+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Магнитное поле и его свойства

Магнитное поле это материя, которая возникает вокруг источников электрического тока, а также вокруг постоянных магнитов. В пространстве магнитное поле отображается как совокупление сил, которые способны оказать воздействие на намагниченные тела. Это действие объясняется наличием движущих разрядов на молекулярном уровне.

Магнитное поле формируется только вокруг электрических зарядов, которые находятся в движении. Именно поэтому магнитное и электрическое поле являются, неотъемлемыми и вместе формируют электромагнитное поле. Компоненты магнитного поля взаимосвязаны и воздействуют друг на друга, изменяя свои свойства.

Свойства магнитного поля:
1. Магнитное поле возникает под воздействие движущих зарядов электрического тока.
2. В любой своей точке магнитное поле характеризуется вектором физической величины под названием магнитная индукция

, которая является силовой характеристикой магнитного поля.
3. Магнитное поле может воздействовать только на магниты, на токопроводящие проводники и движущиеся заряды.
4. Магнитное поле может быть постоянного и переменного типа
5. Магнитное поле измеряется только специальными приборами и не может быть воспринятым органами чувств человека.
6. Магнитное поля является электродинамическим, так как порождается только при движении заряженных частиц и оказывает влияние только на заряды, которые находятся в движении.
7. Заряженные частицы двигаются по перпендикулярной траектории.

Размер магнитного поля зависит от скорости изменения магнитного поля. Соответственно этому признаку существуют два вида магнитного поля: динамичное магнитное поле и гравитационное магнитное поле. Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей строения этих частиц.

Магнитный момент
возникает в том случае, когда магнитное поле воздействует на токопроводящую раму. Другими словами, магнитный момент это вектор, который расположен на ту линию, которая идет перпендикулярно раме.

Магнитное поле можно изобразить графически с помощью магнитных силовых линий. Эти линии проводятся в таком направлении, так чтобы направление сил поля совпало с направлением самой силовой линии. Магнитные силовые линии являются непрерывными и замкнутыми одновременно.

Направление магнитного поля определяется с помощью магнитной стрелки. Силовые линии определяют также полярность магнита, конец с выходом силовых линий это северный полюс, а конец, с входом этих линий, это южный полюс.

Очень удобно наглядно оценить магнитное поле с помощью обычных железных опилок и листка бумаги.
Если мы на постоянный магнит положим лист бумаги, а сверху насыпим опилок, то частички железа выстроятся соответственно силовым линиям магнитного поля.

Направление силовых линий для проводника удобно определять по знаменитому правилу буравчика или правилу правой руки. Если мы обхватим проводник рукой так, чтобы большой палец смотрел по направлению тока(от плюса к минусу), то 4 оставшиеся пальцы покажут нам направление силовых линий магнитного поля.

А направление силы Лоренца — силы, с которой действует магнитное поле на заряженную частицу или проводник с током, по правилу левой руки.
Если мы расположим левую руку в магнитном поле так, что 4 пальца смотрели по направлению тока в проводнике , а силовые линии входили в ладонь, то большой палец укажет направление силы Лоренца, силы действующей на проводник помещенный в магнитное поле.

На этом собственно всё. Появившиеся вопросы обязательно задавайте в комментариях.

Заметка: учите инглиш? — рейтинг школ английского языка (http://www.schoolrate.ru/) будет вам полезен при выборе.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Магнитное поле, его свойства и характеристики.

Магнитное поле — форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Это название обусловлено тем, что, как обнаружил в 1820 году датский физик Ханс Эрстед, оно оказывает ориентирующее действие на магнитную стрелку. Опыт Эрстеда: под проволокой с током помещалась магнитная стрелка, вращающаяся на игле. При включении тока она устанавливалась перпендикулярно проволоке; при изменении направления тока поворачивалась в противоположную сторону.

Основные свойства магнитного поля:

1) порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем;

2) действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела;

3) переменное магнитное поле порождает переменное электрическое поле.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно иметь векторную силовую характеристику. Ее обозначают и называют магнитной индукцией.

Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции. Магнитными силовыми линиями называются линии, вдоль которых в магнитном поле располагаются железные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор направлен по касательной.

Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.

Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величине магнитной индукции.

 

Магнитное соленоида с током
 
 

Направление линий определяется правилом правого винта. Соленоид — катушка с током, витки которой расположены вплотную друг к другу, а диаметр витка много меньше длины катушки.

Магнитное поле внутри соленоида является однородным. Магнитное поле называется однородным, если вектор в любой точке постоянен.

Магнитное поле соленоида аналогично магнитному полю полосового магнита.


Соленоид с током представляет собой электромагнит.

 

Опыт показывает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции: индукция магнитного поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме индукций магнитных полей, создаваемых каждым током или зарядом:

Вектор вводится одним из 3-х способов:

а) из закона Ампера;

б) по действию магнитного поля на рамку с током;

в) из выражения для силы Лоренца.

Ампер экспериментально установил, что сила с которой магнитное поле действует на элемент проводника с током I, находящегося в магнитном поле, прямо пропорциональна силе

тока I и векторному произведению элемента длины на магнитную индукцию :

— закон Ампера

 

Направление вектора может быть найдено согласно общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в нее, а 4 вытянутых пальца направить по току, то отогнутый большой палец покажет направление силы.

Сила, действующая на провод конечной длины, найдется интегрированием по всей длине.

При I = const, B=const, F = B×I×l×sina

Если a =900, F = B×I×l

Индукция магнитного поля — векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям.

1Тл — индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н.

До сих пор мы рассматривали макротоки, текущие в проводниках. Однако, согласно предположению Ампера, в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в полях макротоков, создавая в теле дополнительное магнитное поле. Вектор характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т.е. при одном и том же макротоке вектор в различных средах имеет разные значения.

Магнитное поле макротоков описывается вектором магнитной напряженности .

Для однородной изотропной среды

,

m0= 4p×10-7Гн/м — магнитная постоянная, m0= 4p×10-7Н/А2,

m — магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков изменяется за счет поля микротоков среды.

 


Похожие статьи:

poznayka.org

Конспект «Магнитное поле. Теория, формулы, схемы»

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец — южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные — притягиваются (рис. 1).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса, т. е. будет постоянным магнитом (рис. 2). Оба полюса — северный и южный, — неотделимые друг от друга, равноправны.

 

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются — у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

 

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

 

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4). Это можно было объяснить возникновением вокруг проводника магнитного поля.

 

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике.

Силовой характеристикой магнитного поля является вектор магнитной индукции B. В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6, аналогична таковой для плоского магнита (рис. 3). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8)

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6, северным полюсом служит правый его конец, а южным — левый.

Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.

Направление силы определяется правилом левой руки:

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение  не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):


Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Дополнительные материалы по теме: Электромагнитные явления


Конспект по теме «Магнитное поле. Теория, формулы, схемы».

Следующая тема «Электромагнитная индукция»

uchitel.pro

Основные характеристики магнитного поля | Электрикам

Магнитное поле представляет собой особую форму материи которая проявляется через механическое взаимодействие токов и через возникновение ЭДС в проводниках движущихся в этом поле. Оно обнаруживается вокруг движущихся электрических зарядов, следовательно и вокруг проводника с током.

Графическое изображение магнитного поля

Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми.

Для того что бы определить направление магнитного поля можно воспользоваться магнитной стрелкой, или правилом буравчика.

Правило буравчика

Основные характеристики магнитного поля

Магнитная индукция B  — это векторная величина определяющая силу действующую на заряженную частицу со стороны магнитного поля. Измеряется в теслах Тл.

           

B = Ф/S

            

  магнитная постоянная.

µ относительная магнитная проницаемость — табличная величина (для вакуума = 1)

Магнитный поток Ф — скалярная физическая величина числено равная произведению магнитной индукции на площадь поверхности ограниченной замкнутым контуром. Измеряется в веберах Вб.


Магнитный поток через контур максимален,если плоскость контура перпендикулярна магнитному полю.

Тогда магнитный поток рассчитывается по формуле:

Φmax = B · S

Магнитный поток через контур равен нулю,если контур располагается параллельно магнитному полю.

Напряженность H – это векторная величина независящая от магнитных свойств среды. Измеряется в ампер на метр А/М.

Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит магнитная проницаемость.

electrikam.com

Магнитное поле

Магнитное поле – это материальная среда, через которую осуществляется взаимодействие между проводниками с током или движущимися зарядами.

Свойства магнитного поля:

  1. Магнитное поле возникает вокруг любого проводника с током.

  2. Магнитное поле действует на любой проводник с током. В результате этого действия прямой проводник двигается в сторону действия силы, а проводник, замкнутый в кольцо (контур), поворачивается на некоторый угол.

  3. Магнитное поле не имеет границ, но действие его уменьшается при увеличении расстояния от проводника с током, поэтому действие поля не обнаруживается на больших расстояниях.

  4. Взаимодействие токов происходит с конечной скоростью в м/с.

Характеристики магнитного поля:

Для исследования магнитного поля используют пробный контур с током. Он имеет малые размеры, и ток в нём много меньше тока в проводнике, создающем магнитное поле. На противоположные стороны контура с током со стороны магнитного поля действуют силы, равные по величине, но направленные в противоположные стороны, так как направление силы зависит от направления тока. Точки приложения этих сил не лежат на одной прямой. Такие силы называют парой сил. В результате действия пары сил контур не может двигаться поступательно, он поворачивается вокруг своей оси. Вращающее действие характеризуется моментом сил.

, где lплечо пары сил (расстояние между точками приложения сил).

При увеличении тока в пробном контуре или площади контура пропорционально увеличится момент пары сил. Отношение максимального момента сил, действующего на контур с током, к величине силы тока в контуре и площади контура – есть величина постоянная для данной точки поля. Называется она магнитной индукцией.

, где магнитный момент контура с током.

Единица измерения магнитной индукции – Тесла [Тл].

Магнитный момент контура – векторная величина, направление которой зависит от направления тока в контуре и определяется по правилу правого винта: правую руку сжать в кулак, четыре пальца направить по направлению тока в контуре, тогда большой палец укажет направление вектора магнитного момента. Вектор магнитного момента всегда перпендикулярен плоскости контура.

За направление вектора магнитной индукции принимают направление вектора магнитного момента контура, ориентированного в магнитном поле.

Линия магнитной индукции – линия, касательная к которой в каждой точке совпадает с направлением вектора магнитной индукции. Линии магнитной индукции всегда замкнуты, никогда не пересекаются. Линии магнитной индукции прямого проводника с током имеют вид окружностей, расположенных в плоскости, перпендикулярной проводнику. Направление линий магнитной индукции определяют по правилу правого винта. Линии магнитной индукции кругового тока (витка с током) также имеют вид окружностей. Каждый элемент витка длиной можно представить как прямолинейный проводник, который создаёт своё магнитное поле. Для магнитных полей выполняется принцип суперпозиции (независимого сложения). Суммарный вектор магнитной индукции кругового тока определяется как результат сложения этих полей в центре витка по правилу правого винта.

Если величина и направление вектора магнитной индукции одинаковы в каждой точке пространства, то магнитное поле называют однородным. Если величина и направление вектора магнитной индукции в каждой точке не изменяются с течением времени, то такое поле называют постоянным.

Величина магнитной индукции в любой точке поля прямо пропорциональна силе тока в проводнике, создающем поле, обратно пропорциональна расстоянию от проводника до данной точки поля, зависит от свойств среды и формы проводника, создающего поле.

, где Н/А2; Гн/м – магнитная постоянная вакуума,

относительная магнитная проницаемость среды,

абсолютная магнитная проницаемость среды.

В зависимости от величины магнитной проницаемости все вещества разделяют на три класса:

  1. Парамагнетики – вещества, у которых , то есть при помещении их в магнитное поле магнитная индукция увеличивается. При удалении парамагнетиков из магнитного поля их намагниченность не сохраняется.

  2. Диамагнетики – вещества, у которых , при помещении их в магнитное поле магнитная индукция уменьшается, намагниченность не сохраняется.

  3. Ферромагнетики – вещества, у которых , при удалении этих веществ из магнитного поля их намагниченность сохраняется, и эти вещества становятся постоянными магнитами. Между полюсами подковообразного магнита создаётся однородное магнитное поле (магнитные поля, созданные проводниками с током — неоднородные).

При увеличении абсолютной проницаемости среды увеличивается и магнитная индукция в данной точке поля. Отношение магнитной индукции к абсолютной магнитной проницаемости среды – величина постоянная для данной точки поли, е называют напряжённостью.

.

Векторы напряжённости и магнитной индукции совпадают по направлению. Напряжённость магнитного поля не зависит от свойств среды.

Сила Ампера – сила, с которой магнитное поле действует на проводник с током.

, где l – длина проводника, — угол между вектором магнитной индукции и направлением тока.

Направление силы Ампера определяют по правилу левой руки: левую руку располагают так, чтобы составляющая вектора магнитной индукции, перпендикулярная проводнику, входила в ладонь, четыре вытянутых пальца направить по току, тогда отогнутый на 900 большой палец укажет направление силы Ампера.

Результат действия силы Ампера – движение проводника в данном направлении.

Если = 900, то F = max, если = 00, то F = 0.

Сила Лоренца – сила действия магнитного поля на движущийся заряд.

, где q – заряд, v – скорость его движения, — угол между векторами напряжённости и скорости.

Сила Лоренца всегда перпендикулярна векторам магнитной индукции и скорости. Направление определяют по правилу левой руки (пальцы – по движению положительного заряда). Если направление скорости частицы перпендикулярно линиям магнитной индукции однородного магнитного поля, то частица движется по окружности без изменения кинетической энергии.

Так как направление силы Лоренца зависит от знака заряда, то её используют для разделения зарядов.

Магнитный поток – величина, равная числу линий магнитной индукции, которые проходят через любую площадку, расположенную перпендикулярно линиям магнитной индукции.

, где — угол между магнитной индукцией и нормалью (перпендикуляром) к площади S.

Единица измерения – Вебер [Вб].

Способы измерения магнитного потока:

  1. Изменение ориентации площадки в магнитном поле (изменение угла)

  2. Изменение площади контура, помещённого в магнитное поле

  3. Изменение силы тока, создающего магнитное поле

  4. Изменение расстояния контура от источника магнитного поля

  5. Изменение магнитных свойств среды.

Фарадей регистрировал электрический ток в контуре, не содержащим источника, но находившемся рядом с другим контуром, содержащим источник. Причём ток в первом контуре возникал в следующих случаях: при любом изменении тока в контуре А, при относительном перемещении контуров, при внесении в контур А железного стержня, при движении относительно контура Б постоянного магнита. Направленное движение свободных зарядов (ток) возникает только в электрическом поле. Значит, изменяющееся магнитное поле порождает электрическое поле, которое и приводит в движение свободные заряды проводника. Это электрическое поле называют индуцированным или вихревым.

Отличия вихревого электрического поля от электростатического:

  1. Источник вихревого поля – изменяющееся магнитное поле.

  2. Линии напряжённости вихревого поля замкнуты.

  3. Работа, совершаемая этим полем по перемещению заряда по замкнутому контуру не равна нулю.

  4. Энергетической характеристикой вихревого поля является не потенциал, а ЭДС индукции – величина, равная работе сторонних сил (сил не электростатического происхождения) по перемещению единицы заряда по замкнутому контуру.

. Измеряется в Вольтах [В].

Вихревое электрическое поле возникает при любом изменении магнитного поля, независимо от того, есть ли проводящий замкнутый контур или его нет. Контур только позволяет обнаружить вихревое электрическое поле.

Электромагнитная индукция – это возникновение ЭДС индукции в замкнутом контуре при любом изменении магнитного потока через его поверхность.

ЭДС индукции в замкнутом контуре порождает индукционный ток.

.

Направление индукционного тока определяют по правилу Ленца: индукционный ток имеет такое направление, что созданное им магнитное поле противодействует любому изменению магнитного потока, породившего этот ток.

Закон Фарадея для электромагнитной индукции: ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.

Токи Фуко – вихревые индукционные токи, возникающие в проводниках больших размеров, помещённых в изменяющееся магнитное поле. Сопротивление такового проводника мало, так как он имеет большое сечение S, поэтому токи Фуко могут быть большими по величине, в результате чего проводник нагревается.

Самоиндукция – это возникновение ЭДС индукции в проводнике при изменении силы тока в нём.

Проводник с током создаёт магнитное поле. Магнитная индукция зависит от силы тока, следовательно собственный магнитный поток тоже зависит от силы тока.

, где L – коэффициент пропорциональности, индуктивность.

Единица измерения индуктивности – Генри [Гн].

Индуктивность проводника зависит от его размеров, формы и магнитной проницаемости среды.

Индуктивность увеличивается при увеличении длины проводника, индуктивность витка больше индуктивности прямого проводника такой же длины, индуктивность катушки (проводника с большим числом витков) больше индуктивности одного витка, индуктивность катушки увеличивается, если в неё вставить железный стержень.

Закон Фарадея для самоиндукции: .

ЭДС самоиндукции прямо пропорциональна скорости изменения тока.

ЭДС самоиндукции порождает ток самоиндукции, который всегда препятствует любому изменению тока в цепи, то есть, если ток увеличивается, ток самоиндукции направлен в противоположную сторону, при уменьшении тока в цепи, ток самоиндукции направлен в ту же сторону. Чем больше индуктивность катушки, тем больше ЭДС самоиндукции возникает в ней.

Энергия магнитного поля равна работе, которую совершает ток для преодоления ЭДС самоиндукции за время, пока ток возрастает от нуля до максимального значения.

.

Электромагнитные колебания – это периодические изменения заряда, силы тока и всех характеристик электрического и магнитного полей.

Электрическая колебательная система (колебательный контур) состоит из конденсатора и катушки индуктивности.

Условия возникновения колебаний:

  1. Систему надо вывести из состояния равновесия, для этого сообщают заряд конденсатору. Энергия электрического поля заряженного конденсатора:

.

  1. Система должна возвращаться в состояние равновесия. Под действием электрического поля заряд переходит с одной пластины конденсатора на другую, то есть в цепи возникает электрический ток, которые идёт по катушке. При увеличении тока в катушке индуктивности возникает ЭДС самоиндукции, ток самоиндукции направлен в противоположную сторону. Когда ток в катушке уменьшается, ток самоиндукции направлен в ту же сторону. Таким образом, ток самоиндукции стремиться возвратить систему к состоянию равновесия.

  2. Электрическое сопротивление цепи должно быть малым.

Идеальный колебательный контур не имеет сопротивления. Колебания в нём называют свободными.

Для любой электрической цепи выполняется закон Ома, согласно которому ЭДС, действующая в контуре, равна сумме напряжений на всех участках цепи. В колебательном контуре источника тока нет, но в катушке индуктивности возникает ЭДС самоиндукции, которая равна напряжению на конденсаторе.

Вывод: заряд конденсатора изменяется по гармоническому закону.

Напряжение на конденсаторе: .

Сила тока в контуре: .

Величина — амплитуда силы тока.

. Отличие от заряда на .

Период свободных колебаний в контуре:

Энергия электрического поля конденсатора:

Энергия магнитного поля катушки:

Энергии электрического и магнитного полей изменяются по гармоническому закону, но фазы их колебаний разные: когда энергия электрического поля максимальна, энергия магнитного поля равна нулю.

Полная энергия колебательной системы: .

В идеальном контуре полная энергия не изменяется.

В процессе колебаний энергия электрического поля полностью превращается в энергию магнитного поля и наоборот. Значит энергия в любой момент времени равна или максимальной энергии электрического поля, или максимальной энергии магнитного поля.

Реальный колебательный контур содержит сопротивление. Колебания в нём называют затухающими.

Закон Ома примет вид:

При условии что затухание мало (квадрат собственной частоты колебаний много больше квадрата коэффициента затухания) логарифмический декремент затухания:

При сильном затухании (квадрат собственной частоты колебаний меньше квадрата коэффициента колебаний):

  1. В контуре нет конденсатора, т.е. ёмкостное сопротивление контура равно нулю, а электроемкость стремиться к бесконечности. Значит:

  1. В контуре отсутствует индуктивность, т.е. она стремиться к нулю.

Это уравнение описывает процесс разрядки конденсатора на резистор. При отсутствии индуктивности колебаний не возникнет. По такому закону изменяется и напряжение на обкладках конденсатора.

  1. Зарядка конденсатора от источника постоянной ЭДС также происходит по экспоненциальному закону:

Полная энергия в реальном контуре уменьшается, так как на сопротивление R при прохождении тока выделяется теплота.

Переходный процесс – процесс, возникающий в электрических цепях при переходе от одного режима работы к другому. Оценивается временем (), в течение которого параметр, характеризующий переходный процесс изменится в е раз.

Для контура с конденсатором и резистором: .

Теория Максвелла об электромагнитном поле:

1 положение:

Всякое переменное электрическое поле порождает вихревое магнитное. Переменное электрическое поле было названо Максвеллом током смещения, так как оно подобно обычному току вызывает магнитное поле.

Для обнаружения тока смещения рассматривают прохождение тока по системе, в которую включён конденсатор с диэлектриком.

Плотность тока смещения: . Плотность тока направлена в сторону изменения напряжённости.

Первое уравнение Максвелла: — вихревое магнитное поле порождается как токами проводимости (движущимися электрическими зарядами) так и токами смещения (переменным электрическим полем Е).

2 положение:

Всякое переменное магнитное поле порождает вихревое электрическое поле – основной закон электромагнитной индукции.

Второе уравнение Максвелла: — связывает скорость изменения магнитного потока сквозь любую поверхность и циркуляцию вектора напряжённости электрического поля, возникающего при этом.

Любой проводник с током создаёт в пространстве магнитное поле. Если ток постоянный (не изменяется с течением времени), то и связанное с ним магнитное поле тоже постоянное. Изменяющийся ток создаёт изменяющиеся магнитное поле. Внутри проводника с током существует электрическое поле. Следовательно, изменяющееся электрическое поле создаёт изменяющееся магнитное поле.

Магнитное поле вихревое, так как линии магнитной индукции всегда замкнуты. Величина напряженности магнитного поля Н пропорциональна скорости изменения напряжённости электрического поля . Направление вектора напряжённости магнитного поля связано с изменением напряжённости электрического поля правилом правого винта: правую руку сжать в кулак, большой палец направить в сторону изменения напряжённости электрического поля, тогда согнутые 4 пальца укажут направление линий напряжённости магнитного поля.

Любое изменяющееся магнитное поле создаёт вихревое электрическое поле, линии напряжённости которого замкнуты и расположены в плоскости, перпендикулярной напряжённости магнитного поля.

Величина напряжённости Е вихревого электрического поля зависит от скорости изменения магнитного поля . Направление вектора Е связано с направлением изменения магнитного пол Н правилом левого винта: левую руку сжать в кулак, большой палец направить в сторону изменения магнитного поля, согнутые четыре пальца укажут направление линий напряжённости вихревого электрического поля.

Совокупность связанных друг с другом вихревых электрического и магнитного полей представляют электромагнитное поле. Электромагнитное поле не остаётся в месте зарождения, а распространяется в пространстве в виде поперечной электромагнитной волны.

Электромагнитная волна – это распространение в пространстве связанных друг с другом вихревых электрического и магнитного полей.

Условие возникновения электромагнитной волны – движение заряда с ускорением.

Уравнение электромагнитной волны:

— циклическая частота электромагнитных колебаний

t – время от начала колебаний

l – расстояние от источника волны до данной точки пространства

— скорость распространения волны

— время движения волны от источника до данной точки.

Векторы Е и Н в электромагнитной волне перпендикулярны друг другу и скорости распространения волны.

Источник электромагнитных волн – проводники, по которым протекают быстропеременные токи (макроизлучатели), а также возбуждённые атомы и молекулы (микроизлучатели). Чем больше частота колебаний, тем лучше излучаются в пространстве электромагнитные волны.

Свойства электромагнитных волн:

  1. Все электромагнитные волны – поперечные

  2. В однородной среде электромагнитные волны распространяются с постоянной скоростью, которая зависит от свойств среды:

— относительная диэлектрическая проницаемость среды

— диэлектрическая постоянная вакуума, Ф/м, Кл2/нм2

— относительная магнитная проницаемость среды

— магнитная постоянная вакуума, Н/А2; Гн/м

  1. Электромагнитные волны отражаются от препятствий, поглощаются, рассеиваются, преломляются, поляризуются, дифрагируют, интерферируют.

  2. Объёмная плотность энергии электромагнитного поля складывается из объёмных плотностей энергии электрического и магнитного полей:

  1. Плотность потока энергии волн – интенсивность волны:

вектор Умова-Пойнтинга.

Все электромагнитные волны расположены в ряд по частотам или длинам волн (). Этот ряд – шкала электромагнитных волн.

  1. Низкочастотные колебания. 0 – 104 Гц. Получают в генераторах. Они плохо излучаются

  2. Радиоволны. 104 – 1013 Гц. Излучаются твёрдыми проводниками, по которым проходят быстропеременные токи.

  3. Инфракрасное излучение – волны, излучаемые всеми телами при температуре свыше 0 К, благодаря внутриатомным и внутри молекулярным процессам.

  4. Видимый свет – волны, оказывающие действие на глаз, вызывая зрительное ощущение. 380-760 нм

  5. Ультрафиолетовое излучение. 10 – 380 нм. Видимый свет и УФ возникают при изменении движения электронов внешних оболочек атома.

  6. Рентгеновское излучение. 80 – 10-5 нм. Возникает при изменении движения электронов внутренних оболочек атома.

  7. Гамма-излучение. Возникает при распаде ядер атомов.

studfile.net

Магнитное поле. Источники и свойства. Правила и применение

При подключении к двум параллельным проводникам электрического тока, они будут притягиваться или отталкиваться, в зависимости от направления (полярности) подключенного тока. Это объясняется явлением возникновения материи особого рода вокруг этих проводников. Эта материя называется магнитное поле (МП). Магнитной силой называется сила, с которой проводники действуют друг на друга.

Теория магнетизма возникла еще в древности, в античной цивилизации Азии. В Магнезии в горах нашли особую породу, куски которой могли притягиваться между собой. По названию места эту породу назвали «магнетиками». Стержневой магнит содержит два полюса. На полюсах особенно сильно обнаруживаются его магнитные свойства.

Магнит, висящий на нитке, своими полюсами будет показывать стороны горизонта. Его полюса будут повернуты на север и юг. На таком принципе действует устройство компаса. Разноименные полюсы двух магнитов притягиваются, а одноименные отталкиваются.

Ученые обнаружили, что намагниченная стрелка, находящаяся возле проводника, отклоняется при прохождении по нему электрического тока. Это говорит о том, что вокруг него образуется МП.

Магнитное поле оказывает влияние на:
  • Перемещающиеся электрические заряды.
  • Вещества, называемые ферромагнетиками: железо, чугун, их сплавы.

Постоянные магниты – тела, имеющие общий магнитный момент заряженных частиц (электронов).

1 — Южный полюс магнита
2 — Северный полюс магнита
3 — МП на примере металлических опилок
4 — Направление магнитного поля

Силовые линии появляются при приближении постоянного магнита к бумажному листу, на который насыпан слой железных опилок. На рисунке четко видны места полюсов с ориентированными силовыми линиями.

Источники магнитного поля
  • Электрическое поле, меняющееся во времени.
  • Подвижные заряды.
  • Постоянные магниты.

С детства нам знакомы постоянные магниты. Они использовались в качестве игрушек, которые притягивали к себе различные металлические детали. Их прикрепляли к холодильнику, они были встроены в различные игрушки.

Электрические заряды, которые находятся в движении, чаще всего имеют больше магнитной энергии, по сравнению с постоянными магнитами.

Свойства
  • Главным отличительным признаком и свойством магнитного поля является относительность. Если неподвижно оставить заряженное тело в некоторой системе отсчета, а рядом расположить магнитную стрелку, то она укажет на север, и при этом не «почувствует» постороннего поля, кроме поля земли. А если заряженное тело начать двигать возле стрелки, то вокруг тела появится МП. В результате становится ясно, что МП формируется только при передвижении некоторого заряда.
  • Магнитное поле способно воздействовать и влиять на электрический ток. Его можно обнаружить, если проконтролировать движение заряженных электронов. В магнитном поле частицы с зарядом отклонятся, проводники с протекающим током будут перемещаться. Рамка с подключенным питанием тока станет поворачиваться, а намагниченные материалы переместятся на некоторое расстояние. Стрелка компаса чаще всего окрашивается в синий цвет. Она является полоской намагниченной стали. Компас ориентируется всегда на север, так как у Земли есть МП. Вся планета – это как большой магнит со своими полюсами.

Магнитное поле не воспринимается человеческими органами, и может фиксироваться только особыми приборами и датчиками. Оно бывает переменного и постоянного вида. Переменное поле обычно создается специальными индукторами, которые функционируют от переменного тока. Постоянное поле формируется неизменным электрическим полем.

Основные правила
Правило буравчика

Силовая линия изображается в плоскости, которая расположена под углом 900 к пути движения тока таким образом, чтобы в каждой точке сила была направлена по касательной к линии.

Чтобы определить направление магнитных сил, нужно вспомнить правило буравчика с правой резьбой.

Буравчик нужно расположить по одной оси с вектором тока, рукоятку вращать таким образом, чтобы буравчик двигался в сторону его направления. В этом случае ориентация линий определится вращением рукоятки буравчика.

Правило буравчика для кольца

Поступательное перемещение буравчика в проводнике, выполненном в виде кольца, показывает, как ориентирована индукция, вращение совпадает с течением тока.

Силовые линии имеют свое продолжение внутри магнита и не могут быть разомкнутыми.

Магнитное поле разных источников суммируются между собой. При этом они создают общее поле.

Магниты с одинаковыми полюсами отталкиваются, а с разными – притягиваются. Значение силы взаимодействия зависит от удаленности между ними. При приближении полюсов сила возрастает.

Параметры магнитного поля
  • Сцепление потоков (Ψ).
  • Вектор магнитной индукции (В).
  • Магнитный поток (Ф).

Интенсивность магнитного поля вычисляется размером вектора магнитной индукции, которая зависит от силы F, и формируется током I по проводнику, имеющему длину l: В = F / (I * l).

Магнитная индукция измеряется в Тесла (Тл), в честь ученого, изучавшего явления магнетизма и занимавшегося их методами расчета. 1 Тл равна индукции магнитного потока силой 1 Н на длине 1 м прямого проводника, находящегося под углом 900 к направлению поля, при протекающем токе в один ампер:

1 Тл = 1 х Н / (А х м).
Правило левой руки

Правило находит направление вектора магнитной индукции.

Если ладонь левой руки разместить в поле, чтобы линии магнитного поля входили в ладонь из северного полюса под 900, а 4 пальца разместить по течению тока, большой палец покажет направление магнитной силы.

Если проводник находится под другим углом, то сила будет прямо зависеть от тока и проекции проводника на плоскость, находящуюся под прямым углом.

Сила не зависит от вида материала проводника и его сечения. Если проводник отсутствует, а заряды движутся в другой среде, то сила не изменится.

При направлении вектора магнитного поля в одну сторону одной величины, поле называется равномерным. Различные среды влияют на размер вектора индукции.

Магнитный поток

Магнитная индукция, проходящая по некоторой площади S и ограниченная этой площадью, является магнитным потоком.

Если площадь имеет наклон на некоторый угол α к линии индукции, магнитный поток снижается на размер косинуса этого угла. Наибольшая его величина образуется при нахождении площади под прямым углом к магнитной индукции:

Ф = В * S.

Магнитный поток измеряется в такой единице, как «вебер», который равен протеканием индукции величиной 1 Тл по площади в 1 м2.

Потокосцепление

Такое понятие применяется для создания общего значения магнитного потока, который создан от некоторого числа проводников, находящихся между магнитными полюсами.

В случае, когда одинаковый ток I протекает по обмотке с количеством витков n, общий магнитный поток, образованный всеми витками, является потокосцеплением.

Потокосцепление Ψ измеряется в веберах, и равно: Ψ = n * Ф.

Магнитные свойства

Магнитная проницаемость определяет, насколько магнитное поле в определенной среде ниже или выше индукции поля в вакууме. Вещество называют намагниченным, если оно образует свое магнитное поле. При помещении вещества в магнитное поле у него появляется намагниченность.

Ученые определили причину, по которой тела получают магнитные свойства. Согласно гипотезе ученых внутри веществ есть электрические токи микроскопической величины. Электрон обладает своим магнитным моментом, который имеет квантовую природу, движется по некоторой орбите в атомах. Именно такими малыми токами определяются магнитные свойства.

Если токи движутся беспорядочно, то магнитные поля, вызываемые ими, самокомпенсируются. Внешнее поле делает токи упорядоченными, поэтому формируется магнитное поле. Это является намагниченностью вещества.

Различные вещества можно разделить по свойствам взаимодействия с магнитными полями. Их разделяют на группы:
  • Парамагнетики – вещества, имеющие свойства намагничивания в направлении внешнего поля, обладающие низкой возможностью магнетизма. Они имеют положительную напряженность поля. К таким веществам относят хлорное железо, марганец, платину и т. д.
  • Ферримагнетики – вещества с неуравновешенными по направлению и значению магнитными моментами. В них характерно наличие некомпенсированного антиферромагнетизма. Напряженность поля и температура влияет на их магнитную восприимчивость (различные оксиды).
  • Ферромагнетики – вещества с повышенной положительной восприимчивостью, зависящей от напряженности и температуры (кристаллы кобальта, никеля и т. д.).
  • Диамагнетики – обладают свойством намагничивания в противоположном направлении внешнего поля, то есть, отрицательное значение магнитной восприимчивости, не зависящая от напряженности. При отсутствии поля у этого вещества не будет магнитных свойств. К таким веществам относятся: серебро, висмут, азот, цинк, водород и другие вещества.
  • Антиферромагнетики – обладают уравновешенным магнитным моментом, вследствие чего образуется низкая степень намагничивания вещества. У них при нагревании осуществляется фазовый переход вещества, при котором возникают парамагнитные свойства. При снижении температуры ниже определенной границы, такие свойства появляться не будут (хром, марганец).
Рассмотренные магнетики также классифицируются еще по двум категориям:
  • Магнитомягкие материалы. Они обладают низкой коэрцитивной силой. При маломощных магнитных полях они могут войти в насыщение. При процессе перемагничивания у них наблюдаются незначительные потери. Вследствие этого такие материалы используются для производства сердечников электрических устройств, функционирующих на переменном напряжении (асинхронный электродвигатель, генератор, трансформатор).
  • Магнитотвердые материалы. Они обладают повышенной величиной коэрцитивной силы. Чтобы их перемагнитить, потребуется сильное магнитное поле. Такие материалы используются в производстве постоянных магнитов.

Магнитные свойства различных веществ находят свое использование в технических проектах и изобретениях.

Магнитные цепи

Объединение нескольких магнитных веществ называется магнитной цепью. Они являются подобием электрических цепей и определяются аналогичными законами математики.

На базе магнитных цепей действуют электрические приборы, индуктивности, трансформаторы. У функционирующего электромагнита поток протекает по магнитопроводу, изготовленному из ферромагнитного материала и воздуху, который не является ферромагнетиком. Объединение этих компонентов является магнитной цепью. Множество электрических устройств в своей конструкции содержат магнитные цепи.

Похожие темы:

electrosam.ru

Магнитное поле, его свойства

Магнитное поле, его свойства

Исследования Ампера… принадлежат к числу самых блестящих работ, которые проведены когда-либо в науке

Джеймс Клерк Максвелл

Магнесия

Магнетит

III век до н. э.

Начало XII века

Первый китайский компас

Плавающая игла европейцев

S

N

Притяжение

Отталкивание

 

 

 

 

Взаимодействие

проводников с током

1820 год

Притягиваются

Отталкиваются

Андре-Мари Ампер

Опыт Х. К. Эрстеда

Взаимодействия между проводниками с током, называют магнитными.

Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.

Ханс Кристиан Эрстед

4

Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Магнитные поля

компенсируются.

Ориентация контура с током

характеризуется направлением нормали к контуру.

Правило правого винта (буравчика):

если головку винта поворачивать по направлению тока в контуре, то поступательное движение острия винта указывает направление положительной нормали.

Магнитное поле оказывает на контур с током ориентирующее действие .

Электрическое поле

Необходимо было бы ввести величину, которая будет также количественно характеризовать магнитное поле.

 

— напряженность электрического поля.

 

 

 

 

Магнитный момент — физическая величина, равная произведению силы тока I на площадь S , ограниченную контуром.

Рамка с током

 

 

 

Направление совпадает с направлением положительной нормали к контуру.

 

Вращающий момент зависит от расположения контура в магнитном поле.

Максимальный вращающий момент

 

M = 0

 

Отношение максимального вращающего момента к магнитному моменту для всех контуров одно и то же:

 

 

M = M max

Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная максимальному вращающему моменту, действующему на контур с единичным магнитным моментом, и направленная вдоль положительной нормали к контуру.

 

 

 

полностью характеризует МП.

 

Никола Тесла

Направление вектора магнитной индукции

За направление вектора магнитной индукции принимается направление, которое показывает северный полюс магнитной стрелки , свободно устанавливаю-щейся в магнитном поле.

S

N

I

I

 

 

Графическое изображение магнитных полей

Линии магнитной индукции — линии, касательные к которым в каждой точке поля совпадают с направлением вектора магнитной индукции.

 

 

1

8

 

2

 

Через каждую точку поля можно провести линию магнитной индукции и причем только одну .

3

7

 

4

 

6

Линии магнитной индукции не пересекаются .

5

 

 

Линии магнитной индукции замкнуты .

 

Магнитное поле — это вихревое поле.

 

Фундаментальное свойство магнитного поля:

Магнитных зарядов, подобных электрическим, в природе нет.

Источником магнитного поля являются движущиеся заряды и переменные электрические поля .

 

Магнитное поле прямолинейного проводника с током

I

Линии магнитной индукции магнитного поля прямолинейного тока представляют собой концентрические окружности , расположенные в плоскости, перпендикулярной проводнику, с центром на оси проводника.

Правило буравчика (правило правого винта):

если поворачивать головку винта так, чтобы поступательное движение острия винта происходило вдоль тока в проводнике, то направление вращения головки указывает направление линий магнитной индукции поля прямого проводника с током.

I

I

 

 

Изображение магнитного поля

От нас за чертеж

Из-за чертежа к нам

Магнитное поле прямолинейного проводника с током

I

 

µ — магнитная проницаемость среды;

µ 0 — магнитная постоянная;

 

 

I — сила тока в проводнике;

r — расстояние от проводника до точки, в которой вычисляется магнитная индукция.

Магнитное поле кругового тока

Линии магнитной индукции не являются правильными окружностями , но они замыкаются .

Правило правого винта:

если головку винта вращать в направлении тока в проводнике, то поступательное движение острия винта покажет направление магнитной индукции в центре кругового тока.

 

I

 

Магнитное поле соленоида

Соленоид — это катушка цилиндрической формы из проволоки, витки которой намотаны вплотную друг к другу в одном направлении, а длина катушки значительно больше радиуса витка.

если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Правило правой руки:

 

N — число витков в соленоиде;

l — длина соленоида.

13

Северный географи-ческий полюс

Южный магнитный полюс

Периодически магнитные полюсы меняют свою полярность.

Главные выводы

 

Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная максимальному вращающему моменту, действующему на контур с единичным магнитным моментом, и направленная вдоль положительной нормали к контуру.

 

 

Магнитное поле — это вихревое поле .

 

Магнитных зарядов в природе не существует.

I

В каждой точке поля вектор магнитной индукции имеет определенное направление, которое можно определить по правилу буравчика.

 

multiurok.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *