+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Режимы и принцип работы асинхронной электрической машины

Асинхронно  – слово греческого происхождения (ασύγχρονα, где: α- отрицание, σύγ — вместе, χρονα – время), используется в русском языке для обозначения (наименования) процессов не совпадающих во времени.

Асинхронной, в электротехнике, принято называть машину, в процессе работы которой частота вращения ротора не равна частоте изменения магнитного поля создаваемого обмотками статора, вызывающего это вращение.

К асинхронным электрическим машинам относятся: асинхронные электрические двигатели с короткозамкнутым ротором, асинхронные электрические двигатели с фазным ротором, асинхронные микродвигатели общего применения, асинхронные тахогенераторы и другие, работающие по тому же принципу. Асинхронные электрические машины очень широко распространены благодаря таким качествам как: высокая надёжность, относительно низкая стоимость, приемлемые габариты и вес, просты в обслуживании. С появлением современных частотных преобразователей значительно расширился спектр применения асинхронных электродвигателей, благодаря возможности довольно просто и оптимально реализовывать такие функции как управление по скорости и моменту, вплоть до решения задач позиционирования. Не удивительно, что асинхронные электрические машины применяются повсюду, особенно это касается асинхронных электрических двигателей, объём выпуска которых занимает около 90%  общего объёма мирового выпуска электродвигателей.

Принцип действия и режимы работы

Рассмотрим принцип работы асинхронной электрической машины с помощью  электромагнитной схемы (рис.1,а), которая отличается от электромагнитной схемы трансформатора тем, что неподвижный статор 1 представляет собой первичную обмотку, а вращающийся ротор 3 – вторичную. Магнитная связь между ротором и статором зависит от величины воздушного зазора между ними, поэтому, при изготовлении машины, в большинстве случаев, его стараются делать как можно меньше. На статоре расположена обмотка 2, катушки которой размещаются равномерно по его окружности. Обмотку  статора (фазы A-X , B-Y, C-Z ) выполняют трёхфазной, или в общем случае многофазной, и соединяют её фазы в Y (звезду) или в  

(треугольник), что оказывает существенное влияние на такие характеристики как: мощность, плавность хода, величины пусковых токов и других параметров. Обмотку ротора а-x, b-y, c-z также выполняют трёхфазной или многофазной и тоже равномерно размещают по его окружности. В простейшем случаях включения, фазы ротора а-x, b-y, c-z, замыкают накоротко (см. рис. 1,б).

Электромагнитная схема асинхронной машиныРис.1. Электромагнитная схема асинхронной машины (а – направление электромагнитного момента при работе в режиме двигателя, б – подключение к сети трёхфазного тока) , где: 1- неподвижный статор; 2- обмотка статора; 3- вращающийся ротор; 4- обмотка ротора.

Когда обмотки статора асинхронной электрической машины подключены к сети трехфазного тока, в нём создаётся вращающееся магнитное поле, частота вращения которого (n

1) синхронна с частотой сети, питающей эти обмотки, и вычисляется по формуле:

n1 = 60 x f1 / p

где:  n1 – частота вращения магнитного поля статора; f1 – частота сети; p – число пар полюсов обмоток статора.

Вращающееся магнитное поле индуктирует в проводниках ротора электрической  машины ЭДС, что вызывает прохождение по ним тока, взаимодействие которого с магнитным потоком создаёт электромагнитный момент. Направление ЭДС, индуктированной в проводниках обмоток ротора, показано на рисунке 1, а согласно правилу правой руки, для случая, когда вращении магнитного потока (Ф) происходит по часовой стрелке. Крестики и точки на рисунке показывают направление активной составляющей тока ротора, совпадающего по фазе с индуктированной ЭДС.

Известно, что если проводники с током расположить в магнитном поле, то на них будут действовать электромагнитые силы, направление которых можно определить при помощи правила левой руки. Приложенное к каждому проводнику ротора суммарное усилие (Fрез), создаёт электромагнитный момент (М), который “увлекает” ротор за вращающимся магнитным полем, создаваемым обмотками статора.

Ротор вращается, если величина момента (М) достаточна для преодоления внутренних сил трения (подшипники, сопротивление  воздуха и так далее), а также тормозного момента, приложенного к валу от приводимого во вращение  механизма, если таковой имеется. Установившаяся частота вращения ротора (n2) зависит от соотношения вышеперечисленных сил и создаваемых ими моментов. Очевидно, что при этом будет выполняться соотношение:

0 ≤ n2 <n1. Такой режим работы асинхронной машины называется двигательным. Разность частот n1 (вращения магнитного поля)  и n2 (вращения ротора), выраженную в относительных единицах, принято называть скольжением. Наверное потому, что вращающееся магнитное поле статора “скользит” по обмоткам ротора “увлекая” ротор за собой, подобно скольжению потоков жидкости или воздуха по лопастям турбин гидравлических или пневматических машин.

Скольжение определяют по формуле:

Скольжение асинхронной машины

где:  s – скольжение; n1 – частота магнитного поля статора; n2 – частота вращения ротора.       Скольжение также может быть представлено и в процентном соотношении:

Скольжение асинхронной машины выраженное в процентах

Поскольку, при двигательном режиме выполняется соотношение 0 ≤ n2 <n1, то очевидно, что скольжения для этого режима будет находиться в пределах 1≥ S >0 (или 100%≥ S >0%).

Но асинхронная электрическая машина может работать и в других режимах. Если её ротор разогнать до частоты превышающей частоту магнитного поля статора (то есть n2>n1) при помощи внешнего момента другого механизма (например механически соединить с двигателем, вал которого вращается быстрее), то изменятся направление ЭДС и активной составляющей тока в проводниках обмотки ротора, что вызовет переход машины в генераторный режим работы (рис.2,а). Электромагнитный момент (М), при этом, становится тормозящим изменив своё направление, а электрическая машина, получая механическую энергию от внешнего источника, превращает её в электрическую и отдаёт в сеть, питающую обмотки статора. В генераторном режиме выполняются соотношения:  n

2>n1, S<0.

Если в момент работы асинхронной электрической машины в двигательном режиме (когда 0 ≤ n2 <n1, а 1≥S >0) изменить направление вращения магнитного поля статора (например, изменив схему подключения обмоток статора к питающей сети с помощью магнитных пускателей), так чтобы магнитное поле статора стало вращаться противоположно направлению вращения ротора, то машина перейдёт в режим электромагнитного торможения (рис.2,б). При этом, ЭДС и активная составляющая тока в проводниках обмотки ротора будут сохранять (до определённого момента) то же направление, что и в прежнем двигательном режиме. Машина будет продолжать получать энергию от питающей сети, но эта энергия будет направлена на торможение вращения ротора. Электромагнитный момент (М), в данном режиме, как результат взаимодействия электромагнитных сил, направлен против вращения ротора и является тормозящим.

Направление электромагнитного момента в асинхронной машинеРис.2. Направление электромагнитного момента в асинхронной машине (а – при работе в генераторном режиме; б – при работе в режиме электромагнитного торможения).

На практике, асинхронные электрические машины чаще всего работают в двигательном режиме, что, в свою очередь, довольно часто не исключает применений режима электромагнитного торможения электродвигателей.

Итого, кратко повторим, асинхронная электрическая машина работает только при наличии скольжения, то есть неравенстве частот n1 и n2. Только в этом случае в обмотках ротора сможет индуктироваться ЭДС, и как следствие, возникать электромагнитный момент. Поскольку ротор вращается не синхронно с полем статора, машину называют асинхронной.

Таблица режимов работы асинхронной машины

elenergi.ru

Двигатель асинхронный — это… Что такое Двигатель асинхронный?

Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (меньше) частоте вращения магнитного поля, создаваемого током обмотки статора. Асинхронные машины — наиболее распространённые электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.

Конструкция

Как и любая электромеханическая машина, асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод; все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120°. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения (вращения) магнитного потока обмотки возбуждения, поэтому его изготавливают шихтованным (набранным из пластин) из электротехнической стали для обеспечения минимальных магнитных потерь.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с

короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным.

Короткозамкнутый ротор

Ротор асинхронной машины типа «беличья клетка»

Короткозамкнутая обмотка ротора, часто называемая «беличья клетка» из-за внешней схожести конструкции, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. В машинах малой и средней мощности ротор обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьей клетки» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие самовентиляцию самого ротора и вентиляцию машины в целом. В машинах большой мощности «беличью клетку» выполняют из медных стержней, концы которых вваривают в короткозамыкающие кольца.

Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами.

Асинхронные двигатели с таким ротором имеют небольшой пусковой момент и значительный пусковой ток, что является существенным недостатком «беличьей клетки». Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. Из достоинств следует отметить лёгкость в изготовлении, малый момент инерции и отсутствие механического контакта со статической частью машины, что гарантирует долговечность и снижает затраты на обслуживание.

Фазный ротор

Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведённую на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы.

В двигателях с фазным ротором имеется возможность увеличивать пусковой момент до максимального значения(в первый момент времени) с помощью пускового реостата, тем самым уменьшая пусковой ток. Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке.

Скорость вращения поля статора

При питании обмотки статора трёхфазным (в общем случае — многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения n_1\,\! [об/мин] которого связана с частотой сети f\,\! [Гц] соотношением:

n_1 = \frac{60f}{p},

где p\,\! — число пар магнитных полюсов обмотки статора.

Двигательный режим

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке ротора начинает течь ток. На проводники с током этой обмотки, расположенные в магнитном поле обмотки возбуждения, действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор за магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение, и его установившаяся частота вращения n_2\,\! [об/мин] соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках и инерцией ротора. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать крутящий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:

0 \le n_2 &amp;lt; n_1.

Относительная разность частот вращения магнитного поля и ротора называется скольжением:

s = \frac{n_1 - n_2}{n_1}.

Очевидно, что при двигательном режиме 1 &amp;gt; s &amp;gt; 0\,\!.

Генераторный режим

Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдет в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозящим. В генераторном режиме работы скольжение s &amp;lt; 0\,\!.

При отсутствии первоначального магнитного поля в обмотке статора поток возбуждения создают с помощью постоянных магнитов, либо за счёт остаточной индукции машины и пусковых конденсаторов, параллельно подключенных по схеме «звезда» к фазам обмотки статора .

Асинхронный генератор потребляет намагничивающий ток значительной силы и требует наличия в сети генераторов реактивной мощности в виде синхронных машин,синхронных компенсаторов,батарей статических конденсаторов(БСК). Несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном как вспомогательные источники небольшой мощности и как тормозные устройства.

Режим электромагнитного тормоза

Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Такой режим работы асинхронной машины называется режимом электромагнитного тормоза, и для него справедливы неравенства n_2 &amp;lt; 0, s &amp;gt; 1\,\!.

Способы управления асинхронным двигателем

Под управлением асинхронным двигателем переменного тока понимается изменение частоты вращения ротора. Существуют следующие способы управления асинхронным двигателем:

  • реостатный — изменение частоты вращения АД с фазным ротором путём изменения сопротивления реостата в цепи ротора,
  • частотный — изменение частоты вращения АД путём изменения частоты тока в питающей сети, что влечёт за собой изменение частоты вращения поля статора. Применяется включение двигателя через частотный преобразователь,
  • переключением обмоток со схемы «звезда» на схему «треугольник» в процессе пуска двигателя, что даёт снижение пусковых токов в обмотках примерно в три раза;
  • импульсный — подачей напряжения питания специального вида (например, пилообразного),
  • изменением числа пар полюсов, если такое переключение предусмотрено конструктивно,
  • изменением амплитуды питающего напряжения, когда изменяется только амплитуда (или действующее значение) управляющего напряжения. Тогда векторы напряжений управления и возбуждения остаются перпендикулярны,
  • Фазовое управление характерно тем, что изменение частоты вращения ротора достигается путём изменения сдвига фаз между векторами напряжений возбуждения и управления,
  • Амплитудно-фазовый способ включает в себя оба предыдущих способа.

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Устройство и принцип действия синхронной машины

Устройство синхронных машин. Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.

Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

В отечественной энергетике также используются синхронные машины с «бесщеточным» возбуждением. Обмотка ротора таких машин питается от выпрямителя, вращающегося вместе с ротором. Выпрямитель в свою очередь получает питание от возбудителя, имеющего вращающуюся вместе с ротором трехфазную обмотку, возбуждаемую неподвижными постоянными магнитами.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа (рис. 4.2) состоят из вала 6, ступицы 7, полюсов 8, укрепляемых в шлицах ступицы, полюсных катушек 4 возбуждения, размещенных на полюсах. Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Принцип работы и ЭДС синхронного генератора. Работа синхронного генератора основана на явлении электромагнитной индукции. При холостом ходе обмотка якоря (статора) разомкнута, и магнитное поле машины образуется только обмоткой возбуждения ротора (рис. 4.4). При вращении ротора синхронного генератора от проводного двигателя ПД с постоянной частотой nо магнитное поле ротора, пересекая проводники фазных обмоток статора AX, BY, CZ (рис.4.4,а) наводит в них ЭДС  , где B – магнитная индукция в воздушном зазоре между статором и ротором;  l – активная длина проводника;  – линейная скорость пересечения проводников магнитным полем.

Выше отмечалось,  что индукция В в воздушном зазоре распределена по синусоидальному закону , где — угол, отсчитываемый от нейтральной линии, поэтому ЭДС в одном проводнике .

Обозначив, получим , т.е. ЭДС в проводниках обмоток статора изменяется по синусоидальному закону.

ЭДС отдельных проводников каждой обмотки статора сдвинуты по фазе относительно друг друга, поэтому они суммируются геометрически  (аналогично ЭДС статора асинхронного двигателя – см. п. 3.8.1). Действующее значение ЭДС одной фазы определяется выражением:

где  – обмоточный коэффициент; – частота синусоидальных ЭДС; — число витков одной фазы обмотки статора; — число пар полюсов; – максимальный магнитный поток полюса ротора; – синхронная частота вращения.

Катушки отдельных фаз статора сдвинуты в пространстве на электрический угол, равный 1200, и их ЭДС образуют симметричную трёхфазную систему.

Изменяя ток возбуждения , можно регулировать магнитный поток ротора и пропорциональную ему ЭДС генератора. На рис. 4.5 представлена зависимость , снятая при номинальной частоте вращения .

Эта зависимость называется характеристикой холостого хода. Форма характеристики напоминает форму кривой намагничивания ферромагнитного сердечника. Характерной особенностью её является отсутствие пропорциональности между магнитным потоком и током возбуждения , что обусловлено явлением насыщения магнитной системы машины.

Принцип действия и вращающий момент синхронного двигателя. Принцип действия синхронного двигателя основан на явлении притяжения разноименных полюсов двух магнитных полей – статора и ротора.  Вращающееся поле статора с полюсами N и S создается при питании обмоток статора от трёхфазной сети аналогично вращающемуся полю асинхронного двигателя (на рис. 4.6 полюсы статора N и S показаны штриховкой, вращаются они против часовой стрелки с частотой ). Поле ротора создается постоянным током, протекающим по обмотке ротора.

Предположим, что ротор каким-либо способом разогнан до синхронной частоты вращения против часовой стрелки. Тогда полюсы ротора и будут вращаться с частотой ; произойдет «сцепление» этих полюсов с разноименными полюсами статора и (см. штрихованные линии на рис. 4.6).

В режиме идеального холостого хода (момент сопротивления ) оси магнитных полей статора и ротора совпадают (рис. 4.6.а). При этом на полюсы ротора действуют радиальные силы и, которые не создают ни вращающего момента, ни момента сопротивления.

Если к валу машины приложить механическую нагрузку, которая создает момент сопротивления , ось ротора и его полюсов , сместится в сторону отставания на угол (рис. 4.6,б). Теперь вращающее поле статора как бы “ведёт” за собой поле ротора и сам ротор. Тангенциальные составляющие и создают вращающий момент , где — радиус ротора.

Машина работает в двигательном режиме, её вращающий момент преодолевает момент сопротивления механической нагрузки.

При увеличении момента механической нагрузки на валу ротора угол увеличивается (до некоторого предела), что приводит к увеличению вращающегося момента двигателя , причем частота вращения ротора остается неизменной и равной .

Противодействующий момент и противо-ЭДС. При работе синхронной машины в режиме нагруженного генератора (на схеме рис. 4.4,б нагрузка Zн подключена к обмоткам статора через выключатель Q) по обмоткам статора протекает ток, который создает своё вращающееся магнитное поле. В генераторном режиме, в отличие от двигательного режима, полюсы ротора опережают на угол полюсы магнитного поля статора. В результате взаимодействия разноименных полюсов статора и ротора на ротор действует момент, направленный против вращения, т.е. тормозной момент . В установившемся режиме момент уравновешивает вращающийся момент приводного двигателя: .

При работе синхронной машины в режиме двигателя поле ротора пересекает витки трехфазной обмотки статора и в ней индуцируется ЭДС, которая согласно правилу Ленца действует навстречу току статора. По этой причине её называют противо-ЭДС. В установившемся режиме противо-ЭДС почти полностью уравновешивает напряжение сети .

Таким образом, при работе синхронной машины на нагрузку (электрическую или механическую) в обмотке статора индуцируется ЭДС Е и возникает момент ротора .

Реакция якоря в синхронной машине. Реакция якоря – это воздействие поля якоря (статора) на магнитное поле машины. При работе синхронной машины на нагрузку (электрическую в режиме генератора  и механическую в режиме двигателя) по обмоткам статора (якоря) протекают синусоидальные токи, которые создают вращающееся магнитное поле статора. Ротор имеет частоту вращения , поэтому частота ЭДС и тока статора , где — число пар полюсов машины. Частота вращения магнитного поля статора . Следовательно, поля ротора и статора вращаются с одной и той же частотой ; они взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины. Взаимодействие полей зависит от характера нагрузки и режима работы машины.

Рассмотрим реакцию якоря на примере двухполюсного синхронного генератора с неявно выраженными полюсами ротора, работающего на различную по характеру нагрузку .

При активной нагрузке с сопротивлением R ЭДС фазы обмотки статора и её ток совпадают по фазе и достигают максимума в тот момент, когда ось mm1 магнитного потока ротора Ф0 перпендикулярна оси nn1 катушки обмотки статора (например, АX на рис. 4.7,а). Магнитный поток статора Фя замыкается по сердечникам статора и ротора через воздушный зазор. Таким образом, в случае активной нагрузки ось потока ротора Ф0 опережает ось потока статора Фя на электрический угол, равный 900 (поперечная реакция якоря). При этом результирующий магнитный поток машины (ось qq1) поворачивается относительно потока ротора Ф0на угол в направлении, противоположном направлению вращению ротора.

При чисто индуктивной нагрузке XL ток в обмотке статора отстаёт от ЭДС на 900 и поэтому достигает максимума в тот момент времени, когда полюс ротора повернётся на 900 по направлению вращения (рис. 4.7,б). В этом случае магнитный поток статора оказывается направленным навстречу магнитному потоку ротора и размагничивает машину ().

При емкостной нагрузке XC ток в фазе статора опережает ЭДС на 900 и поэтому достигает максимума в тот момент, когда полюс ротора не доходит на 900 до оси mm1 (рис. 4.7,в). Магнитный поток статора в этом случае оказывается направленным согласно с магнитным потоком ротора и намагничивает машину  ().

При работе синхронной машины в режиме двигателя ток в статоре при том же направлении вращения имеет противоположное направление. Ось результирующего потока двигателя оказывается повернута относительно потока ротора на угол , но не против направления вращения, как у генератора, а по направлению вращения.

Таким образом, реакция якоря в синхронной машине изменяет как поток машины, так и его направление (в отличие от асинхронной машины, у которой ). Изменение Фрез приводит к изменению ЭДС, что неблагоприятно сказывается на работе потребителей электроэнергии при работе машины в режиме генератора. Уменьшение неблагоприятного влияния реакции якоря достигается уменьшением магнитного потока статора за счёт увеличения воздушного зазора между ротором и статором синхронной машины.

electrono.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о