочке MKG/E:

Поскольку сферы применения термопар очень многогранны, то и модификации термопар имеют достаточное многообразие.

Например, для измерения температуры вязких веществ в экструдерах или измерении температуры подшипников, часто используются байонетные термопары. Такие, как BF1/T или BF2/T.

В пищевой промышленности часто используются прокалывающие термопары, для измерения температуры продукта. Это может быть просто необходимым условием, чтобы соблюдать технологический процесс.

Обращаем ваше внимание на то, что очень часто для сохранения точности в измерении температуры посредством термопар, требуются особые компоненты для их подключения, это коннекторы и компенсационный кабель.

Коннектор для термопар Тип K, J

Модель: ST/E

  • TE-разъем папа/мама
  • размер Мини/Стандарт
Предназначены для быстрого и надежного подсоединения термопар к измерительным приборам большинства производителей измерительной техники. Подсоединение имеет полярность.читать подробнее…
Компенсационный кабель для термопар

Модель: ALK/E

  • для термопар Тип К, J, L
  • силиконовая изоляция (-50…+200°C)
  • стекловолоконная изоляция (-50…+400°C)
  • ПВХ изоляция (-30…+105°C)
Подключение термопар (термоэлектрических преобразователей) к функциональным и вторичным приборам происходит посредством компенсационных проводов.читать подробнее…

Термопары самых различных модификаций Вы сможете найти в нашем каталоге, это позволит решить вам задачи по измерению температуры с уверенностью в надежности и качестве.

Важно отметить, что немецкая компания FuehlerSysteme может изготовить для вас термопары по вашим чертежам и с учетом ваших пожеланий, в том числе в минимальных количествах, небольшими партиями, ведь ни для кого не секрет, что термопары очень часто требуется подобрать под индивидуальные нужды клиента.

Нам по силам: изменить диаметр и длину измерительной части, увеличить до необходимого длину кабеля и подобрать его изоляцию. Возможно изготовление индивидуальных модификаций по вашим чертежам.

 

Область применения термопар очень широка, и, как правило, заменить их нельзя никаким другим прибором. Вот лишь некоторые из способов использования термопар:

  • промышленность и наука: с помощью термопар измеряется температура печи, выхлопных газов, дизельных двигателей, газотурбинных и паротурбинных установках и прочих промышленных процессов, в том числе автоматизированных; многие термопары подходят даже для работы в агрессивных средах, а также для использования при очень высоких температурах, например, с их помощью можно измерить температуру расплавленного металла;
  • быт: температура газовых котлов, водонагревателей, других отопительных приборов, паяльников, электроутюгов, электрокаминов;
  • наука и медицина: измерение температуры органов и тканей человека или животного.

Почти каждый и нас в той или иной степени сталкивается с применением термопар, поэтому полезно иметь о них хотя бы общее представление. Надеемся , что данная статья была полезна для вас, но если у вас остались вопросы, то мы с радостью ответим на них по телефонам по телефонам 8 (800) 500-09-67 и 8 (812) 340-00-57.

fuehler-systeme.ru

Термопары. Типы термопар, рекомендации по выбору. Заметка

ПРОДУКЦИЯ


 

Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.

Вам понравилась эта статья?! Добавьте ее в свои закладки.

 

8 (800) 200-52-75
(495) 366-23-24
(495) 504-95-54
(495) 642-41-95

(800) 200-52-75
(495) 366-23-24
(495) 504-95-54
e-mail: [email protected]

Нихром

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Фехраль

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Нихром в изоляции

Продукция

Цены

Стандарты

Статьи

Фото

Титан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Вольфрам

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Молибден

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Кобальт

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Термопарная проволока

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Провода термопарные

Продукция

Цены

Стандарты

Статьи

Фото

Никель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Монель

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Константан

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Мельхиор

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Твердые сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Порошки металлов

Продукция

Цены

Стандарты

Статьи

Фото

Нержавеющая сталь

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Жаропрочные сплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ферросплавы

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Олово

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Тантал

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ниобий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Ванадий

Продукция

Описание

Цены

Стандарты

Статьи

Фото

Заметка «Термопары. Типы термопар, рекомендации по выбору» содержит обзор существующих типов термопар, диапазоны измеряемых температур, условия эксплуатации. Рассматриваются различные материалы для их изготовления: никелевые и медно-никелевые сплавы — алюмель, хромель, копель, константан; медь, железо, вольфраморениевые сплавы — ВР5/ВР20; платина, платинородий.
1. Тип К (хромель-алюмель)
  • Используется для измерения температур в диапазоне от -200 °С до +1000 °С (рекомендуемый предел, зависящий от диаметра термоэлектродной проволоки).
  • В диапазоне температур от 200 до 500 °С может возникнуть эффект гистерезиса, когда показания при нагревании и охлаждении могут различаться. В некоторых случаях разница достигает 5 °С.
  • Работает в нейтральной атмосфере или атмосфере с избытком кислорода.
  • После термического старения показания снижаются.
  • Может произойти изменение термо-ЭДС при использовании в разряженной атмосфере, т.к. хром может выделяться из Ni-Cr вывода (так называемая миграция). При этом термопара показывает заниженную температуру.
  • Атмосфера серы вредна для термопары, т.к. воздействует на оба электрода.
2. Тип L (хромель-копель)
  • Используется для измерения температур в диапазоне от -200 °С до +800 °С (рекомендуемый предел, зависящий от диаметра термоэлектродной проволоки).
3. Тип Е (хромель-константан)
  • Используется для измерения температур в диапазоне от -40 °С до +900 °С.
  • Обладает высокой чувствительностью, что является плюсом.
  • Материалы электродов обладают термоэлектрической однородностью.
4. Тип Т (медь-константан)
  • Используется для измерения температур в диапазоне от -250 °С до +300 °С.
  • Может работать в атмосфере с небольшим избытком или недостатком кислорода.
  • Не рекомендуется использование термопар данного типа при температурах выше 400 °С.
  • Не чувствительна к повышенной влажности.
  • Оба вывода могут быть отожжены для удаления материалов, вызывающих термоэлекрическую неоднородность.
5. Тип J (железо-константан)
  • На железном выводе может образоваться ржавчина из-за конденсации влаги.
  • Хорошо работает в разряженной атмосфере.
  • Максимальная температура применения — 500 °С, т.к выше этой температуры происходит быстрое окисление выводов. Оба вывода быстро разрушаются в атмосфере серы.
  • Показания повышаются после термического старения.
  • Невысокая стоимость, т.к. в состав термопары входит железо.
6. Железо-копель
  • Используется для измерения температур в диапазоне от 0 до 760 °C.
7. Тип А (вольфраморениевый сплав ВР — вольфраморениевый сплав ВР)
  • Используется для измерения высоких температур от 0 до 2500 °C в инертной среде.
8. Тип N (нихросил-нисил)
  • Это относительно новый тип термопары, разработанный на основе термопары типа К. Термопара типа К может легко загрязняться примесями при высоких температурах. Сплавляя оба электрода с кремнием, можно тем самым загрязнить термопару заранее, и таким образом снизить риск дальнейшего загрязнения во время работы.
  • Рекомендуемая рабочая температура до 1200 °С (зависит от диаметра проволоки), возможна кратковременная работа при 1250 °С.
  • Высокая стабильность при температурах от 200 до 500 °С (значительно меньший гистерезис, чем для термопары типа К).
  • Считается самой точной термопарой из неблагородных металлов.
1. Тип В (платинородий-платинородиевая)
  • Максимальная температура, при которой может работать термопара, составляет 1500 °С (зависит от диаметра проволоки).
  • Кратковременное использование возможно до 1750 °С.
  • Присутствует эффект загрязнения водородом, кремнием, парами меди и железа при температурах выше 900 °С. Но данный эффект меньше, чем для термопар типа S и R.
  • При температуре выше 1000 °С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов. Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
  • Может работать в окислительной среде.
  • Не рекомендуется применение при температуре ниже 600 °С, где термо-ЭДС очень мала и нелинейна.
2. Тип S (платинородий-платиновая)
  • Максимальная температура, при которой может работать термопара, составляет 1350 °С.
  • Кратковременное использование возможно до 1600 °С.
  • Присутствует эффект загрязнения водородом, углеродом, парами меди и железа при температурах выше 900 °С. При содержании в платиновом электроде 0,1% железа, тером-ЭДС изменяется более, чем на 1 мВ (100°С) при 1200 °С и 1,5 мВ (160 °С) при 1600 °С. Такая же картина наблюдается при загрязнении медью. Вывод: термопары данного типа нельзя армировать стальной трубкой или следует изолировать электроды от трубки газонепроницаемой керамикой.
  • Может работать в окислительной атмосфере.
  • При температуре выше 1000 °С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов. Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
  • Не рекомендуется применение ниже 400 °С, т.к термо-ЭДС в этой области мала и крайне нелинейна.
3. Тип R (платинородий-платиновая)
  • Обладает такими же свойствами, что и термопары типа S.

www.metotech.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о