1 Мегаватт = 1000 Киловатт | 10 Мегаватт = 10000 Киловатт | 2500 Мегаватт = 2500000 Киловатт |
2 Мегаватт = 2000 Киловатт | 20 Мегаватт = 20000 Киловатт | 5000 Мегаватт = 5000000 Киловатт |
3 Мегаватт = 3000 Киловатт | 30 Мегаватт = 30000 Киловатт | 10000 Мегаватт = 10000000 Киловатт |
4 Мегаватт = 4000 Киловатт | 40 Мегаватт = 40000 Киловатт | 25000 Мегаватт = 25000000 Киловатт |
50 Мегаватт = 50000 Киловатт | 50000 Мегаватт = 50000000 Киловатт | |
6 Мегаватт = 6000 Киловатт | 100 Мегаватт = 100000 Киловатт | 100000 Мегаватт = 100000000 Киловатт |
7 Мегаватт = 7000 Киловатт | 250 Мегаватт = 250000 Киловатт | 250000 Мегаватт = 250000000 Киловатт |
8 | 500 Мегаватт = 500000 Киловатт | 500000 Мегаватт = 500000000 Киловатт |
9 Мегаватт = 9000 Киловатт | 1000 Мегаватт = 1000000 Киловатт | 1000000 Мегаватт = 1000000000 Киловатт |
1 мегаватт час сколько киловатт
Мощность выражают не только в ваттах, но и в производных единицах: микро- и милливаттах, киловаттах, мегаваттах. Обозначения «мВт» и «МВт» неравнозначны: первая обозначает милливатт, а вторая — мегаватт.
Спонсор размещения P&G Статьи по теме «Как перевести кВт в мВт» Как перевести киловаты в ваты Как вычислить совершенную работу Как перевести вт в ккал
Инструкция
Если в обозначении «МВт» первая буква заглавная, условие задачи состоит в том, чтобы перевести киловатты в мегаватты. Один киловатт равен одной тысяче ватт, а один мегаватт — миллиону ватт, а значит, тысяче киловатт. Таким образом, чтобы перевести мощность, выраженную в киловаттах, в мегаватты, поделите искомую величину на тысячу, например:
Если в обозначении «мВт» первая буква заглавная, условие задачи состоит в том, чтобы перевести киловатты в милливатты. Один милливатт представляет собой одну тысячную долю ватта, таким образом, чтобы мощность, выраженную в киловаттах, перевести в милливатты, умножьте искомую величину на один миллион, например:
15 кВт=(15*1000000) мВт=15000000 мВт.
Не выражайте мощность (и другие физические величины) в неподходящих для этого единицах измерения без необходимости. Неподходящими считаются единицы, при выражении величины в которых получаются слишком малые или слишком большие числа. С такими числами неудобно осуществлять математические действия. Если величину все же необходимо выразить в неподходящих единицах, используйте экспоненциальный метод представления чисел. Например, число 15000000 из предыдущего примера можно выразить как 1,5*10^7. Именно в таком виде в отношении значения мощности или другой величины удобно осуществлять вычисления при помощи научного калькулятора, который, в отличие от обычного, приспособлен для работы с таким представлением чисел. Если вы решаете задачу, где хотя бы часть величин (напряжение, ток, сопротивление, мощность и др.) выражены во внесистемных единицах, вначале переведите все данные в систему СИ (в частности, мощность переведите в ватты), затем решите задачу, и лишь после этого переведите результат в удобные единицы. Если этого не сделать заранее, определение порядка результата и единиц, в которых он выражен, значительно усложняется. Как просто
Другие новости по теме:
На вилках, розетках, предохранителях, автоматах, счетчиках, и т.д. указан максимальный ток, выраженный в амперах. Но на электроприборах указывают потребляемую мощность, выраженную в ваттах или киловаттах. Как же узнать, нагрузку какой максимальной мощности можно включать через то или иное
В амперах измеряют силу электрического тока, в ваттах — электрическую, тепловую и механическую мощность. Ампер и ватт в электротехнике связаны между собой определенными формулами, однако поскольку в них измеряют разные физические величины, просто перевести амперы в кВт не получится. Но можно одни
В науке и быту часто используются такие единицы измерения физических величин, как киловатты, киловатт-часы и часы. Каждая из этих единиц соответствует конкретному физическому параметру. В киловаттах измеряется мощность, в киловатт-часах – энергия (работа), а в часах – время. На практике нередко
Слово мощность ассоциируется со словами двигатель, автомобиль, аккамулятор, батарейка и т.п. И неудивительно, ведь мощность – физическая величина, которая показывает, как быстро производится работа. Измеряется мощность в Ваттах, в честь английского ученого Джеймса Уатта. Обозначается ватт, как
При использовании в расчетах такой физической величины как мощность, часто требуется перевести ватты в другие единицы измерения. Задача осложняется тем, что в технике до сих пор используются устаревшие единицы измерения мощности, такие как «лошадиная сила». Но имея все необходимые таблицы и
Киловатт (кВт) является единицей измерения мощности, т.е. отношения работы к отрезку времени, за который она выполнена. Однако мощность может измеряться и в других единицах, а киловатт можно легко перевести в любую из них простым методом умножения. Вам понадобится Калькулятор или конвертер Спонсор
Ватт, W, Вт – в СИ эта единица измерения мощности получила название в честь своего создателя Джеймса Уатта. Ватт как меру мощности приняли в 1889 году, до этого использовали л.с. – лошадиные силы. Не будет лишним знать, каким образом мощность можно перевести в другие единицы измерения. Вам
Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная э
advsk.ru
Ватт — Википедия
- О типе морских побережий см. Ватты
Ватт (русское обозначение: Вт, международное: W) — единица измерения мощности, а также теплового потока, потока звуковой энергии, мощности постоянного электрического тока, активной и полной мощности переменного электрического тока, потока излучения и потока энергии ионизирующего излучения в Международной системе единиц (СИ)
В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы ватт пишется со строчной буквы, а её обозначение — с заглавной. Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием ватта. Например, обозначение единицы измерения энергетической яркости «ватт на стерадиан-квадратный метр» записывается как Вт/(ср·м
Ватт как единица измерения мощности был впервые принят на Втором Конгрессе Британской Научной ассоциации в 1882 году. До этого при большинстве расчётов использовались введённые Джеймсом Уаттом лошадиные силы, а также фут-фунты в минуту. В Международную систему единиц (СИ) ватт введён решением XI Генеральной конференцией по мерам и весам в 1960 году одновременно с принятием системы СИ в целом[2].
Одной из основных характеристик всех электроприборов является потребляемая мощность, поэтому на любом электроприборе (или в инструкции к нему) можно найти информацию об этой мощности, выраженной в ваттах.
1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль
- Вт = кг·м²/с³.
Через другие единицы СИ ватт можно выразить следующим образом:
- Вт = Дж / с
- Вт = H·м/с
- Вт = В·А.
Кроме механической (определение которой приведено выше), различают ещё тепловую и электрическую мощность.
Перевод в другие единицы измерения мощности[править | править код]
Ватт связан с другими, не входящими в систему СИ единицами измерения мощности, следующими соотношениями:
- 1 Вт = 107эрг/с
- 1 Вт ≈ 0,102 кгс·м/с
- 1 Вт ≈ 1,36⋅10−3л. с.
- 1 Вт = 859,8452279 кал/ч
Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчёте радаров и радиоприёмников чаще всего используют пВт или нВт, для медицинских приборов, таких как ЭЭГ и ЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожных локомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).
Стандартные приставки СИ для ватта приведены в следующей таблице.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
101 Вт | декаватт | даВт | daW | 10−1 Вт | дециватт | дВт | dW |
102 Вт | гектоватт | гВт | hW | 10−2 Вт | сантиватт | сВт | cW |
103 Вт | киловатт | кВт | kW | 10−3 Вт | милливатт | мВт | mW |
106 Вт | мегаватт | МВт | MW | 10−6 Вт | микроватт | мкВт | µW |
109 Вт | гигаватт | ГВт | GW | 10−9 Вт | нановатт | нВт | nW |
1012 Вт | тераватт | ТВт | TW | 10−12 Вт | пиковатт | пВт | pW |
1015 Вт | петаватт | ПВт | PW | 10−15 Вт | фемтоватт | фВт | fW |
1018 Вт | эксаватт | ЭВт | EW | 10−18 Вт | аттоватт | аВт | aW |
1021 Вт | зеттаватт | ЗВт | ZW | 10−21 Вт | зептоватт | зВт | zW |
1024 Вт | иоттаватт | ИВт | YW | 10−24 Вт | иоктоватт | иВт | yW |
применять не рекомендуется |
Обозначения в Юникоде.[4] | ||
---|---|---|
Символ | Название | Номер Юникода |
㎺ | Пиковатт (Square PW) | U+33BA |
㎻ | Нановатт (Square NW) | U+33BB |
㎼ | Микроватт (Square Mu W) | U+33BC |
㎽ | Милливатт (Square MW) | U+33BD |
㎾ | Киловатт (Square KW) | U+33BE |
㎿ | Мегаватт (Square MW MEGA) | U+33BF |
Величина | Описание |
---|---|
10−9 ватт | Излучение мощностью примерно в 1 нВт падает на участок поверхности Земли площадью 1 м² от звезды яркостью в +1,4 звёздной величины. |
5⋅10−3 ватт | Такую мощность (или близкую к ней) имеет излучение обычных лазерных указок, сравнительно безопасное для человеческого зрения. |
Примерная мощность передатчика обычного мобильного телефона. | |
1⋅103 ватт | Небольшой обогреватель. Примерная мощность излучения, падающего на 1 м2 поверхности Земли от Солнца, находящегося в зените. Средняя годовая мощность, потребляемая одним домашним хозяйством в США (среднее потребление энергии — примерно 8900 кВт•ч/год)[5]. |
6⋅104 ватт | Легковой автомобиль с двигателем в 80 лошадиных сил. |
1,2⋅107 ватт | Электропоезд Eurostar. |
8,212⋅109 ватт | Мощность при пиковых нагрузках крупнейшей в мире АЭС Касивадзаки-Карива (Касивадзаки, Япония). |
2,24⋅1010 ватт | Проектная мощность крупнейшей в мире ГЭС «Три ущелья» (Санься, Китай). |
1012 ватт | Пиковая мощность среднего удара молнии. |
1,9⋅1012 ватт | Средняя оценочная электрическая мощность, потреблявшаяся человечеством в 2007 году[6]. |
1,5⋅1015 ватт | Рекордная мощность импульсного лазерного излучения, достигнутая на установке Nova в 1999 году[7]. Энергия в импульсе составляла 660 Дж, длительность импульса — 440⋅10−15 с. |
1,74⋅1017 ватт | Исходя из среднего значения облучённости на поверхности Земли в 1,366 кВт/м²[8] общий поток солнечного излучения на поверхности Земли составляет примерно 174 ПВт. Если бы Земля не переизлучала эту энергию в пространство, она становилась бы массивнее на 1,94 кг каждую секунду. |
3,828⋅1026 ватт | Полная мощность излучения Солнца оценивается учёными в 382,8 ИВт, что более чем в два миллиарда раз больше, чем мощность излучения, падающего на поверхность Земли. Другими словами, вследствие термоядерных реакций в центре Солнца наше светило ежесекундно теряет массу в размере 4 260 000 тонн[9]. |
Разница между понятиями киловатт и киловатт-час[править | править код]
Из-за схожих названий киловатт и киловатт-час часто путают в повседневном употреблении, особенно когда это относится к бытовым электроприборам. Следует, однако, учитывать, что это две различных единицы измерения, относящиеся к различным физическим величинам. В ваттах и киловаттах измеряется мощность — скорость изменения (передачи, преобразования, потребления) энергии. В то же время ватт-час и киловатт-час являются единицами измерения самой энергии (работы). В ватт-часах и киловатт-часах выражается энергия, произведённая (переданная, преобразованная, потреблённая) за определённое время. Если мощность прибора постоянна, то произведённая (переданная, преобразованная, потреблённая) прибором энергия равна произведению мощности прибора на время работы прибора.
Например, если лампочка мощностью 100 Вт работала на протяжении 1 часа, то она потребила (входящая энергия) и выделила в виде света и тепла (исходящая энергия) 100 Вт·ч или 0,1 кВт·ч. 40-ваттная лампочка потребит (выделит) такое же количество энергии за 2,5 часа. Сказанное справедливо и для производимой электроэнергии. Так, мощность электростанции измеряется в киловаттах (мегаваттах), но количество поставленной потребителям в течение некоторого времени электроэнергии равно произведению мощности электростанции на упомянутое время и выражается в киловатт-часах (мегаватт-часах).
Сказанное справедливо для любого вида энергии: электрической, тепловой, механической, электромагнитной и так далее.
ru.wikipedia.org
1 Киловатт = 0.001 Мегаватт | 10 Киловатт = 0.01 Мегаватт | 2500 Киловатт = 2.5 Мегаватт |
2 Киловатт = 0.002 Мегаватт | 20 Киловатт = 0.02 Мегаватт | 5000 Киловатт = 5 Мегаватт |
3 Киловатт = 0.003 Мегаватт | 30 Киловатт = 0.03 Мегаватт | 10000 Киловатт = 10 Мегаватт |
4 Киловатт = 0.004 Мегаватт | 40 Киловатт = 0.04 Мегаватт | 25000 Киловатт = 25 Мегаватт |
5 Киловатт = 0.005 Мегаватт | 50 Киловатт = 0.05 Мегаватт | 50000 Киловатт = 50 Мегаватт |
6 Киловатт = 0.006 Мегаватт | 100 Киловатт = 0.1 Мегаватт | 100000 Киловатт = 100 Мегаватт |
7 Киловатт = 0.007 Мегаватт | 250 Киловатт = 0.25 Мегаватт | 250000 Киловатт = 250 Мегаватт |
8 Киловатт = 0.008 Мегаватт | 500 Киловатт = 0.5 Мегаватт | 500000 Киловатт = 500 Мегаватт |
9 Киловатт = 0.009 Мегаватт | 1000 Киловатт = 1 Мегаватт | 1000000 Киловатт = 1000 Мегаватт |
convertlive.com
В ПОМОЩЬ ПИШУЩЕМУ НА ТЕМУ ЭЛЕКТРОЭНЕРГЕТИКИ. ЧАСТЬ-1
Написать, что происходит в электроэнергетической отрасли, подготовить интервью с экспертом, или информационное сообщение по энергетике не так просто. Слишком много непонятных профессиональных терминов, физических явлений и технологических процессов. Учитывая гуманитарное образование журналистов и подчас сжатые сроки, отведенные руководством на подготовку материала, на выходе зачастую получается текст, который читатель или не поймет, или не захочет читать, профессионал посмеется, а издание и журналист потеряют немного авторитета. В результате все в проигрыше. В то же время профессиональные энергетики, хоть и разбираются в теме, также редко могут создать читабельный материал, по причине отсутствия соответствующего журналистского опыта. Ниже я попытался максимально просто объяснить, как работает электроэнергетика и что означают термины, которые так часто встречаются в пресс-релизах отраслевых компаний. Возможно, это окажет помощь вашей работе.АББРЕВИАТУРЫ И ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
Трудно найти статью, в которой журналист не запутался в терминах или неправильно использовал аббревиатуру. Конечно, большинству читателей может тоже все равно – кВ (киловольт) или кВт (киловатт), ГЭС или ГРЭС и, тем не менее, не вижу ничего плохого, если все же будет написано правильно. Согласны? Тогда поехали.
МВт (Мегаватт)
В Ваттах измеряется электрическая мощность, обозначается латинской «P» (1 МВт – это 1 000 000 Вт, 1 кВт – это 1 000 Вт). Вообще, мощность это отношение работы, выполненное за некоторый промежуток времени, к этому промежутку времени. Понятно?:) Вот, например, Вася за час может перенести с места на место 500 кирпичей, а Петя 1000. Значит Петя в 2 раза мощнее. Если отвлечься от скучных определений, каждый из нас интуитивно понимает, что такое мощность. Ясно, что утюг, на котором написано 1700 Вт, мощнее, чем утюг с надписью 500 Вт (в первом случае утюг быстрее нагревается). Работа всех электрических приборов сопровождается потреблением электрической мощности. Чем мощнее (электрически) прибор, тем больше потребление. Вся проблема в том, что для человека, не связанного непосредственно с работой в энергетике (в том числе журналиста), все, что больше 10 000 Вт (10 тыс. Ватт или 10 киловатт) не поддается осмыслению. Просто не с чем сравнивать. Поэтому ниже я привел цифры для сравнения.
Город Алматы потребляет примерно 1 500 МВт (1 500 Мегаватт или 1 500 000 киловатт или 1 500 000 000 Ватт). Весь Казахстан потребляет 12 000 МВт (12 000 Мегаватт или 12 Гигаватт). Город Москва потребляет столько же, сколько весь Казахстан. Вся Россия потребляет 150 000 МВт. Вся Европа потребляет 400 000 МВт. По линии электропередачи напряжением 500 кВ можно передать примерно 500 МВт (в идеале 900 МВт, но есть разные ограничения), напряжением 220 кВ – 200 МВт, напряжением 110 кВ – 50 МВт. Алматинская ТЭЦ-1 может генерировать 100 МВт, Алматинская ТЭЦ-2 – 400 МВт, Экибастузская ГРЭС-1 – 2 500 МВт (после окончания строительства имела мощность 4 000 МВт, но эффективный менеджмент…), Жамбылская ГРЭС – 1 200 МВт. На Саяно-Шушенской ГЭС до аварии было установлено 10 генераторов по 600 МВт, то есть мощность станции составляла 6 000 МВт (самая мощная в России до аварии 2009г., правда, линии электропередачи, отходящие от ГЭС, позволяли передать только 4 000 МВт). Чернобыльская АЭС до аварии была мощностью 4 000 МВт. Самая мощная электростанция в мире – бразильская «Итайпу» — 12 600 МВт (ее одной хватит, чтобы закрыть потребности всего Казахстана). Суммарная установленная мощность всех электростанций Казахстана – 18 000 МВт, России – 220 000 МВт.
Здесь нужно пояснить еще кое-что. Электростанция или город это не лампочка, включил – и пошло потребление или генерация мощности, в соответствии с циферкой на колбе (например, 100W). Все немного сложнее. Дело в том, что потребление и генерация величины не постоянные. Они меняются каждую секунду. Чтобы это понять, представьте объект, покрупнее бытового прибора, например квартиру. Смотрите, потребление квартиры в целом постоянно меняется. Холодильник автоматически время от времени включается-отключается. В дневные и ночные часы лампочек в квартире «горит» намного меньше, чем вечером, бытовая техника тоже работает не круглосуточно (микроволновые печи, пылесосы, телевизоры, утюги и т.д.). Вышеприведенные цифры это пиковые значения потребления и генерации. На самом деле, в каждый момент времени в Казахстане включена только часть от всех имеющихся в стране лампочек, стиральных машин, компьютеров, электродвигателей станков, насосов, и.т.д. Если измерить и сложить потребление каждого электроприбора в стране, мы получим некую цифру – суммарное потребление на определенный момент времени. Если измерения производить, скажем, каждый час, можно построить «суточный график потребления».
Выше характерный суточный график потребления. Смотрите, все начинается в 00:00. Это время когда жители ложатся спать, увеселительные заведения закрываются, рабочий день на предприятиях давно окончен. До самого раннего утра потребление постепенно падает. Примерно в 05:00 потребление минимально, это точка «ночного минимума», затем начинается рост потребления – люди начинают просыпаться, они включают свет, греют чайники, включают воду (что тоже требует расхода электричества), готовятся к открытию магазины и.т.д. Рост идет примерно до 10:00 – эту точку на графике называют «утренний максимум», затем происходит небольшой спад, вызванный отключением части освещения, поскольку солнце уже достаточно хорошо освещает помещения, а также из-за того, что после 10:00 люди вообще меньше потребляют электроэнергию – чайники наполнены, руки вымыты, еда приготовлена, всех развезли по рабочим местам и т.д. Спад после утреннего максимума продолжается по 14:00. Затем начинается рост потребления, вызванный как уменьшением количества солнечного света, так и увеличением активности людей и предприятий (после окончания обеденного перерыва). Рост продолжается до 22:00 – эта точка «вечерний максимум», после которого начинается спад потребления. Если просуммировать мощность потребления энергосистемы за каждый час суток, мы получим значение потребленной электроэнергии в кВт·ч за сутки.
кВт·ч (киловатт·час)
В киловатт·часах измеряют электроэнергию (электрическая мощность, умноженная на время). Лампочка мощностью 100 Вт, за один час потребляет 0,1 кВт х 1 час = 0,1 кВт·ч. За 15 минут, необходимых электрическому чайнику мощностью 1 500 Вт для доведения воды до кипения, он «возьмет» из сети 1,5 кВт х 0,25 часа = 0,38 кВт·ч. В году 8760 часов, если 60 Ваттную лампочку оставить включенной на целый год, она потребит 0,06 кВт х 8760 часов = 525,6 кВт·ч. Квартирный счетчик электроэнергии меряет именно киловатт·часы. Вроде все понятно и просто. Однако частенько вижу в журналистских работах вместо правильных кВт·ч, неправильные кВт/ч, или киловатт-час. В журналистских материалах «кВт·ч» появляются, чаще всего, при цитировании представителей операторов. Например, «Выработка электростанции такой-то в этом году составила 15 млн. кВт·ч», или «Новая линия электропередачи позволит передать 7 млрд. кВт·ч ежегодно», или «Из-за роста потребления среднемесячный дефицит региона возрос до 100 млн. кВт·ч». Все эти цифры, приведенные без анализа, обычному человеку ни о чем не говорят. Ни журналисту, ни читателю не понятно – все это хорошо или плохо? Давайте разберемся.
Годовое потребление СССР в 1990 году составило примерно 1 800 млрд. кВт·ч (в 1940 году около 50 млрд. кВт·ч, в 1975 году – 1000 млрд. кВт·ч). Годовое потребление КазССР в 1990 году составило 100 млрд. кВт·ч. Развал Союза привел к тому, что в 1998 году потребление Казахстана составило всего половину от вышеприведенной цифры – 50 млрд. кВт·ч. Чтобы оценить масштаб кризиса переходного периода, скажу, что за время Великой Отечественной Войны, когда была нарушена привычная работа народного хозяйства, а часть территорий побывала на линии фронта и под оккупацией, спад потребления электроэнергии составил 10% (это разница между потреблением СССР в 1940 г. и 1945г.). Годовое потребление Казахстана сегодня, составляет примерно 80 млрд. кВт·ч. (до уровня 1990 года еще далеко), России – 1 200 млрд. кВт·ч (в отличие от нас, российский спад потребления в кризис 90-х составил «всего» 25%), Белоруссии – 40 млрд. кВт·ч, Грузии и Киргизии – по 10 млрд. кВт·ч, Узбекистана – 50 млрд. кВт·ч, Украины – 200 млрд. кВт·ч. По дальнему зарубежью: США – 4 000 млрд. кВт·ч, КНР – 2 000 млрд. кВт·ч, Япония – 1 000 млрд. кВт·ч, Индия – 600 млрд. кВт·ч, Германия – 600 млрд. кВт·ч, Италия – 250 млрд. кВт·ч, Франция – 500 млрд. кВт·ч, Великобритания – 400 млрд. кВт·ч.
Это просто цифры для сравнения. Как они получаются, я уже говорил выше – суммируется мощность потребления целой страны за каждый час года и складывается.
Страновое потребление в кВт·ч это еще и важный показатель для аналитиков. Согласитесь, беглый просмотр вышеприведенных цифр даже без какого либо дополнительного анализа позволяет ранжировать страны по «силе» экономики. Добавьте к кВт·ч цифры по ВВП и населению, и вы без особого труда увидите и структуру экономики и возможности страны по ведению обороны, и уровень научно-технического прогресса. Кстати, годовой рост потребления электроэнергии в % достаточно точно соответствует реальному росту экономики страны за тот же период (при условии неизменных цен на экспортируемые и импортируемые товары). Но это я так, для сведения.
Теперь о том, что нам делать с этими кВт·ч. Например, речь идет об определенном регионе, скажем Алматинской области. Допустим суточное потребление составляет 20 млн. кВт·ч, выработка электростанциями региона 7 млн. кВт·ч, тогда дефицит региона составит 13 млн. кВт·ч (в данном примере цифры условные). Чтобы покрыть дефицит, нужно передать недостающую электроэнергию из внешних источников. И здесь возникает 2 вопроса: есть ли на внешних источниках достаточно мощности, для покрытия дефицита, и второй вопрос – достаточна ли пропускная способность существующих ВЛ, которые питают регион для передачи такого количества электроэнергии. Пусть все хорошо – и мощность вне региона есть и ВЛ без проблем все пропускают. Но вот есть еще и ежегодный рост потребления, допустим на 10%. Понятно, что рано или поздно пропускной способности ВЛ будет недостаточно, что приведет к веерным отключениям, если не построить дополнительные ВЛ или электростанцию внутри региона. Вот такой простой анализ может помочь «нарыть» проблему. Еще пример. Энергетики рапортуют – построили электростанцию. Новенькая, вся блестит. Пресс-релизы во все СМИ отправили, репортаж по новостям прокрутили, дескать, ух мы теперь. Нелишне проанализировать соответствие степени восхищения реальному положению дел. Допустим, годовая выработка новой электростанции составит 1,5 млрд. кВт·ч, поинтересуйтесь годовым потреблением и дефицитом региона, в котором построили электростанцию, и если оно составляет 30 млрд. кВт·ч и 20 млрд. кВт·ч соответственно, думаю, поводов для грусти много больше, чем для пресс-конференций с разноцветными шариками.
Вы поняли, что я хотел сказать? У простого гражданина возможности опрашивать экспертов, делать запросы в организации, нет. Такие возможности есть у журналистов, однако они ими практически не пользуются, предпочитая Ctrl-C+Ctrl-V абзацев пресс-релизов. В энергетике проблема возникает ни тогда, когда о ней уже все знают, а примерно за 5-10 лет до этого, но этот срок журналисты могут сократить, если запасутся цифрами и калькулятором:)
banzay-kz.livejournal.com
Перевод единиц измерения 1 кВт, 1 ккал/ч, 1 МДж/ч, 1кВтч, 1 кПа, 1 атм, 1 мбар
Единицы измерения мощности ↓
кВт | ккал/ч | МДж/ч | |
1 кВт | 1 | 860 | 3,6 |
1 ккал/ч | 1,16×10-3 | 1 | 4,187×10-3 |
1 МДж/ч | 0,278 | 238,8 | 1 |
Дж | кВт*ч | ккал | |
1 Дж | 1 | 2,78×10-7 | 2,39×10-4 |
1 кВт*ч | 3,6×106 | 1 | 860 |
1 ккал | 4,187×103 | 1,163×10-3 | 1 |
Перевод единиц мощности
Единицы измерения давления ↓
Па | кПа | бар | мбар | мм в.с. | атм | |
1 Па | 1 | 10-3 | 10-5 | 10-2 | 0,102 | 9,87×10-6 |
1 кПа | 103 | 1 | 10-2 | 10 | 102 | 9,87×10-3 |
1 бар | 105 | 102 | 1 | 103 | 1,02×104 | 9,87×10-1 |
1 мбар | 10 2 | 10-1 | 10-3 | 1 | 10,2 | 9,87×10-4 |
1 мм в.с. | 9,81 | 9,81×10-3 | 9,81×10-5 | 9,81×10-2 | 1 | 9,87×10-5 |
1 атм | 1,01×105 | 101 | 1,01 | 1013 | 1,013×104 | 1 |
- 1 ккал/час = 1,163 Вт
- 1 Гкал/час = 1,163 МВт
- 1 Вт = 0,001 кВт
- 1 Вт = 859,8 кал/час
- 1 Вт = 3,412 BTU/час
- 1 Вт = 0,8598 ккал/час
- 1 кВт = 1000 Вт
- 1 кВт = 3412 BTU/час
- 1 кВт = 859800 кал/час
- 1 кВт = 859.8 ккал/час
- 1 кВт = 0,0008598 Гкал/час
- 1 МВт=1000 кВт
- 1 МВт=1000000 Вт
- 1 МВт=0,8598 Гкал/час
- 1 МВт=859800 ккал/час
- 1 МВт=859800000 кал/час
- 1 МВт=3412000 BTU/час
Перевод единиц давления
Для расчёта стоимости котельной, пожалуйста,заполните опросный лист на котельную.
Опросный лист можно заполнить в онлайн-режиме или скачать.
По всем возникшим вопросам:
многоканальный телефон: 8 (495) 781-81-55
электронная почта: [email protected]
Вас также может заинтересовать
Зачем нужно объединение котельных?В 2012 году объединились две основные московские компании, осуществляющие подачу тепла и горячей воды жителям города. На вопрос, зачем нужно слияние котельных, ответил генеральный директор бывшей «Московской объединённой энергетической компании» Андрей Лихачёв.
Котельная на углеС чем ассоциируется у большинства «котельная на угле»? Наверняка с трудоёмкой работой, бесконечным закладыванием в топку угля, сажей и грязью. К счастью, такие времена давно остались в прошлом, и сегодня угольная котельная — это автоматизированная установка, практически не требующая к себе внимания со стороны владельцев.
Как снизить шумность котельной: на этапе проектирования и специальными средствамиКотельные издают много шума. В них имеется множество элементов, которые издают звуки: это насосы, вентиляторы, помпы и другие механизмы. В принципе, работа в промышленности, с промышленным оборудованием, так или иначе вынуждает специалиста сталкиваться с шумом, и возможности сделать агрегаты полностью беззвучными пока нет. Но можно сделать их в значительной степени менее громкими.
Котельная на газе: её преимущества и недостаткиИменно котельные на газе сегодня являются самыми распространёнными отопительными установками на территории России. Причина такой востребованности проста: газ — достаточно дешёвое и экологически чистое топливо, которое, при правильной его эксплуатации, совершенно безопасно в использовании.
www.kotel-modul.ru