+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Выбор теплового реле

В данной статье будет рассматриваться выбор теплового реле для асинхронного электродвигателя.

Тепловое реле предназначено для защиты двигателя от длительных перегрузок свыше 5 – 20 % от номинальной мощности. Исходя из этого, формула по определению тока срабатывания теплового реле определяется по выражению:

Iн.р ≥ 1,05-1,2* Iн.д.

где: Iн.д. – номинальный ток двигателя, А.

Тепловое реле целесообразно устанавливать только на двигатели с длительным режимом работы и равномерным характером нагрузки (рабочий период которых составляет не менее 30 мин.) [Л1, с.32].

Если же двигатель работает с частыми пусками или с резко меняющейся нагрузкой применять тепловые реле нецелесообразно. Так например для двигателей с повторно-кратковременным режимом, от перегрева тепловое реле не защищает, но установка которого может привести к ложным отключениям. Из-за этого тепловое реле не применяется в крановых электроприводах, приводах быстрых перемещений металлорежущих станков и т.

п.

Пример

Требуется выбрать тепловое реле для двигателя типа M2AA160MLB4 (фирмы АББ) мощностью 15 кВт со следующими техническими характеристиками:

  • коэффициент мощности cosϕ = 0,82;
  • коэффициент полезного действия, η = 89,2%;
  • номинальное напряжение Uном. = 380 В.

Расчет

1. Определяем номинальный ток двигателя:

2. Определяем ток срабатывания теплового реле:

Iн.р ≥ 1,2* Iн.д. = 1,2*31,2 = 37,44 А

Выбираем тепловое реле типа LRE355 фирмы «Schneider Electric» с диапазоном уставки по току 30 40 А.

Тепловая защита также может осуществляться автоматическими выключателями с тепловым расцепителем (например автоматические выключатели типа MS фирмы АББ), который действует аналогично тепловому реле.

Литература:

1. Защита асинхронных двигателей до 500 В. Е.Н.Зимин.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Тепловые реле

08. 09.2015

Тепловые реле предохраняют электродвигатель от перегрева, вызванного главным образом его перегрузкой, а также потерей фазы или отклонениями параметров сети от их номинальных значений.

Принцип действия тепловых реле основан на изгибании биметаллического элемента при его нагреве. Биметаллический элемент выполнен из двух металлических пластин с разными коэффициентами линейного расширения. При нагреве одна из пластин удлиняется в большей степени, а поскольку пластины скреплены, происходит изгиб всего элемента. Таким образом, в случае превышения тока определенного значения биметаллический элемент нагревается и изгибается, приводя в действие контакт реле. Очевидно, что при увеличении тока уменьшается время срабатывания реле. Зависимость времени срабатывания реле от тока называется характеристикой теплового реле.


Рис. 1. Характеристика теплового реле

На рисунке 1 приведен пример характеристики реле в холодном состоянии, где Iустн – номинальный ток уставки, а Iуст – ток, который протекает через реле в определенный момент времени. Под номинальным током уставки понимается наибольший ток, который в течение длительного времени при данной настройке реле не приводит к его срабатыванию.

Тепловые реле надежно защищают электродвигатель от перегрузок только в случае его эксплуатации в режиме S1 (продолжительный режим работы). Температурные условия мест, в которых установлены реле и защищаемый двигатель должны быть полностью идентичны. Если двигатель работает в повторно-кратковременном режиме, то защита его от перегрузок тепловым реле неэффективна, кроме того, возможны ложные срабатывания.

В случае, когда величины токов электродвигателя имеют относительно большие значения, тепловое реле может включаться через трансформаторы тока.

Тепловое реле необходимо выбрать таким образом, чтобы его номинальные значения напряжения и тока соответствовали аналогичным значениям двигателя, далее необходимо выставить ток уставки согласно следующим выражениям:

Iустн=Iдн, если Тср=Тн,

где Iдн – номинальное значение линейного тока двигателя, Тср

– температура окружающей среды, в которой установлено тепловое реле, Тн – температура калибровки реле;

, если ,

Современные электродвигатели выполняются с изоляцией класса F и превышением температуры по классу В. Таким образом, даже при температуре окружающей среды 400С обеспечивается температурный запас 250С, благодаря чему электродвигатель может выдерживать кратковременные перегрузки без разрушения изоляции. Реле, подобранные согласно данным рекомендациям, обеспечивают надежную защиту двигателей при длительных перегрузках 15-20%. Таким образом, обеспечивается надежная продолжительная работа электродвигателя и обеспечивается заложенный заводом-изготовителем ресурс работы.

Если же нагрузка двигателя неравномерная (в одни короткие периоды времени больше номинальной, в другие наоборот – меньше), во избежание ложных срабатываний защиту необходимо несколько загрубить. С этой целью токи уставки

Iуст, полученные по формулам, приведенным выше, следует увеличить на 10%.

Важно! Тепловое реле не защищает двигатель от коротких замыканий, поэтому его использование возможно только совместно с устройствами защиты от токов короткого замыкания (автоматические выключатели, предохранители, реле максимального тока).


Тепловые реле — Безопасность электроустановок

Схема подключения теплового реле

Схемы подключения электродвигателей, в которые включено тепловое реле, могут существенно отличаться между собой, в зависимости от технической необходимости и наличия различных устройств. Тем не менее, в каждой из схем тепловое реле обязательно должно подключаться последовательно с катушкой пускателя. Это обеспечивает надежную защиту от перегрузок оборудования. Так, при превышении определенного уровня потребляемого двигателем тока тепловое реле размыкает цепь, тем самым отключая магнитный пускатель и сам двигатель от источника электропитания.

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

  Виды тепловых реле (РТТ, РТЛ, ТРН, РТИ)

Тепловые реле РТТ применяются в тех случаях, когда требуется обеспечить эффективную защиту трехфазных асинхронных двигателей от перегрузок, длительность которых превышает допустимую (которые могут возникнуть, например, при выпадении одной из фаз). Как правило, они являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Тепловые реле РТЛ используются в тех случаях, когда требуется защитить от перегрузок по продолжительности, а также о несимметричности тока, например, при выпадении одной из фаз. Этот тип реле может устанавливаться как на пускателях, так и отдельно, при наличии клеммников.

Двухфазное тепловое реле ТРН используется, как правило, на магнитных пускателях в асинхронных двигателях. Его особенностью является возможность использования в сетях постоянного тока.

Тепловое реле РТИ выполняет те же функции, что и описанные выше, а также обеспечивает защиту от затянутого пуска. Данный тип реле обладает собственным потреблением энергии, поэтому дополнительно при его использовании рекомендуется устанавливать предохранители.

 

Видеоролик

Тепловые реле

К тепловым реле можно отнести большую группу электроприборов, предназначенных для регулировки температуры различных нагревательных приборов, контроля технологических процессов, защиты электродвигателей, аккумуляторов и других устройств с использованием различных датчиков температуры. В этой статье рассматриваем конструкции и возможности тепловых реле с биметаллическими пластинами, используемых в основном для защиты электродвигателей промышленных установок.

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух соединённых плоскими поверхностями металлических полосок с разными коэффициентами линейного расширения. При изменении температуры из-за различного линейного расширения частей, пластина изгибается. При нагревании до определённой температуры, пластина нажимает на защёлку расцепителя и под действием пружины происходит быстрое электрическое разъединение контактов.

В отличие от предохранителей и электромагнитных расцепителей, которые применяются для защиты электрооборудования от коротких замыканий, тепловые реле предназначены для защиты от перегрузки, в основном электродвигателей. Это объясняется тем, что для нагрева биметаллической пластины до температуры, при которой происходит отключение нужно значительно больше времени, чем для срабатывания предохранителя и защищаемое оборудование может выйти из строя.

По конструкции тепловые реле защиты двигателя различаются в зависимости от назначения, способа установки, рабочего тока. Реле изготавливаются и применяются как отдельные электроустановочные изделия, так и в составе пускателей или автоматических выключателей в качестве конструктивных элементов. Чаще всего это двухфазные или однофазные реле с регулировкой тока срабатывания. Изготавливаются варианты с самовозвратом после срабатывания и с ручным возвратом в исходное положе.

Биметаллическая пластинка нагревается за счёт прохождения тока по токонагревающей спирали, которая наматывается на пластину через теплостойкую изоляцию. Количество витков спирали, а также сечение провода выбирается в зависимости от величины тока, на который рассчитано тепловое реле. При больших значениях тока в качестве нагревательного элемента может использоваться и сама биметаллическая пластина, изготовленная в вида буквы U, прикреплённой концами к контактам токоведущих поверхностей. У однофазных тепловых реле ТРП-60 и ТРП-150 одна часть тока проходит через нагревательный элемент, а вторая через биметаллическую пластину. Система рычагов и пружин по конструкции, отключающих контакты тепловых реле, различается в зависимости от типа и назначения реле.

Выбор теплового реле зависит от тока, потребляемого электродвигателем. Величина изменения тока срабатывания реле с помощью регулировки небольшая, поэтому для разных электродвигателей нужно подбирать тепловые реле с подходящими термоэлементами.

При пуске электродвигателя пусковой ток примерно в 5-7 раз превышает номинальный рабочий. Но, тепловое реле не срабатывает из-за замедления на нагрев биметаллической пластинки. Поэтому тепловое реле выбирается по номинальному току нагрузки или немного больше. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока электродвигателя. Лучше всего сразу выбирать комплект для конкретного электродвигателя из пускателя и теплового реле, например, по готовой таблице.

Данные тепловых реле встроенных в пускатели ПМЕ и ПАЕ
Тип пускателяТип теплового релеНоминальный ток теплового элемента
или маркировка сменного нагревателя, А
МПЕ-000ТРН-10А0,32
0,4
0,5
0,63
8,0
1,0
1,25
1,6
2,0
2,5
3,2
ПМЕ-100ТРН-100,5
0,63
0,8
1,0
1,25
1,6
2,0
2,6
3,2
4,0
5,0
6,3
8,0
10
ПМЕ-200ТРН-255,0
6,3
8,0
10
12,5
16
20
25
ПАЕ-300ТРН-4012,5
16
20
25
32
40
ПАЕ-400ТРП-6020
25
30
40
50
60
ПАЕ-500ТРП-15050
60
80
100
120
ПАЕ-600ТРП-150100
120
160

Примечания: 
1. Номинальные токи указаны для случая, когда регулятор уставки тока находится в положении 0 и реле установлено открыто на панели при температуре окружающего воздуха 20 С — для реле ТРН и 40 С — для реле ТРП

2. При встройке реле ТРН в пускатель с оболочкой любого исполнения и температуре окружающего воздуха 20 С снижение номинальных токов не требуется. То же не требуется для ТРП 20-60А включительно. требуется снижение номинальных токов при температуре воздуха до 40 С для ТРП.

Настройка теплового реле необходима при изменении температурных условий эксплуатации электрооборудования, подстройки тепловой защиты для конкретного электрооборудования, а также для компенсации разброса характеристик у различных образцов изделий даже одного типа.

Большинство тепловых реле имеют два вида регулировки для установки тока срабатывания. Ближе к концу подвижной части биметаллической пластины находится регулировочный винт, который служит для того, чтобы регулировать расстояние от пластины до поверхности расцепителя, на которую этот винт нажимает для срабатывания реле. Эта регулировка недоступна пользователям без разборки. Вторая регулировка предназначена для подстройки тока срабатывания обслуживающим персоналом. Для этого используют выведенный на лицевую сторону как у реле ТРН регулировочный винт под отвёртку с эксцентриком для механического изменения изгиба. В другом варианте, как у автоматического выключателя АП-50, регулировка выполняется специальным рычажком. Возле регуляторов имеются деления для определения в процентах изменения величины тока. Величина регулировки тока срабатывания теплового реле ограничена и обычно составляет по 25% в одну или другую сторону.

Реле тепловые и токовые
№ п/пТипТок уставки А№ п/пТипТок уставки
1.РТТ-111до 2514. РТЛ-10103,6-6,0
2.РТТ-141до 2515.РТЛ-10125,9-8,0
3.РТТ-211до 4016.РТЛ-10147,0-10
4.РТТ-311до 10017.РТЛ-10169,5-14
5.РТТ-321до 16018.РТЛ-102113-19
6.РТЛ-1001от 0,1 до 0,1719.РТЛ-102218-25
7.РТЛ-10020,16-0,2620.РТЛ-205323-32
8.РТЛ-10030,24-0,421.РТЛ-205530-41
9.РТЛ-10040,38-0,6522.РТЛ-205738-52
10.РТЛ-10050,61-1,023.РТЛ-205947-64
11.РТЛ-10060,95-1,624.РТЛ-206154-74
12. РТЛ-10071,5-2,625РТЛ-206363-86
13.РТЛ-10082,4-4,0

При правильной настройке тока срабатывания обеспечивается защита электродвигателя трёхфазного тока от перегрузки при остановке двигателя от заклинивания ротора, при чрезмерном увеличении механической нагрузки на приводимый в движение механизм, при затяжном пуске электродвигателя. Тепловым реле обеспечивается также защита электродвигателя от перекоса или обрыва фазы по увеличению тока в оставшихся фазах. Для срабатывания тепловой защиты вполне достаточно повышения тока даже в одной из фаз, если ток проходит через нагреватель теплового реле. Поэтому достаточно надёжная защита электродвигателя от перегрузки обеспечивается одним двухфазным реле или двумя однофазными.

Настройка тока срабатывания теплового реле проводится на несложном стенде. Реле подключается через понижающий трансформатор и регулятор тока ЛАТР. Потребляемый ток измеряется амперметром. Правильно настроенное тепловое реле не должно срабатывать при значении тока Iн = 1,05, но должно срабатывать за время не больше 20 минут при токе Iн = 1,2 от номинального значения.

Время срабатывания теплового реле зависит от величины тока и температуры окружающей среды для каждого типа реле. Их значения, с учётом разброса характеристик, приводятся в специальных таблицах. Предварительно проверяемое реле прогревают номинальным током в течение 2-х часов.

Настройку и проверку реле при значительном из количестве можно производить в форсированном режиме сравнением реле, испытанным по вышеизложенному методу и принятым в качестве образца-эталона. На соединенные последовательно с образцовыми 8-10 тепловых элементов с одинаковым номинальным током подаётся 2,5-3 кратный ток уставки, и отчитывается время их срабатывания (обычно 5-8 минут). Тепловые элементы сработавшие с большим отклонением от образцового, подвергаются регулировке изменением положения регулировочного рычага до отключения реле. Эту операцию необходимо выполнить за время не более 25-30 секунд.

При особой требовательности к реле после его охлаждения (через 10-15 минут) испытание повторяют для контроля полученных результатов. Настройку реле можно считать удовлетворительной, если время срабатывания испытуемого реле будет отличаться от образцового не более чем на 10%.

Применение тепловых реле, а также их обслуживание имеет свои особенности. Схема защиты двигателя построена так, что ток электродвигателя проходит через нагреватели теплового реле, а его размыкающий контакт отключает цепь управления пускателем электродвигателя. Поэтому нужно иметь в виду, что при залипании двух или больше контактов на пускателе, реле не обеспечит отключение электродвигателя.

Тепловые реле имеют разброс по отключению, прежде всего это связано с сезонными и суточными изменениями температуры окружающего воздуха. Время срабатывания зависит от того, было ли до этого токовое реле под нагрузкой. Если реле было под нагрузкой и прогретое, то время срабатывания теплового реле уменьшается.

Срабатывание теплового реле обычно сигнализирует о наличии плохо заметной неисправности. Даже непродолжительный осмотр оборудования поможет своевременно выявить скрытые неисправности электрооборудования и предотвратит его выход из строя.

При плохом контакте происходит нагрев места соединения, и тепловое реле преждевременно срабатывает и при нормальном режиме работы защищаемого электрооборудования. Если сильно загрубить уставку теплового реле, то контакт подгорит, а тепловое реле может не сработать при увеличении тока в двух оставшихся фазах.

После срабатывания теплового реле необходимо некоторое время для остывания термоэлемента, только после этого возможно его повторное включение. Перед повторным включением очень желательно проверить на ощупь температуру электродвигателя. Если температура повышена, то нужно дать время для его остывания и проверить двигатель. Время остывания электродвигателя существенно больше, чем время необходимое для остывания и повторного включения теплового реле.

Частые включения электродвигателей не рекомендуются, если двигатель специально не предназначен для работы в таких режимах. Перед повторным включением желательно осмотреть и проверить вал электродвигателя на отсутствие заклинивания, люфтов в подшипниках. Отключив автомат электродвигателя проверить контакты пускателя на отсутствие залипания, состояние подвижной системы, затяжку электрических контактов. После включения автоматического выключателя проверить наличие напряжения на верхних контактах пускателя. При запуске электродвигателя нужно обратить внимание на отсутствие чрезмерного искрения в пусковой аппаратуре, на шумы в двигателе и приводимых в движение механизмах. Нужно проверить потребление тока в каждой фазе защищаемого двигателя по стационарным приборам или токовыми клещами.

Не редки случаи, когда из-за невнимательного осмотра оборудования или закорачивании отключающего контакта теплового реле, за короткое время на одном месте один за другим палят несколько электродвигателей.

Правила устройства электроустановок (3.1.19.) вводят ограничения на применение защиты электродвигателей, отключение которых может привести к серьёзным последствиям. Это некоторые виды сигнализации, средства пожаротушения, вентиляторы, предотвращающие образование взрывоопасных смесей и другие ответственные устройства.

Видеоролик


Для чего служит тепловое реле

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

На реле РТИ эти контакты размещены на передней панели:

NO – нормально-открытый – на индикацию;

NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

РТЛ-1007, с токовым диапазоном 1.5-2.6 А;

РТЛ-1008, токовый диапазон 2,4-4 А;

РТИ-1307, токовый диапазон 1,6. 2,5 А;

РТИ-1308, токовый диапазон 2,5. 4 А;

ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн – номинальный ток нагрузки электродвигателя, Iнэ – номинальный ток нагревательного элемента теплового реле, с – коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

где Т – температура окружающей среды, °С.

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1. 5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Для защиты электродвигателей переменного и постоянного тока от сильного перегрева, который возникает из-за долговременной перегрузки, применяется тепловое реле перегрузки.

Принцип действия данного устройства состоит в том, что при длительном, сильном перегреве, биметаллические пластины, находящиеся внутри реле разогреваются, возникает деформация, которая и воздействует на блок-контакты. После чего блок-контакты, при помощи контактора, полностью отключают электропитание потребителя.

Чтобы обеспечить гарантированную защиту электродвигателя не только от перегрузки тока, но и от перегрева необходимо осуществить оптимальную подборку теплового реле. В таком случае полностью исключается перекос фаз, заклинивание ротора, продолжительный затяжной пуск.

Как подобрать нужный вариант теплового реле

Подбор по значению тока производится исходя из запланированной нагрузки на электродвигатель. Поэтому реле должно выбираться таким образом, чтобы его ток был больше номинального значения тока электрического двигателя ориентировочно в 1,3-1,5 раза. Так будет обеспечена защита при наступлении перегрузки в пределах 25-30 %, продолжающейся 20-25 минут. Время нагревания электродвигателя целиком зависит от времени действия перегрузки тока.

При кратковременной перегрузке, происходит лишь нагрев обмотки двигателя, тогда как при длительной перегрузке нагревается вся его масса. В этих случаях время нагревания (постоянная нагрева) при кратковременной перегрузке составляет 10-15 минут, а при длительной – 40-60 минут. Поэтому тепловые реле применяют в тех случаях, когда электрическое устройство рассчитано на работу не менее 30 минут.

Время срабатывания полностью зависит от тока нагрузки. Также нужно учесть, что нагревательные элементы испытывают очень сильное воздействие от короткого замыкания.

Рассмотрим зависимость работы от температуры окружающего воздуха

Здесь можно наблюдать прямую зависимость нагрева биметаллической пластинки от наружной температуры. Если температура увеличивается – ток срабатывания реле уменьшается. При значительном увеличении температуры необходимо провести дополнительную регулировку устройства. Можно подобрать соответствующую биметаллическую пластинку. Чтобы уменьшить влияние температуры на ток срабатывания, при регулировке нужно устанавливать наибольшую температуру срабатывания. Нормальная работа реле и защищаемого устройства наилучшим образом обеспечивается при расположении их в одном помещении.

В настоящее время производится большое количество разных видов реле. Для того, чтобы сделать правильный выбор, а затем установить и отрегулировать устройство лучше всего воспользоваться услугами квалифицированного электротехника.

Конструкция

Начнем с того, что расскажем, из чего состоит реле тепловой защиты. В основу работы РТ заложено явление описано физическим законом Джоуля-Ленца:

Количество тепла выделяемому на участке электрической цепи пропорционально квадрату силы тока и сопротивления данного участка.

Данное явление с успехом используется в тепловом расцепителе. Короткий участок цепи, выполняющий роль теплового излучателя, намотан спиралью на изолятор. Весь ток, проходящий через электрическую машину, проходит через данный участок. Непосредственно возле спирали стоит биметаллическая пластина, которая при нагревании изгибается и воздействует на контактную группу. Пластина состоит из двух разнородных металлов, имеющих разный коэффициент расширения при нагреве, объединенных в один элемент.

На фото ниже изображен разрез действующего аппарата. Через проводники проходит три фазы питания на электрический двигатель. Обмотка нагрева расположена сверху биметаллической пластины для уменьшения ложного срабатывания от внешнего воздействия. Пластины упираются в подвижную планку, которая толкает механизм расцепителя. Сверху расположен пружинный регулятор токовой установки, для точной настройки пределов срабатывания, и две группы контактов (открытые NO и закрытые NC).

Принцип работы

Как выглядит тепловое реле вы узнали, теперь идем дальше и расскажем, как работает данное устройство. Как мы уже сказали ранее, РТ защищает двигатель от продолжительной перегрузки.

На каждом электродвигателе есть табличка с паспортными данными, где указан номинальный рабочий ток. Существуют механизмы, в работе которых возможно превышение рабочего тока, как во время запуска, так и в рабочем процессе. При длительном воздействии таких перегрузок, происходит перегрев обмоток, разрушение изоляции, и выход из строя самого двигателя.

Данное реле тепловой защиты предназначено для воздействия на цепи управления, путем отключения схемы, размыканием контактов, или подачей сигнала предупреждения дежурному персоналу замыкая контакты. Устройство устанавливается после пускового контактора в силовую цепь перед электродвигателем для того, чтобы контролировать проходящий ток.

Установку параметров производят в большую сторону от номинального тока двигателя, на величину 10-20 %, согласно паспортным данным. Отключение машины происходит не сразу, а по прошествии определенного времени. Все зависит от температуры окружающей среды и тока перегрузки, и может колебаться от 5 до 20 минут. Неправильно выбранный параметр приведет к ложному срабатыванию или игнорированию перегруза и выходу из строя оборудования.

Графическое обозначение устройства на схеме по ГОСТ:

Более подробно узнать о том, как устроено тепловое реле и как оно работает, вы можете, просмотрев данное видео:

Назначение

Сразу же хотелось бы сказать о том, что существуют различные виды и типы тепловых реле и соответственно область применения каждой классификации своя собственная. Вкратце поговорим о назначении основных разновидностей устройств.

РТЛ — трехфазное, предназначено для защиты электродвигателя от перегрузок, перекоса фаз, затянутого пуска или заклинивания ротора. Крепятся на контакты пускатели ПМЛ или как самостоятельное устройство с клеммами КРЛ.

РТТ — на три фазы, предназначены для защиты короткозамкнутых двигателей от токов перегрузки, перекоса фаз, заклинивания ротора двигателя, затянутого запуска механизма. Может крепиться на ПМА и ПМЕ пускатели, а также самостоятельно устанавливаться на панели.

РТИ — защищают электромотор от перегрузки, асимметрии фаз, длинного пуска и заклинивания машины. Трехфазное тепловое реле, крепится на пускатели серии КМТ и КМИ.

ТРН — двухфазное реле, контролирует режим работы и пуска, имеет только ручной возврат контактов, работа устройства мало зависит от температуры окружающей среды.

Твердотельные трехфазное реле, не имеют подвижных деталей, не зависят от состояния окружающей среды, применяют во взрывоопасных местах. Следит за током нагрузки, разгоном, обрывом фаз, заклиниванием механизма.

РТК — контроль температуры происходит щупом, расположенным в корпусе электроустановки. Представляет собой термо реле, и контролирует только один параметр.

РТЭ — реле плавления сплава, электропроводящий проводник выполнен из сплава металла, при определенной температуре плавится и механически разрывает цепь. Данное тепловое реле встраивается непосредственно в контролируемое устройство.

Как видно из нашей статьи, существует большое разнообразие контроля за состоянием электроустановок, отличающихся типом и внешним видом, но одинаково выполняющих защиту электрооборудования. Это и все, что хотелось рассказать вам об устройстве, принципе действия и назначении тепловых реле. Надеемся, информация была для вас полезной и интересной!

Будет интересно прочитать:

Тепловые реле для защиты электродвигателей

 К тепловым реле можно отнести большую группу электроприборов, предназначенных для регулировки температуры различных нагревательных приборов, контроля технологических процессов, защиты электродвигателей, аккумуляторов и других устройств с использованием различных датчиков температуры. В этой статье рассматриваем конструкции и возможности тепловых реле с биметаллическими пластинами, используемых в основном для защиты электродвигателей промышленных установок.

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух соединённых плоскими поверхностями металлических полосок с разными коэффициентами линейного расширения. При изменении температуры из-за различного линейного расширения частей, пластина изгибается. При нагревании до определённой температуры, пластина нажимает на защёлку расцепителя и под действием пружины происходит быстрое электрическое разъединение контактов.

В отличие от предохранителей и электромагнитных расцепителей, которые применяются для защиты электрооборудования от коротких замыканий, тепловые реле предназначены для защиты от перегрузки, в основном электродвигателей. Это объясняется тем, что для нагрева биметаллической пластины до температуры, при которой происходит отключение нужно значительно больше времени, чем для срабатывания предохранителя и защищаемое оборудование может выйти из строя.

По конструкции тепловые реле защиты двигателя различаются в зависимости от назначения, способа установки, рабочего тока. Реле изготавливаются и применяются как отдельные электроустановочные изделия, так и в составе пускателей или автоматических выключателей в качестве конструктивных элементов. Чаще всего это двухфазные или однофазные реле с регулировкой тока срабатывания. Изготавливаются варианты с самовозвратом после срабатывания и с ручным возвратом в исходное положе.

Биметаллическая пластинка нагревается за счёт прохождения тока по токонагревающей спирали, которая наматывается на пластину через теплостойкую изоляцию. Количество витков спирали, а также сечение провода выбирается в зависимости от величины тока, на который рассчитано тепловое реле. При больших значениях тока в качестве нагревательного элемента может использоваться и сама биметаллическая пластина, изготовленная в вида буквы U, прикреплённой концами к контактам токоведущих поверхностей. У однофазных тепловых реле ТРП-60 и ТРП-150 одна часть тока проходит через нагревательный элемент, а вторая через биметаллическую пластину. Система рычагов и пружин по конструкции, отключающих контакты тепловых реле, различается в зависимости от типа и назначения реле.

Выбор теплового реле зависит от тока, потребляемого электродвигателем. Величина изменения тока срабатывания реле с помощью регулировки небольшая, поэтому для разных электродвигателей нужно подбирать тепловые реле с подходящими термоэлементами.

При пуске электродвигателя пусковой ток примерно в 5-7 раз превышает номинальный рабочий. Но, тепловое реле не срабатывает из-за замедления на нагрев биметаллической пластинки. Поэтому тепловое реле выбирается по номинальному току нагрузки или немного больше. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока электродвигателя. Лучше всего сразу выбирать комплект для конкретного электродвигателя из пускателя и теплового реле, например, по готовой таблице.

 

Данные тепловых реле встроенных в пускатели ПМЕ и ПАЕ
Тип пускателяТип теплового релеНоминальный ток теплового элемента
или маркировка сменного нагревателя, А
МПЕ-000 ТРН-10А 0,32
0,4
0,5
0,63
8,0
1,0
1,25
1,6
2,0
2,5
3,2
ПМЕ-100 ТРН-10 0,5
0,63
0,8
1,0
1,25
1,6
2,0
2,6
3,2
4,0
5,0
6,3
8,0
10
ПМЕ-200 ТРН-25 5,0
6,3
8,0
10
12,5
16
20
25
ПАЕ-300 ТРН-40 12,5
16
20
25
32
40
ПАЕ-400 ТРП-60 20
25
30
40
50
60
ПАЕ-500 ТРП-150 50
60
80
100
120
ПАЕ-600 ТРП-150 100
120
160

Примечания:
1. Номинальные токи указаны для случая, когда регулятор уставки тока находится в положении 0 и реле установлено открыто на панели при температуре окружающего воздуха 20 С — для реле ТРН и 40 С — для реле ТРП

2. При встройке реле ТРН в пускатель с оболочкой любого исполнения и температуре окружающего воздуха 20 С снижение номинальных токов не требуется. То же не требуется для ТРП 20-60А включительно. требуется снижение номинальных токов при температуре воздуха до 40 С для ТРП.

Настройка теплового реле необходима при изменении температурных условий эксплуатации электрооборудования, подстройки тепловой защиты для конкретного электрооборудования, а также для компенсации разброса характеристик у различных образцов изделий даже одного типа.

Большинство тепловых реле имеют два вида регулировки для установки тока срабатывания. Ближе к концу подвижной части биметаллической пластины находится регулировочный винт, который служит для того, чтобы регулировать расстояние от пластины до поверхности расцепителя, на которую этот винт нажимает для срабатывания реле. Эта регулировка недоступна пользователям без разборки. Вторая регулировка предназначена для подстройки тока срабатывания обслуживающим персоналом. Для этого используют выведенный на лицевую сторону как у реле ТРН регулировочный винт под отвёртку с эксцентриком для механического изменения изгиба. В другом варианте, как у автоматического выключателя АП-50, регулировка выполняется специальным рычажком. Возле регуляторов имеются деления для определения в процентах изменения величины тока. Величина регулировки тока срабатывания теплового реле ограничена и обычно составляет по 25% в одну или другую сторону.

 

Реле тепловые и токовые
№ п/пТипТок уставки А№ п/пТипТок уставки
1. РТТ-111 до 25 14. РТЛ-1010 3,6-6,0
2. РТТ-141 до 25 15. РТЛ-1012 5,9-8,0
3. РТТ-211 до 40 16. РТЛ-1014 7,0-10
4. РТТ-311 до 100 17. РТЛ-1016 9,5-14
5. РТТ-321 до 160 18. РТЛ-1021 13-19
6. РТЛ-1001 от 0,1 до 0,17 19. РТЛ-1022 18-25
7. РТЛ-1002 0,16-0,26 20. РТЛ-2053 23-32
8. РТЛ-1003 0,24-0,4 21. РТЛ-2055 30-41
9. РТЛ-1004 0,38-0,65 22. РТЛ-2057 38-52
10. РТЛ-1005 0,61-1,0 23. РТЛ-2059 47-64
11. РТЛ-1006 0,95-1,6 24. РТЛ-2061 54-74
12. РТЛ-1007 1,5-2,6 25 РТЛ-2063 63-86
13. РТЛ-1008 2,4-4,0      

При правильной настройке тока срабатывания обеспечивается защита электродвигателя трёхфазного тока от перегрузки при остановке двигателя от заклинивания ротора, при чрезмерном увеличении механической нагрузки на приводимый в движение механизм, при затяжном пуске электродвигателя. Тепловым реле обеспечивается также защита электродвигателя от перекоса или обрыва фазы по увеличению тока в оставшихся фазах. Для срабатывания тепловой защиты вполне достаточно повышения тока даже в одной из фаз, если ток проходит через нагреватель теплового реле. Поэтому достаточно надёжная защита электродвигателя от перегрузки обеспечивается одним двухфазным реле или двумя однофазными.

Настройка тока срабатывания теплового реле проводится на несложном стенде. Реле подключается через понижающий трансформатор и регулятор тока ЛАТР. Потребляемый ток измеряется амперметром. Правильно настроенное тепловое реле не должно срабатывать при значении тока Iн = 1,05, но должно срабатывать за время не больше 20 минут при токе Iн = 1,2 от номинального значения.

Время срабатывания теплового реле зависит от величины тока и температуры окружающей среды для каждого типа реле. Их значения, с учётом разброса характеристик, приводятся в специальных таблицах. Предварительно проверяемое реле прогревают номинальным током в течение 2-х часов.

Настройку и проверку реле при значительном из количестве можно производить в форсированном режиме сравнением реле, испытанным по вышеизложенному методу и принятым в качестве образца-эталона. На соединенные последовательно с образцовыми 8-10 тепловых элементов с одинаковым номинальным током подаётся 2,5-3 кратный ток уставки, и отчитывается время их срабатывания (обычно 5-8 минут). Тепловые элементы сработавшие с большим отклонением от образцового, подвергаются регулировке изменением положения регулировочного рычага до отключения реле. Эту операцию необходимо выполнить за время не более 25-30 секунд.

При особой требовательности к реле после его охлаждения (через 10-15 минут) испытание повторяют для контроля полученных результатов. Настройку реле можно считать удовлетворительной, если время срабатывания испытуемого реле будет отличаться от образцового не более чем на 10%.

Применение тепловых реле, а также их обслуживание имеет свои особенности. Схема защиты двигателя построена так, что ток электродвигателя проходит через нагреватели теплового реле, а его размыкающий контакт отключает цепь управления пускателем электродвигателя. Поэтому нужно иметь в виду, что при залипании двух или больше контактов на пускателе, реле не обеспечит отключение электродвигателя.

Тепловые реле имеют разброс по отключению, прежде всего это связано с сезонными и суточными изменениями температуры окружающего воздуха. Время срабатывания зависит от того, было ли до этого токовое реле под нагрузкой. Если реле было под нагрузкой и прогретое, то время срабатывания теплового реле уменьшается.

Срабатывание теплового реле обычно сигнализирует о наличии плохо заметной неисправности. Даже непродолжительный осмотр оборудования поможет своевременно выявить скрытые неисправности электрооборудования и предотвратит его выход из строя.

При плохом контакте происходит нагрев места соединения, и тепловое реле преждевременно срабатывает и при нормальном режиме работы защищаемого электрооборудования. Если сильно загрубить уставку теплового реле, то контакт подгорит, а тепловое реле может не сработать при увеличении тока в двух оставшихся фазах.

После срабатывания теплового реле необходимо некоторое время для остывания термоэлемента, только после этого возможно его повторное включение. Перед повторным включением очень желательно проверить на ощупь температуру электродвигателя. Если температура повышена, то нужно дать время для его остывания и проверить двигатель. Время остывания электродвигателя существенно больше, чем время необходимое для остывания и повторного включения теплового реле.

Частые включения электродвигателей не рекомендуются, если двигатель специально не предназначен для работы в таких режимах. Перед повторным включением желательно осмотреть и проверить вал электродвигателя на отсутствие заклинивания, люфтов в подшипниках. Отключив автомат электродвигателя проверить контакты пускателя на отсутствие залипания, состояние подвижной системы, затяжку электрических контактов. После включения автоматического выключателя проверить наличие напряжения на верхних контактах пускателя. При запуске электродвигателя нужно обратить внимание на отсутствие чрезмерного искрения в пусковой аппаратуре, на шумы в двигателе и приводимых в движение механизмах. Нужно проверить потребление тока в каждой фазе защищаемого двигателя по стационарным приборам или токовыми клещами.

Не редки случаи, когда из-за невнимательного осмотра оборудования или закорачивании отключающего контакта теплового реле, за короткое время на одном месте один за другим палят несколько электродвигателей.

Правила устройства электроустановок (3.1.19.) вводят ограничения на применение защиты электродвигателей, отключение которых может привести к серьёзным последствиям. Это некоторые виды сигнализации, средства пожаротушения, вентиляторы, предотвращающие образование взрывоопасных смесей и другие ответственные устройства.

Тепловое реле | Electric-Blogger.ru

2016-07-01 Статьи  

Тепловое реле, или как его еще называют реле перегрузки — это коммутационное устройство, предназначенное для защиты электродвигателей от токовой перегрузки и в случае обрыва фазы. При превышении потребляемого двигателем тока нагрузки тепловое реле разомкнет цепь, отключит магнитный пускатель, тем самым защитив двигатель.

Тепловое реле не предназначено для защиты от короткого замыкания, поэтому в цепь питания перед магнитным пускателем устанавливают автоматический выключатель.

Принцип работы теплового реле

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух пластин, которые сварены из металлов с разными коэффициентами теплового расширения. При воздействии высокой температуры биметаллическая пластина изгибается в сторону металла с меньшим коэффициентом расширения. Достигнув определённой температуры, пластина давит на защёлку расцепителя и под действием пружины происходит размыкание подвижных контактов реле и следовательно размыкание всей электрической цепи.

Если реле находится в режиме автоматического включения, то после остывания биметаллического элемента исполнительный механизм и подвижные контакты реле вернутся в исходное положение. При этом электрическая цепь восстановится и контактор будет готов к работе. Если же реле находится в ручном режиме, то после каждого срабатывания перевод реле в исходное положение должен осуществляться ручным воздействием.

Выбирая тепловое реле, надо исходить из номинального тока нагрузки плюс небольшой запас. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока. Например, если на шильде электродвигателя указан ток 16А, то выбираем тепловое реле с запасом примерно на 18-20А.

Таблица по выбору тепловых реле РТИ

Устройство и подключение теплового реле

На примере РТИ 1312 покажу устройство теплового реле.

РТИ1312 подключается к контактору непосредственно своими штыревыми контактами.

В зависимости от величины и типа пускателей первый и второй контакты теплового реле могут регулироваться вправо-влево. Сбоку на наклейке указано, какой тип контакторов подходит для данного реле.

В зависимости от величины протекающего тока в реле предусмотрена регулировка уставки срабатывания по току с помощью поворотного регулятора, расположенного на передней панели реле. Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.

Также на панели управления расположена кнопка «TEST»,имитирующая срабатывание защиты реле и проверки его работоспособности. Выступающая красная кнопка «STOP»предназначена для принудительного размыкания нормально-замкнутого контакта NC. При этом питание на катушке контактора пропадает и нагрузка отключается.

Электротепловое реле может работать в ручном или автоматическом режиме. Режим работы реле задается поворотным переключателем «RESET». При автоматическом режиме переключатель утоплен и при срабатывании теплового реле оно автоматически включится после остывания биметаллической пластины. Для перевода реле в ручной режим необходимо повернуть переключатель против часовой стрелки.

Автоматический режим

Ручной режим

После того, как тепловое реле настроено, его можно закрыть прозрачной защитной крышкой и при необходимости опломбировать. Для этого на передней панели и крышке имеются специальные проушины.

Электрическая схема реле РТИ

Входное напряжение подходит на контакты 1,3,5, а выходное напряжение на нагрузку поступает с контактов 2, 4, 6. Кнопки «TEST» и «RESET» меняют положение подвижных контактов реле, а кнопкой «STOP» меняется положение только нормально-замкнутого контакта (95 — 96).

Нормально-замкнутые контакты применяются в схемах управления электродвигателями через магнитный пускатель, а нормально-разомкнутые контакты — в основном в цепях сигнализации, например для вывода световой индикации на панель оператора.

Схема подключения нереверсивного магнитного пускателя с тепловым реле

Типичная схема подключения нереверсивного пускателя с тепловым реле выглядит так:

Подробнее о работе данной схемы вы можете прочитать в статье Магнитный пускатель, здесь же я хочу остановиться только на подключении теплового реле. Как видно из схемы на силовые контакты теплового реле подключаются только две фазы, а третья идет напрямую на двигатель. В современных тепловых реле задействованы все три фазы. Также используется дополнительный нормально-замкнутый контакт реле. При перегрузки двигателя он разомкнется и разорвет цепь питания катушки контактора.

При срабатывании теплового реле не стоит сразу же пытаться включать его снова, необходимо выждать время пока биметаллические пластины не остынут. Кроме того стоит определить причину срабатывания — проверить всю схему подключения, подтянуть контакты, проверить температуру двигателя, потребление тока по каждой фазе двигателя.

Тепловое реле для электродвигателя — Стройпортал Biokamin-Doma.ru

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

На реле РТИ эти контакты размещены на передней панели:

NO – нормально-открытый – на индикацию;

NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

РТЛ-1007, с токовым диапазоном 1.5-2.6 А;

РТЛ-1008, токовый диапазон 2,4-4 А;

РТИ-1307, токовый диапазон 1,6. 2,5 А;

РТИ-1308, токовый диапазон 2,5. 4 А;

ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн — номинальный ток нагрузки электродвигателя, Iнэ — номинальный ток нагревательного элемента теплового реле, с — коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

где Т — температура окружающей среды, °С.

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Тепловая защита электродвигателя. Электротепловое реле.

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1. 1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Тепловое реле для электродвигателя

В течение длительного рабочего процесса у любых электродвигателей перегреваются обмотки, портится изоляционное покрытие. Подобные ситуации нередко приводят к межвитковым замыканиям, выгоранию полюсов и другим негативным последствиям, требующим срочного дорогостоящего ремонта. Избежать этого помогает тепловое реле для электродвигателя, установленное в цепь питания и обеспечивающее надежную защиту от перегрева. Данный прибор осуществляет контроль над величиной тока, и в случае длительного отклонения от номинала установки производит размыкание контактов. Таким образом, цепь управления остается без питания, а пусковое устройство размыкается. Тепловое реле надежно защищает агрегат от механических перегрузок, заклинивания ротора, перекоса фаз и других аварийных ситуаций.

Как работает тепловое реле защиты электродвигателя

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

Причины срабатывания теплового реле электродвигателя

Под действием электрического тока, протекающего по проводнику, происходит его нагревание. С возрастанием силы тока в проводнике с одним и тем же поперечным сечением, увеличивается и его нагрев, то есть происходит рост нагрузки. В связи с этим, причины срабатывания заключаются преимущественно в повышении температуры.

Эта же тепловая энергия нагревает и биметаллическую пластину, которая под влиянием температуры изгибается и соприкасается с исполнительной пластиной температурного компенсатора через толкатель. В свою очередь, эта пластина расцепляет замкнутые контакты в магнитном пускателе и приводит в рабочее состояние кнопку включения реле. Сам температурный компенсатор является своеобразным противовесом, снижающим влияние дополнительного нагрева под действием температуры окружающей среды. Изгиб пластины происходит в противоположную сторону, а для его регулировки используется специальный винт.

Эксцентрик или регулятор тока срабатывания оборудован шкалой на 5 делений влево и 5 делений вправо, для соответствующего уменьшения и увеличения тока относительно центральной риски. Чтобы отрегулировать ток срабатывания, необходимо изменить зазор между исполнительной пластиной и толкателем. Изменение зазора выполняется движком эксцентрика, воздействующим на пластину температурного компенсатора. После срабатывания теплового реле специалисты рекомендуют выдержать временную паузу, чтобы тепловой расцепитель мог остыть. Следует тщательно осмотреть электродвигатель и найти причину срабатывания прибора.

Тепловое реле для электродвигателя схема подключения

Непосредственное подключение тепловых реле к контакторы осуществляется напрямую с помощью штыревых контактов. После подключения, в зависимости от величины тока, протекающего в цепи, необходимо отрегулировать уставки срабатывания колесиком поворотного регулятора. Нужный ток уставки обозначен на шкале специальными рисками, нанесенными на корпус прибора.

Панель управления реле оборудована кнопкой TEST, с помощью которой проверяется работоспособность устройства путем имитации срабатывания защиты. Кнопка STOP красного цвета позволяет принудительно разомкнуть нормально замкнутый контакт. При этом отключается питание, поступающее на катушку контактора, что в свою очередь приводит к отключению нагрузки. Примерно по такой схеме подключаются и работают все тепловые реле для защиты электродвигателей и их модификации.

Для работы теплового реле предусмотрен ручной или автоматический режим, задаваемый при помощи поворотного переключателя RESET. Автоматический режим предполагает утопленный выключатель и автоматическое включение реле после срабатывания, когда остынет биметаллическая пластина. Перевод прибора в ручной режим осуществляется поворотом переключателя против часовой стрелки.

Схема подключения с нормально замкнутыми контактами используется для управления электродвигателем с помощью магнитного пускателя. К силовым контактам теплового реле выполняется подключение лишь двух фаз, а третья фаза подключается напрямую к двигателю. В работе современных устройств принимают участие все три фазы совместно с дополнительным нормально замкнутым контактом реле. При возникновении перегрузок он размыкается и разрывает цепь питания контактора.

Выбор теплового реле для электродвигателя

В условиях разнообразия конструкций и моделей электрических двигателей и соответствующих тепловых реле, выбор наиболее подходящего сочетания может вызвать определенные затруднения, особенно у неспециалистов. Для того чтобы выбрать наиболее оптимальное устройство, отвечающее всем требованиям, необходимо придерживаться определенных рекомендаций.

Основным требованием ко всем тепловым реле является соответствие их номинала току оборудования, которое требуется защитить. Сами устройства тоже должны быть защищены от коротких замыканий, поэтому в схемах подключения используются предохранители.

Необходимо заранее установить условия эксплуатации тепловых реле, и в каких пределах они могут применяться. Если в системе защиты велика вероятность работы электродвигателя в аварийных режимах, не связанных с ростом потребления электроэнергии, в этих случаях тепловое реле будет бесполезным и не обеспечит надежную защиту. Для этого в обмотку статора электродвигателя включаются элементы специальной тепловой защиты.

Если же тепловая защита двигателя не связана с какими-либо специальными требованиями, решение вопроса как подобрать тепловое реле для электродвигателя, таблица поможет выбрать наиболее подходящее устройство с оптимальными техническими характеристиками.

Защитное устройство выбирается с учетом максимального рабочего тока реле, который не должен быть меньше, чем номинальный ток защищаемого электродвигателя. Тем не менее, рекомендуется, чтобы установочный ток реле незначительно превышал номинал агрегата.

Следует обращать внимание и на возможность регулировок тока с большим запасом в обе стороны – увеличения и уменьшения. В этом случае обеспечивается более надежная и управляемая защита.

Как подобрать тепловое реле для защиты электродвигателя?

При длительной работе электрический двигатель имеет тенденцию перегреваться. Слишком большая мощность, проходящая по цепи, повышает температуру устройства. В результате обмотки перегреваются, а изоляция портится. Это приводит к замыканию между витками, которое провоцирует выгорание полюсов мотора. Даже возникновение одной из перечисленных проблем влечет за собой сбой в работе механизма и обязательный ремонт, который существенно ударит по бюджету.

Чтобы этого избежать, в цепь питания устанавливают тепловое реле для защиты. Оно «считывает» номинал тока, проходящий по цепи, и если он длительное время превышает норму – размыкает контакты. Прекращается подача тока, а электрический мотор останавливает работу. Но чтобы реле работало правильно, необходимо учитывать несколько особенностей.

Главное о конструкции.

Существуют разные виды реле, но основные элементы у них одинаковы. Главное – биметаллическая пластина, которая запускает работу механизма. Это самый чувствительный элемент в конструкции. В зависимости от температурных показателей, в которых находится прибор, меняется время срабатывания. Если температура растет, оно уменьшается. Это небольшая, но важная погрешность. Поэтому при выборе отдавайте предпочтение пластинам с большой температурой.

Сама биметаллическая деталь крепко зафиксирована на оси реле. Для регуляции значения тока используют шунты, которые закрепляются в корпусе. Иногда внутри реле можно найти нихромовые нагреватели. Их придется подключать отдельно, по одной из схем: параллельной или последовательной. Также в комплект включена пружина цилиндрической формы, которая одним концом касается пластины, а другим прикреплена к изоляционной колодке. Если ток перегрузки превышает уставной или равен ему длительное время, колодка поворачивается (под воздействием биметалла), разрывая контакт.

Основные обозначения.

Прежде чем решать, какой вид защиты подойдет, нужно узнать расшифровку маркировки прибора. На корпусе и в паспорте устройства указан:

1. Рабочий ток. Реле срабатывает, когда напряжение доходит до этого значения.

2. Номинал тока для биметаллической пластины. Это то значение, при превышении которого устройство не отключится сразу же.

3. Время-токовые характеристики. Время срабатывания устройства в зависимости от величины напряжения.

4. Токовый диапазон. Он определяет, при каких параметрах реле работает.

5. Крайние токовые уставки.

В паспорте указывают и дополнительные сведения, например, данные для монтажа или способности работы прибора при наличии опасных веществ.

Методика выбора.

Каждый электрический двигатель имеет свой диапазон мощности, в зависимости от этого и нужно выбирать реле. Ориентируемся на номинал тока, который обозначается символом In. Он написан на корпусе устройства и в инструкции. Обычно указывают две цифры, первую для сети мощностью 220 вольт, а вторую для 380 вольт. Далее анализируем характеристики прибора и реле, сравниваем их. При рассмотрении время-токовых параметров учитывайте, что время срабатывания их холодного и перегретого состояния будет разным.

Обычно перед покупкой просматривают специальную таблицу, в которой приведены технические характеристики реле различных видов. Так легче подобрать оптимальный вариант. И у мотора, и у реле защиты есть специальная кривая, на которой изображена зависимость токопрохождения от величины тока. Для бесперебойной работы обоих устройств эта кривая должна быть разной. У двигателя она должна находиться выше.

Главное правило: номинальный ток мотора = уставке тока срабатывания. То есть, чтобы механизм начал разрыв цепи, необходима перегрузка минимум в 20-30%.

Для этого ток несрабатывания реле должен хотя бы на 12% превышать номинал двигателя. Во всех таблицах с характеристиками реле данные приводятся в амперах.

Если данных нет в паспорте.

Бывают ситуации, когда номинальное напряжение устройства неизвестно. Паспорт может быть утерян, данные на корпусе смазаны. Обычно такое случается у тех, кто покупает с рук. Но положение можно исправить несколькими способами:

1. Использовать специальное оборудование, которое автоматически определяет время-токовые показатели (токовые клещи и мультиметр). Анализируют каждую фазу.

2. Если известна хотя бы часть данных, можно найти в Интернете полную информацию. На сайтах производителей часто предлагаются таблицы с характеристиками выпускаемых марок.

Возвращаясь к подбору тепловых реле стоит упомянуть, что важную роль играет страна производства. Европейские аппараты стандартно считаются качественными, но не всегда приспособлены для функционирования в наших условиях. Многие отечественные производители придерживаются мировых стандартов и при этом учитывают особенности местного климата и самих приборов. Кроме того, легче прочитать инструкцию на родном языке, чем мучиться с переводом. Хотя схема подключения реле стандартная, с небольшими нюансами в зависимости от вида устройства. Что касается китайских производителей, то многие из них, например компания CHINT, ориентируются на российского потребителя. При этом качество соответствует европейским брендам.

Тепловое реле для электродвигателя: принцип работы, устройство, как выбрать

Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность. Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.

Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.

Принцип работы приспособления

Выполняя защитную функцию, автоматический выключатель разъединяет силовые питающие цепи. Тепловое реле отличается от него тем, что при превышении нагрузки просто выдает управляющий сигнал. При такой защите токи небольшой величины коммутируются в одной цепи управления.

В схеме перед термореле находится магнитный пускатель. Когда цепи размыкаются в аварийном порядке, отпадает надобность в дублировании работы контактора. Следовательно, не расходуется материал для изготовления силовых контактных групп.

Наиболее популярными являются приборы, оснащенные биметаллическими пластинами. Собственно пластина состоит из двух аналогичных элементов.

Один из них обладает значительным температурным коэффициентом, а другой — несколько меньшим. Эти две составляющие плотно прилегают друг к другу.

Обеспечивается такое жесткое скрепление путем сваривания или прокаткой в горячем виде. За счет того, что пластина закреплена неподвижно, при нагреве наблюдается ее изгиб в сторону элемента с меньшим температурным коэффициентом. Этот принцип взят за основу при создании тепловых реле.

При их производстве применяют хромоникелевую сталь и немагнитную, обладающие большим значением температурного коэффициента. Как материал с малым значением этого параметра используют инвар — соединение никеля с железом.

Пластину из биметалла прогревают токи нагрузки. Протекают они чаще всего по специальному нагревателю. Существует и комбинированный нагрев, при котором, кроме тепла, отдаваемого нагревателем, биметалл прогревает еще и ток, проходящий через него.

Как подключить тепловое реле

Замкнутый контакт (normal connected), при помощи которого производят подключение теплового модуля к магнитному пускателю, обозначают NC или НЗ, что расшифровывается, как нормально замкнутый. Буквенным сочетанием NO обозначают нормально разомкнутый контакт.

В несложной схеме он применяется для подачи сигнала, свидетельствующего о срабатывании защиты двигателя из-за превышения пороговой температуры.

При внедрении в сложные схемы управления он способен формировать в аварийном порядке сигнал выведения из рабочего состояния конвейера.

Обозначение клемм контакторов диктует ГОСТ: нормально замкнутый — 95-96, нормально разомкнутый — 97-98. К первой паре подключают пускатель, вторую используют для схем сигнализации. Так как двигатель и тепловое реле нужно защищать от КЗ, цепь должна содержать автомат защиты.

Схема прибора включает кнопки «Тест» и «Стоп» или «Сброс». С помощью первой проверяют работоспособность, а второй — отключают защиту вручную.

При помощи переключателя поворотного взвода после включения защиты вновь запускают электродвигатель. На стеклянную крышку изделия наносят маркировку и пломбируют.

Если исходить из типа подключения, можно выделить две большие группы термореле:

  • первая группа – устройства, монтируемые за магнитным пускателем и те, что подключаются с использованием перемычек;
  • вторая группа – приборы, устанавливаемые на контактор пускателя непосредственно.

В последнем случае при запуске основная нагрузка приходится на контактор. Здесь тепловой модуль оснащен медными контактами, подключенными к входам пускателя непосредственно.

К ТР подключают провода от двигателя. Само реле в такой схеме представляет промежуточный узел, анализирующий ток, протекающий транзитом к двигателю от магнитного пускателя.

Нюансы при установке прибора

На скорость срабатывания теплового модуля могут повлиять не только токовые перегрузки, но и показатели внешней температуры. Защита сработает даже в условиях отсутствия перегрузок.

Бывает и так, что под воздействием принудительной вентиляции двигатель подвержен тепловой перегрузке, но защита не срабатывает.

Чтобы избежать таких явлений, нужно следовать рекомендациям специалистов:

  1. При выборе реле ориентироваться на максимально допустимую температуру срабатывания.
  2. Защиту монтировать в одном помещении с защищаемым объектом.
  3. Для установки выбирать места, где нет источников тепла или вентиляционных устройств.
  4. Нужно настраивать тепловой модуль, ориентируясь на реальную температуру окружения.
  5. Лучший вариант — наличие в конструкции реле встроенной термокомпенсации.

Дополнительной опцией термореле является защита при обрыве фазы или полностью питающей сети. Для трехфазных моторов этот момент особо актуален.

При неполадках в одной фазе две остальные принимают на себя ток большей величины. В результате быстро происходит перегрев, а далее — отключение. При неэффективной работе реле может выйти из строя и двигатель, и проводка.

Существующие типы устройств

Класс тепловых реле включает несколько видов: ТРН,РТЛ, ТРП, РТИ, РТТ. Применение каждого обусловлено особенностями конструкции.

Токовое реле двухфазное (ТРН), используют в основном для электрозащиты двигателей асинхронных, имеющих короткозамкнутый ротор. Как правило, они работают от сети с номиналом до 500 В, частотой 50 Гц.

Оснащено реле ручным механизмом управления контактами. Габариты ТРН дают возможность встраивать их в комплектные устройства как закрытого, так и открытого типа станций, координирующих работу приводов. Функцию защиты от КЗ они не выполняют и сами нуждаются в ней.

Реле ТРП имеют механизм, устойчивый к вибрациям, ударопрочный корпус. Разработаны для охраны асинхронных трехфазных двигателей, функционирующих в условиях больших механических нагрузок.

Рассчитаны они на максимальный ток 600 А и напряжение максимум 500 В, а в цепях с постоянным током — 440 В. Автоматика нечувствительна к внешней температуре и срабатывает тогда, когда показатель превышает 200°C.

Устройства РТЛ — трехфазные, кроме защиты двигателя от перегрузок, предохраняют от заклинивания ротор. Они страхуют его от поломок в случае перекоса фаз, при затяжном пуске.

Работают автономно с клеммниками КРЛ и в модификации с магнитным пускателем ПМЛ. Токовый рабочий промежуток — от 0,10 до 86 А.

РТТ – приспособление защищает асинхронные двигатели от токовых бросков, перекоса фаз, заклинивания и других нештатных ситуаций. Используется и как самостоятельный прибор, и в виде встройки в пускатели ПМА, ПМЕ.

Изделие трехфазное РТИ наделено теми же функциями, что и предыдущее, но используется в модификации с пускателями КТМ и КМИ.

Как выбрать тепловое реле

Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.

Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.

Базовые характеристики приспособлений

Базовыми данными устройства, защищающего двигатель, являются:

  1. Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
  2. Рабочий ток, при котором ТП срабатывает.
  3. Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
  4. Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
  5. Токовый диапазон, в котором срабатывает реле.

Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.

Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.

Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.

Выбор устройства по правилам

Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.

Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния.

Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.

Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток. Его значение связано с номинальным током нагрузки электродвигателя.

Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле.

Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.

Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.

Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.

В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.

Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2*2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.

Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.

Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов.

При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.

Выводы и полезное видео по теме

Схема эффективной защиты двигателя:

Составные части теплового реле:

Принцип взаимодействия различных приборов в разных вариантах подключения теплового реле одинаков. Для лучшей ориентации в схемах надо уметь “читать” маркировку устройств. В идеале все работы по подключению должен выполнять мастер, имеющий допуск к работе в условиях высокого напряжения.

Есть, что дополнить, или возникли вопросы по выбору и применению теплового реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования устройств. Форма для связи находится в нижнем блоке.

Тепловая защита электродвигателя. Электротепловое реле.

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Что такое тепловые реле перегрузки и какие компоненты они защищают?

Тепло является основным фактором в работе и сроке службы двигателя, и одним из основных источников нагрева двигателя является ток, протекающий через обмотки двигателя. Поскольку нагрев является неизбежным условием работы двигателя, важно защитить двигатель от перегрева или тепловой перегрузки.

В предыдущем посте мы описали несколько типов датчиков, которые могут напрямую измерять температуру обмоток двигателя.Но в некоторых случаях — особенно для асинхронных двигателей переменного тока — нагрев двигателя можно измерить косвенно с помощью тепловых реле перегрузки, которые определяют температуру двигателя, контролируя величину тока, подаваемого на двигатель.


Тепловые реле перегрузки подключаются последовательно с двигателем, поэтому ток, протекающий к двигателю, также проходит через реле перегрузки. Когда ток достигает или превышает заданный предел в течение определенного времени, реле активирует механизм, который размыкает один или несколько контактов, чтобы прервать прохождение тока к двигателю.Реле тепловой перегрузки классифицируются по классу срабатывания, который определяет время, в течение которого может произойти перегрузка, прежде чем реле сработает или отключится. Обычные классы поездки — 5, 10, 20 и 30 секунд.

Учет времени, а также тока важен для асинхронных двигателей переменного тока, потому что они потребляют значительно больше, чем их полный номинальный ток (часто 600 процентов или более) во время запуска. Таким образом, если реле немедленно сработает при превышении тока перегрузки, двигатель будет испытывать трудности с запуском.


Существует три типа тепловых реле перегрузки — биметаллические, эвтектические и электронные.

Биметаллические тепловые реле перегрузки (иногда называемые нагревательными элементами) изготовлены из двух металлов с разными коэффициентами теплового расширения, которые скреплены или соединены вместе. Обмотка, намотанная на биметаллическую полосу или размещенная рядом с ней, проводит ток.

В биметаллическом тепловом реле перегрузки нагрев из-за протекания тока заставляет биметаллическую полосу изгибаться в одну сторону, активируя механизм отключения.
Изображение предоставлено: Siemens

Поскольку ток, протекающий через реле (и, следовательно, через двигатель), нагревает биметаллическую полосу, два металла расширяются с разной скоростью, заставляя полосу изгибаться в сторону с более низким коэффициентом тепловое расширение. Когда полоса изгибается, она приводит в действие нормально замкнутый (NC) контактор, заставляя его размыкаться и прекращая прохождение тока к двигателю. Как только биметаллическое реле остынет и металлические полосы вернутся в свое нормальное состояние, цепь автоматически сбрасывается, и двигатель можно перезапустить.

Эвтектические тепловые реле перегрузки используют эвтектический сплав (комбинация металлов, плавящихся и затвердевающих при определенной температуре), помещенные в трубку и подключенные к обмотке нагревателя. Ток питания двигателя протекает через обмотку нагревателя и нагревает сплав. Когда сплав достигает достаточной температуры, он быстро превращается в жидкость.

В эвтектическом реле тепловой перегрузки нагрев из-за протекания тока вызывает быстрое разжижение эвтектического сплава, активируя механическое устройство, которое размыкает реле.
Изображение предоставлено: Rockwell Automation

В твердом состоянии сплав удерживает на месте механическое устройство, например пружину или трещотку. Но когда сплав плавится, механическое устройство срабатывает, размыкая контакты перегрузки. Подобно биметаллической конструкции, эвтектическое реле тепловой перегрузки не может быть сброшено до тех пор, пока сплав не остынет и не вернется в исходное твердое состояние.

Электронные тепловые реле перегрузки более точны и надежны, чем конструкции нагревателей, и могут предоставлять данные для диагностики и профилактического обслуживания.
Изображение предоставлено: ABB

Электронные тепловые реле перегрузки измеряют ток электронным способом, а не полагаются на механизм нагревателя, и поэтому они нечувствительны к изменениям температуры окружающей среды. Они также менее склонны к «неприятным» или ложным срабатываниям. Электронные реле перегрузки могут предоставлять такие данные, как процент использования тепловой мощности (% TCU), процент ампер полной нагрузки (% FLA), время до отключения, текущий среднеквадратичный ток и ток замыкания на землю — информация, которая может помочь операторам проводить диагностику. и предсказать, когда реле может сработать.

Электронные устройства также могут защищать двигатели от потери фазы (также называемой обрывом фазы), которая возникает, когда одна фаза тока равна нулю ампер, часто из-за короткого замыкания или перегорания предохранителя. Это заставляет двигатель потреблять чрезмерный ток на оставшихся двух фазах и приводит к значительному нагреву двигателя.


Тепловые реле перегрузки обычно являются частью пускателя двигателя, который включает реле перегрузки с контактами. Важно отметить, что тепловые реле перегрузки предназначены только для защиты двигателя от перегрева и не срабатывают при коротком замыкании, поэтому для защиты цепи необходимы дополнительные предохранители или автоматические выключатели.


Основы выбора реле перегрузки

Когда дело доходит до производства, двигатели заставляют мир вращаться. Это делает правильную защиту двигателя критически важной. Введите реле перегрузки. Реле перегрузки защищают двигатель, считывая ток, идущий к двигателю. Во многих из них используются небольшие нагреватели, часто биметаллические элементы, которые изгибаются при нагревании током, подаваемым в двигатель.

Когда ток слишком велик в течение слишком длительного времени, нагреватели размыкают контакты реле, проводя ток к катушке контактора.Когда контакты размыкаются, катушка контактора обесточивается, что приводит к отключению основного питания двигателя. Эти контакты не влияют на управляющую мощность (которая часто составляет 120 В), поэтому не предполагайте отсутствие потенциально смертельного тока без надлежащей блокировки / маркировки.

Типы реле. Реле перегрузки и их нагреватели относятся к одному из трех классов, в зависимости от времени, которое требуется им для реакции на перегрузку в двигателе. Само реле перегрузки будет иметь маркировку, указывающую, к какому классу оно принадлежит.К ним относятся классы 10, 20 и 30. Номер класса указывает время ответа (в секундах). Немаркированное реле перегрузки всегда относится к классу 20. Типичные реле перегрузки с номиналом NEMA относятся к классу 20, но вы можете настроить многие из них примерно на 15% выше или ниже их нормального тока срабатывания. Реле IEC обычно относятся к классу 10, и вы можете настроить их на 50% выше их нормального тока срабатывания.

При замене нагревателей перегрузки всегда заменяйте весь комплект. Почему? Потому что есть некоторые повреждения оставшихся двух обогревателей, и вы можете закончить игру с музыкальными стульями, поскольку они по очереди выходят из строя преждевременно.

Выбор нагревателя. Выбор несложен, если вы можете использовать тот же бренд и размер. Однако, это не всегда возможно. Если вам необходимо выбрать другой обогреватель, обратитесь к таблицам выбора производителя. Ваш выбор будет зависеть от максимальной силы тока нагрузки (FLA) двигателя и используемого пускателя двигателя.

Например, предположим, что вам нужно выбрать замену перегрузки для 100-сильного двигателя с током 162A при полной нагрузке. Допустим, у вас есть контроллер NEMA Size 5.Мы будем использовать выдержку из действительного каталога таблиц производителя (см. Таблицу выше). В этом примере показано, как взаимодействуют критерии выбора. Индексы и таблицы всех производителей просты в использовании, но давайте проведем пробный запуск с этим примером.

Чтобы сделать правильный выбор от этого производителя, начните с номера бюллетеня (левый столбец). Это приведет вас к нужной таблице (правый столбец). В этом случае указатель говорит вам использовать таблицу номер 147 для 506 серии A. В таблице производителя 147 вы должны найти FLA двигателя в столбце для контроллеров NEMA Size 5.Если FLA вашего двигателя не совсем соответствует FLA таблицы, просто выберите ближайший нагревательный элемент: в данном случае W38. Это предполагает, что ваш двигатель и контроллер работают при одинаковой температуре. Если существует небольшая разница температур (менее 15 градусов по Фаренгейту) между двигателем и контроллером, выберите нагреватель на основе контроллера. Выберите большее число нагревателя, если контроллер теплее двигателя. Выберите меньшее количество нагревателей, если контроллер холоднее двигателя. Если существует значительная разница температур (15 градусов по Фаренгейту или более) между двигателем и контроллером, проконсультируйтесь с производителем или поставщиком.Надежная защита двигателя от перегрузки потребует дополнительных корректировок в процессе выбора.

Примечание редактора: не путайте защиту двигателя от перегрузки с защитой выключателя, потому что они служат двум разным целям. Ваша защита двигателя от перегрузки отключит питание двигателя, чтобы защитить только двигатель. Ваш автоматический выключатель откроется, чтобы защитить распределение мощности к двигателю. Вы должны делать и то, и другое, и ни одно устройство не выполняет и то, и другое. Вы должны выбрать такую ​​защиту цепи, чтобы защитить фидеры, и согласовать защиту фидера двигателя со схемой выключателя на входе.—M.L.L.

Реле перегрузки | Что такое защита от перегрузки?

Введение в двигатели

Электродвигатели являются неотъемлемой частью промышленного оборудования, игрушек, транспортных средств и электронных устройств. Они предназначены для преобразования электрической энергии в механическую. Эти устройства могут питаться от источников переменного или постоянного тока. Воздуходувки, вентиляторы, компрессоры, краны, экструдеры и дробилки — это несколько важных устройств, оснащенных электродвигателями.

Что такое асинхронный двигатель?

Асинхронный двигатель, также называемый синхронным двигателем, является одним из основных типов электродвигателей переменного тока, используемых в коммерческих и промышленных средах.Эти двигатели оснащены обмотками Armortisseur и работают по принципу электромагнитной индукции. Электромагнитное поле в роторе создается вращающимся полем статора. Короче говоря, мощность передается на обмотку ротора от статора через индукцию. Существует два основных типа асинхронных двигателей
— однофазные асинхронные двигатели и трехфазные асинхронные двигатели.

Введение в трехфазные асинхронные двигатели

Это один из наиболее широко используемых типов электродвигателей; и является неотъемлемой частью почти 80% промышленных приложений. Его популярность обусловлена ​​прочной конструкцией, отличными рабочими характеристиками, регулировкой скорости и отсутствием коммутатора. Как и любой обычный асинхронный двигатель, этот двигатель также состоит из статора и ротора.

  • Статор: Это неподвижный элемент асинхронного двигателя. Статор представляет собой небольшую цилиндрическую раму, на которой находится цилиндрический сердечник ротора. Он имеет различные штамповки с пазами для размещения трехфазных обмоток. Обмотки статора разделены на 120 градусов.
  • Ротор: Это вращающаяся часть двигателя. Ротор имеет многослойные цилиндрические прорези с медными или алюминиевыми проводниками, соединенными концами. Это вал двигателя.

Ротор трехфазного асинхронного двигателя классифицируется как ротор с фазной обмоткой или ротор с контактным кольцом и ротор с короткозамкнутым ротором. Среди этих двух ротор с короткозамкнутым ротором является одним из самых распространенных.

Асинхронные двигатели с короткозамкнутым ротором

Асинхронные двигатели, оснащенные ротором с короткозамкнутым ротором, известны как асинхронные двигатели с короткозамкнутым ротором.Они получили свое название, потому что ротор напоминает вращающуюся цилиндрическую «клетку», которую вы можете найти в клетке для домашней белки или хомяка. Эти двигатели доступны в размерах от долей лошадиных сил (л.с.) менее одного киловатта до 10 000 л.с. (десятки мегаватт). Такие факторы, как простота, прочная конструкция и постоянная скорость при различных размерах нагрузки, способствовали их популярности. Как и другие асинхронные двигатели, двигатель с короткозамкнутым ротором состоит из:

  • Ротор: Это деталь цилиндрической формы, установленная на валу.Он содержит продольно организованные токопроводящие шины. Стержни изготовлены из меди или алюминия и вставлены в канавки, которые соединяются на концах, образуя структуру, подобную клетке. Ротор имеет многослойный сердечник, который помогает избежать потерь мощности из-за гистерезиса и вихревых токов. Провода ротора перекошены, что позволяет избежать зазубрин при запуске оборудования. Кроме того, этот перекос обеспечивает улучшенный коэффициент трансформации между ротором и статором.
  • Статор: Состоит из трехфазной обмотки вдоль сердечника.Статор помещен в металлический корпус. Обмотки в статоре организованы так, что они расположены на расстоянии 120 градусов друг от друга в пространстве, и установлены на многослойном железном сердечнике. Этот железный сердечник обеспечивает путь сопротивления для потока, создаваемого токами переменного тока.

Что такое защита от перегрузки?

Когда двигатель потребляет избыточный ток, это называется перегрузкой. Это может вызвать перегрев двигателя и повреждение обмоток двигателя. В связи с этим важно защитить двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от условий перегрузки. Реле перегрузки защищают двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от чрезмерного нагрева в условиях перегрузки. Реле перегрузки являются частью пускателя двигателя (блок контактора плюс реле перегрузки). Они защищают двигатель, контролируя ток, протекающий в цепи. Если ток поднимается выше определенного предела в течение определенного периода времени
, то реле перегрузки срабатывает, приводя в действие вспомогательный контакт, который прерывает цепь управления двигателем, обесточивая контактор.Это приводит к отключению питания двигателя. Без питания двигатель и его компоненты цепи не перегреваются и не выходят из строя. Реле перегрузки можно сбросить вручную, а некоторые реле перегрузки автоматически сбрасываются через определенный период времени. После этого мотор можно перезапустить.

Как работает реле перегрузки

Реле перегрузки подключено последовательно с двигателем, поэтому ток, который течет к двигателю во время работы двигателя, также проходит через реле перегрузки. Он сработает на определенном уровне, когда через него протекает избыточный ток. Это приводит к размыканию цепи между двигателем и источником питания. Реле перегрузки можно сбросить вручную или автоматически по истечении заданного времени. Двигатель можно перезапустить после выявления и устранения причины перегрузки.

Типы реле перегрузки

Биметаллическое реле перегрузки

Многие реле перегрузки содержат биметаллические элементы или биметаллические полосы, также называемые нагревательными элементами.Биметаллические полоски изготовлены из двух типов металлов: один с низким коэффициентом расширения, а другой — с высоким коэффициентом расширения. Эти биметаллические полосы нагреваются за счет намотки на биметаллическую полосу, по которой проходит ток. Обе металлические полоски расширятся из-за тепла. Однако металл с высоким коэффициентом расширения будет расширяться больше по сравнению с металлом с низким коэффициентом расширения. Такое разное расширение биметаллических полос приводит к изгибу биметалла по направлению к металлу с низким коэффициентом расширения.Когда полоса изгибается, она приводит в действие механизм вспомогательных контактов и вызывает размыкание нормально замкнутого контакта реле перегрузки. В результате цепь катушки контактора прерывается. Количество выделяемого тепла можно рассчитать по закону нагрева Джоуля. Он выражается как H ∝ I2Rt.

  • I — ток перегрузки, протекающий через обмотку вокруг биметаллической ленты реле перегрузки.
  • R — электрическое сопротивление обмотки биметаллической ленты.
  • t — это период времени, в течение которого ток I протекает через обмотку вокруг биметаллической ленты.

Приведенное выше уравнение определяет, что тепло, выделяемое обмоткой, будет прямо пропорционально периоду времени прохождения максимального тока через обмотку. Другими словами, чем ниже ток, тем больше времени потребуется реле перегрузки для срабатывания, и чем выше ток, тем быстрее сработает реле перегрузки, фактически оно сработает намного быстрее, потому что работа реле является функцией текущий квадрат.

Биметаллические реле перегрузки часто используются, когда требуется автоматический сброс цепи, и происходит потому, что биметалл остыл и вернулся в исходное состояние (форму). Как только это произойдет, двигатель можно будет перезапустить. Если причина перегрузки не устранена, реле снова сработает и сбрасывается с заданными интервалами. При выборе реле перегрузки важно соблюдать осторожность, поскольку повторное отключение и сброс могут сократить механический срок службы реле и вызвать повреждение двигателя.

Во многих случаях двигатель устанавливается в месте с постоянной температурой окружающей среды, а реле перегрузки и пускатель двигателя могут быть установлены в другом месте, где температура окружающей среды отличается. В таких приложениях точка срабатывания реле перегрузки может варьироваться в зависимости от нескольких факторов. Ток, протекающий через двигатель, и температура окружающего воздуха являются двумя факторами, которые могут вызвать преждевременное отключение. В таких случаях используются биметаллические реле перегрузки с компенсацией внешней среды.Реле этого типа имеют два типа биметаллических полос: компенсированная биметаллическая полоса и первичная нескомпенсированная биметаллическая полоса. При температуре окружающей среды обе эти полоски изгибаются одинаково, предотвращая ложное срабатывание реле перегрузки. Однако первичная биметаллическая полоса — единственная полоса, на которую влияет ток, протекающий через нагревательный элемент и двигатель. В случае перегрузки расцепитель будет задействован основной биметаллической полосой.

Эвтектическое реле перегрузки

Реле перегрузки этого типа состоит из обмотки нагревателя, механического механизма для активации отключающего механизма и эвтектического сплава.Эвтектический сплав — это комбинация двух или более материалов, которые затвердевают или плавятся при определенной известной температуре.

В реле перегрузки эвтектический сплав находится в трубке, которая часто используется вместе с подпружиненным храповым колесом для активации отключающего механизма во время операций по перегрузке. Ток двигателя проходит через небольшую обмотку нагревателя. Во время перегрузки трубка из эвтектического сплава нагревается обмоткой нагревателя. Сплав плавится под действием тепла, освобождая храповое колесо и позволяя ему вращаться.Это действие инициирует размыкание замкнутых вспомогательных контактов в реле перегрузки.

Реле перегрузки Eutectic можно сбросить вручную только после срабатывания. Этот сброс обычно выполняется с помощью кнопки сброса, которая расположена на крышке реле. Блок нагревателя, установленный на реле, выбирается исходя из тока полной нагрузки двигателя.

Твердотельное реле перегрузки

Эти реле обычно называют электронными реле перегрузки.В отличие от биметаллических и эвтектических реле перегрузки, эти электронные реле перегрузки измеряют ток электронным способом. Несмотря на то, что они доступны в различных исполнениях, они имеют общие особенности и преимущества. Безнагревная конструкция — одно из главных преимуществ этих реле. Такая конструкция помогает снизить затраты и трудозатраты на установку. Кроме того, конструкция без обогревателя нечувствительна к изменению температуры окружающей среды, что помогает свести к минимуму ложные срабатывания. Эти реле также обеспечивают защиту от потери фазы — более эффективно, чем реле перегрузки из биметаллических или эвтектических сплавов.Эти реле могут легко обнаружить обрыв фазы и задействовать вспомогательный контакт для размыкания цепи управления двигателем. Твердотельные реле перегрузки позволяют легко регулировать время срабатывания и уставки.

Срабатывание реле перегрузки

Время срабатывания реле перегрузки будет уменьшаться при увеличении тока. Эта функция нанесена на график обратной зависимости времени ниже и называется классом отключения. Класс отключения также указывает время, необходимое реле для размыкания в состоянии перегрузки.

Классы отключения 5, 10, 20 и 30 являются общими. Эти классы предполагают, что реле перегрузки сработает через 5, 10, 20 и 30 секунд. Это отключение обычно происходит, когда двигатель работает на 720% от своей полной нагрузки. Класс отключения 5 подходит для двигателей, требующих быстрого отключения, тогда как класс 10 обычно предпочтительнее для двигателей с низкой тепловой мощностью, таких как погружные насосы. Классы 10 и 20 используются для приложений общего назначения, тогда как класс 30 используется для нагрузок с высокой инерцией. Реле класса 30 помогают избежать ложных срабатываний.

Мы надеемся, что эта короткая статья дала вам хорошее базовое представление о реле перегрузки. Поищите другие информационные документы от c3controls на c3controls.com/blog.

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг. Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты. Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям. Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Тепловые реле перегрузки и автоматические выключатели для защиты двигателей

В чем разница между автоматом защиты двигателя и реле тепловой перегрузки? Что такое электронное реле защиты двигателя? Читай дальше, чтобы узнать больше.

Австралийские стандарты

требуют двух типов защиты цепей двигателя — защиты от короткого замыкания и защиты от перегрузки. Защита от короткого замыкания должна срабатывать очень быстро в случае высокого тока, тогда как защита от перегрузки обычно откладывается, чтобы позволить двигателю потреблять более высокий ток при запуске.Давайте быстро посмотрим на разницу между ними:

Защита от короткого замыкания использует электромагнитный механизм для мгновенного отключения цепи, когда ток достигает определенного порога. Обычно он настроен на отключение при токе, в десять или более раз превышающем нормальный рабочий ток двигателя, чтобы избежать отключения при нормальном запуске двигателя.

Защита от перегрузки (тепловая) работает с использованием биметаллической ленты, которая изгибается при нагревании до заданной температуры током, протекающим в двигатель.Это указывает на то, что двигатель постоянно потребляет чрезмерный ток с течением времени — он может быть заблокирован, остановлен или находится под слишком большой нагрузкой.

Реле тепловой перегрузки

Реле тепловой перегрузки, обычно называемое «тепловой перегрузкой», представляет собой устройство, которое обычно подключается непосредственно к контактору двигателя. Он обеспечивает только защиту от перегрузки, поэтому для защиты от короткого замыкания должен быть соединен с предшествующим магнитным выключателем. Тепловые перегрузки обычно экономичны, надежны и просты в установке и использовании, поэтому широко используются для управления двигателями.

Автоматический выключатель защиты двигателя

Также известный как автоматический выключатель двигателя, автоматический выключатель защиты двигателя представляет собой коммутационное устройство, которое включает в себя защиту от перегрузки и короткого замыкания в единой компактной раме. Он отличается от стандартного MCB (миниатюрного автоматического выключателя) тем, что позволяет пользователю предварительно установить точный размер двигателя для точной защиты. Автоматические выключатели двигателя очень распространены в системах пуска промышленных двигателей.

Реле электронной защиты двигателя

Электронное реле защиты двигателя или электронное реле перегрузки — это сложное электронное устройство, в котором используется электроника для постоянного контроля тока двигателя и защиты от сценариев перегрузки.Большинство моделей не имеют защиты от короткого замыкания, поэтому должны быть оснащены автоматическим выключателем. Также доступен широкий спектр дополнительных опций связи, включая Ethernet или последовательные соединения с ПЛК и другим оборудованием автоматизации. Электронная перегрузка обеспечивает большую точность и гибкость по сравнению со стандартной тепловой перегрузкой, но намного дороже. Их использование в основном ограничивается приложениями в горнодобывающей промышленности и критически важной инфраструктурой, где требуется дополнительная прозрачность и гибкость.

% PDF-1.4 % 6475 0 объект > эндобдж xref 6475 63 0000000016 00000 н. 0000001615 00000 н. 0000001796 00000 н. 0000001854 00000 н. 0000001905 00000 н. 0000001961 00000 н. 0000002018 00000 н. 0000002085 00000 н. 0000003299 00000 н. 0000003548 00000 н. 0000003617 00000 н. 0000003742 00000 н. 0000003816 00000 н. 0000003941 00000 н. 0000004008 00000 н. 0000004110 00000 н. 0000004216 00000 н. 0000004349 00000 п. 0000004414 00000 н. 0000004529 00000 н. 0000004594 00000 н. 0000004659 00000 н. 0000004723 00000 н. 0000004765 00000 н. 0000004825 00000 н. 0000004947 00000 н. 0000005069 00000 н. 0000005191 00000 п. 0000005313 00000 п. 0000005501 00000 п. 0000005525 00000 н. 0000006702 00000 н. 0000006726 00000 н. 0000007836 00000 н. 0000007860 00000 н. 0000009004 00000 н. 0000009028 00000 н. 0000010156 00000 п. 0000010180 00000 п. 0000011298 00000 п. 0000011322 00000 п. 0000011440 00000 п. 0000011563 00000 п. 0000012726 00000 п. 0000012750 00000 п. 0000013849 00000 п. 0000013872 00000 п. 0000013988 00000 п. 0000014104 00000 п. 0000015340 00000 п. 0000015419 00000 п. 0000015499 00000 н. 0000015712 00000 п. 0000015821 00000 п. 0000015933 00000 п. 0000016983 00000 п. 0000035226 00000 п. 0000035304 00000 п. 0000035368 00000 п. 0000035433 00000 п. 0000035498 00000 п. 0000002128 00000 н. 0000003275 00000 н. трейлер ] >> startxref 0 %% EOF 6476 0 объект > эндобдж 6477 0 объект > эндобдж 6478 0 объект [ 6479 0 руб. 6480 0 руб. 6481 0 руб. ] эндобдж 6479 0 объект > / F 2 0 R >> эндобдж 6480 0 объект > / Ж 55 0 Р >> эндобдж 6481 0 объект > / Ж 103 0 Р >> эндобдж 6482 0 объект > эндобдж 6536 0 объект > транслировать Hb«f«c`c` @

РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ ПУСКАТЕЛЯ ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A Реле защиты от перегрузки Электрооборудование и материалы

РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ ПУСКАТЕЛЯ ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A Реле защиты от перегрузки Электрооборудование и материалы
  1. Home
  2. Business & Industrial
  3. Электрооборудование и принадлежности
  4. Реле
  5. Реле защиты от перегрузки
  6. РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ ПУСКАТЕЛЯ ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A

РЕЛЕ ПЕРЕГРУЗКИ ДВИГАТЕЛЯ ПЕРЕКЛЮЧАТЕЛЬ ДВИГАТЕЛЯ ДВИГАТЕЛЬ 11-24 14A

ДЛЯ СТАРТЕРА ДВИГАТЕЛЯ ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ NTh24 11-14A РЕЛЕ ПЕРЕГРУЗКИ, РЕЛЕ ЗАЩИТЫ ДВИГАТЕЛЯ, РЕЛЕ ПЕРЕГРУЗКИ ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ NTh24 11-14A.ДЛЯ ПУСКАТЕЛЯ ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A РЕЛЕ ПЕРЕГРУЗКИ, РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ ПУСКАТЕЛЯ ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A, Бизнес и промышленность, Электрооборудование и материалы, Реле, Реле защиты от перегрузки.



НУЖНО РАЗРЕШИТЬ ВОПРОСЫ СООТВЕТСТВИЯ? МЫ КЛЮЧ НУЖНО ПОВЫШАТЬ ЭФФЕКТИВНОСТЬ? МЫ КЛЮЧ НУЖНО ПОВЫШАТЬ ПРОИЗВОДИТЕЛЬНОСТЬ? МЫ КЛЮЧ МЫ КЛЮЧ К ВАШЕМУ УСПЕХУ.СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ

РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ СТАРТЕРА ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A

РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ СТАРТЕРА ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A. РЕЛЕ ПЕРЕГРУЗКИ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A. РЕЛЕ ЗАЩИТЫ ДВИГАТЕЛЯ .. Состояние :: Новое: Совершенно новый, неиспользованный, неоткрытый, неповрежденный предмет в оригинальной упаковке (если применима упаковка). Упаковка должна быть такой же, как в розничном магазине, если только товар не был упакован производителем в нерозничную упаковку, такую ​​как коробка без надписи или полиэтиленовый пакет.См. Список продавца для получения полной информации. Просмотреть все определения условий: Бренд:: NHD, MPN:: NTh24: Модель:: NTH,


действует в интересах вашей компании

Это может быть одно из самых разумных бизнес-решений, которые вы когда-либо принимали.

(ПЭО)

Если вам нужна помощь в управлении все более сложными вопросами, связанными с сотрудниками, такими как льготы по здоровью, требования о компенсации работникам, начисление заработной платы, соблюдение налоговых требований и требования по страхованию от безработицы, решением может стать аренда сотрудников через организацию профессиональных работодателей (PEO).Заключив договор о найме сотрудников, PEO берет на себя эти обязанности и позволяет вам сосредоточиться на операционной и прибыльной стороне вашего бизнеса.

РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ СТАРТЕРА ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A

100 Kwikset Master Pin # 1 Набор сменных штифтов для смены ключей, КОНЦЕВАЯ ФРЕЗА 1-1 / 2 «4-зубчатая кобальтовая концевая фреза, Твердые ацетиновые регуляторы со склада в США, 30 фунтов на кв. Дюйм для сварочного инструмента с газовой горелкой. ОРЕХИ.. РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ СТАРТЕРА ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A . Химически стойкие перчатки 17 дюймов L ANSELL 87-105 9-1 / 2 Натуральный каучук латекс. 91/150/180 фунтов Рыбалка Прочный редкоземельный круглый неодимовый рым-болт с речным магнитом. Ford New Holland, прямая задняя тяговая штанга WN-86520237, длина 32,63 дюйма для тракторов , 2шт R22 R410A Адаптер для зарядки холодильного оборудования для предохранительного сервисного клапана 1/4 дюйма Z7Z1. ЧПУ USB MACh4 100Khz Breakout Board 5-осевой интерфейсный драйвер, контроллер движения, M8 x 45 мм 304 из нержавеющей стали с крестообразным шлицем Болт 5 шт. F8T3.1000 # 0 6X10 Kraft Bubble Mailers Мягкий транспортировочный конверт ENJP 6 «x10», Samsung Falcon iDCS 8D, светло-серый, 1 шт. Держатель ручки с вкладышами из нержавеющей стали Портативный для аксессуаров для ноутбуков. РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ СТАРТЕРА ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A .

МЫ — Ключ к вашему успеху!

Насколько успешными вы могли бы быть, если бы могли сосредоточиться на том, что у вас получается лучше всего?

КлючHR

Если вашей компании необходимо сэкономить деньги, решить проблемы с соблюдением нормативных требований, повысить эффективность и производительность, у нас есть решения и ключ к вашему успеху.

РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ СТАРТЕРА ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A

РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ ПУСКАТЕЛЯ ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A, Электрооборудование и материалы, Реле, Реле защиты от перегрузки, Электрооборудование и материалы для бизнеса и промышленности Прокрутка

РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ СТАРТЕРА ДВИГАТЕЛЯ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A

все ручная работа (дизайнерская цветная печать.Купите мужскую рубашку на пуговицах Jamais-Vu 2019, летнюю повседневную рубашку на пуговицах с коротким рукавом, приталенные рубашки и другие повседневные рубашки на пуговицах в, Кожаные накладки для пальцев Magid 079 изготовлены из прочной сплит-кожи Pearl для работ, в которых защита требуется только на пальцах НОВИНКА TLh230 Novotechnik Датчик положения TLH 130 Датчик 130 мм, Купить крышку клапана двигателя cciyu и прокладку, совместимые с Mini Cooper S 1, ** Идеально подходят для использования внутри и вне помещений. SMTSMT-SHOES Мужские кроссовки Музыкальные ноты Повседневная обувь на шнуровке Светящаяся обувь Легкая обувь, STENS 248-034 Запасной ремень.☀О LVGU- LVGU — это бренд головных уборов, которому вы можете ДОВЕРЯТЬ. Каждая линза обладает улучшенными оптическими свойствами для защиты ваших глаз и обеспечения кристально чистого зрения, 100 ПК нейлон 1-1 / 2 дюйма x 1/4 дюйма диаметром. Анкер ведущего штифта с плоской головкой Fabory. Прочешите берега этой головоломки и найдите всевозможные сокровища, о которых стоит поговорить. Дата первого упоминания: 20 октября, новый комплект для запирания в форме полумесяца PolyJohn PJN3 Туалет Porta Potty John Toilet. УНИВЕРСАЛЬНОСТЬ: адаптируется к тому, кто его носит. Мы знаем, что вам не терпится надеть Lycia, 3/4 «LOC 2-1 / 2» OAL 4 Flute Solid Carbid… 1/4 «Диаметр хвостовика Hertel Диаметр 1/4». Отделка — полюсные карманы или люверсы. Заказ будет обработан и отправлен в течение 48 часов после получения оплаты. 12,7-миллиметровый цифровой микрометр, электронный толщиномер, ЖК-дисплей, — Мы НЕ принимаем возврат использованных продуктов. с дополнительной возможностью подарочной упаковки, упаковка из 5 держателей 3M Roloc № 2, арт. № 33734. При международных заказах взимается дополнительная плата за доставку. Кто-то аккуратно превратил его в акцентный светильник на деревянном основании. 9 дюймов диаметром x 4 дюйма — длинный алюминиевый круглый стержень 6061 T6 -> 9 дюймов диаметром 6061 T6 алюминиевый стержень, который трудно гнить или заржаветь в воде или другой жидкости.8-футовый выдвижной удерживающий ремень. — Внутренний диаметр 3/8 дюйма x внешний диаметр 5/8 дюйма x толщина стенки 1/8 дюйма 96 дюймов, круглая трубка из поликарбоната, прозрачная номинальная. язычок для крепления недоуздка (крепление к недоуздку необязательно, Многофункциональная и удобная столешница. Слегка приподнятые мягкие края обеспечивают отличную защиту камеры и экрана, 217-1783 2171783 89053296 53030821 22969.

РЕЛЕ ПЕРЕГРУЗКИ ДЛЯ СТАРТЕРА ДВИГАТЕЛЯ NTh24 ТЕРМИЧЕСКАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A
РЕЛЕ ЗАЩИТЫ ДВИГАТЕЛЯ, РЕЛЕ ПЕРЕГРУЗКИ NTh24 ТЕПЛОВАЯ ЗАЩИТА ДВИГАТЕЛЯ 11-14A.

Реле перегрузки — Принцип действия, типы, подключение

Каждый двигатель должен быть защищен от всех возможных неисправностей, чтобы обеспечить длительную и безопасную работу, а также потерю времени из-за поломки. Почти все отрасли промышленности полагаются на электродвигатель для управления своими процессами и производством. Следовательно, необходимо сделать двигатель отказоустойчивым.

Реле перегрузки

— одно из таких устройств, которое защищает двигатель от повреждений, вызванных перегрузками и токами . Он используется с контакторами и может быть найден в центрах управления двигателями и пускателях двигателей.

Изображение: Реле перегрузки

Определение реле перегрузки

Реле перегрузки — это устройство, которое защищает электродвигатель от перегрузок и обрыва фазы.

Он определяет перегрузку двигателя и прерывает поток энергии к двигателю, тем самым защищая его от перегрева и повреждения обмотки. Помимо перегрузок, он также может защитить двигатель от обрыва / пропадания фаз и дисбаланса фаз .Они широко известны как OLR .

Что такое перегрузка?

Перегрузка — это состояние, при котором двигатель потребляет ток, превышающий его номинальное значение, в течение длительного периода.

Это наиболее распространенная неисправность, которая может привести к повышению температуры обмотки двигателя. Следовательно, важно быстрое возвращение к нормальной работе.

Принцип операция

Тепловое реле перегрузки работает по принципу электротермических свойств биметаллической ленты.Он размещен в цепи двигателя таким образом, чтобы ток, подаваемый на двигатель, проходил через его полюса. Биметаллическая полоса прямо или косвенно нагревается током и, когда ток превышает установленное значение, изгибается.

Они всегда работают в сочетании с контакторами. Когда биметаллические полосы нагреваются, срабатывает контакт отключения, который, в свою очередь, прерывает подачу питания на катушку контактора, обесточивая ее и прерывая ток, протекающий к двигателю. Это время отключения всегда обратно пропорционально току, протекающему через OLR.Следовательно, чем больше ток, тем быстрее он сработает. Следовательно, тепловые реле перегрузки называются реле , зависящими от тока и с обратной выдержкой времени.

A = Биметаллические ленты с косвенным нагревом
B = Шток переключения
C = Рычаг переключения
D = Контактный рычаг
E = Биметаллическая лента для компенсации
Авторы и права: Rockwell

Виды перегрузки реле

Реле перегрузки можно классифицировать следующим образом:

  1. Биметаллические тепловые реле перегрузки
  2. Электронные реле перегрузки

Принцип работы , описанный выше, немного отличается друг от друга.Давайте обсудим это в следующих разделах.

Как объяснено выше, биметаллическое тепловое реле работает на нагревательные свойства биметаллической полосы. В методе прямого нагрева полный ток двигателя протекает через OLR. Следовательно, он нагревается непосредственно током.

Но в случае косвенного нагрева биметаллическая полоса удерживается в тесном контакте с проводником с током внутри OLR. Чрезмерный ток, протекающий к двигателю, нагревает проводник и, следовательно, биметаллическую полосу.Проводник должен быть изолирован, чтобы ток через ленту не протекал.

Работа электронного реле перегрузки

Электронные реле перегрузки не имеют внутри биметаллической планки. Вместо этого он использует датчики температуры или трансформаторы тока, чтобы определять величину тока, протекающего к двигателю. Для защиты используется микропроцессорная технология. Температура измеряется с помощью PTC, и он используется для отключения цепи в случае сбоев из-за перегрузки.Некоторые электронные реле перегрузки поставляются с трансформаторами тока и датчиками Холла, которые напрямую определяют величину протекающего тока.

Основным преимуществом электронного OLR над тепловым OLR является то, что отсутствие биметаллической ленты приводит к низким тепловым потерям внутри реле. Кроме того, электронные реле более точны, чем тепловые реле. Некоторые производители создают электронные реле с расширенными функциями, такими как защита от замыкания на землю, защита двигателя от опрокидывания и т. Д. Электронные реле перегрузки хорошо подходят для приложений, требующих частого запуска и остановки двигателей.

Они сконструированы таким образом, чтобы выдерживать пусковой ток (который обычно в 6-10 раз превышает ток полной нагрузки) двигателя в течение ограниченного периода времени (обычно 15-30 секунд в зависимости от порогового значения тока).

Детали теплового реле перегрузки

Помимо биметаллической ленты и контактов, обсуждаемых в Раздел принципа работы, в реле перегрузки есть еще несколько частей это необходимо упомянуть.

Терминал

Клеммы L1, L2, L3 являются входными клеммами.Это может быть прямо установлен на контактор. Питание двигателя может быть подключено к клеммам T1, Т2, Т3.

Установка диапазона ампер

Поворотная ручка присутствует над реле перегрузки. С помощью этой ручки можно установить номинальный ток двигателя. Сила тока может быть установлена ​​между указанными верхним и нижним пределами. В случае электронного реле перегрузки также предусмотрена дополнительная ручка для выбора класса срабатывания.

Кнопка сброса

На реле перегрузки имеется кнопка сброса для сброса реле перегрузки после отключения и устранения неисправности.

Выбор ручного / автоматического сброса

С помощью кнопки выбора ручного / автоматического сброса мы можем выбирать между ручным и автоматическим сбросом этих реле после отключения. Если устройство настроено на автоматический режим, возможен удаленный сброс OLR.

Вспомогательный контакт

Они снабжены двумя вспомогательными контактами — одним нормально разомкнутым (97-98) и другим нормально замкнутым (95-96). НО контакт предназначен для сигнализации срабатывания, а НЗ контакт — для отключения контактора. НЗ-контакты должны обеспечивать прямое переключение катушки контактора.

Тестовая кнопка

Используя кнопку тестирования, можно проверить проводку управления.

Обозначение реле перегрузки Символ теплового OLR

Здесь 1, 2, 3, 4, 5 и 6 — клеммы питания, 95 и 96 — контакты отключения, а 97 и 98 — контакты сигнализации.

Что такое поездка Класс реле перегрузки?

Время, затрачиваемое ими на размыкание контактора при перегрузках, определено классом отключения .Обычно он подразделяется на Класс 10, Класс 20, Класс 30 и Класс 5. OLR отключается через 10 секунд, 20 секунд, 30 секунд и 5 секунд соответственно при 600% тока полной нагрузки двигателя.

Очень часто используются

Class 10 и Class 20. Реле перегрузки класса 30 используются для защиты двигателей, приводящих в движение высокоинерционные нагрузки, а реле класса 5 используются для двигателей, требующих очень быстрого отключения.

Предоставлено: Шнайдер.

Как пользоваться реле перегрузки в цепи?

Они всегда используются в комбинации с контакторами в цепи.Он подключен к двигателю так, что ток, идущий к двигателю, полностью протекает через него. Ниже представлены различные типы соединений для однофазных и трехфазных двигателей.

Где К1 и К1М — реле перегрузки. Первый и второй рисунки показывают подключение однофазного двигателя, а третий показывает подключение трехфазного двигателя.

Что вызывает отключение OLR?

Как обсуждалось выше, имеет три основных условия для отключения по перегрузке :

  1. Перегрузка мотора.
  2. Обрыв входной фазы
  3. Неуравновешенность фаз.

Помимо этого, может быть доступна дополнительная функция защиты. Это варьируется от одного производителя к другому.

Как реле перегрузки защищает от обрыва фазы?

Во время нормальной работы ток, протекающий через каждый полюс реле перегрузки к двигателю, остается неизменным. Если какая-либо фаза прерывается, ток в двух других фазах возрастает до 1.73 раза больше нормального значения. Следовательно, реле перегрузки нагревается и срабатывает. Обрыв фазы также известен как обрыв фазы двигателя или обрыв фазы.

Может OLR защитить от короткие замыкания?

Реле перегрузки не могут защитить от короткого замыкания. Их всегда следует использовать с устройствами защиты от короткого замыкания. В противном случае короткое замыкание в двигателе может привести к его повреждению. Они могут защитить от перегрузок, потери фазы и дисбаланса фаз, но не от короткого замыкания.

Сводка

Реле перегрузки — это устройство, которое может защитить двигатель от перегрузок, обрыва фазы и дисбаланса фаз. По принципу действия они подразделяются на тепловые и электронные реле перегрузки. Thermal OLR основан на принципе деформации биметаллической ленты при нагревании, а электронное реле перегрузки представляет собой микропроцессорное устройство.

OLR используются в сочетании с контакторами.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *