+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Все, что нужно знать о генераторе строительной техники

При каких условиях генератор дорожно-строительной техники может выйти из строя?

Генератор дорожно-строительной техники может прийти в негодность по нескольким причинам:

1. При несвоевременном или неправильном проведении технического обслуживания, а также установке на машину нештатного электрооборудования (магнитолы, системы слежения/автоматизации вождения, дополнительного освещения). Помимо этого, несоблюдение требований производителя по степени натяжения приводного ремня генератора может стать причиной преждевременного выхода из строя опорных подшипников ротора.

2. При накоплении пыли и грязи на корпусе генератора и их попадание внутрь между статором и ротором способно спровоцировать короткое замыкание или механический износ изоляции обмоток, однако это случается крайне редко.

3. Из-за использования пуско-зарядного устройства в режиме «пуск». Это связано с тем, что очень часто, особенно в зимний период эксплуатации, возникает необходимость применения внешних источников питания во время запуска ДВС в связи с разрядкой аккумуляторных батарей.

Иногда этот процесс также связан со спешкой.

В результате, вместо установки заряженных аккумуляторов или проведения цикла заряда разряженных батарей, используют пуско-зарядные устройства в режиме «пуск», что крайне нежелательно, ибо во время стартерной прокрутки сила тока в цепи стартера может достигать нескольких сотен ампер. Так как аккумуляторные батареи разряжены, то основным источником тока служит в этот момент пуско-зарядное устройство.

После запуска ДВС начинается процесс зарядки АКБ. Так как их емкость заметно ниже нормального значения, то в начальный период работы двигателя после запуска им требуются максимально возможные значения зарядного тока по напряжению и силе для восполнения утраченного заряда. Пуско-зарядное устройство, оставаясь в режиме «пуск» на работающем ДВС, следуя «потребностям» аккумуляторных батарей, продолжает подавать в сеть машины повышенные значения напряжения и силы тока, что может быть причиной выхода из строя регулятора напряжения, диодного моста генератора, а так же электронных блоков управления, широко применяемых в электросистеме современных дорожно-строительных машин и оборудования.

Ремонт ротора генератора своими руками

Самое подробное описание: ремонт ротора генератора своими руками от профессионального мастера для своих читателей с фотографиями и видео из всех уголков сети на одном ресурсе.

Автомобильный генератор – это электрическое устройство, которое снабжает бортовую сеть автомобиля электрическим током, за счёт преобразования механической энергии в электрическую. Они бывают различной мощности (для грузовых автомобилей нужны очень мощные генераторы, способные зарядить их аккумуляторы). Одна из главных функций генератора – это зарядка аккумулятора, который без генератора разряжается за полчаса. Если генератор выйдет из строя, электрооборудование автомобиля разрядит аккумулятор, и дальнейшая работа двигателя будет невозможна. Для того, чтобы не допустить такой ситуации, следует подробно рассмотреть конструкцию генератора, причины поломок и выхода из строя.

Генератор довольно сложное устройство. Не зная принципов его работы, будет сложно разобраться в его поломках или нестабильной работе. Ремонт генератора автомобиля на специализированном автосервисе будет стоить достаточно дорого, тем более причина поломки может быть в одном отпаявшемся проводке, а многие недобросовестные сервисмены заставят заплатить как за капитальный ремонт генератора.

Нет видео.

Видео (кликните для воспроизведения).

Если вы хоть раз держали в руках паяльник, ремонт генератора своими руками вполне осуществим в гаражных условиях.

  • Не идёт зарядка на аккумулятор;
  • Генератор выдаёт минимальное напряжение;
  • Выдаётся слишком большая зарядка;
  • Когда происходит процесс зарядки, на панели мигает лампочка;
  • Когда генератор работает, слышны посторонние скрипы и писки.

Зная основные проблемы, из-за которых генератор может барахлить, можно приступать к их вычислению. Если генератор перестал заряжать аккумулятор, возможно что:

  • Какой либо из контактов отошёл;
  • Сгорел предохранитель;
  • Произошла выработка щёток генератора;
  • Сгорело реле генератора;
  • Короткое замыкание или разрыв цепи статора либо ротора.

Первые четыре случая решаются довольно просто, заменой сгоревших деталей, или поиском и пайкой оторванного контакта. Если же произошло замыкание или разрыв цепи, то данная проблема требует долгой и кропотливой работы.

Как вариант, можно отдать в ремонт ротор или статор, а можно купить новую обмотку и произвести ремонт генератора самостоятельно. Замена обмотки – это по сути ремонт статора либо ротора. Если обрыв происходит в контактных кольцах, можно обойтись локальным ремонтом, для этого нужно отмотать витки до повреждённого участка и заменить удалённый кусок новым, припаяв его к месту разрыва. Часто отпаивается лишь конец обмотки на роторе. Его нужно лишь припаять назад. Однако при ремонте ротора или статора инструкция по техническому обслуживанию настоятельно рекомендует производить полную перемотку статора и ротора. При перемотке деталей не следует забывать, что все контактные кольца должны быть тщательно обработаны напильником.

В основном шум генератора связан с выработкой подшипника генератора.

Подшипник, который расположен на роторе проверяется на предмет наличия люфтов. Если они не обнаружены, а подшипник продолжает скрипеть, проблема в отсутствии смазки в подшипнике. Подшипник демонтируется, промывается в бензине, в него закладывается смазка (около 30 процентов от объёма подшипника), после чего устанавливается на место. Эта операция устранит все посторонние звуки, связанные с работой подшипника.

Главной причиной подобной неисправности является реле аккумулятора. При возникновении данной проблемы следует заменить его. Иногда встречается такая проблема, как пробой диода.

При горящей сигнальной лампочке, когда ток исправен, проблема, как правило, заключается в пробое нескольких диодов. Они находятся на диодном мосту. Для того чтобы добраться до них, нужно раскрутить генератор и извлечь крепление обмотки статора. На выводном крепеже производится отдача гайки и диодный мост извлекается. При выполнении данных работ можно сразу поменять обмотку на статоре, избавившись от проблем в будущем.

Ремонт автомобильных генераторов – процесс длительный, для которого понадобится специальное оборудование для ремонта.

  • Стенд для проверки;
  • Амперметр;
  • Реостат;
  • Вольтметр.

Если у вас нет доступа к стенду для проверки, его можно изготовить самостоятельно, или обойтись без его помощи.

  1. Извлеките генератор из подкапотного пространства;
  2. Открутив крепления, снимите щёткодержатель и регулятор напряжения;
  3. Достаньте натяжные болты;
  4. Отсоединив фазные обмотки от проводов на выпрямителе, нужно снять крышку статора;
  5. В последнюю очередь снимается шкив вала и передняя крышка генератора. Для этого нужно использовать специальный съёмник.

При демонтаже генератора следует избегать чрезмерных усилий при откручивании закисших болтов. Срыв резьбы влечёт за собой очень неприятную процедуру нарезки новой резьбы и вытачивания новых болтов. Лучше залить проблемные винты вэдэшкой и оставить на пару часов.

При отсоединении фазных обмоток важно не вырвать места пайки с корнем, иначе процедура пайки легко может вылиться в цикл полной перемотки статора.

Если вам приходится менять подшипники генератора, самое время заменить и щётки. Неизвестно, когда они менялись в последний раз и менялись ли вообще. Для успокоения совести можно достать щётки из генератора для визуального осмотра, но лучше сразу поменять их, ведь повторно лазить в генератор вряд ли захочется. При замене реле, главное при выборе, найти такое, как рекомендовано мануалом к вашему автомобилю. Лучше всего снять старое и подобрать такое же.

Как и все остальные узлы и агрегаты автомобиля, генератор требует ухода и периодического обслуживания. Нужно менять подшипники по мере износа, щётки генератора. Следить, чтобы на генератор не попадало большое количество грязи, пыли и особенно воды. Часто при неаккуратном обслуживании на генератор может попадать масло или антифриз. Следует избегать этого и при попадании технических жидкостей на генератор своевременно удалять их с помощью тряпки. Для правильного функционирования генератора, клиновый ремень должен быть хорошо натянутым, но не перетянутым.

Производители рекомендуют проводить профилактический осмотр генератора раз в 15-20 тысяч километров. Если правильно обслуживать генератор и следить за его состоянием, он способен прослужить 1600-200 тысяч километров пробега. Однако профилактический осмотр – это не беглый взгляд на генератор, он предусматривает полную разборку и диагностику узлов генератора.

Сборка проходит в обратной последовательности разборке генератора. Единственным нюансом сборки является желательность использования специального калибра, с двумя диаметрами (на 12 и 22 миллиметра). При затяжке гайки шкива генератора, важно не превысить момента затяжки в 88 ньютонов на метр.

Нет видео.
Видео (кликните для воспроизведения).
  • Срыв резьбы винтов или резьбы в крышке генератора. Во избежание данной проблемы, следует контролировать силу затяжки винтов;
  • Замена подшипников ротора генератора. Даже если они не скрипели в процессе работы, подшипники могут просто рассыпаться при снятии;
  • Может понадобится замена реле лампы контроля зарядки аккумулятора. Обычно данное реле следует искать в районе правого переднего колеса (над ним).

При ремонте генератора важно точно выявить причину неисправности. Если дело в щётках, недостаточном натяжении ремня или неисправном реле, заменить их не составит большого труда. Если же предстоит замена или обмотка ротора или статора, данную процедуру проще доверить специалистам сервисных центров по ремонту генераторов. Зная причину поломки, вы будете уверены, что не заплатите лишние деньги. Однако если вы уверенны в своих силах, то можете сами сделать полный ремонт генератора. Генератор после ремонта, особенно капитального, является практически новым устройством.

Генератор автомобиля – это важный механизм, без которого далеко не уедешь при его поломке. Как правило, если он перестал подзаряжать аккумулятор машины или сбоями работает, то следует проверить сначала натяжение ремня привода генератора. Если ремень в порядке, то нужно приступить к снятию, разборке и ремонту генератора, ведь покупать новый будет намного дороже, чем заменить некоторые изношенные детали (они очень дешёвые). На самом деле процедура не сложная, но немного кропотливая, главное собрать всё правильно.

Мы ремонтировали генератор на автомобиле ВАЗ 2110 (на 2111, 2112 похожая процедура), если у вас модель 2106, то смотрите схему генератора ВАЗ 2106. Там есть некие отличия.

2. Сделайте маркером на корпусе генератора продольную метку, она потом пригодится при сборке.

3. Отожмите ручками три защёлке на верхней крышке.

5. Открутите 2 винта, что крепят регулятор напряжения.

6. Отсоедините провод от клеммы регулятора.

7. Теперь аккуратно вынимайте его со щёткодержателем.

8. Открутите винт, что крепит конденсатор и ещё 4, что крепят сам блок.

9. Далее, чтобы снять выпрямительный блок необходимо отвести 3 провода с клеммой.

10. Теперь вынимайте выпрямительный блок с конденсатором.

11. Теперь с выпрямительного блока открутите гайку с контактного болта, снимите шайбу с распорной вилкой и замените конденсатор. Снимите с контактного болта наконечник провода конденсатора.

13. Далее со стороны контактных колец при помощи отвёртки подденьте крышку генератора автомобиля.

14. Прижмите в тисках (чтобы не прокручивался) ротор генератора и открутите гайку, что держит шкив, и потом снимите пружинную шайбу и сам шкив.

16. Со стороны привода достаньте из крышки ротор.

17. Теперь выньте дистанционное кольцо из вала ротора.

18. Проверьте контактные кольца, если они имеют выраженные дефекты (царапины, задиры), то их требуется прошлифовать мелкой наждачной бумагой. Если при помощи шкурки их невозможно отшлифовать, то это можно проделать на токарном станке (только снять нужно как можно меньший слой металла), а после чего опять прошлифовать мелкой шкуркой.

19. Далее необходимо проверить при помощи омметра (тестера) сопротивление обмотки ротора. Для этого нужно подсоединить его к контактным кольцам. Если тестер выдаст «бесконечность», то это будет значить, что в какой-то из обмотки имеется обрыв, это исправляется только полной заменой ротора.

20. Потом проверяем контрольной лампой, нет ли замыкания обмотки на корпусе ротора. Делается это следующим образом: включите обычную лампу накаливания в сеть 220 В и один провод прислоните к корпусу генератора, а второй сначала на первое кольцо, а потом на второе. В любом из случаев загорание лампы не должно происходить. Если в каком-то из положений загорание всё-таки произошло, то следует также заменить весь ротор новым. Кстати можно в этом случае использовать маленькую лампу на 12 В и аккумулятор автомобиля, это проще и безопаснее.

21. Далее если всё хорошо с ротором, переходим к осмотру статора. На его внутренней стороне не должно быть каких-либо следов задевания якоря о статор. Если таковы симптомы наблюдаются, тогда следует произвести замену только подшипники или полностью крышки генератора в сборе с подшипниками.

22. Далее также как и с ротором проверяем, нет ли обрыва в обмотке статора. Подключаем тестовую лампу к переменному току и поочерёдно прислоняем контрольную лампу между всеми выводами обмотки. Только в этом случае лампа должна гореть, если хоть в одном из моментов она не загорелась, – заменить статор на новый или только обмотку.

23. Теперь производят проверку замыкания обмоток статора на корпус. Если подсоединить контрольную лампу к выводу обмотки статора, а провод от источника тока к корпусу статора, то загорание не должно происходить. Если лампа загорелась, то опять-таки выход только один, – заменить только обмотку или весь статор.

24. Осмотрите крышку генератора со стороны привода в сборе с подшипником. Если при вращении подшипника чувствуется люфт между кольцами, перекат или заклинивание тел качения, повреждены защитные кольца или есть следы подтекания смазки, а также обнаружены трещины в крышке, особенно в местах крепления генератора, необходимо заменить крышку в сборе с подшипником (подшипник в крышке завальцован).

25. Со стороны контактных колец необходимо проверить свободность вращения подшипника. Если при вращении подшипника чувствуется люфт между кольцами, перекат или заклинивание тел качения, повреждены защитные кольца или есть следы подтекания смазки, то подшипник необходимо заменить новым. Для этого с помощью съёмника спрессуйте подшипник с вала ротора и напрессуйте новый с помощью подходящей оправки, прикладывая усилие к внутреннему кольцу подшипника.

26. Проверьте крышку автомобильного генератора со стороны контактных колец. Если на ней имеются серьёзные дефекты, то замените её новой.

27. Теперь самый сложный и решающий момент всех ваших действий – собрать всё обратно в порядке разборки генератора. Только в конце закройте правильно крышку (по поставленной ранее метки). Пружинную шайбу шкива генератора поставьте выпуклой стороной к гайке, а последнюю затянуть моментом 39–62 Н•м (3,9– 6,2 кгс•м).

Вот и ремонт генератора автомобиля завершился, удачи Вам и больше не ломаться!

Здравствуйте, уважаемые автолюбители! Сегодня я расскажу, как отремонтировать генератор своими руками. Возможно, вы уже сталкивались с такой проблемой, когда на приборной панели вдруг загорелся индикатор разряда аккумулятора, это означает, что на вашем автомобиле пропала зарядка, и ехать вам осталось не долго, заряда аккумулятора хватит максимум на 1-2 часа.

Не спешите выбрасывать генератор. Попробуйте его сначала отремонтировать. Самой распространенной неисправностью генератора является износ щеток.

Чтобы проверить щеточный узел, надо снять заднюю пластиковую крышку, отогнув три пластиковых фиксатора, расположенных по кругу.

Снимите крышку, открутите два винта и снимите регулятор напряжения.

Проверьте износ щеток, если остаточная длина щеток менее пяти миллиметров, смело покупайте в магазине новый регулятор напряжения. Иногда бывает, что генератор не заряжает или перезаряжает аккумулятор, это тоже является не исправностью регулятора напряжения. Нормальное напряжение генератора от 13,5 до 14,5 вольт, зависит от оборотов двигателя и нагрузки на генератор.

Следующая неисправность генератора это пробой диодного моста. Для проверки диодов надо снять диодный мост. Откручиваем болты, на которых держится диодный мост.

Отогните провода в сторону.

Снимите диодный мост. О том как проверить диодный мост. Читайте здесь: Как проверить диодный мост?

После снятия диодного моста обязательно проверьте обмотки статора. Делаем так, включаем мультиметр в режим прозвонки и проверяем все три обмотки статора на обрыв. Все обмотки должны звониться между собой.

Далее проверяем замыкание на массу. Один щуп мультиметра соединяем на массу, а второй поочерёдно соединяем с выводами обмоток. Замыкания на массу быть не должно.

Аналогично проверяем обмотку якоря.

Проверяем якорь, замыкания на массу нет.

Теперь я покажу как разобрать генератор для замены подшипников. Откручиваем четыре винта соединяющие вместе две половинки генератора.

Открутите гайку и снимите шкив.

С помощью отвёртки аккуратно расколите генератор на две части так, чтобы не повредить алюминиевые крышки.

Неисправные подшипники замените новыми. Соберите генератор в обратной последовательности.

Друзья, желаю вам удачи! До встречи в новых статьях!

Автомобильный генератор представляет собой узел, который используется для обеспечения электричеством всех потребителей энергии в автомобиле. Выход из строя генераторного устройства приведет к тому, что все оборудование будет питаться от аккумулятора, а это впоследствии станет причиной его быстрого разряда. В каких случаях требуется ремонт генераторов, и какие неисправности характерны для этого устройства? Ответы вы найдете ниже.

Почем при нагрузке на генератор двигатель глохнет, с чем могут быть связаны проблемы утечки тока, какой должен быть вольтаж, почему не работает устройство и как отремонтировать поломку? Ремонт неисправностей автомобильных генераторов своими руками — дело достаточно сложное, поэтому для начала рекомендует ознакомиться с основными поломками устройства. К неисправностям механического характера относятся повреждение кронштейнов крепления, корпуса агрегата, износ шкива и подшипников, прижимных пружин и т.д. Причин повреждения может быть множество, но в любом случае, они никак не связаны с электрической составляющей.

Если двигатель автомобиля не заводится и вы считаете, что сломался именно генератор, то вам полезно будет узнать об основных признаках неполадок в функционировании агрегата:

  1. На приборной панели при работающем двигателе появился индикатор разряда аккумулятора. Лампочка может мигать или гореть без перерыва.
  2. При некорректной работе устройства, когда на агрегат возлагается более высокая нагрузка, чем та, на которую он рассчитан, в работу вступает аккумулятор для поддержки питания оборудования. Это может привести к выкипанию электролита в батарее.
  3. Следующий симптом — при включении фар вы можете увидеть, как оптика стала гореть более тускло. Если же вы нажмете на педаль газа, что приведет к увеличению оборотов силового агрегата, то яркость оптики восстановится до необходимого уровня.
  4. Устройство воет, гудит или свистит. Если при работе агрегата начали проявляться посторонние звуки, это говорит о неполадках в его работе, которые могут быть разными. Также генератор сильно греется.
  5. Двигатель авто время от времени глохнет без видимых причин. Неисправность такого рода может говорить о том, что в бортовой сети недостаток напряжения, необходимого для питания электрического оборудования. Если при этом аккумулятор полностью заряжен, то скорей всего, причина заключается именно в генераторе.

Теперь рассмотрим возможные причины неполадок, из-за которых может потребоваться снятие, разбор и ремонт генераторного устройства автомобиля:

  1. Повреждения шкива либо его износ. Если речь идет о серьезных неполадках и значительных повреждениях шкива, то его проще будет заменить. В некоторых случаях допускается ремонт и восстановление, но лучше всего поменять устройство.
  2. Повреждение либо естественный износ контактных токосъемных колец, которые могут быть повреждены.
  3. Неполадки в работе регуляторного устройства. Регулятор напряжения предназначен для выравнивания рабочей величины в электрической сети авто, его поломка приведет к скачкам напряжения в сети.
  4. Поломка диодного моста агрегата. При выходе из строя диодов первый симптом поломки — это отсутствие или слишком слабая искра на свечах, также емкость АКБ может быть снижена.
  5. Замыкание витков статорной обмотки. Иногда проблему позволяет решить перемотка обмотки, но зачастую ее легче просто заменить.
  6. Износ подшипников. При износе и поломке подшипниковых элементов в работе агрегата будет проявляться дополнительный шум.
  7. Повреждения силовой цепи питания.

Как разобрать и как произвести ремонт устройства? Ниже приведены основные рекомендации касательно устранения неисправностей.

Эти советы актуальны в том случае, если вы знаете основные причины и признаки поломок:

Иногда самостоятельный ремонт агрегата нецелесообразен, поэтому автовладельцам приходится менять устройство. Процедуру замены рассмотрим на примере автомобиля Лада Калина.

Чтобы успешно выполнить замену, подготовьте следующий инструмент:

  • гаечные ключи на 8, 13 и 19, для большего удобства используйте накидные и рожковые;
  • трещотки с головками аналогичных размеров;
  • удлинитель с воротком (автор видео — канал AndRamons).

Процедура замены должна осуществляться с учетом рекомендаций и требований производителя, которые указаны в сервисной книжке по эксплуатации. Перед тем, как приступить к замене, обязательно изучите мануал.

Итак, как снять и самостоятельно заменить агрегат:

Своевременный ремонт и обслуживание агрегата — это основные аспекты, которые позволят увеличить ресурс эксплуатации устройства.

Какие нюансы следует учитывать:

Наглядные урок с подробным описанием всех аспектов на тему принципа действия агрегата приведен в ролике ниже (видео опубликовал Михаил Нестеров).

Автомобильный генератор — это прибор, который принимает механическую энергию двигателя и преобразовывает ее в электрический ток, обеспечивая, таким образом, электроэнергией остальные агрегаты авто. Генератор обеспечивает зарядку аккумулятора, и электропитание двигателя автомобиля. Поэтому связь «двигатель-генератор» не должна прерваться, ведь неработающий генератор — это аккумулятор, не получающий заряда и соответственно неработающий главный орган автомобиля.
Замена генератора повлечет за собой значительные финансовые расходы. Поэтому, если у вас под рукой имеются все необходимые инструменты и знания устройств моторного отсека автомобиля, то можно устранить поломку самостоятельно (о том, что делать, если машина не заводится — стартер крутит, читайте в нашей другой статье).

Итак, генератор сломан. Какие же неисправности могут быть причиной сбоя в работе этого устройства? Рассмотрим их:

  1. Генератор производит ток с очень низким напряжением.
  2. Генератор совсем не вырабатывает электрический ток.
  3. Поломка устройства отображается на приборной панели в виде мигающей лампочки.
  4. Генератор производит зарядку сверх оптимальной нормы.
  5. Работа генератора сопровождается посторонним шумом.

Перед тем как начать делать ремонт генератора своими руками, необходимо проверить его техническое состояние и разобрать агрегат на части. Перед тем как разбирать генератор, проверьте состояние ремня и его натяжку и убедитесь, не ожидает ли вас замена ремня генератора в ближайшее время (почитайте еще, как делается замена ремня ГРМ на ВАЗ 2109). Проверка состоит в надавливании пальцем на средину этой детали генератора. Если ремень в хорошем состоянии, то он не должен при надавливании опускаться более чем на пол сантиметра. Стоит отметить, что новый ремень не должен прогибаться на более чем 2 мм. Если же ремень не изношен, но натяжка слабая, то недостаток можно исправить путем подтягивания генераторного ремня. Также прокрутите натяжной ролик генератора, если он прокручивается с трудом и скрипит, то его нужно будет смазать маслом, или поставить вместо него новый ролик.

Техническое состояние генератора можно проверить с помощью следующих измерительных приборов:

Частота вращения ротора измеряется с помощью тахометра (как правило, он находится рядом со спидометром на панели приборов). При нормальной работе генератора показатели данного прибора не должны быть меньше чем 2000 об/мин., нормой же являются 5000 об/мин.

Рассмотрим причины, которые могут вызвать поломку генератора. Итак, если генератор не вырабатывает заряд, то причинами этому могут быть следующие явления:

  1. Перегорел предохранитель или контакты.
  2. Сломались или износились щетки генератора.
  3. Вышло из строя реле регулятора.
  4. Вследствие замыкания обмотки случился обрыв в статорной или роторной цепи.

Для того чтобы исправить первые три неисправности из списка, нужно просто заменить изношенные детали генератора, предварительно, естественно, разобрав его.

  1. Первым делом снимите щеткодержатель вместе с регулятором напряжения, аккуратно открутив все крепления.
  2. Извлеките натяжные болты и затем крышку со статором.
  3. Снимите крышку со статора, отсоединив перед этим фазные обмотки от выводных проводов на блоке выпрямления.
  4. Далее снимите шкив с вала и переднюю крышку генератора, применяя специальный съемник.

Сборка генератора проводится в обратной последовательности.

В случае замыкания обмотки от вас потребуются более серьезные действия, чем простая замена детали. Итак, обрыв обмотки можно либо починить, либо заменить новыми проводами. Часто обмотка обрывается рядом с контактными кольцами. Кроме того, поломка может случиться из-за распайки какого-нибудь из концов обмотки. Подобную неисправность можно починить, отмотав виток в области разрыва назад с обмотки ротора. Далее отломанный конец обмотки надо снять (выпаять) с контактного кольца и припаять туда отмотанный ранее провод. Распайку очень легко починить путем обратного припаивания проводки.

О слабом или слишком сильном заряде генератора свидетельствует испорченное реле, которое необходимо заменить при ремонте генератора.

Если проверка напряжения генератора показал, что прибор исправен, но при этом на панели приборов мигает индикатор, то, скорее всего, вышел из строя один из диодов, которые отвечают за питание лампочки в индикаторе. Данные диоды находятся в самом генераторе, и замена проводится после разборки устройства.

О несвойственных генератору шумах может свидетельствовать износ подшипника ротора. Если при осмотре обнаружится, что подшипник генератора изношен, то его нужно будет заменить. Если же непонятные звуки генератора связаны с отсутствием люфта в подшипнике, то его можно будет просто залить маслом, предварительно промыв в бензине. Посторонние звуки после этого исчезнут.

Таким образом, ремонт генератора сделать своими силами можно даже у себя в гараже (как и капремонт двигателя, собственно). Выполняя проверку и замену деталей устройства, соблюдайте технику безопасности и будьте аккуратны, ведь система электрооборудования не должна при этом повредиться.

В статье мы будем говорить о том, каким образом можно отремонтировать генератор своими руками, а также попробуем разобраться в его конструкции.

Генератор представляет собой электрооборудование, которое имеет очень сложную конструкцию. Если он сломан или же окончательно вышел со строя, то в таком случае заряд аккумулятора полностью отсутствует, а также мотор перестает функционировать. Можно приобрести новый агрегат или же обратиться с целью проведения анализа поломки или выполнения ремонтных работ в автосервис, но данные варианты выхода из положения будут обходиться слишком больших финансовых затрат. Поэтому лучше всего попытаться отремонтировать генератор своими руками. Для этого необходимо всего минимум знаний в электротехнике, а также наличие паяльника и навыков работы с ним.

Изначально давайте обсудим проблемы, в результате которых могут возникнуть сбои в работе генератора.

  • Во-первых, это может быть отторжение любого зарядного устройства.
  • Во-вторых, генератор может выдавать слишком маленькое напряжение.
  • В- третьих, может возникать переизбыток зарядной энергии — (неисправен реле регулятор).
  • Также в процессе зарядки может возникнуть на панели мигание сигнальной лампочки.
  • И последнее, в процессе работы генератор издает какие-либо посторонние звуки — (неисправны подшипники).

Вот были перечислены наиболее распространенные проблемы, которые будут сигнализировать о сбое в работе генератора.

Далее некоторые из вышеперечисленных проблем мы обсудим более подробно.

Чаще всего возникает у владельцев автомобиля, что происходит отторжение зарядки, то есть генератор не дает зарядку.

Причинами данной поломки могут быть:

  • перегорел предохранитель, либо же он может просто отойти;
  • поломка или скоропостижный износ щеток;
  • поломка реле регулятора;
  • возникновение замыкания обмотки (может быть разорвана цепь ротора или же статора).

В нескольких вышеперечисленных неисправностях можно просто произвести замену запчастей, вышедших из строя. Но если заряд аккумулятора не идет из-за именно замыкания обмотки, то в данном случае можно прибегнуть к нескольким вариантам ремонта данной проблемы.

Вы можете смело приобрести новую обмотку, или произвести самостоятельный ремонт старой. Если все-таки случилось так, что возник разрыв обмотки, то в таком случае необходимо отремонтировать ротор, либо отдать в ремонт, либо сделать ремонт своими руками.

Довольно часто можно встретить, что обрыв произошел именно в районе контактных колец. Для ремонта и решения проблемы стоит отмотать виток на том участке, где и произошел сам разрыв. Сделайте провод с такой длиной, чтобы спокойно его хватило для припайки к самому контактному кольцу. Необходимо очень аккуратно выпаять конец обмотки, который был ранее сломан и приступить к произведению нормального, то есть исправного конца к этой же сломанной ранее обмотке.

Также может быть, что случилась случайная распайка кончика именно у той обмотки, которая имеет свое месторасположение на роторе. Здесь необходимо будет просто произвести припайку ее на прежнее место. Если есть необходимость, то лучше произвести ремонт и зачистку самих контактных колец на генераторе. Может присутствовать достаточно глубокий, тогда следует обратиться за помощью к напильнику, благодаря которому и можно устранить эту проблему в генераторе.

Параллельно с ремонтом вышеперечисленных неполадок можно устранить еще одну ,такую как возникновение посторонних шумов в процессе работы генератора. Для этого необходимо выполнить тщательнейшим образом осмотр подшипника, который расположен на роторе, и если Вами будут обнаружены какие-либо неисправности, то лучше всего заменить его своими руками, ремонту подшипники не подвержены. Распространенной проблемой является отсутствие люфта у подшипника генератора. Если случилось так, что это и произошло в Вашем случае, тогда стоит произвести демонтаж защитной накладки, после чего следует ее промыть в бензине и смазать.

Теперь немного поговорим о том, что делать в случае, если слабая зарядка от генератора или же вообще происходит совершенно противоположное — то есть перезарядка аккумулятора. Лучше всего в этом случае приступить к поискам проблемы в аккумуляторном реле, и в случае надобности следует его заменить. Еще одной причиной возникновения данного дефекта может послужить появление пробоины диода, который располагается в самом диодном мосту. Как показывает практика таких неисправностей, рекомендуется в место ремонта просто заменить реле регулятор, или как его называют «диодный мост.

В данном случае причиной может быть случайно возникший пробой одного диода(может быть несколько одновременно), который несет ответственность за всю цепь питания лампы. Они также располагаются на диодном мосту. Вам необходимо открутить гайки(ключ 7 ) на генераторе и выполнить демонтаж крепления обмотки, находящейся на статоре. После этого стоит создать отдачу гайки и демонтировать диодный мост. В процессе выполнения данной работы Вы можете также сделать замену или ремонт обмотки на статоре.

Вот на этом и все. Ремонт генератора своими руками выполнен. Но не забудьте о самом главном правиле — для успешного выполнения данного ремонта стоит иметь хотя бы минимальные знания в области электротехники.

Автор статьи: Антон Кислицын

Я Антон, имею большой стаж домашнего мастера и фрезеровщика. По специальности электрик. Являюсь профессионалом с многолетним стажем в области ремонта. Немного увлекаюсь сваркой. Данный блог был создан с целью структурирования информации по различным вопросам возникающим в процессе ремонта. Перед применением описанного, обязательно проконсультируйтесь с мастером. Сайт не несет ответственности за прямой или косвенный ущерб.

✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 3.5 проголосовавших: 13

Ротор генератора — Энциклопедия по машиностроению XXL

На рис. 180 а изображена схема радиально-осевой турбины, помещенной внутри спиральной камеры. Рабочее колесо турбин рассматриваемого типа состоит из ряда лопастей изогнутой формы, равномерно распределенных по окружности. Лопасти укреплены в ободах. Число лопастей колеблется в пределах 12—20 наиболее часто применяется 14—15 лопастей. На рис. 180 а / — отсасывающая труба 2 —рабочее колесо спиральная камера 4 — лопатка направляющего аппарата 5 — крышка турбины 6 — уплотняющий сальник 7 — вал турбины, на котором обычно укреплен ротор генератора. Вода через спиральную турбинную камеру поступает на рабочее колесо 2, протекая между лопатками направляющего аппарата 4, и, пройдя через рабочее колесо турбины, вытекает в осевом направлении в отсасывающую трубу 1.  [c.282]
Единый тонкостенный сварно-кованый вал 13 агрегата соединен с рабочим колесом 20 и ротором генератора фланцами. Обычный подшипник 14 турбины на водяной смазке с обрезиненными сегментами установлен на основании опоры подпятника, что позволило поднять корпус подшипника выше уровня крышки турбины и совместить с ней корпус рабочего колеса. Центрируется подшипник отжимными болтами.  [c.45]

Валы горизонтальных гидроагрегатов могут быть либо едиными, либо состоять из вала генератора и вала турбины (см. рис. 11.20). Выполняются они гладкими, вращаются в подшипниках с масляной смазкой и соединяются с валом или ротором генератора и рабочим колесом фланцами так же, как валы вертикальных турбин.  [c.196]

Воздуходувка и топливный насос приводятся от верхнего коленчатого вала основная мощность (70%) снимается с нижнего коленчатого вала, который приводит в движение ротор генератора, масляный и водяной насосы и регулятор числа оборотов.  [c.441]

Показательный пример приводит П. Л. Капица [25]. Если в зазоре между ротором и статором электрогенератора происходит превращение механической энергии в электрическую, то м в (5.1) представляет собой окружную скорость ротора генератора, величина которой по конструктивным соображениям равна 100 м/с. Тангенциальные силы взаимодействия между статором и ротором в электромагнитном генераторе определяются энергией магнитного поля  [c.87]

Физические принципы процесса преобразования энергии падающей воды в электроэнергию в действительности просты, однако технические детали достаточно сложные. Вода под напором, создаваемым плотиной, направляется в водовод, который заканчивается турбиной. Турбина вращает вал, к которому присоединен ротор генератора, вращающийся в магнитном поле статора. Выработка электроэнергии зависит от потенциальной энергии воды, запасенной в водоеме, и КПД ее преобразования в электроэнергию.  [c.29]

Когда трудом поколений изобретателей были созданы удачные конструкции электрических генераторов, осталось только найти способ их вращения, чтобы механическая энергия преобразовывалась в электрическую. Понадобилось создать двигатель, способный сразу же, без промежуточных устройств, приводить во вращение с большим числом оборотов ротор генератора.  [c.139]

Сигнал на разгон и торможение ведомого двигателя снимается с динамического моста ведущего двигателя. Э.д.с., наводимая в роторе генератора для ненасыщенной части характеристики, изменяется пропорционально току (или напряжению) обмотки возбуждения генератора.[c.112]


Применение изложенной выше методики рассмотрим на примере турбогенератора с трехопорным ротором, имеющим раму длиной порядка 5,5 м. Масса ротора генератора 2,5 т, турбины — 1,1 т, частота вращения ротора 3000 об/мин. Рама закрепляется на фундаменте с помощью резинометаллических амортизаторов, обеспечивающих минимальную собственную частоту системы примерно 20 Гц.  [c.116]

Определялись уровни колебаний ротора и рамы при возбуждении небалансом ротора генератора, приложенном в точках 4 ж 5, или ротора турбины, приложенном в точке 11.  [c.117]

При возбуждении колебаний небалансом ротора турбины, расположенном в точке 11, резонансные явления проявляются слабо (рис. 53). Уровни колебаний точки 4 ротора генератора  [c.118]

Распределение амплитуд перемещений существенно зависит от малых разностей реакций, что влияет на точность вычислений и нестабильность вибраций во времени вследствие небольших изменений толщины масляной пленки подшипников при различных пусках и колебаниях температуры. Кососимметричное расположение небалансов на роторе генератора или турбины вызывает значительно меньшие уровни вибраций.  [c.121]

Нечувствительные скорости существуют как для пары симметричных, так и для пары кососимметричных грузов при расположении плоскостей уравновешивания близко к опорам. Например, из фиг. 6. 21 видно, что при = 0,1/ величина необходимых для устранения второй гармоники неуравновешенности кососимметричных грузов резко возрастает вблизи скорости Yi 5,4 (Y2 1,35), так как здесь значение коэффициента (16 — Y ) X X (Kf + К2) проходит через нуль. В этом случае ротор нечувствителен к кососимметричным грузам. Приведенный выше пример с ротором генератора ТВ-100-2 подтверждает это положение, причем и область нечувствительных скоростей этого ротора (у , 1,4- -1,5) лежит близко к теоретическому значению Y 2 = >35. Некоторое различие в этих значениях объясняется тем, что ротор генератора имеет переменное сечение, а здесь рассматривались роторы постоянного сечения.[c.236]

Л р-т — уклон шеек ротора турбины при его горизонтальном положении. Уклон задней шейки ротора генератора ба = 26 Ци-  [c.198]

Ротор турбины устанавливают с подъемом вперед (фиг. 18,в). Здесь 6] = 26 р-т + 6г. Задняя шейка ротора генератора будет иметь уклон 6а = бг — 26 р. с направлением в сторону возбуди-  [c.198]

После предварительного закрепления фундаментных болтов ставят корпусы подшипников генератора и возбудителя. Под корпусы заднего подшипника укладывают изоляционные листы (фибра, бакелит, текстолит и т. п.) толщиной 3—5 мм и прокладки из листовой стали толщиной 2—3 мм. Из-под стойки подшипника изоляцию выпускают во все стороны на 15—20 мм. После этого проверяют по струне и расточкам центровку корпусов подшипников с допуском + 0,2 мм. Затем устанавливают на место нижние вкладыши подшипников генератора и возбудителя, в них укладывают ротор генератора и якорь возбудителя и проверяют индикатором правильность установки валов. Вал ротора генератора проверяют на консолях и возле бочки в шейках газовых уплотнений крышек статора. Допуск на биение для роторов, делающих 3000 об/мин, не более 0,06—0,08 мм, а при 1500 об/мин не более 0,1—0,12 мм. Результаты проверки заносят в формуляр.  [c.237]

После окончания центровки ротор генератора и якорь возбудителя удаляют для чистки и обдувки сжатым воздухом и на фундаментную плиту ставят статор генератора со снятыми лобовыми  [c.237]

Заводка ротора генератора с удлинителем вала, поставляемым заводом, показана на фиг. 1.  [c.238]

Роторы генераторов мощностью 50 000 кет и выше заводят в статоры при помощи специальных тележек, поставляемых заво-дом-изготовителем. Тележки закрепляют на валу ротора таким образом, что их ролики могут кататься по стальным листам, уложенным внутри статора (см. фиг. 6 в гл. II).  [c.238]

При окончательной установке статора генератора необходимо учесть, что ротор удлиняется во время работы вследствие нагрева примерно на 1 жм на каждый метр его длины. Если муфта жесткая, то следует учесть осевое перемещение ротора генератора примерно 2 мм на каждый цилиндр вследствие удлинения ротора. В связи с этим зазор между торцами вкладышей подшипников и галтелями шеек у генератора со стороны турбины принимают равным 3—4 мм, а со стороны возбудителя — сумме удлинений роторов плюс 1—2 мм.  [c.238]


Заземление обмотки ротора генератора  [c.298]

Загрязнение вентиляционных каналов ротора генератора  [c.298]

Тепловая электроетавция. Более 90% используемой человечеством энергии получается за счет сжигания угля, нефти, газа. Наиболее удобной для распределения между потребителями является электрическая энергия переменного тока. Для преобразования энергии химического горючего в электроэнергию используются тепловые электростанции. На тепловой электростанции освобождаемая при сжигании топлива энергия расходуется на нагревание воды, превращение ее в пар и нагревание пара. Струя пара высокого давления направляется на лопатки ротора паровой турбины и заставляет его вращаться. Вращающийся ротор турбины приводит во вращение ротор генератора электрического тока. Генератор переменного тока осуществляет превращение механической энергии в энергию электрического тока.  [c.238]

Преобразование энер1вв переменного тока. При использовании переменного тока преобразования энергии не заканчиваются превращением механической энергии вращающегося ротора генератора в энергию электромагнитных колебаний переменного тока.  [c.238]

Литые нековкие — магнитные системы измерительных приборов и дистанционных компасов, успокоители, статоры исполнительных двигателей, роторы тахогенера-торов, поляризующие магниты реле, роторы генераторов.  [c.211]

В генераторе предусмотрено водяное охлаждение обмоток ротора (приоритет СССР), что позволило уменьшить размеры и массу генератора. Подвод воды к ротору генератора и масла к рабочему колесу осуществлен через водомасло-приемник 2, установленный на конце вала генератора. Между валом и капсулой у рабочего колеса установлены рабочие и ремонтные уплотнения 9.  [c.51]

Вал 2 турбины цельнокованый, из стали 40ГС, присоединен болтами непосредственно к фланцу ротора генератора, выполнен с воротником в месте расположения подшипника. Подшипник 3 турбины сегментного типа с жидкой масляной смазкой установлен на кожухе турбины. Охлаждение масла происходит в камерах кожуха. Подробности конструкции видны из рисунка.  [c.55]

Механизмы поворота лопастей с сервомоторами, вынесенными из корпуса рабочего колеса, применяют за рубежом. Сервомотор располагают либо между фланцами валов турбины и генератора, либо в роторе генератора (см. рис. П.5). При этом шток сервомотора получается длинным и суммарная масса деталей механизма поворотг. увеличивается, а конструкция в общем усложняется. Кроме того, длинный шток требует установки опор внутри вала. При размещении сервомотора между фланцами вала последние получаются сильно развитыми. Размещение сервомотора в роторе генератора еще более удлиняет шток. В СССР эта конструкция не применялась.  [c.153]

Вал гидроагрегата передает вращающий момент от рабочего колеса турбины ротору генератора и осевую силу на пяту агрегата. Основные размерные характеристики вала диамегр вала диаметр фланцев диаметр отверстия вала 4 , длина вала / — определяют условия и возможность его производства. Выбор способа изго овления заготовок (формообразования) вала имеет большое экономическое значание, так как стоимость вала существенно влияет на стоимость агрегата. Конструкция вала зависит от системы турбины, ее установки, конструкции рабочего колеса и подшипника.  [c.193]

Вал представляет собой упругую деталь, объединяющую рабочее колеса и ротор генератора, и должен обеспечивать статическую и динамическую прочность агрегата при всех режимах работы. Прочность вала может быть достаточной в рабочих, переходных и разгонном режимах, если собственная частота колебаний ротора в этих режимах не будет совпадать или не окажется близкой к частоте вынужденных ко/ебаний. Расчет на колебания позволяет определить собственные частоты и, соЕоставив их с вынужденными, оценить, как далеко от резонансных явлений находится система.  [c.201]

Крутильные колебания вала возникают из-за наличия неуравновешенных маховых масс и моментов на роторе генератора, гидродинамических сил и масс на рабочем колесе и нарастают вплоть до резонансных при совпадении собственной частоты колебаний системы с частотой вращения вала или других вынужденных частот. Baj[ является упругим звеном, связывающим ротор генератора с рабочим колесом, и, как при поперечных колебаниях, в значительной мере опредёляет собственную частоту этой системы.  [c.203]

Строят схему нагружения вала определяют его геометрические характеристики массы ротора генератора /Ирот, рабочего колеса /Яр. и вала  [c.205]

Дело в том, что повышение мопгности электрогенератора ограничивается сильным нагревом обмоток. Тепло, выделяющееся в медных проводах генератора, надо отводить, а это очень затрудняется их электрической изоляцией. Для лучшего отвода тепла и уменьшения так называемых вентиляционных потерь — потерь энергии па сопротивление воздуха быстро вращающемуся ротору — роторы генераторов крупных машин помещают в водородную атмосферу. Являясь хорошим проводником тепла, водород быстро охлаждает верхние поверхности обмоток ротора. Но и при этих предосторожностях нагрев проводов обмоток очень значителен.  [c.48]

При частоте 30 Гц ротор генератора и рама колеблются в противофазе. На рис. 49 действительная и мнимая части амплитуды колебаний ротора и рамы изображены соответственно сплошной и штриховой линиями и отложены с учетом знаков от их неде-формированного состояния, принятого за начало отсчета. Разность перемещений правой (кривые а, 6) и левой (в) балок указывает на закрутку концов рамы. Амплитуды перемещений ротора в вертикальном (кривые г, д) и горизонтальном (е, ж) направлениях примерно одинаковые.  [c.117]


При уравновешивании реальных роторов иногда бывают случаи, когда в каком-то определенном диапазоне скоростей ротор очень слабо реагирует на действие установленных на нем довольно значительных уравновешивающих грузов. Например, роторы генераторов ТВ-100-2 на рабочей скорости щ = 3000 об/мин) при Y2 = 1,4 -н 1,5 ( 2 = 1900 ч-2100 обЫин) мало чувствительны к кососимметричным грузам, установленным в торцовых сечениях бочки ротора (/ = 0,1/). Встречаются и другие роторы, нечувствительные на некоторых скоростях к установленным в торцовых сечениях грузам. Уравновесить их на этих скоростях невозможно поэтому обычно их уравновешивают на другой скорости, а при проектировании новых роторов стремятся обеспечить достаточную отстройку их рабочей скорости от нечувствительности .  [c.235]

Этот вывод подтверждается экспериментальной амплитудно-частотной характеристикой вибрации опор ротора генератора Т2-50-2 (фиг. 6. 32), приведенной в статье С. И. Микуниса [23].  [c.238]

Очень малая чувствительность к симметричным грузам и связанная с этим сложность балансировки на рабочей скорости роторов генератора ТВ-50-2 и однотипных с ними Т2-50-2 хорошо известны [1, 6, 7]. Очень близко к рабочей скорости располагается, по нашим расчетам, первая нечувствительная скорость роторов генераторов ТВВ-165-2, ТГВ-800-4 и ТГВ-1000-4. У последнего типа генератора дело еш,е больше осложняется тем, что и отстройка его от первой критической скорости составляет менее 12%. Для этого турбогенератора, по нашему мнению, необходимо выполнить уточненные расчеты первых критической и нечувствительной скоростей и, если результаты предварительных расчетов подтвердятся, следует внести в конструкцию ротора соответствующие изменения с тем, чтобы обеспечить достаточную отстройку от этих скоростей. В противном случае балансировка этих роторов симметричными грузами в торц ах бочки будет практически невозможна.  [c.95]

На фиг. 5, а и б показаны приспособления для выемки диафрагм, а на фиг. 6 — приспособление в виде специальной тележки для заводки ротора генератора в статор (для генераторов мощностью 50 мзвт и выше). Обычно такие тележки доставляются заводом-изготовителем генератора. Тележка закрепляется на валу ротора таким образом, что ролики могут кататься по стальным листам, уложенным внутри статора генератора.  [c.169]

В машинном зале все оборудование разгружают с помощью мостового крана и размещают с учетом технологии монтажа. На монтажной площадке в конденсационном помещении рекомендуется размещать цилиндры турбины, громоздкие детали конденеатора, сам конденсатор, а также статор и ротор генератора.  [c.179]

Установка двухцилиндровых турбин. За основу установки при-яимают р. н. д. и соответственно ц. н. д. Ротор высокого давления н ротор генератора прицентровывают к р.н.д. (фиг. 19). Ц. в. д. врицентровывают к ц. н. д. в соответствии с уклоном р. в. д.  [c.198]

При перемещениях ротор генератора можно стропить только за бочку между бандажными кольцами, подкладывая деревянные подкладки под трос. Строповка ротора за бандажные кольца и шейки вала воспрещается. При укладке ротора на деревянные брусья или козлы запрещается опирать его на бандажные кольца. Затем производится центровка по полумуфтам ротора турбины и генератора и прицентровка якоря возбудителя. Центровка достигается изменением положения корпусов подшипников.  [c.237]

Возбудитель монтируют в виде блока, для чего полностью собирают его на верхней раме и прицентровывают по полумуфте к ротору генератора путем изменения подкладок под фундаментной рамой возбудителя и сдвигом рамы в необходимом направлении.  [c.240]

Небаланс ротора генератора вследствие смещения обмоток или деформации бандажей в случае механической исправности обмоток и бандалей произвести динамическую балансировку ротора при номинальном числе оборотов  [c.299]


XXV. Охрана труда при выполнении работ на генераторахи синхронных компенсаторах 

25.1. Вращающийся невозбужденный генератор с отключенным устройством автомата гашения поля (далее — АГП) должен рассматриваться как находящийся под напряжением (за исключением случая вращения от валоповоротного устройства).

25.2. При испытаниях генератора установка и снятие специальных закороток на участках его схемы или схемы блока должны выполняться после их заземления. Установку и снятие специальных закороток при рабочей частоте вращения разрешается выполнять с использованием средств защиты после снятия возбуждения генератора и отключения АГП.

25.3. На каждой электростанции должны быть утверждены схемы заземления генератора, учитывающие тип системы возбуждения генератора, схемы РУ генераторного напряжения, схему блока и схему нейтрали генератора. Должна быть исключена подача напряжения в обмотку ротора от схемы начального возбуждения.

25.4. В цепях статора вращающегося невозбужденного генератора с отключенным устройством АГП допускается измерять значение остаточного напряжения, определять порядок чередования фаз.

Эти работы должны выполнять работники электролабораторий, наладочных организаций с применением электрозащитных средств в соответствии с нарядом или распоряжением под наблюдением оперативного персонала.

25.5. Измерения напряжения на валу и сопротивления изоляции ротора работающего генератора разрешается выполнять по распоряжению двум работникам, имеющим группы IV и III.

25.6. Обточку и шлифовку контактных колец ротора, шлифовку коллектора возбудителя выведенного в ремонт генератора имеет право выполнять по распоряжению работник из числа неэлектротехнического персонала под наблюдением работника, имеющего группу III. При работе следует пользоваться средствами защиты лица и глаз от механических воздействий.

25.7. Обслуживать щеточный аппарат на работающем генераторе допускается единолично по распоряжению обученному для этой цели работнику, имеющему группу III, если при этом исключена вероятность появления однополюсного замыкания на землю или междуполюсного короткого замыкания. При этом необходимо соблюдать следующие меры предосторожности:

работать в защитной каске с использованием средств защиты лица и глаз, застегнутой спецодежде, остерегаясь захвата ее вращающимися частями машины;

пользоваться диэлектрическими галошами, коврами или диэлектрическими перчатками, если есть вероятность случайного прикосновения участками тела к заземленным частям;

не касаться руками одновременно токоведущих частей двух полюсов или токоведущих и заземленных частей.

Открыть полный текст документа

Устройство генератора автомобиля

Категория:

   Электрооборудование автомобилей

Публикация:

   Устройство генератора автомобиля

Читать далее:



Устройство генератора автомобиля

Основными узлами генератора являются ротор, статор, выпрямительное устройство и щеточный узел.

Ротор генератора содержит обмотку возбуждения. Она выполнена в виде круглой катушки, намотанной на стальную втулку. Катушка установлена на валу ротора и зажата между двумя клювообразными половинами сердечника ротора. Половины напрессованы на вал ротора. Такой сердечник называют сердечником с явно выраженными полюсами. Клювы одной половины образуют северный полюс магнита, а клювы другой половины — южный. Концы обмотки возбуждения выведены на контактные кольца, по которым при вращении ротора скользят щетки щеткодержателя. Обычно одна из щеток соединяется с выводом, через который подается питание обмотки возбуждения, а другая щетка соединена с корпусом генератора. Есть генераторы, у которых обе щетки соединены с изолированными выводами.

Рекламные предложения на основе ваших интересов:

Рис. 1. Основные узлы генератора

Статор генератора состоит из сердечника, набираемого из изолированных листов магнитомягкой электротехнической стали, и обмотки. Внутренняя поверхность сердечника статора имеет равномерно расположенные по окружности зубцы. Количество пазов кратно трем. В пазах между зубцами укладываются витки катушек обмотки статора. Изоляция катушек от сердечника осуществляется электротехническим картоном и пропиткой статора в сборе изоляционным лаком. Каждая из трех фаз обмотки статора содержит одинаковое число последовательно соединенных катушек. Этим объясняется кратность числа пазов и катушек трем. Три вывода обмотки статора присоединяются к выпрямительному устройству.

Магнитная цепь генератора образуется стальной втулкой, на которой расположена обмотка возбуждения, двумя половинами сердечника ротора, клювы которых образуют полюсные наконечники, и зубцами сердечника статора.

Обмотка возбуждения генератора получает питание от генератора или аккумуляторной батареи. Небольшой постоянный ток, поступающий в обмотку возбуждения через щетки и контактные кольца, вызывает появление магнитного потока (линии 18). Магнитный поток в осевом направлении проходит через втулку, затем в радиальном направлении по левой половине сердечника ротора и его полюсному наконечнику (клюву) и через воздушный зазор в сердечник статора. Выйдя из сердечника статора, магнитный поток через воздушный зазор и полюсный наконечник правой половины сердечника ротора замыкается через втулку. Так как полюсные наконечники левой и правой половин сердечника ротора смещены в пространстве, происходит соответствующее смещение магнитного потока. Поэтому, входя в статор через один зубец, из статора магнитный поток выходит через другой зубец. При этом он пересекает катушки статора. При вращении ротора под каждым зубцом происходит постоянное чередование северного и южного полюсов ротора, приводящее к изменению пересекающего катушки статора магнитного потока по величине и направлению. В результате в фазных обмотках наводится переменная э. д. е., имеющая форму синусоиды, которая выпрямительным устройством преобразуется в постоянную э. д. с.

Выпрямительное устройство современных генераторов типа ВПВ состоит из шины, в которую запрессованы диоды обратной проводимости, и шины, в которую запрессованы диоды прямой проводимости. У диодов прямой проводимости отрицательный вывод, а у диодов обратной проводимости положительный вывод припаиваются непосредственно к корпусу диода. Поэтому шина служит положительным, а шина — отрицательным выводом выпрямительного устройства и, следовательно, генератора. Положительный вывод каждого отрицательного диода соединяется с отрицательным выводом одного из положительных диодов и выводом одной фазы статора.

Рис. 2. Генератор 32.3701

Конструктивные особенности автомобильных генераторов рассмотрим на примере некоторых типичных конструкций.

Генератор 32.3701 имеет наиболее широко применяемое конструктивное исполнение. Он представляет собой модификацию часто встречающихся в эксплуатации генераторов типа Г250, аналогично с которыми устроены также генераторы Г266 и Г271.

Генератор 32.3701 является синхронной электрической машиной со встроенным выпрямительным блоком. На генераторе имеются следующие выводы: « + » (поз. 22) —для соединения с аккумуляторной батареей и потребителями, 111 —для соединения с регулятором напряжения, «—» (поз. 20) — для соединения с корпусом регулятора напряжения.

Ротор генератора состоит из катушки возбуждения, намотанной на картонный каркас, надетый на стальную втулку. С торцов катушка зажата двумя клювообразными полюсными наконечниками, которые и образуют 12-полюсную магнитную систему. Концы катушки возбуждения припаяны к двум изолированным от вала контактным кольцам. Втулка, полюсные наконечники и контактные кольца напрессованы на вал. Вал вращается в двух шариковых подшипниках закрытого типа, установленных в крышке со стороны контактных колец и крышке со стороны привода. Подшипник имеет большие размеры по сравнению с подшипником, так как он воспринимает большие радиальные нагрузки от шкива, на который давит натянутый ремень передачи. При сборке подшипников их заполняют смазкой, и в процессе эксплуатации они в смазке не нуждаются.

Крышки отливаются из алюминиевого сплава. Они имеют вентиляционные окна. Крышка со стороны контактных колец имеет лапу для крепления генератора на двигателе. В ней установлены пластмассовый щеткодержатель 8 и выпрямительный блок (БПВ 4-60-02). Для предотвращения от проворачивания наружной обоймы шарикоподшипника в выточке крышки установлено резиновое уплотнительное кольцо.

Щеткодержатель крепится к крышке двумя болтами. Две графитовые щетки, установленные в направляющих отверстиях щеткодержателя, пружинами прижимаются к контактным кольцам. Одна щетка соединена с изолированным штекерным выводом Ш, другая — с корпусом генератора.

Крышка имеет две лапы. Одна, нижняя, как и лапа крышки, предназначена для крепления генератора на двигателе. Другая, верхняя, имеет резьбовое отверстие и предназначена для крепления натяжной планки.

Статор генератора состоит из сердечника, набранного из отдельных изолированных друг от друга пластин электрической стали и соединенных в пакет сваркой. Сердечник статора установлен между крышками и стянут вместе с ними четырьмя винтами. На внутренней поверхности сердечника имеется 36 зубцов, в пазах между которыми уложена трехфазная обмотка статора, соединенная по схеме «двойная звезда». Каждая фаза представляет собой две параллельно включенные цепи с тремя последовательно соединенными катушками. Свободные концы фаз обмотки статора соединены с тремя выводами выпрямительного блока. Шина диодов прямой проводимости соединена с выводом « + » (поз. 22) генератора, а шина диодов обратной проводимости — с корпусом генератора.

Шкив и вентилятор установлены на валу генератора на шпонке и закреплены гайкой с пружинной шайбой.

Генератор Г286А (Г286В) представляет собой трехфазную синхронную машину со встроенными выпрямительным блоком и интегральным регулятором напряжения (ИРН) Я112А. По сути дела это генераторная установка.

Сердечник статора, закрепленный между крышками тремя болтами, имеет равномерно расположенных пазов. Обмотка статора соединена по схеме «двойная звезда». Обмотка возбуждения расположена внутри двух клювообразных половин сердечника ротора. Выводы фазных обмоток соединены с выпрямительным блоком (БПВ 8-100-02). Выпрямительный блок имеет такую же конструкцию, как и у генератора 32.3701.

Рис. 3. Генератор Г286А

Отличительной особенностью генератора Г286А является также взаимное расположение контактных колец и подшипника в крышке.

Так как регулятор напряжения включается в цепь обмотки возбуждения, его встраивают в щеткодержатель. Вместе они образуют единый съемный блок 6. Крепится блок винтами к основанию щеткодержателя, который установлен на крышке. Болт служит выводом обмотки возбуждения и регулятора напряжения.

Блок щеткодержателя и регулятора напряжения состоит из щеткодержателя, интегрального регулятора и металлического теплоотвода — крышки.

Регулятор состоит из медного основания, на котором размещены элементы схемы, пластмассовой крышки для защиты элементов схемы от механических повреждений и жестких шинных выводов. Медное основание является отрицательным выводом регулятора. Оба вывода В регулятора соединены накоротко внутри. Один из них является основным, другой — дублирующим. При установке на щеткодержатель выводы регулятора напряжения ложатся на шины. К шинам приварены токопроводящие канатики, соединяющие их с щетками. Сверху на регулятор напряжения устанавливается крышка, и весь блок скрепляется винтами. Таким образом, электрическое соединение шин регулятора и щеткодержателя осуществляется прижимным контактом.

Генератор 37. 3701 (рис. 4) — генераторная установка, представляет собой синхронную машину переменного тока с встроенным выпрямительным блоком БПВ 11-60-02 и регулятором напряжения 17.3702.

Статор генератора имеет 36 равномерно расположенных пазов, в которых размещена трехфазная обмотка, соединенная по схеме «двойная звезда». Каждая фаза состоит из двух параллельно соединенных ветвей, в каждой из которых шесть непрерывно намотанных катушек.

Ротор не имеет особых конструктивных отличительных особенностей.

Выпрямительный блок, вмонтированный в крышку, отличается от традиционных тем, что в него вмонтированы три дополнительных диода прямой проводимости, через которые осуществляется питание обмотки возбуждения от генератора. Выпрямленное напряжение с дополнительных диодов подается на штекерный вывод, обозначаемый на схемах вывод «61», и проводником на штекерный вывод регулятора напряжения, который имеет маркировку В. Вывод В регулятора через контакт связан также с одной из щеток. Не показанный на рисунке вывод Ш регулятора контактирует с другой щеткой. Регулятор напряжения имеет еще вывод Б, который проводником соединен с положительным выводом генератора, обозначаемым на схемах «30».

Рис. 4. Генератор 37.3701: 1 — крышка со стороны контактных колец; 2 — выпрямительный блок; 3— вентиль выпрямительного блока; 4 — винт крепления выпрямительного блока; 5 — контактное кольцо; 6 — задний шарикоподшипник; 7 — конденсатор; 8 — вал ротора; 9 — вывод «30» генератора; 10 — вывод «61» генератора; 11 — вывод «В» регулятора напряжения; 12 — регулятор напряжения; 13 — щетка; 14 — шпилька крепления генератора к натяжной планке; 15 — шкив с вентилятором; 16 и 23 — полюсные наконечники ротора; 17 — дистанционная втулка; 18 — передний шарикоподшипник; 19 — крышка со стороны привода; 20 — обмотка ротора; 21 — статор; 22 — обмотка статора; 24 — буферная втулка; 25 — втулка; 26 — поджимная втулка

На генераторе установлен конденсатор емкостью 2,2 мкФ. Он подключен между корпусом и положительным выводом генератора. Конденсатор служит для защиты электронного оборудования автомобиля от импульсов напряжения в системе зажигания и снижения уровня помех радиоприему.

Характеристики генераторов. На автомобилях генераторы работают в условиях постоянно изменяющейся частоты вращения и тока нагрузки. При этом должно обеспечиваться в определенных пределах постоянство напряжения генератора.

Генераторы характеризуются прежде всего номинальными данными: напряжением, током, мощностью.

Номинальное напряжение генераторов, работающих в схемах электрооборудования с номинальным напряжением 12В, принято 14В, а для 24-вольтовых схем — 28В. Номинальный ток генератора — это максимальный ток нагрузки, который может отдать генератор при частоте вращения ротора 5000 об/мин и номинальном напряжении. Значения номинального напряжения и тока наносятся на крышке генератора. Номинальная мощность определяется как произведение номинального напряжения на номинальный ток.

Энергетические возможности генераторов характеризуются токоскоростной характеристикой. Это зависимость тока, отдаваемого генератором, от частоты вращения ротора (рис. 5). Характеристика снимается при номинальном напряжении генератора и постоянном, обычно номинальном, напряжении на обмотке возбуждения.

Эта характеристика чрезвычайно важна, так как она показывает возможности генератора при различной частоте вращения ротора.

Из рис. 5 видно, что без нагрузки напряжение генератора достигает номинальной величины при частоте вращения «о, которая у различных генераторов колеблется от 900 до 1200 об/мин.

Рис. 5. Токоскоростная характеристика генераторов

Якорем в синхронной машине является статор. При протекании по обмотке статора тока возникает магнитное поле статора, которое направлено против основного магнитного поля ротора и размагничивает его. При увеличении тока нагрузки возрастает ток обмотки статора, усиливается его магнитное поле, что приводит к увеличению размагничивания магнитного поля ротора. В результате в катушках статора наводится меньшая по величине э. д. с. и ограничивается максимальная сила тока, отдаваемого генератором.

Полное сопротивление Z обмотки статора, по которой протекает переменный ток, складывается из активного R и индуктивного сопротивлений:

Активное сопротивление обмотки статора зависит только от ее температуры. С увеличением температуры оно повышается. Поэтому с увеличением температуры ток отдачи генератора несколько понижается.

Начальная частота вращения нормируется техническими условиями на конкретные типы генераторов. Задается она для двух состояний генератора: холодного и горячего. Температура генератора в холодном состоянии должна быть в пределах 15—35 °С. Горячее состояние соответствует установившейся температуре генератора, работающего в режиме номинальной мощности.

Указанные характеристики могут задаваться для двух вариантов питания обмотки возбуждения: при питании обмотки возбуждения собственно от генератора (самовозбуждение) и при питании от постороннего источника питания (независимое возбуждение). Ток, отдаваемый генератором при самовозбуждении, будет меньше тока, отдаваемого генератором при независимом возбуждении, так как в первом случае часть его идет на питание обмотки возбуждения.

Характеристики начала отдачи тока генераторами без встроенных регуляторов напряжения задаются при напряжении питания обмотки возбуждения, равном номинальному, как при независимом возбуждении, так и при самовозбуждении. Наличие встроенного регулятора напряжения обусловливает необходимость подачи такого напряжения, при котором регулятор еще не вступает в работу. Поэтому питание обмотки возбуждения генераторов с встроенными регуляторами напряжения осуществляется при 13В и характеристики генераторов с самовозбуждением задаются также при напряжении на их выводах 13В.

Рекламные предложения:


Читать далее: Регулирование напряжения генератора

Категория: — Электрооборудование автомобилей

Главная → Справочник → Статьи → Форум


Генератор с прямым приводом на постоянных магнитах с внешним ротором | Ветряная турбина с прямым приводом

Двигатель с внешним ротором отличается тем, что статор закреплен в среднем положении вала, а ротор вращается по периферии статора, который также представляет собой магнитную структуру с радиальным воздушным зазором. По сравнению с внутренней структурой ротора, ротор и статор заменяют друг друга своим положением.Фигура. 1 — вид сверху генератора с внешним ротором. Статор называется внутренним статором внутри двигателя, а ротор находится вне двигателя, который называется внешним ротором.

Рисунок 1 Вид сверху генератора с внешним ротором

Ниже представлена ​​анимация плоскости генератора с внешним ротором.

Анимация плоскости генератора с внешним ротором

Рисунок 2 — частичный вид статора и ротора.Наружная окружность внутреннего сердечника статора равномерно распределена с множеством пазов для вставки обмоток. Внутренняя окружность внешнего ротора снабжена полюсами постоянных магнитов. И направление магнитного потока показано на рисунке. Когда ротор вращается, обмотка разрезает магнитное поле, чтобы навести потенциал.

Рисунок 2 Магнитная цепь внешней роторной электрической машины

Внешний ротор с прямым приводом Ветряная турбина с постоянным магнитом

Состав и конструкция ветряной турбины с постоянным магнитом и внешним ротором с прямым приводом описаны ниже.Структура представлена ​​моделью генератора с внешним ротором на постоянных магнитах. Левый рисунок на Рисунке 3 представляет собой схему сердечника внутреннего статора. Сердечник статора покрыт пластиной из кремнистой стали с хорошей магнитной проницаемостью. На внешней окружности сердечника статора много прорезей, в них заделаны обмотки генератора. А обмотки распределяются по трехфазному закону распределения (рис. 3 справа).

Как правило, внешний ротор большого ветряного генератора с прямым приводом имеет от 30 до 40 пар магнитных полюсов, а количество пазов статора составляет от 180 до 240.Чтобы наглядно показать конструкцию внутреннего сердечника статора, количество пазов для катушек в этой модели намного меньше, чем в реальном генераторе с прямым приводом.

Рисунок 3 Сердечник и обмотка статора в генераторе с прямым приводом

Сердечник статора установлен на кронштейне статора. Рама статора имеет фланец, прикрепленный к раме гондолы на одном конце, а внешний вал ротора также является главным валом ветряной турбины на другом конце вала статора. Главный вал выдерживает вес и силу ветра всего ветра. ротор и внешний ротор, а главный вал и фланец имеют высокую прочность (рис. 4).

Рис.4 Структура внутреннего статора генератора с прямым приводом

На фиг. 5 показано поперечное сечение конструкции внешнего ротора, показывающее ее структуру в двух направлениях. Внешний ротор похож на втулку цилиндра с обратной стороны статора, сделанную из ферромагнитного материала. Внутренняя окружность «бочки» закреплена магнитным полюсом из постоянного магнита.«Бочка» — это ярмо магнита ротора. Одним из преимуществ является то, что магнитный полюс относительно легко фиксируется, не падает под действием центробежной силы, а ярмо внешнего ротора закреплено на втулке ротора.

Рис.5 Конструкция внешнего ротора генератора с прямым приводом

Внешний ротор установлен на главном валу генератора и образует внешний ротор генератора. На рисунке 6 структура показана с двух сторон. Втулка внешнего ротора не только фиксирует внешний ротор, но также устанавливает весь ветряной ротор и подвергается большой нагрузке. Таким образом, он установлен на главном валу генератора через два больших подшипника.

Рис.6 Конструкция генератора с внешним ротором и прямым приводом

Внешний ротор с прямым приводом Ветряная турбина с постоянным магнитом

При установке ветряной турбины гондола сначала поднимается на вершину башни.Каркас закреплен в гондоле. Фланец генератора с прямым приводом установлен на каркасе (рис. 7).

Рис.7 Рама каркаса гондолы

Генератор поднят к гондоле. Концевой фланец гондолы генератора крепится к фланцу рамы (рисунок 8).

Рис.8 Установка генератора с прямым приводом

Лопасть установлена ​​на ступице и образует ветряной ротор. Ротор ветра поднимается сбоку от генератора. Высокопрочный болт используется для крепления фланца ступицы ротора и фланца соединительной ступицы внешнего ротора. И ветровой ротор, и внешний ротор могут вращаться синхронно. На внешней стороне ступицы находится спиннер, а в гондоле также есть электрический шкаф, система управления, система охлаждения двигателя, система измерения ветра и так далее.

На рис. 9 представлена ​​структурная схема модели ветряной турбины с постоянным магнитом и прямым приводом с внешним ротором.

Рис. 9 Ветряк с прямым приводом с внешним ротором и постоянным магнитом

Давайте посмотрим на анимацию ветряной турбины с постоянным магнитом с внешним ротором и прямым приводом. Понятно, как внешний ротор работает синхронно с ротором.

Внешний ротор с постоянным магнитом, прямой привод, анимация ветряной турбины

Ветрогенератор с постоянным магнитом с внутренним ротором и прямым приводом | Ветряная турбина с прямым приводом

Внутренний ротор Ветряная турбина с постоянным магнитом и прямым приводом

Базовая конструкция ветрогенератора с постоянным магнитом и прямым приводом с внутренним ротором такая же, как и у обычного многополюсного генератора. Принимается структура полюсов с несколькими выступами, и направление магнитного потока в воздушном зазоре перпендикулярно валу двигателя (радиальный магнитный поток). По сравнению с обычным генератором он должен быть легче по конструкции. Фиг.1 — частичный вид статора и ротора многополюсной конструкции внутреннего ротора с указанием направления магнитного потока.

Рисунок 1 Магнитная цепь генератора с внутренним ротором

Структура и состав модели ветрогенератора с постоянным магнитом и прямым приводом с внутренним ротором представлены ниже.Сначала вводится генераторная часть.

Из-за низкой скорости генератора больших ветряных турбин количество полюсов генератора составляет около 40 пар и более. Чтобы ясно показать структуру генератора, количество полюсов и пазов катушек модели двигателя меньше, чем у реального генератора с прямым приводом.

Сердечник статора генератора изготовлен из листов кремнистой стали с хорошей магнитной проницаемостью, а множество пазов равномерно распределены по внутренней окружности железного сердечника (рис.осталось 2). Обмотки статора встроены в пазы статора для образования трехфазной обмотки, и каждая фазная обмотка состоит из множества катушек, расположенных в соответствии с определенным правилом, как показано на рисунке 2 справа

Рисунок 2 Сердечник и обмотка статора

Статор (включая обмотку) собран в корпусе статора. Кожух имеет главный вал, ротор и фланец неподвижного генератора.Рисунок 3 — это вид с двух сторон.

Рисунок 3 Статор, установленный в кожухе

Ротор представляет собой многополюсную конструкцию, и множество полюсов постоянных магнитов собраны на внешней окружности ярма ротора, образуя многоярусный ротор. Внешние поверхности соседних постоянных магнитов имеют противоположную полярность, а направление магнитного потока такое, как показано на рис.1. Бугель ротора прикреплен к опорному валу ротора с помощью кронштейна ротора, а на фиг.4 показан вид ротора с двух сторон.

Рис.4 Ярусный ротор с постоянными магнитами

Подшипник собирается на главном валу корпуса статора, а ротор — на подшипнике. Воздушный зазор между ротором и статором как можно меньше, но может вращаться, как показано в разрезе на рис.5. Когда ротор вращается, обмотка статора разрезает магнитное поле, создавая потенциал.

Рис.5 Генератор с прямым приводом в разрезе

Основные компоненты ветряной турбины с прямым приводом с внутренним ротором описаны ниже. Основным процессом монтажа ветряной турбины с прямым приводом является установка башни, гондолы, генератора и ступицы, подъема, подъема и подъемного ротора.

Гондола установлена ​​наверху башни, и в гондоле есть основание, поддерживающее весь блок. Нижнее шасси основания в гондоле оснащено двигателями рыскания, а верхняя часть основания имеет фланцевую пластину для фиксации статора генератора, как показано на рисунке 6.

В гондоле находится главный шкаф управления, система охлаждения и другое оборудование, а наверху гондолы находится устройство для измерения ветра.

Рис.6 База и оборудование в гондоле

Подвесьте генератор с постоянными магнитами с внутренним ротором рядом с гондолой и прикрепите фланцевую пластину генератора к фланцевой пластине гондолы с помощью высокопрочных болтов. Генератор установлен, как показано на рис. 7.

Рис.7 Ветряная турбина с прямым приводом и гондола

Установите спиннер снаружи ступицы, установите три лопасти по очереди на ступицу и соберите ротор, см. Рис.8.

Рис.8 Прямой ротор ветряной турбины

Подвесьте ротор рядом с генератором с прямым приводом, закрепите фланцевую пластину генератора, которая соединяется со ступицей, и фланцевую пластину на ступице ротора высокопрочными болтами, и подъем завершен, как показано на рис. 9. Подключите все сигнальные кабели, кабели управления и трубы в гондоле, подключите силовые кабели к генераторам, и установка ветряной турбины завершена.Его можно запустить после ввода в эксплуатацию.

Рис. 9 Вид в разрезе ветряной турбины с прямым приводом с внутренним ротором

Ниже приведена анимация запуска этой ветряной турбины с постоянным магнитом и прямым приводом с внутренним ротором.

Внутренний ротор, прямой привод, постоянный магнит, ветряная турбина, анимация

Взлетно-посадочная полоса | Система снятия и установки ротора генератора | Генератор Ротор Сервис

Система снятия и установки ротора генератора

Система снятия и установки ротора генератора разработана специально для S.Т. Коттер для снятия и установки ротора (возбуждения) в генераторе электростанции. Система разработана с учетом изменяющихся размеров и труднодоступности заводского генератора. Он был разработан с несколькими конфигурируемыми решениями, которые используют гидравлику для толкания, тяги и позиционирования ротора на разных уровнях высоты.

Существующие методы снятия ротора со статора генератора очень трудозатратны; требует большого количества операторов и высокого уровня координации.Время и трудозатраты, необходимые для снятия и установки ротора, можно значительно сократить с помощью этой системы с гидравлическим приводом.

  • Основные преимущества этой системы:
  • Повышенная безопасность персонала и ротора при отключении
  • Не требуются тяжелые краны и отбойники.
  • Ротор испытан, проверен и хранится на рельсовой системе
  • во время отключения.

Ключевые компоненты системы снятия и установки ротора генератора:

Платформа

• Платформа сконструирована так, чтобы выровнять двухтактную систему с ротором.Его уникальная конструкция предназначена для оптимизации давления на грунт и устойчивости платформы при снятии ротора. Вся платформа может храниться в 20-футовом транспортном контейнере для транспортировки и хранения.

Система Push Pull

• Двухтактная система применяет гидравлическое усилие, необходимое для втягивания и проталкивания ротора в статор. Система включает в себя две тележки, тележку, блокиратор вращения, блоки жесткости ротора и силовой агрегат. Каждая тележка оснащена 4 гидроцилиндрами для подъема и опускания, 2 гидроцилиндрами для перемещения влево и вправо и 2 гидравлическими насосами.Вся двухтактная система может храниться в 20-футовом транспортном контейнере для транспортировки и хранения.

Модульная установка

• Вся система может быть собрана и разобрана с помощью только вилочного погрузчика. Бригада из 6 человек может настроить всю систему за 10–12 часов. После разборки всю систему можно хранить или отправлять в стандартном 20-футовом транспортном контейнере.

IKA R23-097853 & R23-097869 Генератор с мелким ротором-статором (6F) от Cole-Parmer

Подробнее об этом продукте

Модульная конструкция означает, что базовый блок можно легко преобразовать с помощью различных смесительных головок для достижения скорости конца до 40 м / сек.
Генераторы состоят из ротора и статора различной степени грубости. Они являются взаимозаменяемыми элементами системы и могут быть заменены в соответствии с потребностями вашего конкретного применения. Модульная конструкция означает, что базовый блок можно легко преобразовать с помощью различных смесительных головок для достижения скорости наконечника до 40 м / с.
Генераторы состоят из ротора и статора различной степени грубости. Они являются взаимозаменяемыми элементами системы и могут быть заменены в соответствии с потребностями вашего конкретного приложения.Модульная конструкция означает, что базовый блок можно легко преобразовать с помощью различных смесительных головок для достижения скорости наконечника до 40 м / сек.
Генераторы состоят из ротора и статора различной степени грубости. Они являются взаимозаменяемыми элементами системы и могут быть заменены в соответствии с потребностями вашего конкретного применения. Модульная конструкция означает, что базовый блок можно легко преобразовать с помощью различных смесительных головок для достижения скорости наконечника до 40 м / с.
Генераторы состоят из ротора и статора различной степени грубости.Они являются взаимозаменяемыми элементами системы и могут быть заменены в соответствии с потребностями вашего конкретного применения. Модульная конструкция означает, что базовый блок можно легко преобразовать с помощью различных смесительных головок для достижения скорости наконечника до 40 м / с.
Генераторы состоят из ротора и статора различной степени грубости. Они являются взаимозаменяемыми элементами системы и могут быть заменены в соответствии с потребностями вашего конкретного применения. Модульная конструкция означает, что базовый блок можно легко преобразовать с помощью различных смесительных головок для достижения скорости наконечника до 40 м / с.
Генераторы состоят из ротора и статора различной степени грубости. Они являются взаимозаменяемыми элементами системы и могут быть заменены в соответствии с потребностями вашего конкретного применения. Модульная конструкция означает, что базовый блок можно легко преобразовать с помощью различных смесительных головок для достижения скорости наконечника до 40 м / с.
Генераторы состоят из ротора и статора различной степени грубости. Они являются взаимозаменяемыми элементами системы и могут быть заменены в соответствии с потребностями вашего конкретного приложения.Модульная конструкция означает, что базовый блок можно легко преобразовать с помощью различных смесительных головок для достижения скорости наконечника до 40 м / сек.
Генераторы состоят из ротора и статора различной степени грубости. Они являются взаимозаменяемыми элементами системы и могут быть заменены в соответствии с потребностями вашего конкретного приложения.

Угловая стабильность ротора синхронных генераторов в энергосистеме

Угловая стабильность ротора:

Стабильность угла ротора — это способность взаимосвязанных синхронных машин, работающих в энергосистеме, оставаться в состоянии синхронизма.Два синхронных генератора, работающих параллельно и передающие активную мощность на нагрузку, зависят от угла ротора генератора (распределение нагрузки между генераторами переменного тока зависит от угла ротора).

Во время нормальной работы генератора магнитное поле ротора и магнитное поле статора вращаются с одинаковой скоростью, однако между магнитным полем ротора и магнитным полем статора будет угловое разделение, которое зависит от выходного электрического крутящего момента (мощности) генератора. .

Увеличение скорости первичного двигателя (скорости турбины) приведет к перемещению угла ротора в новое положение, соответствующее вращающемуся магнитному полю статора.С другой стороны, уменьшение механического крутящего момента приведет к уменьшению угла ротора относительно поля статора.

В состоянии равновесия будет равновесие между входным механическим крутящим моментом и выходным электрическим крутящим моментом каждой машины (генератора) в энергосистеме, а скорость машин останется прежней. Если равновесие нарушено, что приводит к ускорению или замедлению роторов машин.

Если один из взаимосвязанных генераторов временно движется быстрее по сравнению с другим механизмом.угол ротора машины будет увеличиваться по сравнению с медленной машиной. Это приводит к тому, что нагрузка от более быстрого генератора увеличивается, а нагрузка от медленной машины уменьшается. Это способствует уменьшению разницы скоростей между двумя генераторами, а также углового разноса между медленным и быстрым генераторами.

После определенного момента увеличение углового расстояния приведет к уменьшению передачи мощности быстрой машиной. Это еще больше увеличивает угловое разделение, а также может привести к нестабильности и нарушению синхронизма синхронных генераторов.

Части генератора постоянного тока: работа, типы и преимущества

Как и любая машина, генератор постоянного тока состоит из разных частей. Это электрический инструмент, преобразующий механическую энергию в электричество. Принцип работы, различные типы, а также плюсы и минусы будут подробно обсуждаться на Linquip помимо частей генераторов постоянного тока.

Детали генератора постоянного тока

Генератор постоянного тока часто используется в качестве двигателя генератора постоянного тока без изменения его конструкции.Итак, двигатель-генератор постоянного тока обычно можно назвать машиной постоянного тока. Ключевыми частями генераторов постоянного тока являются ярмо, полюса, полюсные наконечники, сердечник якоря, обмотка якоря, коммутатор, щетки, система магнитного поля, коммутатор, концевые корпуса, подшипники и валы.

Эти части генераторов постоянного тока будут рассмотрены ниже более подробно.

Статор

Генератор постоянного тока (DC) состоит из двух основных частей: вращающейся и неподвижной. Статор — это стационарная часть этой системы, которая включает в себя сердечник, обмотку статора и внешнюю раму, а также вмещает ротор (вращающуюся часть) в своем сердечнике.

Среди частей генераторов постоянного тока статор является ключевым компонентом, и его основная функция заключается в создании магнитных полей, вокруг которых вращаются катушки. Он содержит устойчивые магниты с противоположными полюсами, обращенными к двум из них. Эти магниты установлены в поле ротора.

Сердечник ротора или якоря

Вторым важным компонентом генератора постоянного тока является сердечник ротора или якоря, который состоит из вентилятора, якоря, коллектора и вала. В отличие от статора, эта часть подвижна и вращается в магнитном поле, создаваемом статором.В генераторе постоянного тока вращение якоря — это процесс, который генерирует напряжение в катушках ротора. Сердечник якоря включает в себя листы железных пазов с пазами, которые уложены друг на друга, образуя цилиндрический сердечник якоря. Обычно потери уменьшаются из-за вихревых токов в этих слоях.

В течение всего процесса вентилятор отвечает за подачу необходимого воздуха для сердечника якоря или ротора во время его вращения.

Концевые кожухи

Концевые кожухи — это компоненты, прикрепленные к концевым частям основной рамы с функцией защиты подшипников.Подшипники являются важными частями системы, которые уменьшают трение между подвижными и неподвижными частями генератора, которое со временем может постепенно их изнашивать.

В то время как передние кожухи защищают подшипник и щетку, функция концевых кожухов ограничивается только опорой для подшипников.

Подшипники

Подшипники используются в системе для обеспечения плавного перемещения между различными компонентами. Основная функция подшипников — минимизировать трение между вращающимися и неподвижными частями машины.Благодаря этим деталям отпадает необходимость в постоянной смазке компонентов системы, и они также прослужат дольше из-за снижения трения.

Подшипники в основном изготавливаются из высокоуглеродистой стали, так как это очень твердый материал, который спроектирован таким образом, чтобы постоянно смазываться и защищаться от проникновения пыли.

Подшипники бывают двух распространенных форм: роликовые и шариковые. Шариковые подшипники включают в себя сферические шарики, которые передают нагрузку изнутри наружу и создают движение по кругу.Шариковые подшипники можно легко найти в предметах вокруг дома; они более распространены, потому что они просты.

Роликовые подшипники, в отличие от шарикоподшипников, состоят из цилиндров разной формы. В то время как площадь контакта шариковых подшипников с грузом ограничена одной точкой, в роликовых подшипниках этот контакт продлен до линии, поэтому они могут использоваться для обработки тяжелых нагрузок и, таким образом, в основном используются в промышленном оборудовании.

Хомут

Если мы разделим части генератора постоянного тока пополам, хомут — это внешняя крышка, которая не только обеспечивает механическую защиту всей внутренней сборки и фиксирует их на основании машины, но также создает путь для магнитный поток, создаваемый обмоткой возбуждения.

В зависимости от размера машины вилки бывают двух видов и из двух материалов; в больших аппаратах ярма изготовлены из литой или катаной стали, а в меньших — из чугуна.

Полюса

Полюса используются в основном для удержания обмоток в секторе. Такие обмотки обычно наматываются на полюса и в остальном соединяются с обмотками якоря по порядку. Таким образом, при помощи шурупов опоры соединяют сварочную технику с ярмом.

Сердечник полюса в основном изготавливается из тонкой отожженной стали или кованого железа, соединенных друг с другом за счет гидравлического давления.Чтобы уменьшить потери на вихревые токи, полюса машины постоянного тока ламинированы.

Эти полюса являются одной из частей машины постоянного тока, работа которой заключается в поддержке катушек возбуждения и обеспечении более интегрированного магнитного потока через якорь.

Полюсный башмак

Полюсный башмак — это железная или стальная пластина, которая используется в основном для рассеивания магнитного потока и предотвращения падения катушки вращающегося поля.

Коммутатор

Коммутатор работает как выпрямитель для преобразования переменного напряжения в постоянное в усилении обмотки якоря.Это проводящее металлическое кольцо имеет медный сегмент, и каждый медный сегмент с помощью листов слюды экранирован друг от друга.

Этот цилиндрический электрический выключатель находится на валу машины и способствует подключению проводов вращающегося кресла к внешней цепи, которая закреплена. При этом исходный индуцированный ток преобразуется в однонаправленный на выходных клеммах.

Щетки

Щетки — одна из основных частей генератора DM.С помощью этих угольных блоков может быть обеспечено электрическое соединение между коммутатором и внешней цепью нагрузки.

Однако из-за дугового разряда и постоянного контакта с коммутатором эти компоненты со временем изнашиваются. Но хорошая новость в том, что их всегда можно заменить новыми щетками. Все, что вам нужно делать, это время от времени проверять их, чтобы убедиться, что они в хорошем состоянии, и при необходимости менять их.

Вал

Вал представляет собой механическую деталь в машине постоянного тока, которая создает вращающую силу, известную как крутящий момент, и вызывает вращение.Он изготовлен из низкоуглеродистой стали и имеет максимальную прочность на разрыв. Из частей генератора постоянного тока вал помогает генератору передавать механическую энергию через вал. Вращающиеся части вставлены в вал, такие как центр якоря, коммутатор, охлаждающий вентилятор и т. Д.

Магнитное поле

Это постоянный магнит, который генерирует магнитное поле, которое используется для вращения катушки.

Обмотки якоря

Для удержания обмоток якоря в основном используются пазы сердечника якоря.Они соединены последовательно в виде замкнутой обмотки для увеличения количества вырабатываемого тока; и они параллельны. Это особое расположение проводников называется обмоткой якоря, которая, как известно, является сердцем генератора постоянного тока. В зависимости от типа соединений обмотки якоря бывают нахлесточными или волновыми.

Все обмотки якоря, внахлестку или волну, являются центрами преобразования энергии внутри машины. В случае обмоток якоря генератора постоянного тока это преобразование энергии происходит из механической энергии в электрическую.

E.M.F Уравнение генератора постоянного тока

После объяснения частей генератора постоянного тока пора узнать об уравнении ЭДС. Итак, что это такое? уравнение ЭДС генератора постоянного тока соответствует законам электромагнитной индукции Фарадея, то есть Eg = PØZN / 60 A

В формуле генератора постоянного тока:

  • Z означает общее количество проводников якоря
  • P означает количество полюсов в генератор
  • A означает количество параллельных полос внутри якоря
  • N означает вращение якоря в об / мин
  • E означает индуцированную ЭДС в любой параллельной полосе внутри якоря
  • Eg означает генерируемую ЭДС в любом из параллельная полоса
  • N / 60 означает количество оборотов в секунду
  • Плюс время на один поворот dt = 60 / N sec

Но подождите! Это были не просто части генератора постоянного тока и его уравнение.Вы можете найти больше информации о генераторах постоянного тока! Генераторы постоянного тока используются практически повсеместно. Они используются на заводах, производящих алюминий, хлор и связанное с ним сырье в большом количестве. Генераторы постоянного тока также используются в тепловозах и транспортных средствах с дизельными двигателями. Их можно найти в автомобилях с дистанционным управлением, окнах электромобилей и телевизорах с плоским экраном.

Каков принцип работы генератора постоянного тока? Как это работает?

Принцип работы генераторов постоянного тока основан на законах Фарадея об электромагнитной индукции.В частях генератора постоянного тока, когда проводник находится в динамическом магнитном поле, внутри проводника создается электродвижущая сила. Величину, вызванную ЭДС, можно измерить с помощью уравнения электродвижущей силы генератора.

Когда проводник имеет замкнутый путь, индуцированный ток течет по нему. Катушки возбуждения создают электромагнитное поле, а проводники якоря преобразуются в поле в генераторе. Следовательно, внутри проводников якоря создается электромагнитно-индуцированная электродвижущая сила (ЭДС).Правило правой руки Флеминга определяет направление индуцированного тока.

Какие типы генераторов постоянного тока?

Генераторы

постоянного тока можно разделить на две основные категории (с независимым возбуждением и с самовозбуждением). Существует также третий тип генераторов постоянного тока, который называется «Генератор постоянного тока с постоянным магнитом». У каждого типа есть свои уникальные особенности, основы и преимущества.

Работа частей генераторов постоянного тока с отдельно возбужденным типом заключается в том, что катушки возбуждения приводятся в действие от независимого внешнего источника постоянного тока в генераторе с отдельно возбужденным состоянием.С другой стороны, в генераторах постоянного тока с самовозбуждением катушки возбуждения получают питание от генерируемого тока в генераторе в самовозбуждающейся форме. Такие генераторы также можно идентифицировать как последовательные, шунтирующие и сложные.

Генератор постоянного тока имеет преимущества

Во многих областях нам нужен генератор постоянного тока, особенно по следующим причинам:

  • Он построен и спроектирован просто.
  • Он подходит для работы с большими двигателями и большими электрическими устройствами, требующими прямого управления.
  • Он уменьшает флуктуации, описанные сглаживанием выходного напряжения за счет регулярного расположения катушек вокруг якоря для некоторых приложений стабильного состояния.

Генератор постоянного тока также может иметь некоторые недостатки.

Как и другие машины, генераторы постоянного тока имеют некоторые недостатки, например:

  • Генераторы постоянного тока не могут быть применены к трансформатору.
  • Генераторы постоянного тока имеют низкий КПД из-за потерь в меди, потерь на вихревые токи, гистерезисных потерь и механических потерь.
  • Может произойти падение напряжения на больших расстояниях.

Это все о генераторах постоянного тока. Из того, что вы прочитали выше, мы можем сказать, что основные преимущества генераторов постоянного тока включают простую конструкцию, простую параллельную работу и меньшее количество проблем со стабильностью системы. Вы также прочитали о различных типах генераторов постоянного тока и принципах их работы. Однако вам может потребоваться больше узнать об их конструкции и некоторую другую информацию. Итак, вы можете оставить свои вопросы в комментариях, зарегистрировавшись на Linquip (в разделах статьи о генераторе постоянного тока) и получить свои ответы.

Исследования самовозбужденного индукционного генератора с твердым железным ротором на JSTOR

Абстрактный

В данной статье представлены теоретические и экспериментальные исследования самовозбуждающегося индукционного генератора с твердым железным ротором. Прогнозирование импеданса ротора основано на линейной теории, а параметры эквивалентной схемы выводятся из размеров машины, чтобы облегчить их компьютерное проектирование. Экспериментальные исследования индукционных генераторов с твердым железом и пластинчатыми роторами одинаковых размеров представлены в поддержку анализа, а также для их сравнительного исследования.Эта статья является полезным дополнением к нашим более ранним исследованиям [1] в этой области.

Информация о журнале

Wind Engineering непрерывно издается с 1977 года. Это старейший и наиболее авторитетный рецензируемый англоязычный журнал, полностью посвященный ветроэнергетике. Под руководством выдающегося редактора и редакционной коллегии Wind Engineering выходит раз в два месяца с полностью рецензируемыми вкладами активных деятелей в этой области, книжными заметками и резюме наиболее интересных статей из других источников.В Wind Engineering публикуются статьи по аэродинамике роторов и лопастей; подсистемы и узлы машин; дизайн; тестовые программы; производство и передача электроэнергии; методы измерения и регистрации; установки и приложения; а также экономические, экологические и правовые аспекты. Ветроэнергетика имеет первостепенное значение для всех, кто связан с ветром как источником энергии

Информация об издателе

Сара Миллер МакКьюн основала SAGE Publishing в 1965 году для поддержки распространения полезных знаний и просвещения мирового сообщества.SAGE — ведущий международный поставщик инновационного высококачественного контента, ежегодно публикующий более 900 журналов и более 800 новых книг по широкому кругу предметных областей. Растущий выбор библиотечных продуктов включает архивы, данные, тематические исследования и видео. Контрольный пакет акций SAGE по-прежнему принадлежит нашему основателю, и после ее жизни она перейдет в собственность благотворительного фонда, который обеспечит дальнейшую независимость компании. Основные офисы расположены в Лос-Анджелесе, Лондоне, Нью-Дели, Сингапуре, Вашингтоне и Мельбурне.www.sagepublishing.com

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *