+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

 

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.

7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

 

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

 


Смотрите также:


Смотрите также:

Системы заземления: виды, схемы

Для установки «земли» в жилых и промышленных помещениях используются различные типы проводов и принципы установки защитных конструкций. Системы заземления электроустановок TN (подтипы TN S, TN C S), ТТ и IT могут применяться как для частного дома, так и для квартиры.

Виды

Обозначение всех систем расшифровывается следующим образом:

  • Первая буква (t по умолчанию) – указывает на принцип работы источника питания;
  • Вторая буква (N, T, I) – определяет принцип заземления и защиты открытых частей различных электрических отводов. Эта маркировка является международно принятой аббревиатурой.
Фото — схемы

Классификация систем заземления и их описание по заземлению отводов:

  1. N – принцип зануления посредством подключения к нейтрали;
  2. T – контур заземлен;
  3. I – изолированный отвод, т. е., у электрооборудования нет открытых контактов. Это применяется в основном для защиты производственных установок.

Также современными параметрами ГОСТ введено такое понятие, как нулевой заземляющий проводник (используется в системах с напряжением до 1000 в). Он бывает N – просто нулевой, PE – земля, PEN – земля, объединенная с нулем.

Принцип работы каждой указанной системы разный, поэтому ПУЭ не разрешает использовать определенные типы защитного заземления до проверки соответствия требованиям определенных электрических сетей.

Назначение

Рассмотрим описание работы и схемы каждой из использующихся систем заземления.

TN – это система, в которой нейтральный провод глухо заземлен, а все остальные электрические отводы подключены к ней. Особенности этой схемы в том, что для её реализации возле трансформатора устанавливается специальный реактор, который гасит дугу, появляющуюся в проводке.

Фото — TN-C

У этой системы есть две разновидности: TN-С и TN-CS. TN-С характеризуется тем, что для защиты системы электроснабжения используется одни комбинированный отвод, объединяющий нейтраль и землю. Этот проводник чаще всего используется в жилых помещениях, промышленных зонах и т. д. У него свои достоинства и недостатки:

  1. К плюсам можно отнести простоту и универсальность установки. Устройство такого заземления легко производится своими руками;
  2. Но существенным недостатком является отсутствие отдельного заземляющего провода. Во многоквартирном доме такая система может быть не просто неэффективна, но и опасна. Кроме того, когда открытые отводы находятся под напряжением, они могут ударить током. Чтобы предупредить это, многие хозяева отдельно обустраивают зануление сети;
  3. Перед монтажом требуется провести предварительный расчет сечения проводников;
  4. При использовании этой методики нельзя производить выравнивание потенциалов;
  5. В основном она используется для заземления дачи, старых квартир или частных домов. Для современных новостроек применяется очень редко, т. к. технология не подходит по своим техническим характеристикам.

Сравнительно с ней, TN-CS более безопасна для бытового использования. Она состоит из двух кабелей: заземления и нуля. Если Вы обустраиваете проводку в новом доме, то рекомендуем обратить внимание именно на такой раздельный вариант, она идеально подойдет для нового жилого фонда.

Фото — TN-S

Протягивается она от самой трансформаторной подстанции, где напрямую заземляется. Из-за этого при установке можно столкнуться с рядом проблем. Помимо этого техническое проектирование и требования ПУЭ требуют для её реализации использования трехжильного либо пятижильного провода.

Чтобы упростить установку земли, придумали систему, объединяющую достоинства и упрощающую недостатки двух предыдущих. Это TN-C-S. Здесь, как и в TNC есть нулевой провод, который способствует повышению сопротивления при утечке, но, как и TNS, она раздельная. За счет этого обеспечивает мгновенную реакцию УЗО при аварийной ситуации.

Фото — TN-C-S

Не требует использования дорогого пятижильного провода и может монтироваться в любых постройках и для различного сечения проводников. При этом нужно отметить, что заземление производится по стоякам в подъезде, поэтому предварительно обязательно нужно взять разрешение у электропоставляющей компании. Также к недостаткам нужно отнести тот факт, что если обрывается заземляющий кабель, то открытые отводы стояков могут быть под высоким напряжением.

Схема системы глухого заземления и молниезащиты TT является глухозаземленной и полностью изолированной. В ней для подключения открытых отводов электроустановок или коммуникаций используются специальные нейтральные переходники. Её принцип действия очень простой, но он нецелесообразен для дома или квартиры. Если объяснить просто, то в землю у здания забивается металлический колышек, который соединяется с отводами. К такому контуру подключается оборудование. Установка такой системы допускается только в небольших нежилых помещениях, скажем, в бане, МАФе и прочих постройках. Также может использоваться для освещения или местного отопления (теплицы, инкубатора). Профессиональный вариант можно увидеть у компании Zandz.

Фото — TT

Главным достоинством такого стержневого метода является его мобильность. При необходимости все содержимое этой модульной конструкции просто переносится на другое место, чего нельзя сделать ни с одной другой «землей». Это очень удобно, если требуется замена, проверка, осмотр или ремонт постоянной стационарной системы.

Фото — стержень

Применение системы IT в основном производится различными лабораториями или медицинскими организациями. Монтаж осуществляется посредством нейтрали, которая изолируется от заземления. При этом иногда используется, где земля подключается за счет крепления нейтрального кабеля к приборам с очень высоким сопротивлением. Её техническое исполнение обеспечивает практически полное отсутствие различных магнитных полей, вихревых токов и других недостатков прочих систем заземления. Подобный комплект (Galmar и прочие) можно купить и использовать и в бытовых целях, но он довольно дорогой. Его стоимость варьируется от 50 долларов до нескольких сотен (цена зависит от протяженности системы).

Фото — IT

Видео: зануление и заземление

Технические параметры

К каждой системе выдвигаются определенные требования, они описываются в соответствующих ГОСТах, поэтому мы отдельно расскажем только про общие особенности:

  1. Для любого заземления требуется УЗО;
  2. Нельзя подключать землю к коммуникациям или другим выводам общего пользования;
  3. Для установки стационарных систем можно использовать заземляющий контур, отдельный колышек (как в стержневой) – запрещено;
  4. Перед началом электротехнических работ обязательно проконсультируйтесь со специалистом. Более того, возможно понадобится взять разрешение на их проведение.

Системы заземления

Для подключения оборудования в жилых зданиях существует несколько различных схем электроснабжения. Различаются они по способу заземления электрооборудования и источника электроэнергии (в качестве которого часто используется понижающий трансформатор). В настоящее время применяются три основные системы заземления: TN, ТТ и IT. В том случае, если тип используемой системы неизвестен, следует обратиться для его уточнения к технической документации на присоединительный ввод.

Тип системы заземления обозначают двумя буквами.
Первая буква в обозначении определяет характер заземления источника питания:
Т — непосредственное соединение нейтрали (нулевого рабочего проводника) источника питания с землей;
I — нейтраль источника электропитания соединена с землей через сопротивление.
Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:
Т — раздельное (местное) заземление источника электропитания и электрооборудования;
N — источник электропитания заземлен, а заземление потребителей производится только через PEN-проводник.
Следующие за N буквы определяют характер этой связи — функциональный способ устройства нулевого защитного и нулевого рабочего проводников:
S — функции нулевого защитного (РЕ) и нулевого рабочего (N) проводников обеспечиваются раздельными проводниками;
С — функции нулевого защитного и нулевого рабочего проводников обеспечиваются одним общим проводником (PEN).

Применение УЗО в электроустановках различных систем заземления

В системе ТТ все открытые проводящее части электроустановки присоединены к заземлению, электрически независимому от заземлителя нейтрали источника питания. ГОСТ Р 50669-94 предписывает применение системы ТТ как основной в случае подключения указанных электроустановок к вводно-распределительным устройствам соседнего (капитального) здания.
В ГОСТ Р 50571.3-94 п. 413.1.4 указано, что в системе ТТ устройства защиты от сверхтока могут использоваться для защиты от косвенного прикосновения только в электроустановках, имеющих заземляющие устройства с очень малым сопротивлением. При этом гарантированное отключение питания электроустановки должно производиться при появлении на открытых проводящих частях электроустановки напряжения не более 50 В. В реальных условиях осуществить автоматическое отключение питания электроустановки системы ТТ с помощью автоматических выключателей по ряду причин (необходимости обеспечения большой кратности тока короткого замыкания, низкого сопротивления заземляющего устройства и др.) весьма проблематично. Эффективное решение проблемы автоматического отключения питания дает применение чувствительных ВД. В п. 1.7.59 ПУЭ (7-е изд.) содержится требование обязательного применения ВД для обеспечения условий электробезопасности в системе ТТ. При этом уставка (номинальный отключающий дифференциальный ток) должна быть меньше значения тока замыкания на заземленные открытые проводящие части при напряжении на них 50 В относительно зоны нулевого потенциала.

В электроустановках индивидуальных жилых домов, коттеджей, дачных (садовых) домов и других частных сооружений, где не всегда имеется возможность выполнить заземлитель с требуемыми нормами, необходимо применять систему ТТ с обязательной установкой ВД. В этом случае требования к значению сопротивления заземлителя значительно снижаются.

Допустимые значения сопротивления заземления

Чувствительность
ВД, мА

Сопротивление, Ом

предельное безопасное напряжение 25 В

предельное безопасное напряжение 50 В

10
30
100
300
500
650
1000
3000

<2500
<830
<250
<83
<50
<38,5
<25
<8

<5000
<1660
<500
<166
<100
<77
<50
<16

В зависимости от схемы подключения нулевого рабочего проводника изменяются и условия применения ВД. Чувствительность ВД определяется сопротивлением заземления при выбранном предельном безопасном напряжении. Порог чувствительности ВД рассчитывается по формуле:


где — предельное безопасное напряжение,
— сопротивление заземления.

В электроустановках системы TN все открытые проводящие части электроустановок должны быть присоединены к заземленной нейтральной точке источника питания посредством защитных проводников. Основное условие электробезопасности системы TN состоит в том, чтобы значение тока при коротком замыкании между фазным проводником и открытой проводящей частью превышало величину тока срабатывания защитного устройства за нормированное время. В случае использования в качестве защитного устройства ВД значение тока короткого замыкания следует заменить на значение номинального отключающего дифференциального тока устройства 1Дп. При этом задача обеспечения низкого значения сопротивления «фаза-ноль», которую надо решать при использовании защиты от сверхтока, заменяется на проверку работоспособности ВД и защитного проводника.
Контроль сопротивления цепи «фаза-ноль» следует производить только на входных зажимах ВД. Самой используемой разновидностью системы TN является система TN-C. В качестве защитного проводника при этом используется проводник PEN, который одновременно выполняет функции рабочего и нулевого защитного проводника. В ПУЭ 7-го издания имеется указание: «Не допускается применять ВД, реагирующее на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C). В случае необходимости применения ВД для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный РЕ проводник электроприемника должен быть подключен к PEN проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата». Это означает, что, как исключение, для защиты отдельных электроприемников ПУЭ допускают применение ВД в системе TN-C, при соблюдении определенных условий — подсоединения открытых проводящих частей электроприемников к PEN-проводнику со стороны источника питания по отношению к ВД.

Более современной и в большинстве случаев более безопасной является система TN-S, где используется самостоятельный нулевой защитный проводник РЕ и нулевой рабочий проводник N, которые прокладываются раздельно, начиная от вывода источника питания. Эта система уже долгое время используются в телекоммуникационных сетях (при этом исключаются помехи в слаботочных сетях, образующиеся при протекании части рабочего тока в земле в сети системы TN-C). Применение ВД обязательно, кроме оговоренных особых случаев (например, цепи питания пожарной сигнализации).

При разделении, например в групповом щитке, в электроустановке системы TN проводника PEN на отдельные проводники РЕ и N образуется система TN-C-S. При этом, как в сети системы TN-S, проводники РЕ и N должны прокладываться раздельно, а их соединение после точки раздела недопустимо. Данная система в настоящее время — основная, которую можно выполнить в отдельной части электроустановки при проведении реконструкции. Сечения проводников необходимо выбирать исходя из расчетных значений токов, протекающих через них. Минимальная площадь сечения PEN-проводника должна равняться 4 мм2. В распределительном щите на шине PEN должны быть предусмотрены отдельные зажимы для каждого из проводников: для N и для РЕ. При использовании в качестве PEN-проводника одиночного или многожильного провода цвет его изоляции должен быть желто-зеленым.

В электроустановках системы IT источник питания должен быть изолирован от земли или связан с ней посредством подключения к нейтрали достаточно большого сопротивления. В сети имеется определенное активное сопротивление и емкость по отношению к земле, которые представляют собой путь для тока утечки или тока замыкания на землю. В системе IT значение тока замыкания на землю определяется состоянием изоляции сети относительно земли. При хорошем состоянии изоляции (высоком сопротивлении относительно земли) ток замыкания на землю очень мал. В случае прямого прикосновения человека к токоведущим частям электроустановки ток через тело человека также определяется сопротивлением изоляции и при сопротивлении изоляции выше определенного значения не представляет опасности для жизни. Таким образом, уровень сопротивления изоляции является в системе IT фактором, определяющим как надежность, так и электробезопасность ее эксплуатации, поэтому очень важно поддерживать сопротивление изоляции на высоком уровне, а ведение автоматического постоянного контроля изоляции должно быть обязательным электрозащитным мероприятием.
Применение ВД в системе IT регламентируется ПУЭ 7 издания следующим образом (п. 1.7.58):»… В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены ВД с номинальным отключающим дифференциальным током не более 30 мА». В электроустановках системы IT устройства контроля изоляции подают сигнал при первом замыкании на землю. Если до устранения первого замыкания происходит второе замыкание на землю, то происходит срабатывание ВД.
Основное требование при использовании ВД — устанавливать его необходимо как можно ближе к электроприемнику. Одновременное функционирование устройств контроля изоляции и ВД не оказывает влияния на работу каждого из этих устройств.

Системы заземления TN,TT,TN-C,TN-S,TN-C-S, IT | elesant.ru

 

Основные понятия в теме типы заземления

Чтобы разобраться с системами заземления определюсь с основными понятиями, которые будут использоваться в этой статье. Вы, конечно, можете прочитать пункты 1.7.3-1.7.7 главы 7, ПУЭ, если любите первоисточники. Здесь я не буду переписывать ПУЭ, просто расскажу, что нужно понимать под отдельными словами в этой статье.

Прежде всего, что такое заземление эклектической сети, по сути

Заземление электрической сети это соединение всех открытых для прикосновения токопроводящих частей электроприборов (например, корпусов) и доступной арматуры (например, металлические водопроводные трубы) с землей (в буквальном смысле).

Зачем нужно заземление?

Земля, вернее проводящая часть земли, имеет нулевой электрический потенциал в любой своей точке. Части электроприборов, по которым в нормальном режиме не протекает электрический ток, совершенно безопасны для человека. Другая ситуация в аварийной ситуации при которой по корпусу бытового прибора начинает течь ток. В такой аварийной ситуации прикосновение к корпусу будет представлять серьезную опасность для человека. Именно для защиты человека от поражения электрическим током, а также для защиты от последствий электроаварий (например, пожара) и предназначено ЗАЗЕМЛЕНИЕ.

Почему заземление защищает человека?

Как я сказал, проводящая часть Земли имеет нулевой электрический потенциал. Если на стороне проводника соединенного с землей возникает электрический потенциал (возникает аварийная ситуация), то он будет стремиться сравняться с нулевым потенциалом земли и ток потечет по направлению земли. Специальный электроприбор, отвечающий за аварийное отключение электропитания, также соединен с землей. Между аварийным проводником и устройством защиты возникает электрическая цепь, которая и отключает аварийный участок от электропитания.

Но эта схема защиты сработает, если все элементы электросети соединены с землей. Причем говоря обо всех элементах сети, имеется в виду элементы сети от генераторов подающих электропитания до простой розетки в квартире.

При этом. Схема, по которой сделано заземление основного генератора (источника) электропитания электросети должна совпадать со всеми схемами заземления этой сети. Вернее наоборот. Схемы заземления сети должны соответствовать схеме заземления источника электропитания.

Разделяют три основные системы заземления электросети TN;TT; IT

Система заземления TN (открытые части соединены с нейтралью)

При системе заземления TN одна точка источника питания электрической сети соединяется с землей при помощи заземляющего электрода и заземляющих проводников. Заземляющий электрод имеет непосредственный контакт с землей. При системе заземления TN открытые проводящие части соединяются с нейтралью, а нейтраль соединяется с землей.

Система TN-C

Если нейтраль объединена с защитными проводами (землей) на всем протяжении электросети, такая система называется и обозначается TN-C.

Система TN-S

Если нейтраль и защитный проводники разделены на всем протяжении электросети, а объединяются только у источника питания, такая система называется TN-S.

Система заземления TN-C-S

Система заземления, при которой разрешено применение и системы заземления TN-C (4-х/2-х проводной) и системы заземления TN-S (5-ти/3-х проводной).

Важно! При системе заземления TN-C-S, запрещено использовать систему TN-C ниже системы TN-S,так как любой обрыв нейтрали в системе TN-C приведет к обрыву защитного провода после системы TN-S.(смотри рисунок)

Система заземления TT-заземленная нейтраль

При системе заземления ТТ средняя точка источника питания соединяется с землей. Все проводящие части электросети соединяются с землей через заземляющий электрод отличный от электрода источника питания. При этом зоны растекания обоих электродов могут пересекаться.

 

Система заземления IT –изолированная нейтраль

При системе заземления IT полностью изолирована для всей электросети или сопротивление соединения с землей стремится к бесконечности.

На этом все! Относитесь к электрике с почтением!

©Elesant.ru

Другие статьи раздела: Электрические сети

 

виды, защитное заземление, заземляющее устройство

Защитное заземление — это система, созданная для предупреждения воздействия электрического тока на человека, путём преднамеренного соединения с землёй корпуса и нетоковедущих частей оборудования, которые могут оказаться под напряжением. Системы заземления могут быть естественными и искусственными.

Что такое заземление и зачем оно нужно?

Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.

Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления — отведение напряжения с корпуса электроустановки через устройство заземления на землю.

Основная цель применения заземления — снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.

Что такое нейтраль?

Нейтраль — это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования — зануление электроустановок.

Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.

Что такое PE и PEN проводники?

PEN-проводник — это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.

PE-проводник — это защитное заземление, которое мы используем, например,  в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.

Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.

PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

Виды заземления — расшифровка названия:

  • T — заземление;
  • N — подсоединение проводника к нейтрали;
  • I -изолирование;
  • C — объединение опций функционального и нулевого провода защитного типа;
  • S — раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

Недостатки:

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.

Конструкция:

  1. PN — нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE — глухозаземленный проводник, выполняющий защитную функцию.

Преимущества:

  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

Достоинства:

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.

Минусы использования:

  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.

Преимущества TT:

  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.

Недостатки:

  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

Системы с изолированной нейтралью

В ходе передачи и распределения электрического тока на потребителей применяется трехфазная система. Это дает возможность обеспечить симметричность и равномерное распределение нагрузки по току.

Такое устройство создает режим, предусматривающий использование трансформаторной будки и генераторов. Их нейтральные точки не оснащены контуром заземления.

Изолированный тип нейтрали применяется в схеме питания при соединении вторичных обмоток трансформаторных установок по схеме треугольника и при отсутствии питания во время аварийный ситуаций. Такая сеть представляет собой замещающую цепь.

Изолированная нейтраль способствует пробиванию изоляционного покрытия при коротком замыкании и возникновению короткого замыкания на других фазах.

Система IT

Система IT с напряжением до 1000 В обеспечивает заземление через высокий уровень сопротивления и оснащена нейтралью источника питания.

Все внешние элементы электроустановки, которые выполнены из материалов, проводящих ток, заземляются. Среди преимуществ можно выделить невысокие показатели утечки тока во время однофазного КЗ электрической сети. Установка с таким механизмом может функционировать долгое время даже при аварийных ситуациях. Между потенциалами отсутствует разность.

Недостаток: защита от тока не срабатывает при замыкании на землю. Во время работы в режиме однофазного КЗ возрастает вероятность поражения током при прикосновении ко второй фазе установки.

Система защитного заземления: устройство системы. Полоса заземления — ОБО Беттерман

Системы заземления

Система защитного заземления обеспечивает защиту людей от поражения электрическим током, а также позволяет минимизировать последствия попадания в здание (объект) молнии которое может привести к выходу из строя электроприборов, систем связи и пр. В ее типовой состав входят кабели, металлические полосы (полоса заземления), уголки, и другие проводники, которые обеспечивают отвод «нежелательных» токов в землю.

Классификация систем заземления

Классификация систем защитного заземления осуществляется по таким параметрам, как способ, использующийся для организации заземления источника питания, открытых правящих элементов здания (электроустановки), а также по способу обустройства нулевого рабочего проводника и нулевого защитного. Исходя из сочетания этих параметров, Госстандартом РФ и МЭК выделяются следующие типы систем заземления:

  • TN. В этом случае нулевой рабочий проводник источника энергии в системе непосредственно (без включения в цепь сопротивления) соединен с землей (об этом говорит первая буква T), и потребители электроэнергии заземлены через единый с ним PEN-проводник. Также различают несколько подсистем этого типа, среди которых TN-C (в таком варианте функции нулевого рабочего и защитного проводников выполняет общий проводник), TN-S (используются раздельные проводники) и TN-C-S («симбиоз» двух предыдущих подсистем).
  • TT. Здесь также нулевой рабочий проводник источника, обеспечивающего потребителей из состава сети энергией, непосредственно соединяется с землей, но при этом используется раздельное заземление потребителей.
  • IT. Устройство системы заземления такого типа предусматривает соединение нейтрали источника энергии с землей с обязательным использованием сопротивления, и раздельной вариант заземления потребителей из состава сети.

Какой именно вариант использовать, зависит от особенностей объекта. Разобраться с этим Вам помогут технические специалисты компании ОБО Беттерманн.

Устройства заземления ОБО Беттерманн

Компания ОБО Беттерманн производит полный спектр элементов, необходимых для обустройства систем защитного заземления. Обратившись к официальным дистрибьюторам, Вы можете приобрести:

  • Проводники, с помощью которых обеспечивается отвод токов от молниеприемников и других компонентов на заземляющие стержни (элементы с круглым сечением, полосы заземления и пр.).
  • Заземлители различных типов для установки в грунт (пластинчатые, стержневые, трубчатые).
  • Соединительные и другие элементы.

При производстве этих изделий в ОБО Беттерманн уделяется особое внимание достижению высоких показателей защиты от коррозии и иных факторов. Это обеспечивает продолжительный срок службы всех компонентов и поддержание в установленных пределах величины сопротивления (не более 10 Ом). Вся продукция из ассортимента компании имеет необходимые сертификаты, подтверждающие ее качество и надёжность.

Виды заземлений — какие бывают? Системы и назначение конструкции

Заземление – это намеренное соединение определенной части оборудования или электрической цепи с грунтом. Чаще всего, для заземления используется один или несколько штырей из металла необходимой длины и диаметра, забитых в грунт и соединенных вместе.

Конструкцию соединяют с кабелем, подключенному к заземляемому устройству. Штыри и провод, металлическая полоса, связывающая их, место установки заземления, оговорено по правилам монтажа электрических установок.

Электроустановки подразделяются:

  1. С напряжением более 1 кВ с эффективно или глухо заземленной нейтралью.
  2. С напряжением более 1 кВ с заземленной через резистор или изолированной нейтралью.
  3. С напряжением менее 1 кВ с глухо заземленной нейтралью.
  4. С напряжением менее 1 кВ с изолированной нейтралью.

С учетом технических особенностей электросетей и электрической установки, для ее работы может быть необходима какая-либо токоотводящая конструкция. Обычно, до проектирования электрического устройства, определяют перечень требования, в которых указывают необходимую конструкцию.

Сейчас в мире используют единую систематизацию подобных устройств, в которую входят три системы:

  1. Система IT.
  2. Система TT.
  3. Система TN.

Эта аббревиатура расшифровывается так:

  • Символ I — изолированный.
  • Символ N — подключено к нейтрали.
  • Символ T — заземление.

Системы TN

Такие конструкции отличаются наличием глухо заземленной нейтрали и подсоединением к ней всех способных проводить электроэнергию элементов сети.

Подключение к нейтрали производят используя нулевые проводники.

Электрошкафы, щиты и корпуса приборов, подключают к проводнику PEN. Выполняется это для создания короткого замыкания, при пробивании проводки на корпус, в результате чего, защитные автоматы обесточивают сеть, идущую на вышедший из строя участок сети, таким образом, предупреждая поражение током людей, находящихся поблизости.

Система с нулевым и расчлененным рабочим проводником

Система TN-S

Система TN-S для безопасности оборудована двумя, а не одним нулевым проводом, один из них служит как защитный провод, а второй используется в качестве нейтрального проводника, подключенного к глухо заземленной нейтрали. Эта конструкция сегодня является самой безопасной, способной эффективно защитить от удара электричеством.

Принцип работы этой конструкции состоит в том, что используют всего одну фазу для подачи рабочего напряжения и ноль.

Разводку производят проводом из трех жил, одна из которых служит как нуль и подключается к вводному проводу.

Система c проводом PEN и двумя нулями

Система TN и TN-C-S

Здесь характерно использование в определенном месте оборудования, соединенного с нулевым проводом, расщепляющимся на два проводника: PE и N, для последующего заземления оборудования.

Для бесперебойной работы, система TN-C-S после места раздвоения, оборудуется еще одним заземлителем.

Положительные свойства этой системы:

  1. Простой переход на нее во время ремонта старых домов.
  2. Простая конструкция защиты от молнии.
  3. Возможность создания защиты проводки простыми автоматами от замыкания.

Минусы этой системы:

  1. Риск перегорания нулевого провода вне здания, что грозит пробоем корпусов из металла электротоком.
  2. Нужда в использовании оборудования для уравнивания потенциалов.
  3. Сложность в создании действенной защиты внегородской черты.

Для частных, хозяйственных строений, ПУЭ советуют использовать совершенно другую систему — TT.

Независимые заземлители

Система TT

В конструкции системы TT есть два заземлителя:

  1. Для источника электротока.
  2. Для незащищенных металлических элементов системы.

Положительным свойством этой конструкции является повышенная работоспособность нулевого провода на промежутке от оборудования до места подачи напряжения и независимость PE провода.

Сложность может появиться только с использованием собственного заземлителя, так как непросто подобрать для него подходящий диаметр. Но такой минус компенсируется с помощью системы защитного отключения.

Система с изолированным нейтральным проводом

Система IT

В большинстве случаев, в такой конструкции, нейтраль изолируют от земли, или создают необходимое зануление IT, используя устройство со значительным сопротивлением.

В домашних условиях, устройства такого типа не нашли применения, они практически не используются, но позволяют их применять для питания специальных устройств, для которых необходима безопасность и максимальная стабильность при работе, к примеру, в лабораториях и лечебных учреждениях.

Технологии заземляющих устройств

Есть несколько способов изготовления контура заземления.

Чаще всего, используют две из них:

  1. Модульно-штыревое заземление.
  2. Традиционное заземление.

Конструкция модульного заземления

Для ее устройства используют стержни, из покрытого медью качественного металла. Их вертикально забивают в грунт на глубину около 1 м, диаметр стержней 14 мм. По краям стержня нарезают по 30 мм резьбы и так же покрывают ее медью.

Металлические части конструкции соединяют вместе латунными муфтами. По горизонтали их соединяют стальными полосами с латунными зажимами или используют для этого комплект медного провода. Также, устраивают соединение контура заземления и щитка-распределителя. Для защиты элементов заземления от коррозии, в комплект входит защитная паста.

Традиционное заземление

Изготавливают такую систему из черного металла: полос, труб, уголка. На 3 м в грунт, с промежутком 5 м вбивают треугольником три металлических электрода. Далее, электроды соединяют в общий контур, используя металлическую полосу и электросварку.

Такое заземление имеет несколько отрицательных свойств (к примеру, трудоемкость создания контура и коррозия, разрушающая металл изделия), по этой причине, в наше время вместо нее стараются использовать более совершенный способ заземления.

Естественные заземляющие элементы

Чаще всего, их используют для заземления электрического оборудования. В качестве естественных заземлителей применяют металлические элементы различных ЖБ конструкций, к примеру, фундаменты подстанций и линий электропередач и фундаменты строений.

Дополнительно, для естественного заземления подключают части подземных коммуникаций, изготовленных из металла, к примеру, подходит броня кабелей и всевозможные трубопроводы, иногда допустимо подключать и наземные коммуникации, к примеру, подойдут для этой цели рельсовые пути.

Какие ЖБ изделия нельзя применять для заземления?

Не стоит подключать заземляющий провод к фундаментам, собранным из отдельных ЖБ элементов. Желательно связать прутья арматуры блоков, и только тогда допустимо подключать заземлитель. Иначе, лучше использовать искусственный заземлитель.

Для этого используют металлический проводник, вбитый вертикально или горизонтально в грунт. Иногда используют несколько таких проводников, связав их вместе. Важно, чтобы отдельные электроды контура, были вбиты на необходимую глубину.

Горизонтальный заземлитель желательно уложить на глубину 50 см, если грунт на участке легкий, то укладку электрода желательно производить на глубине 1 м. Важно то, что у горизонтальных проводников, сопротивление больше чем у вертикальных.

По этой причине, лучше использовать вертикальный заземлитель.

Толщина искусственных заземлителей:

  1. Металлический прут — сечение 10 мм;
  2. Оцинкованный металлический прут — сечение 6 мм;
  3. Металлический уголок — толщина 4 мм, полка 75 мм;
  4. Металлическая полоса — 4 мм;
  5. Брак или БУ трубы — 3,5 мм толщина стенки;
  6. Общее сечение проводников забиваемых в землю — 160 мм.

Заземление нейтрального проводника

В нашей стране, сети 6-35 кВ эксплуатируются с не глухо заземленной нейтралью. Использование таких сетей хорошо тем, что у них низкое значение токов замыкания на грунт, но при ОЗЗ, изготовленных из металла, в таких сетях повышается напряжение на целых фазах относительно земли до уровня линейного, что плохо в этом случае.

Коэффициент замыкания на грунт — отношение разницы потенциалов между землей и фазой при замыкании остальных фаз на землю к разнице между землей и фазой в сети.

Статья была полезна?

0,00 (оценок: 0)

Типы систем заземления в соответствии со стандартом IEEE

Заземление (заземление) — это система электрических цепей, подключенных к земле, которая функционирует, когда ток утечки может разрядить электричество в землю.

Согласно Стандарту 142 ™ 2007 Института инженеров по электротехнике и радиоэлектронике (IEEE), цель системы заземления:

  1. Ограничить величину напряжения на землю в допустимых пределах
  2. Обеспечьте путь для прохождения тока, который может обеспечить обнаружение возникновения нежелательной взаимосвязи между системным проводом и землей.Это обнаружение приведет к срабатыванию автоматического оборудования, которое определяет подачу напряжения от проводника.

В соответствии со стандартами IEEE система заземления делится на:

  1. TN-S (Terre Neutral — отдельный)
  2. TN-C-S (Terre Neutral — комбинированный — отдельный)
  3. TT (Дабл Терре)
  4. TN-C (Neutral Terre — комбинированный)
  5. IT (Изолированная земля)

Терре происходит от французского языка и означает земля.

Первая буква обозначает соединение между землей и источником питания, а вторая буква показывает соединение между землей и электронным оборудованием, на которое подается электричество. Значение каждой буквы следующее:

  • T (Terra) = прямое соединение с землей.
  • I (Изоляция) = Нет соединения с землей (даже при высоком импедансе)
  • N (нейтраль) = подключение напрямую к нейтральному кабелю питания (если этот кабель также заземлен в источнике питания)
  1. TN-S (Terre Neutral — отдельный)

В системе TN-S нейтральная часть источника электроэнергии соединена с землей в одной точке, так что нейтральная часть установки потребителя напрямую подключена к нейтральному источнику электроэнергии.Этот тип подходит для установок, близких к источникам электроэнергии, например, для крупных потребителей, у которых есть один или несколько трансформаторов высокого / низкого напряжения для собственных нужд и если установка / оборудование находится рядом с источником энергии (трансформаторы).

  1. TN-C-S (Terre Neutral — комбинированный — раздельный)

Система TN-C-S имеет нейтральный канал от основного распределительного оборудования (источника питания), подключенный к земле и заземляющий на определенном расстоянии вдоль нейтральных каналов, ведущих к потребителям, обычно называемый защитным множественным заземлением (PME).В этой системе нейтральный проводник может функционировать для восстановления тока замыкания на землю, который может возникнуть на стороне потребителя (установки), обратно к источнику питания. В этой системе установка оборудования у потребителя только соединяет землю с клеммой (каналом), обеспечиваемой источником питания.

  1. TT (Дабл Терре)

В системе ТТ нейтральная часть источника электроэнергии не связана напрямую с заземлением нейтрали на стороне потребителя (установка оборудования).В системах ТТ потребители должны обеспечивать собственное подключение к земле, а именно путем установки заземляющего электрода, подходящего для данной установки.

  1. TN-C (Neutral Terre — комбинированный)

В системе TN-C нейтральный канал главного распределительного оборудования (источника питания) подключается непосредственно к нейтральному каналу потребителя и корпусу установленного оборудования.

В этой системе нейтральный провод используется в качестве защитного проводника, а комбинация нейтральной и заземляющей боковых рам оборудования известна как проводник PEN (защитное заземление и нейтраль).

Эта система не предназначена для проводов менее 10 мм. 2 или переносного оборудования. Это связано с тем, что при возникновении короткого замыкания по PEN-проводнику одновременно проходит ток дисбаланса фаз, гармонический ток третьего уровня и его кратные.

Чтобы уменьшить воздействие на оборудование и живые существа вокруг оборудования, при применении системы TN-C провод PEN должен быть подключен к нескольким электродным стержням для заземления на установке.

  1. IT (Изолированная земля)

Из первой буквы (I) видно, что в этой системе IT нейтраль изолирована (не соединена) с землей. Точка PE не подключена к нейтральному каналу, а напрямую подключена к заземлению.

В своем применении нейтральная точка системы IT на самом деле не изолирована от земли, но все же связана с импедансом Zs, который имеет очень высокое значение от 1000 до 3000 Ом.Это служит для ограничения уровня перегрузки по напряжению при наличии помех в системе.

TT IT TN-S TN-C TN-C-S
Полное сопротивление контура замыкания на землю Высокая Самый высокий Низкий Низкий Низкий
Предпочтительно УЗО Есть НЕТ Дополнительно Дополнительно
Требуется заземляющий электрод на объекте Есть Есть Дополнительно
PE проводник стоимость Низкий Низкий Самый высокий Минимум Высокая
Риск выхода из нейтрального положения Высокая Самый высокий Высокая
Безопасность Сейф Менее безопасный Самый безопасный Наименее безопасный Сейф
Электромагнитные помехи Минимум Минимум Низкий Высокая Низкий
Риски безопасности Высокое сопротивление контура (ступенчатое напряжение) Двойная неисправность, перенапряжение Нейтраль оборвана Нейтраль оборвана Нейтраль оборвана
Преимущества Безопасность и надежность Непрерывность работы, стоимость Самый безопасный Стоимость Безопасность и стоимость

Не стесняйтесь обращаться к нам по адресу marketing @ phoenixcontact.com.sg, чтобы узнать больше!

Основы систем заземления

Следует ли устанавливать систему заземления: незаземленную, сплошную или с высоким сопротивлением? Этот вопрос задают многие дизайнеры и установщики. Ответ на этот вопрос зависит от многих факторов. Чтобы принять правильное решение, вы должны полностью понимать плюсы и минусы каждого типа системы. Но сначала вы должны также понимать различные типы неисправностей, которые могут возникать в вашей системе, и с какой частотой они могут появляться.

Неисправности и отказы. Неисправности могут привести к повреждению оборудования и сооружений, увеличить расходы из-за потери производственного времени и привести к травмам сотрудников и даже к смертельному исходу. К четырем типам неисправностей относятся:

  • КЗ на землю, которые составляют около 98% всех отказов.

  • Междуфазные замыкания, на которые приходится около 1,5% всех сбоев.

  • Трехфазные повреждения, составляющие менее 0.5% всех неисправностей и часто вызваны человеческим фактором. Невозможность удаления прерывателя заземления, оставление кластеров заземления в системах и подъем кузова грузовика в систему с разомкнутыми проводами могут вызвать этот тип неисправности.

  • Дуговые замыкания — это периодические отказы между фазами или фазой на землю. Это прерывистые токи, которые попеременно ударяют, гаснут и снова ударяют.

Теперь, когда мы рассмотрели различные типы неисправностей, которые могут появляться в электрической системе, пришло время сделать обзор трех основных типов систем заземления, с которыми вы можете столкнуться в полевых условиях.

Системы заземления.

1. Незаземленный. Электроэнергетические системы, которые работают без намеренного заземления, называются незаземленными. Хотя эти системы были стандартными в 40-х и 50-х годах, они используются до сих пор. Основное преимущество этого типа системы заземления заключается в том, что она обеспечивает низкое значение протекающего тока и надежность во время повреждения. К сожалению, этот тип системы также имеет ряд серьезных недостатков. Одним из основных недостатков незаземленной системы является сложность обнаружения замыкания на землю.Поиск неисправности — это трудоемкий процесс. По этой причине это часто делается по выходным, чтобы компании не приходилось прекращать нормальные производственные процессы. Кроме того, неисправность должна быть обнаружена и быстро устранена, потому что, если возникает вторая неисправность, неисправность действует как межфазное замыкание, расширяя процесс ремонта.

Преимущества

  • Предлагает низкое значение тока, протекающего при межфазном замыкании на землю (5 А или меньше).

  • Не представляет опасности вспышки для персонала в случае случайного замыкания линии на землю.

  • Обеспечивает непрерывную работу процессов при первом возникновении замыкания на землю.

  • Низкая вероятность перерастания дугового замыкания линия-земля в междуфазное или трехфазное замыкание.

Недостатки

  • Трудно обнаружить замыкание на землю.
  • Не контролирует переходные перенапряжения.

  • Стоимость обслуживания системы выше из-за трудозатрат на обнаружение замыканий на землю.

  • Второе замыкание на землю в другой фазе приведет к межфазному короткому замыканию.

2. С глухим заземлением. Этот тип системы заземления чаще всего используется в промышленных и коммерческих энергосистемах, где заземляющие проводники подключаются к заземлению без намеренного добавления импеданса в цепи. Главный вторичный автоматический выключатель — жизненно важный компонент, необходимый в этой системе, хотя он не имеет отношения к другим системам заземления.Этот компонент имеет большие размеры, потому что он должен выдерживать полный ток нагрузки трансформатора. В системе заземления этого типа часто используются резервные генераторы на случай, если из-за неисправности производственный процесс остановится. Когда это происходит, генераторы надежно заземляются. Однако важно отметить, что генераторы не рассчитаны на больший ток короткого замыкания, связанный с глухозаземленными системами.

Система с глухим заземлением имеет высокие значения тока в диапазоне от 10 кА до 20 кА.Этот ток протекает через заземляющие провода, строительную сталь, кабелепровод и водопроводные трубы, что может привести к серьезным повреждениям оборудования и остановке производственных процессов. Когда происходит замыкание на землю, искрение может вызвать вспышки — обычно в оконечной коробке. В этом замкнутом пространстве вода превращается в пар, вызывая оконечную коробку. Чтобы найти неисправность, все, что вам нужно сделать, это проследить за дымом.

Преимущества

  • Хороший контроль переходных перенапряжений от нейтрали к земле.

  • Позволяет пользователю легко находить неисправности.

  • Может питать нагрузку с нейтралью.

Недостатки

  • Создает серьезную опасность вспышки дуги.

  • Требуется покупка и установка дорогостоящего главного выключателя.

  • Незапланированная остановка производственного процесса.

  • Возможность серьезного повреждения оборудования во время неисправности.

  • Высокие значения тока короткого замыкания.

  • Вероятное перерастание однофазного короткого замыкания в трехфазное.

  • Создает проблемы в основной системе.

3. Высокоомное заземление. Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где непрерывная работа процессов имеет первостепенное значение в случае неисправности. Заземление с высоким сопротивлением обычно достигается путем подключения стороны высокого напряжения однофазного распределительного трансформатора между нейтралью системы и землей и подключения резистора через вторичную обмотку низкого напряжения для обеспечения желаемого более низкого значения тока заземления на стороне высокого напряжения.В системе HRG обслуживание поддерживается даже при замыкании на землю. Если неисправность все-таки происходит, сигнальные индикаторы и световые индикаторы помогают пользователю быстро найти и устранить проблему или позволяют упорядоченно остановить процесс. Система HRG ограничивает ток замыкания на землю в пределах от 1 до 10 А.

Преимущества

  • Ограничивает ток замыкания на землю до низкого уровня.

  • Снижает опасность поражения электрическим током.

  • Контролирует переходные перенапряжения.

  • Снижает механические нагрузки в цепях и оборудовании.

  • Поддерживает непрерывность обслуживания.

  • Уменьшает падение напряжения в сети, вызванное возникновением и устранением замыкания на землю.

Недостатки

Заземление электрической системы — это решение, с которым многие из нас сталкиваются ежедневно. Как мы видели, существует несколько методов для выполнения этой задачи, каждый из которых имеет свои преимущества и недостатки.Как проектировщик или специалист по установке, вы должны принять окончательное решение о том, когда лучше всего установить наиболее подходящую систему.

Джек Вудхэм, ИП, старший инженер-электрик компании Jedson Engineering, Inc.

Примечание редактора: Информация, представленная в этой статье, основана на презентации, сделанной на симпозиуме по заземлению в октябре 2002 г. и организованной Post Glover Resistors.

Три различных типа заземления

Сегодня я собираюсь дать вам краткий обзор трех различных типов систем заземления, которые важны.

Базовое представление системы заземления

Этими тремя системами являются:

  1. Незаземленные системы
  2. Системы с заземлением через сопротивление
  3. Системы с глухим заземлением

Я уже немного говорил о том, что такое заземление, в том числе дал краткий обзор того, почему мы это делаем и для чего оно используется. Если вы еще не читали эту статью, прочтите ее, прежде чем продолжить.
Прочитали, что такое заземление? Хорошо, давайте перейдем к теме сегодняшнего дня, касающейся мяса и картофеля.

«Эй, подожди», — можете подумать вы: «Мы только что закончили читать о том, как важно заземление для безопасности! Зачем нам незаземленные системы? » Ответ заключается в том, что у нас не должно быть на самом деле иметь незаземленные системы, но они существуют, и у них есть свои цели.
Видите ли, незаземленная система не на самом деле незаземленная. Электрически ваша система соединена с землей через емкость между линиями и землей, поэтому вы можете сказать, что это система с заземленной емкостью .Мы называем это просто незаземленным из-за условностей и потому, что нет прямого физического соединения между какой-либо из ваших линий электропередач и землей.

Преимущества

У незаземленной системы есть несколько преимуществ. Во-первых, поскольку ваша система никогда физически не связана с землей, у вас будет незначительный ток замыкания на землю. Например, в 3-фазной системе, поскольку весь ток замыкания на землю является емкостным, когда у вас есть одно замыкание на землю в незаземленной системе, ток и напряжение, которые вы потеряете, незначительны и вместо этого переносятся. двумя другими строками.Это позволяет вам беспрепятственно продолжать работу во время одиночного замыкания на землю.
Другим большим преимуществом является то, что из-за незначительного тока замыкания на землю можно использовать специальные незаземленные системы, чтобы минимизировать риск поражения людей электрическим током. Отличным примером может служить медицинское оборудование в больнице: пациент напрямую подключен к аппарату, и в случае неисправности электричество могло бы пройти через пациента в землю. Поскольку в незаземленной системе током замыкания на землю пренебрежимо мало, ток питания не будет проходить от устройства через пациента в землю.

Недостатки

Конечно, недостатки незаземленной системы очевидны. Если есть неисправность, вы теперь используете два провода для передачи тока, который был отведен для трех проводов: увеличение тока и напряжения приведет к увеличению тепла, а дополнительное тепло приведет к гораздо более быстрому износу вашей изоляции. Изношенная изоляция может привести к ненужному повреждению вашей электрической системы, особенно двигателей.
Другим большим недостатком незаземленной системы является то, что обнаружение неисправностей невероятно сложно и требует много времени.Каждую линию необходимо тестировать индивидуально, что является очень медленным процессом, полностью прерывающим обслуживание. Альтернативные издержки отказа в незаземленной системе очень высоки.
Незаземленные системы были нормой в 40-х и 50-х годах, но поскольку их недостатки перевешивают преимущества в большинстве сценариев, сегодня вы не увидите слишком много новых незаземленных систем.

Заземление через сопротивление — это соединение между нейтралью и землей через резистор. Этот резистор используется для ограничения тока короткого замыкания через нейтральную линию: если ваше напряжение не меняется, то ваш ток зависит от размера резистора в соответствии с законом Ома (V = IR).

Преимущества перед незаземленными системами

Поскольку ток в нейтрали контролируется, а не незначителен, системные перенапряжения также контролируются. Этот пониженный ток и пониженное перенапряжение означают пониженное тепловыделение, что сводит к минимуму износ вашей электрической системы. Это особенно важно для обеспечения безопасности ваших двигателей, поскольку пониженный ток не повредит магнитное железо двигателя (ремонт дорогостоящий). Сниженные токи также снижают риск поражения электрическим током и опасности дугового разряда / взрыва.
Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением

Заземление с высоким сопротивлением обычно используется для ограничения тока замыкания на землю до <10 ампер. Низкий ток замыкания на землю также означает, что, как и в случае с незаземленной системой, вы можете продолжать работу системы при одном замыкании на землю. Низкий ток обычно не вызывает срабатывания защитных устройств во время одиночного замыкания на землю.
В целом, вы хотите использовать заземление с высоким сопротивлением, когда вам нужен низкий ток короткого замыкания и вы все еще хотите работать с одним замыканием. Заземление с высоким сопротивлением обычно наблюдается при модернизации ранее незаземленных систем в дополнение к новым системам.

Заземление с низким сопротивлением

Заземление с низким сопротивлением обычно ограничивает ток замыкания на землю в пределах от 100 до 1000 ампер. Это дает то же преимущество, что и заземление с высоким сопротивлением, в том, что вы можете контролировать ток замыкания на землю, что означает, что вы можете спроектировать свою систему так, чтобы выдерживать токи без повреждений.Система заземления
с низким сопротивлением позволяет отключать ваши защитные устройства при возникновении неисправности. Их цель состоит в том, чтобы немедленно отключить питание цепи, и поэтому, в отличие от систем заземления с высоким сопротивлением, система заземления с низким сопротивлением не будет поддерживать работу во время одиночного замыкания линии на землю.
Заземление с низким сопротивлением также снижает перенапряжение и используется в системах среднего напряжения 15 кВ или меньше, обычно там, где используются большие генераторы / двигатели.

Надежное заземление — это то, что вы получаете, когда подключаете систему напрямую к земле без какого-либо сопротивления.Заземление обычно подключается к системе в нейтральной точке, например, нейтральной клемме генератора или трансформатора.

Плюсы и минусы

Прочное заземление, как и резистивное заземление, может значительно снизить перенапряжения в вашей электрической системе. Однако системы с глухим заземлением могут иметь большой ток замыкания на землю. В результате системы с глухим заземлением не могут работать при замыкании на землю (поскольку весь ток в системе идет от замыкания на землю).
Прочное заземление имеет два основных назначения:

  • В системах с напряжением 600 В или ниже можно использовать твердое заземление, если нет необходимости поддерживать работу неисправной цепи.
  • В системах с напряжением 15 кВ или выше твердое заземление может использоваться, если по какой-либо причине желательны высокие токи замыкания на землю, например, быстрое обнаружение замыкания на землю (поскольку большой ток наверняка сработает защитные устройства).
  • Вы можете использовать незаземленные системы, если хотите, чтобы ток замыкания на землю был незначительным.
  • Резистивное заземление предлагает преимущества незаземленных систем без риска больших перенапряжений.
  • Прочное заземление снижает перенапряжения, но имеет высокие токи замыкания на землю.

В конце концов, тип заземления, который вы используете для своей системы, будет зависеть от того, какой тип заземления лучше всего соответствует вашим потребностям и бюджету.

Связанные

Все о системах электрического заземления!

Земля является общей точкой возврата электрического потока.Система заземления — это резервный путь, который имеет альтернативный путь для электрического тока, протекающего на землю из-за любого риска в электрической системе до того, как произойдет возгорание или поражение электрическим током.

Проще говоря, «заземление» означает, что был проложен путь с низким сопротивлением для прохождения электричества в землю. «Заземленное» соединение включает соединение между электрооборудованием и землей через провод. После правильного подключения это обеспечивает вашим устройствам и приборам безопасное место для разряда избыточного электрического тока.Это потенциально предотвратит ряд рисков для электрического оборудования. Провод заземления в розетке — это, по сути, предохранительный клапан.

Некоторые люди, особенно в крупных жилых или коммерческих проектах, думают, что установка системы заземления и любых дополнительных конструкций из электрических материалов будет сложной и трудоемкой, если будет выполнено своевременное техническое обслуживание. Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки в приборе.

Незаземленная электрическая система сопряжена с несколькими типичными рисками как для персонала, так и для оборудования.

Для защиты электрической системы используются три различных типа системы заземления.

Пластины заземления изготовлены из меди или оцинкованного железа (GI) и помещаются вертикально в землю в яме (заполненной слоями угля и соли) глубиной более 10 футов. Для более мощной системы электрического заземления необходимо поддерживать влажность земли вокруг системы заземляющих пластин.

Труба из оцинкованной стали (смесь соли и древесного угля) укладывается вертикально в почву путем просверливания для подключения заземляющих проводов. Длина и диаметр трубы в основном зависит от типа почвы и электроустановки (силы тока). Влажность почвы будет определять длину трубы для укладки в землю.

Люди часто задаются вопросом, почему важно электрическое заземление даже после установки качественного оборудования и выполнения периодического технического обслуживания.Вот несколько преимуществ заземления вашей системы как для жилых, так и для коммерческих объектов.

Система электрического заземления обеспечивает безопасность персонала и оборудования при работе на линии. Помните, что обесточенная линия просто активируется в мгновение ока, поэтому электрическая система должна быть надежно заземлена в любое время.

Сообщите нам, если у вас есть какие-либо вопросы по этой теме, и оставьте нам свой отзыв в комментариях.

Наем профессионального инженера-электрика для проведения анализа вспышки дуги и исследования короткого замыкания — отличный способ обеспечить безопасность вашего предприятия и рабочих от нежелательных инцидентов.

AllumiaX, LLC — один из ведущих поставщиков исследований энергосистем на северо-западе. Наши непревзойденные услуги и опыт сосредоточены на обеспечении адекватного анализа дугового разряда, переходной стабильности, потока нагрузки, демпфирующей цепи, короткого замыкания, координации, сети заземления и качества электроэнергии.

Чтобы узнать больше об AllumiaX в деталях, подпишитесь на нас в Facebook, LinkedIn и Twitter и будьте в курсе всех последних новостей в области электротехники.
Позвоните нам: (206) 552–8235

10 самых известных систем заземления для промышленных секторов — P3 News

Заземление

Заземление, также называемое землей или нулевым потенциалом, представляет собой процедуру, которая включает в себя заземление проводника на землю (нулевой потенциал) от сети, чтобы позволить избытку электричества течь в него во время внезапных скачков напряжения.

Виды источников питания

В зависимости от переходных процессов напряжения, рабочих нагрузок и типа нагрузки, каждая электрическая система может требовать различных методов заземления.

Крупномасштабные электрические системы, работающие в промышленности, подпадают под указанные выше четыре категории.

А теперь давайте взглянем на самые известные системы заземления для промышленного сектора:

1. Заземленный

Эта процедура включает нормальное заземление от сети к земле с использованием эффективного проводника, в этом случае для этой цели будет использоваться обычный медный провод.

Этот тип системы заземления отлично работает с электрооборудованием, работающим при нормальных нагрузках и в обычных условиях эксплуатации, т.е.расположенным на равнинах, то есть не на холмах, где электрооборудование восприимчиво к ударам молнии.

2. с эффективным заземлением

Для этого типа системы заземления требуются заземляющие соединения с удовлетворительным низким уровнем импеданса. Подходит для нагрузок, работающих примерно от 120 В до 240 В.

Необходимо следить за тем, чтобы допустимая токовая нагрузка заземляющего провода была достаточной для выдерживания такого типа нагрузки, чтобы предотвратить любые электрические опасности.

3. Заземленный провод

Эта процедура включает заземление шины заземления с помощью проводника заземляющего электрода, как показано на рисунке.

Этот тип заземления подходит как для электрических систем, так и для электрических цепей, работающих при средних нагрузках.

4. Прочно заземленный

Здесь процедура заземления такая же, как и выше, за исключением того, что сопротивление заземления отсутствует.

Также нет устройства импеданса.Это потому что; Заземляющее соединение в системе заземления этого типа является прочным и глубоко уложено в землю в месте, где удельное сопротивление земли для проведения электричества минимально.

5. Заземляющий провод

В этом случае и электрооборудование, и цепь заземления заземляются с помощью проводов.

Этот тип заземления необходим, когда существует высокий риск изменения разности потенциалов в рабочей электрической цепи.

6. Провод заземления оборудования

Этот тип заземления включает использование заземляющих электродов, которые подключаются к нетоковедущим клеммам (металлам) электрической системы, дорожкам качения и другим металлическим частям оборудования для эффективного прохождения переходных процессов напряжения через электроды для эффективной защиты.

Этот метод часто применяется для заземления дорогостоящего электрооборудования и отдельно выделенных электрических систем.

7. Эффективный путь тока замыкания на землю

Чтобы реализовать этот вид системы заземления, необходимо построить электрически постоянный токопроводящий путь с низким уровнем импеданса, способный пропускать ток в случае замыкания на землю.

Этот путь передает ток от точки замыкания на землю к источнику электропитания, предотвращая любые повреждения оборудования и персонала, работающего с ним.

8. Провод заземляющего электрода

В этом методе проводники электродов подключаются к заземляющему электроду оборудования и, в свою очередь, снова подключаются к системе заземления всей электрической системы. Это необходимо для гарантии того, что в случае выхода из строя одной системы заземления другая заменит ее.

Кроме того, это поможет высоким перепадам напряжения в цепи проходить быстрее, чем в одноэлектродной системе. Как правило, этот метод используется для заземления электрических систем, работающих с более высокими нагрузками, которые подвержены большим скачкам напряжения.

9. Защита оборудования от замыканий на землю

Эта система заземления предназначена для обеспечения безопасности электрического оборудования от сильно повреждающих «токов замыкания на землю».

Эта система работает путем размыкания всех незаземленных проводов оборудования в цепи, в которой протекают токи короткого замыкания.

10. Прерыватель цепи замыкания на землю

Это специальное устройство, специально сконструированное для заземления электрических систем, работающих при критических нагрузках.Его основная цель — защитить персонал, работающий в помещениях с электрической системой, от нежелательных происшествий, таких как поражение электрическим током.

Хотя это дорогостоящий способ заземления электрической системы, крайне важно, чтобы промышленность использовала этот вид заземления в критических электрических соединениях, где присутствие персонала требуется регулярно.

Прерыватель цепи замыкания на землю обесточивает необходимые цепи или определенные ее части на заранее определенный период времени, когда переходное напряжение, проходящее в землю через заземленный электрод, превышает значение устройства класса A для безопасной работы, таким образом сохраняя люди, окружающие систему, защищены от поражения электрическим током.
Заключение

В заключение, правильное заземление электрических систем с учетом уязвимости оборудования предотвращает любые значительные повреждения электрического оборудования или людей, работающих с ним.

Эта процедура должна выполняться на начальных этапах самой установки электрической системы, если кто-то хочет свести к минимуму ущерб, нанесенный людям, а также оборудованию.

Узнайте больше о гармониках на семинарах по гармоникам PQU в этом месяце: http: // www.p3-inc.com/power-quality-university/seminar-info/grounding-seminar

P3 стремится предоставлять вам качественные актуальные отраслевые новости.
См. Исходную статью по адресу: http://engineering.electrical-equipment.org/electrical-distribution/top-10-most-prominent-grounding-systems-for-industrial-sectors.html

Что такое система заземления

С точки зрения электротехники, земля или система заземления — это точка отсчета в электрической цепи, по которой рассчитываются напряжения.Система заземления или нашим друзьям через пруд; Система заземления также имеет функцию обеспечения общего обратного пути для электрического тока через физическое соединение с геологией. В электрической установке система заземления или электрод системы заземления соединяет определенные части этой установки с проводящей поверхностью Земли для обеспечения безопасности и функциональных целей.

Обязательные знаки — Подключите клемму заземления к земле

Назначение системы заземления или системы заземления

Электрические цепи подключаются к земле, заземлению по ряду причин.(См. В чем разница между заземлением и соединением)

Заземление, система заземления обеспечивает:

  • Индивидуальная защита — живые существа в непосредственной близости от подстанций путем недопущения воздействия небезопасных потенциалов в установившемся режиме или в условиях неисправности. (см. ступенчатый потенциал и потенциальные риски прикосновения)
  • Операционная защита электрической системы
  • Заземление с градацией потенциала (напряжения)
  • Защита от электромагнитных импульсов
  • Молниезащита
  • Достаточно низкое сопротивление для обеспечения удовлетворительной работы защиты в условиях неисправности.(см. ток утечки)
  • Защита по напряжению в разумных пределах в условиях неисправности (таких как молния, коммутационные скачки или непреднамеренный контакт с системами более высокого напряжения) и обеспечение того, чтобы напряжения пробоя изоляции не превышались, т. е. согласование изоляции.
  • Ступенчатая изоляция в силовых трансформаторах.
  • Ограничение напряжения относительно земли на проводящих материалах, в которых находятся электрические проводники или оборудование.

Менее известные причины заземления включают:

  • Для стабилизации фазных напряжений на линиях электропередач в установившихся условиях, т.е.е. рассеивая электростатические заряды.
  • Средство контроля изоляции системы подачи электроэнергии.
  • Устранение постоянных дуговых замыканий на землю.
  • Обеспечивает обнаружение замыкания между обмотками высокого и низкого напряжения трансформатора с помощью первичной защиты.
  • Обеспечивает альтернативный путь для индуцированного тока и тем самым минимизирует электрический «шум» в кабелях.
  • Обеспечивает эквипотенциальную платформу, на которой может работать электронное оборудование.

Геология системы заземления

Вообще говоря, система заземления должна обеспечивать низкоомное соединение с геологическими условиями. Так что он может рассеивать или собирать ток на землю или от земли. Что, в свою очередь, означает, что повышение напряжения не достигает уровня, который может причинить вред.

Функция заземления

В установках заземление также необходимо для обеспечения правильной работы оборудования.- Например, электронные устройства, для которых может потребоваться заземленный экран. Важно рассматривать систему заземления в рамках всей установки как одну целостную систему. Почему? Электроны не умеют читать!

Нет. Серьезно, проектирование системы заземления, как правило, обеспечивает две функции безопасности.

Первый, для предотвращения поражения электрическим током из-за разного потенциала открытых металлических конструкций. — Эта мера защиты от ударов достигается склеиванием. Подключение к земле с помощью заземляющего электрода также ограничивает накопление статического электричества.Идеально подходит для работы с легковоспламеняющимися продуктами или устройствами, чувствительными к статическому электричеству.

Вторая функция системы заземления — гарантировать, что в случае замыкания на землю. Любой возникающий ток короткого замыкания может контролируемым образом вернуться к источнику. Я имею в виду управление обратным путем, избегая повреждения оборудования или травм людей.

Система заземления с достаточно низким импедансом гарантирует, что часть возвратного тока замыкания на землю может протекать для правильного срабатывания защитных устройств.Включение автоматических выключателей или предохранителей для успешного прерывания тока.

ЗАЗЕМЛЕНИЕ С УТВЕРЖДЕНИЕМ

Рискну заявить очевидное. Подача электроэнергии потребителю, который не имеет заземления в соответствии с утвержденным или принятым стандартом, несет в себе несоразмерный риск. Бизнес-риск и человеческий риск. Не только для людей внутри объекта, но и для более широкой области, которая может затронуть невиновных третьих лиц поблизости.

Неправильно спроектированная или установленная система заземления, которая не может контролировать энергию повреждения в пределах известных допустимых пределов (определяемых тем, что может выдержать средний человеческий организм), подвергает жизнь очень реальному риску травмы / смерти, а также может вызвать повреждение оборудования.

Ваша система заземления всегда должна быть:

  • Разработано проверенным компетентным проектировщиком, т.е. кем-то, имеющим квалификацию
  • Разработано и установлено в соответствии с принятой практикой, такой как IEC 50522, BS 7430, IEEE Std.80 и т. Д. (Требования законодательства) (см. Стандарты заземления)
  • Установлено проверенный компетентный установщик
  • Проверено и подтверждено после установки, т. е. подтверждено как безопасное, пригодное для использования
  • Проверяется или тестируется на протяжении всего срока службы, чтобы убедиться, что он по-прежнему хорошо защищает людей

Незаземленная или изолированная система

Этот метод не имеет намеренного формального подключения к земле.Могут быть некоторые соединения с высоким импедансом для контрольно-измерительных приборов; например, катушка измерительного прибора.

В нормальных условиях емкость между каждой фазой и землей практически одинакова. Результатом является стабилизация системы относительно земли. В трехфазной системе напряжение каждой фазы относительно земли равно напряжению звезды системы. Следовательно, нейтральная точка (если таковая имеется) находится на уровне потенциала земли или рядом с ним.

Заземленные системы

Заземленная система имеет по крайней мере один провод или точку (обычно нейтраль или нейтраль), намеренно подключенные к земле.В трехфазных системах обычно выполняется соединение с землей в точке звезды или нейтрали трансформатора.

Заземление применяется таким образом, если есть необходимость в подключении нагрузок между фазой и нейтралью к системе, то есть для предотвращения значительных колебаний напряжения нейтрали вместе с нагрузкой. Заземление снижает колебания напряжения и дисбалансы, которые могли бы возникнуть в противном случае. Еще одно преимущество состоит в том, что реле остаточного действия используются для обнаружения неисправностей до того, как они станут межфазными.Таким образом уменьшаются токи короткого замыкания и повреждения других частей электрической сети.

Существует два основных типа заземленных систем:

  1. Система с заземленной импедансом;
  2. и система с низкоомным (прочным) заземлением.

Система импедансного заземления

Резисторы и реакторы, вставленные в соединение между нейтралью и землей. Обычно для ограничения тока короткого замыкания до приемлемого уровня.

На практике, чтобы избежать чрезмерных переходных перенапряжений из-за резонанса с шунтирующей емкостью системы, индуктивное заземление должно обеспечивать протекание не менее 60% емкости трехфазного короткого замыкания при замыканиях на землю.Эта форма заземления имеет меньшее рассеивание энергии, чем резистивное заземление.

Катушки Петерсена

Дугогасящие катушки (ASC), также известные как катушки Петерсена или нейтрализаторы замыкания на землю, могут использоваться в качестве заземляющего соединения. Это настроенные реакторы, которые нейтрализуют емкостной ток исправных фаз, так что любой ток повреждения имеет низкую величину.

Благодаря самоочищающемуся характеру этого заземления оно полезно в определенных обстоятельствах в воздушных сетях среднего напряжения, например, в тех, которые подвержены большому количеству переходных КЗ и имеют много точек заземления.

Автоматические выключатели с повторным включением в основном заимствованы у ASC в системах высокого и среднего напряжения. Однако, главным образом, благодаря усовершенствованию имеющегося оборудования и усовершенствованию системы защиты, интерес к ASC растет. Их идеальное применение — в системах воздушных линий электропередач с большим количеством заземленных точек (например, трансформаторов) и множеством подключенных потребителей. Однофазной линии или кабеля не может быть слишком много, так как это снижает производительность схемы.

Заземление через сопротивление используется чаще, поскольку оно позволяет ограничить ток короткого замыкания и ослабить переходные перенапряжения. В распределительных системах, особенно на 11 кВ, обычно используются жидкие резисторы заземления (LER) на 750, 1000 или 1500 А или более распространенные резисторы из нержавеющей стали, установленные в различных комбинациях для ограничения тока замыкания на землю.

Система с низкоомным (прочным) заземлением

Система заземления с низким сопротивлением является наиболее распространенной схемой, особенно при низком напряжении.Здесь соединение нейтрали / земли выполняется через надежное соединение без намеренного добавления импеданса. Недостатком такой схемы является то, что ток замыкания на землю обычно велик, но системные напряжения остаются подавленными или низкими в условиях короткого замыкания.

Низковольтные системы заземления

Разобравшись с заземлением, имеющимся в энергосистеме выше, давайте кратко рассмотрим систему заземления низкого напряжения.

Стандартные определения соединений:

T: Terre, прямое соединение с землей.

N: нейтральный.

C: комбинированный.

S: раздельный.

Основные типы:

TN-S

TN-S Входящий источник питания имеет единственную точку соединения между нейтралью питания и землей на трансформаторе питания. Питающие кабели имеют отдельные нулевой и заземляющий защитный провод (S.N.E.). Обычно нейтральный проводник представляет собой четвертую «жилу», а заземляющий провод образует защитную оболочку или провод заземления.Заказчик может подключить клемму заземления к оболочке служебного кабеля или отдельный провод заземления.

TN-S был в значительной степени стандартным устройством в Великобритании до введения систем защитного многократного заземления (PME или TN-C-S).

TN-C-S

TN-C – S Заземление нейтрали питания в нескольких точках. Питающие кабели имеют комбинированную нейтральную и заземляющую металлическую внешнюю оболочку с покрытием из ПВХ (кабели CNE). Комбинированная оболочка заземления нейтрали представляет собой провод PEN (защитное заземление).

Электропитание в помещении потребителя обычно будет TN-S, т.е. нейтраль и земля будут разделены, подключены только в позиции обслуживания. При прочесывании нейтрали и земли в помещении система TN-C.

PNB

PNB Защитное соединение нейтрали — это разновидность системы TN-C -S, в которой клиенту предоставляется клемма заземления, которая подключается к нейтрали питания, но нейтраль соединяется с землей только в одной точке.Обычно в точке поставки клиента или рядом с ней. Эта схема зарезервирована для использования, когда у одного потребителя есть собственный трансформатор.

Остальные две системы:

TT

TT Это система, в которой источник питания заземляется только в одной точке, но оболочки кабеля и открытые металлические конструкции установки заказчика подключены к земле через отдельный электрод, который не зависит от электрода питания.

IT

IT Это система, не имеющая прямого соединения между токоведущими частями и землей, но с заземленными открытыми проводящими частями установки.Иногда обеспечивается соединение с землей с высоким импедансом для упрощения схемы защиты, необходимой для обнаружения первого замыкания на землю.

Заземляющие устройства в Великобритании и многих других странах должны соответствовать BS 7671. Этот стандарт основан на последнем 18-м издании Правил для электромонтажных работ Института инженеров-электриков. Правила безопасности, качества и непрерывности электроснабжения не применяются, поэтому заземление не является обязательным требованием, и разрешены незаземленные системы (такие как IT, указанные выше).

Ключевой момент

Основной принцип состоит в том, чтобы, во-первых, принять все разумные меры предосторожности, чтобы избежать прямого контакта с токоведущими частями, а во-вторых, принять меры для защиты от косвенного контакта. Последнее включает в себя эффективное заземление и соединение, а также систему защиты, которая устраняет неисправность. Этот принцип более известен как защитное соединение.

В некоторых местах требуется специальное заземление, например,

  • Шахты,
  • Карьеры,
  • Автозаправочные станции,
  • Молниезащита
  • и Лифтовые установки.

Greymatter’s имеет опыт работы с широким спектром услуг по системам электрического заземления. Воспользуйтесь окном чата ниже или свяжитесь с нами здесь.

Курс заземления — Бесплатная пробная версия

Хотите узнать больше о проектировании системы электрического заземления — Greymatters Academy — это наш учебный сайт по заземлению, посмотрите или получите доступ к бесплатной пробной версии здесь.

Методы заземления на критически важных объектах

% PDF-1.6 % 586 0 объект > / Метаданные 623 0 R / Контуры 113 0 R / Страницы 583 0 R / StructTreeRoot 117 0 R / Тип / Каталог / Viewer Настройки >>> эндобдж 604 0 объект > / Шрифт >>> / Поля [] >> эндобдж 623 0 объект > поток Ложь 11.08.582018-09-12T16: 18: 38.961-04: 00 Библиотека Adobe PDF 15.0Eatonc72bc7f170616d29240018ee6313f81cd929051d497229Adobe InDesign CC 13.1 (Macintosh) 2018-09-12T14: 23: 54.000-05: 002018-09-12.000T15: 2320 -11T15: 25: 41.000-04: 00application / pdf2018-09-12T16: 22: 12.040-04: 00

  • Eaton
  • Способы заземления в критически важных объектах
  • Способы заземления на критически важных объектах
  • xmp.id:5a67ae88-d4ad-46b9-9f05-937ca1dcfd88xmp.сделал: 07801174072068118DBBAB668637C198proof: pdfuuid: ff07ad53-7a3f-44da-8514-2df9b78ebe95xmp.iid: ed244e25-d635-4e44-9b41-9e548f67a780xmp.did: 07801174072068118DBBAB668637C198defaultxmp.did: 886738FBB5CEE21192DD8F08ADAD9468
  • convertedAdobe InDesign CC 13,1 (Macintosh) 2018-09-11T14: 25 : 41.000-05: 00от приложения / x-indesign к приложению / pdf /
  • Библиотека Adobe PDF 15.0false
  • eaton: таксономия продукции / системы управления распределением мощности среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-5-15kv-36-wide
  • eaton: таксономия продукции / распределительные устройства среднего напряжения / распределительные устройства среднего напряжения / vacclad-w-27-kv-42-wide-arc-устойчивые-металлические-плакированные-распределительные устройства среднего напряжения
  • eaton: таксономия продукции / распределительные устройства среднего напряжения / распределительные устройства среднего напряжения / vacclad-w-38-kv-42-wide-arc-устойчивые-металлические-плакированные-распределительные устройства среднего напряжения
  • eaton: классификация продукции / распределительные устройства среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-38-kv-42-wide-metal-clad-среднее-распределительное устройство среднего напряжения
  • eaton: ресурсы / технические ресурсы / заметки по применению
  • eaton: language / en-us
  • eaton: таксономия продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-5-kv-26-широкая-узкая-конструкция-металлическая-оболочка-распределительное устройство среднего напряжения
  • eaton: вкладки поиска / тип содержимого / ресурсы
  • eaton: страна / северная америка / сша
  • eaton: классификация продукции / распределительные устройства среднего напряжения / распределительные устройства среднего напряжения / vacclad-w-27-kv-36-wide-metal-clad-med-voltage-switchgear
  • eaton: таксономия продукции / распределительные-системы-распределения-среднего напряжения / распределительное устройство среднего напряжения / vacclad-w-5-15-kv-36-wide-arc-устойчивые-металлические-плакированные-среднего напряжения -распределитель
  • конечный поток эндобдж 113 0 объект > эндобдж 583 0 объект > эндобдж 117 0 объект > эндобдж 118 0 объект > / A3> / A5> / A6> / A7> / Pa0> / Pa1> / Pa10> / Pa13> / Pa14> / Pa16> / Pa17> / Pa2> / Pa20> / Pa3> / Pa4> / Pa5> / Pa6> / Pa7> / Pa8 >>> эндобдж 119 0 объект > эндобдж 120 0 объект > эндобдж 121 0 объект > эндобдж 122 0 объект [161 0 R 162 0 R 163 0 R 164 0 R 164 0 R 164 0 R 164 0 R 164 0 R 165 0 R 166 0 R 166 0 R 166 0 R 166 0 R 166 0 R 168 0 R 169 0 R 169 0 R 169 0 R 169 0 R 169 0 R 579 0 R 578 0 R 576 0 R 575 0 R 573 0 R 572 0 R 570 0 R 569 0 R 567 0 R 566 0 R 564 0 R 563 0 R 561 0 R 560 0 R 171 0 R 172 0 R 172 0 R 172 0 R 172 0 R 551 0 R 550 0 R 549 0 R] эндобдж 123 0 объект [NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 177 0 R 178 0 R 178 0 R 178 0 R 179 0 R 546 0 R 545 0 R 543 0 R 542 0 R 540 0 R 539 0 R 539 0 R 181 0 R 534 0 R 533 0 R 531 0 R 530 0 R 530 0 R 528 0 R 527 0 R 527 0 R 527 0 R 522 0 R 521 0 R 520 0 R 185 0 R 186 0 R 186 0 R 186 0 R 517 0 R 186 0 R 186 0 R 186 0 R 187 0 R 187 0 R 187 0 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 187 0 R 516 0 R 515 0 R 514 0 R 512 0 R 510 0 R 511 0 R 510 0 R 508 0 R 507 0 R 190 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 191 0 R 502 0 R 501 0 R 500 0 R 194 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 195 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 R 196 0 196 0 руб. 196 0 руб. 197 0 руб. 197 0 руб. 197 0 руб. 197 0 руб. 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 0 R 199 эндобдж 124 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null 201 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 202 0 R 496 0 R 495 0 R 494 0 R 205 0 R 206 0 206 0 R 206 0 R 206 0 R 206 0 R 206 0 R 206 0 R 491 0 R 490 0 R 489 0 R 487 0 R 485 0 R 486 0 R 485 0 R 481 0 R 480 0 R 480 0 R 480 0 R 479 0 R 479 0 R 478 0 R 478 0 R 473 0 R 472 0 R 471 0 R 469 0 R 470 0 R 464 0 R 463 0 R 462 0 R 461 0 456 руб. 455 руб. 0 руб. 454 0 пр. 453 0 руб. 448 0 руб. 447 0 руб. 446 0 руб. 445 0 руб. 434 0 руб. 433 руб. 0 R 211 0 R 211 0 R 213 0 R 213 0 R 213 0 R 430 0 R 429 0 R 427 0 R 426 0 R 424 0 R 423 0 R 421 0 R 420 0 R 215 0 R 215 0 R 215 0 R 215 0 R 215 0 R 215 0 R 215 0 R 216 0 R 216 0 R 216 0 R 216 0 R 216 0 R 216 0 R 414 0 R 413 0 R 411 0 R 412 0 R 411 0 R 219 0 R 219 0 219 0 R 219 0 R 219 0 R 220 0 R 220 0 R 220 0 R 220 0 R 408 0 R 407 0 R 406 0 R 406 0 R] эндобдж 125 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null ноль null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null 223 0 R 224 0 R 224 0 R 224 0 R 225 0 R 225 0 R 225 0 R 225 0 R 226 0 R 227 0 R 227 0 R 227 0 R 227 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 228 0 R 403 0 R 402 0 R 401 0 R 398 0 R 397 0 R 396 0 R 393 0 R 392 0 R 391 0 235 0 R 236 0 R 236 0 R 236 0 R 236 0 R 388 0 R 387 0 R 386 0 R 239 0 R 240 0 R 240 0 R 240 0 R 240 0 R 240 0 R 240 0 R 241 0 R 383 0 R 382 0 R 382 0 R 380 0 R 358 0 R 358 0 R 379 0 R 378 0 R 378 0 R 376 0 R 375 0 R 375 0 R 373 0 R 372 0 R 372 0 R 370 0 R 369 0 R 367 0 R 366 0 R 366 0 R] эндобдж 126 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null ноль null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 354 0 R 344 0 R 344 0 R 344 0 R 353 0 R 352 0 R 352 0 R 350 0 349 р. 349 0 р. 245 0 р. 245 0 р. 245 0 р. 245 0 р. 245 0 р. 246 0 р. 246 0 р. 246 0 р. 246 0 р. 247 0 р. 247 0 р. 341 0 р. 340 0 р. 338 0 р. 339 0 R 338 0 R 335 0 R 334 0 R 332 0 R 333 0 R 332 0 R 252 0 R 252 0 R 255 0 R 256 0 R 256 0 R 256 0 R 256 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 257 0 R 258 ​​0 R 258 ​​0 R 258 ​​0 R 329 0 R 328 0 R 327 0 R 324 0 R 323 0 R 322 0 R 263 0 R 264 0 R 264 0 R 264 0 R 264 0 R 264 0 R] эндобдж 127 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null ноль null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 267 0 R 268 0 R 268 0 R 268 0 R 319 0 R 318 0 R 316 0 R 315 0 R 315 0 R 270 0 R 270 0 R 270 0 R 270 0 R 270 0 R 311 0 R 310 0 R 309 0 R 309 0 R 273 0 R 273 0 R 273 0 R 273 0 R 273 0 R 274 0 R 274 0 R 274 0 R 274 0 R 274 0 R 274 0 R 274 0 R 306 0 R 305 0 R 304 0 R 304 0 R 279 0 R 279 0 R 279 0 R 279 0 R 279 0 R 279 0 R 279 0 279 0 R 280 0 R 280 0 R 281 0 R 281 0 R 281 0 R 281 0 R 282 0 R 282 0 R 282 0 R 301 0 R 300 0 R 300 0 R 298 0 R 297 0 R 295 0 R 294 0 R] эндобдж 128 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null ноль null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL 129 0 R 130 0 R 130 0 R 130 0 R 130 0 R 130 0 R 130 0 R 131 0 R 131 0 R 131 0 R 131 0 R 132 0 R 133 0 R 132 0 R 134 0 R 135 0 R 136 0 R 137 0 R 137 0 R 138 0 R 139 0 R 140 0 R 141 0 R 142 0 R 143 0 R 144 0 R 145 0 R 146 0 R 147 0 R 148 0 R 149 0 R 150 0 R 151 0 R 151 0 R 151 0 152 0 R 153 0 R 154 0 R 155 0 R 156 0 R 157 0 R] эндобдж 129 0 объект > эндобдж 130 0 объект > эндобдж 131 0 объект > эндобдж 132 0 объект > эндобдж 133 0 объект

    .
    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *