+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

РЕЗОНАНС — это… Что такое РЕЗОНАНС?

  • РЕЗОНАНС — (франц. resonance, от лат. resono звучу в ответ, откликаюсь), относительно большой селективный (избирательный) отклик колебательной системы (осциллятора) на периодич. воздействие с частотой, близкой к частоте её собств. колебаний. При Р.… …   Физическая энциклопедия

  • РЕЗОНАНС — (фр., от лат. resonare раздаваться). В акустике: условия полного распространения звука. Доска, служащая для усиления звучности струн в музыкальных инструментах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… …   Словарь иностранных слов русского языка

  • Резонанс — Резонанс: а резонансные кривые линейных осцилляторов при различной добротности Q(Q3>Q2>Q1), x интенсивность колебаний; б зависимость фазы от частоты при резонансе. РЕЗОНАНС (французское resonance, от латинского resono откликаюсь), резкое… …   Иллюстрированный энциклопедический словарь

  • РЕЗОНАНС — РЕЗОНАНС, резонанса, мн. нет, муж. (от лат. resonans дающий отзвук). 1. Ответное звучание одного из двух тел, настроенных в унисон (физ.). 2. Способность увеличивать силу и длительность звука, свойственная помещениям, внутренняя поверхность… …   Толковый словарь Ушакова

  • резонанс — отзвук, резонон, мезомерия, отклик, адрон, частица, отголосок Словарь русских синонимов. резонанс см. отклик Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2 …   Словарь синонимов

  • РЕЗОНАНС — РЕЗОНАНС, резкое увеличение амплитуды колебаний механической или акустической системы, в случае вынужденных колебаний, вызванных внешним источником. Это явление возникает, когда ЧАСТОТА приложенной силы равна собственной частоте колебаний системы …   Научно-технический энциклопедический словарь

  • РЕЗОНАНС — (франц. resonance от лат. resono откликаюсь), резкое возрастание амплитуды установившихся вынужденных колебаний при приближении частоты внешнего гармонического воздействия к частоте одного из собственных колебаний системы …   Большой Энциклопедический словарь

  • РЕЗОНАНС — муж., франц. зык, гул, рай, отзвук, отгул, гул, отдача, наголосок; звучность голоса, по местности, по размерам комнаты; звучность, звонкость музыкального орудия, по устройству его. | В рояле, фортепиано, гуслях: дек, палуба, ·стар. полочка, доска …   Толковый словарь Даля

  • РЕЗОНАНС — (от лат. resonare – повторять) колебания одного из колеблющихся тел, «настроенных» на определенное число колебаний (все тела более или менее способны производить их), которые взаимодействуют с колебаниями, производимыми др. телом, колеблющимся с… …   Философская энциклопедия

  • РЕЗОНАНС — 1. В общем механическом смысле отклик тела, способного колебаться с определенным периодом (т. наз. собственным периодом колебаний), на дошедшие до него колебания того же периода. Явления Р. выражаются обычно в значительном увеличении амплитуды… …   Морской словарь

  • dic.academic.ru

    Что такое резонанс? Простыми словами.

    многократное усиление

    resonance, от лат. resono «откликаюсь»

    никакого усиления чем лучше согласованность — тем больше резонанс системы, частота — индуктивность — емкость

    Детей на качелях катали? Это и есть резонанс, когда вы прилагаете силу для раскачки с частотой (в такт) колебания качелей.

    Продолжу автомобильную тему. Вот стоит автомобиль. Приходят 10 человек и начинают толкать его. Каждый толкает как хочет. Когда хочет. Итог: машина стоит и не сдвинется. И вот чудо, приходит одиннадцатый и руководит ими. И синхронно, одновременно начинают толкать машину. И она едет!!! Все усилия во втором случае складываются, так как синхронны, одновременны, вот в чем усиление. А по началу все усилия были рассинхронизированы, и по отдельности не смогли сдвинуть машину.

    Резонанс переводится и значит в физическом смысле буквально «отклик» или глагол «откликаюсь».. Например в лесу крикнули АУ… в ответ мы услышали отклик, или простое ЭХО… Т. е. звуковая волна вышла в пространство и стала отражаться от резонаторов — деревьев… волна стала гулять «туда сюда»… Например если крикнуть АУ в сторону моря… волна просто рассеется.. и отклика не будет… потому что нет резонаторов… (деревьев)… это и есть самый простой пример резонанса. Или пример с мостом и ротой солдат. 100 солдат идут все по мосту.. Чтобы мост разрушился, солдаты во первых должны идти с одной и той же частотой… например 1 шаг в секунду… Тогда в один прекрасный момент, силы ударов каждого солдата складываются в один мощный удар… и это называют «амплитуда сильно возросла»… Еще один пример резонанса это принцип действия лазера… Два зеркала, одно не прозрачное, а другое полупрозрачное… между ними находится источник излучения, свет от которого начинает «гулять» между зеркал, как звук между деревьев.. с той лишь разницей, что звук от АУ это затухающее колебание, а свет источника излучения это постоянные колебания или как их называют вынужденные колебания. Таким образом свет, т. е. электромагнитная волна между зеркал, как звук между деревьев начинает «накладываться» (интерферировать) друг на друга, в результате чего образуется «когерентное излучение»…или примерно то, когда солдаты «разом наступают» на мост… иными словами «амплитуда сильно возрастает» и образуется лазерный луч. Допустим у нас имеется Царь колокол. Мы начинаем долбить по нему молотком с частотой 1 колебание в секунду. Колокол начинает дрожать с намного большей частотой, скажем 500 Гц. То же самое происходит когда Вы находитесь в лесу и крикнете «АУ»… в ответ от деревьев резонаторов придет множество «УУУУУУУУУ»… Т. е. причина колебания 1 Гц, а отклик может быть в тысячи раз большим именно по частоте. Т. е. надо четко различать причину и следствие. Причина дрожания колокола частота 1 Гц, а резонансная частота его дрожания будет уже в тысячи раз большей

    Раскачиваешься на качелях, значит попал в резонанс (согласие с качелей), не можешь раскачаться но хочешь это уже диссонанс

    Если колеблющееся тело начать «подталкивать» с определенной регулярностью, в нужном ритме, то колебания начнут усиливаться. Это и есть резонанс. Когда мы раскачиваем ребенка на качелях, мы добиваемся того, чтобы качели вошли в резонанс с нашими толчками. Резонанс может быть и полезным явлением — например, с его помощью можно усилить звуковые колебания и добиться большей громкости звука, так и вредным, например, стать причиной разрушения постройки при порывистом ветре.

    одинаковая частота колебаний двух тел

    осуждение. короче всех послать!!

    Типа жёсткого волнения.

    Поступление внешней энергии (механической, электрической и до ) в фазе колебания предмета, тогда энергия колебаний будет увеличиваться, если не соответствует, колебания не будут увеличиваться или даже уменьшаться, если сигнал в противофазе

    это соединение

    Это подвешенное состояние, которое ищет понимания!

    Чтобы проще понять, что такое резонанс, вспомните такую нехитрую и приятную забаву, как катание на подвесных качелях. Один человек сидит на них, а второй раскачивает. И прикладывая совсем небольшие силы, даже ребенок может очень сильно раскачать взрослого. Как он этого добивается? Частота его раскачиваний совпадает с частотой качающегося, возникает резонанс, и амплитуда раскачиваний сильно возрастает. Частота колебаний это количество колебаний за одну секунду. Измеряется она при этом не в разах, а в герцах (1 Гц). То есть, частота колебаний в 50 герц означает, что тело совершает 50 колебаний в секунду. В случае вынужденных колебаний всегда есть самоколеблющееся (или в нашем случае качающееся) тело и вынуждающая сила. Так вот эта сторонняя сила действует с определенной частотой на тело. И если его частота будет сильно отличаться от частоты колебаний самого тела, то сторонняя сила будет слабо помогать телу колебаться или, говоря научно, слабо усиливать его колебания. Например, если пытаться раскачать человека на качелях, толкая его в момент, когда он летит на вас, вы можете отбить себе руки, скинуть человека, но вряд ли сильно его раскачаете. А вот если раскачивать его, толкая в направлении движения, то нужно совсем немного усилий, чтобы добиться результата. Вот это и есть совпадение частоты или резонанс колебаний. При этом сильно возрастает их амплитуда.

    touch.otvet.mail.ru

    Резонанс — это… Что такое Резонанс?

  • РЕЗОНАНС — (франц. resonance, от лат. resono звучу в ответ, откликаюсь), относительно большой селективный (избирательный) отклик колебательной системы (осциллятора) на периодич. воздействие с частотой, близкой к частоте её собств. колебаний. При Р.… …   Физическая энциклопедия

  • РЕЗОНАНС — (фр., от лат. resonare раздаваться). В акустике: условия полного распространения звука. Доска, служащая для усиления звучности струн в музыкальных инструментах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… …   Словарь иностранных слов русского языка

  • РЕЗОНАНС — РЕЗОНАНС, резонанса, мн. нет, муж. (от лат. resonans дающий отзвук). 1. Ответное звучание одного из двух тел, настроенных в унисон (физ.). 2. Способность увеличивать силу и длительность звука, свойственная помещениям, внутренняя поверхность… …   Толковый словарь Ушакова

  • резонанс — отзвук, резонон, мезомерия, отклик, адрон, частица, отголосок Словарь русских синонимов. резонанс см. отклик Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2 …   Словарь синонимов

  • РЕЗОНАНС — РЕЗОНАНС, резкое увеличение амплитуды колебаний механической или акустической системы, в случае вынужденных колебаний, вызванных внешним источником. Это явление возникает, когда ЧАСТОТА приложенной силы равна собственной частоте колебаний системы …   Научно-технический энциклопедический словарь

  • РЕЗОНАНС — (франц. resonance от лат. resono откликаюсь), резкое возрастание амплитуды установившихся вынужденных колебаний при приближении частоты внешнего гармонического воздействия к частоте одного из собственных колебаний системы …   Большой Энциклопедический словарь

  • РЕЗОНАНС — РЕЗОНАНС, а, муж. 1. Возбуждение колебаний одного тела колебаниями другого той же частоты, а также ответное звучание одного из двух тел, настроенных в унисон (спец.). 2. Способность усиливать звук, свойственная резонаторам или помещениям, стены к …   Толковый словарь Ожегова

  • РЕЗОНАНС — муж., франц. зык, гул, рай, отзвук, отгул, гул, отдача, наголосок; звучность голоса, по местности, по размерам комнаты; звучность, звонкость музыкального орудия, по устройству его. | В рояле, фортепиано, гуслях: дек, палуба, ·стар. полочка, доска …   Толковый словарь Даля

  • РЕЗОНАНС — (от лат. resonare – повторять) колебания одного из колеблющихся тел, «настроенных» на определенное число колебаний (все тела более или менее способны производить их), которые взаимодействуют с колебаниями, производимыми др. телом, колеблющимся с… …   Философская энциклопедия

  • РЕЗОНАНС — 1. В общем механическом смысле отклик тела, способного колебаться с определенным периодом (т. наз. собственным периодом колебаний), на дошедшие до него колебания того же периода. Явления Р. выражаются обычно в значительном увеличении амплитуды… …   Морской словарь

  • illustrated_dictionary.academic.ru

    Примеры резонанса в жизни :: SYL.ru

    Как на звук и световые волны влияет принцип резонанса? Что такое вибрации и резонансные частоты объектов? Какие повседневные примеры резонанса можно встретить в жизни? Как разбить бокал с помощью голоса? Если присмотреться, то можно увидеть примеры резонанса повсюду. Вот только некоторые из них несут пользу, а другие – вред.

    Что такое резонанс?

    Вы когда-нибудь задумывались над тем, как люди создают прекрасную музыку с помощью обыкновенных бокалов? По мере повышения воздействия на стекло звуковыми волнами оно может даже разбиться. Световые волны также взаимодействуют особыми способами с объектами вокруг себя. Поведение звуковых и световых волн объясняет, почему люди слышат звуки музыкальных инструментов и различают цвета. Изменения волновой амплитуды вызваны важным принципом, который называется резонансом. Примерами влияния на передачу звука и света являются вибрации.

    Приведите примеры резонанса

    Звуковые волны происходят от механических колебаний в твердых телах, жидкостях и газах. Световые волны исходят из вибрации заряженных частиц. Объекты, заряженные частицы и механические системы обычно имеют определенную частоту, на которой они склонны вибрировать. Это называется их резонансной частотой или их собственной частотой. Некоторые объекты имеют две или более резонансных частот. Пример резонанса: когда вы едете по ухабистой дороге, и ваш автомобиль начинает прыгать вверх и вниз – это пример колебания вашей машины на своей резонансной частоте, вернее резонансная частота амортизаторов. Вы можете заметить, что когда вы едете в автобусе, частота отскока немного медленнее. Это потому, что амортизаторы шины имеют более низкую резонансную частоту.

    Когда звуковая или световая волна ударяет по объекту, она уже вибрирует на определенной частоте. Если эта частота будет соответствовать резонансной частоте объекта, то это приведет к тому, что вы получите резонанс. Он возникает, когда амплитуда колебаний объекта увеличивается за счет соответствующих колебаний другого объекта. Эту связь трудно представить без примера.

    Резонанс и световые волны

    Взять, к примеру, типичную световую волну (это поток белого света, который исходит от солнца) и направить ее на темный объект, пусть это будет черная змея. Молекулы в коже пресмыкающегося имеют набор резонансных частот. То есть электроны в атомах стремятся вибрировать на определенных частотах. Свет, спускающийся с солнца, – белый свет, который имеет многосоставную частоту.

    Полезный резонанс

    Сюда входят красный и зеленый, синий и желтый, оранжевый и фиолетовый. Каждая из этих частот поражает кожу змеи. И каждая частота приводит к вибрации другого электрона. Желтая частота резонирует с электронами, резонансная частота которых желтая. Синяя частота резонирует с электронами, резонансная частота которых синяя. Таким образом, кожа змеи в целом резонирует с солнечным светом. Змея кажется черной, потому что ее кожа поглощает все частоты солнечного света.

    Когда световые волны резонируют с объектом, они заставляют электроны вибрировать с большими амплитудами. Световая энергия поглощается объектом, и человеческому глазу не заметно, что свет возвращается обратно. Объект выглядит черным. Что делать, если объект не поглощает солнечный свет? Что если ни один из его электронов не резонирует со световыми частотами? Если резонанс не возникает, то вы получите передачу, пропускание световых волн через объект. Стекло кажется прозрачным, потому что оно не поглощает солнечный свет.

    Свет все еще вызывает вибрации электронов. Но поскольку он не соответствует резонансным частотам электронов, колебания очень малы и проходят от атома к атому через весь объект. Объект без резонанса будет иметь нулевое поглощение и 100 % передачу, например стекло или вода.

    Вредный резонанс примеры

    Музыка и резонанс звуковых волн

    Резонанс для звука работает так же, как и для света. Когда один объект вибрирует на частоте второго объекта, тогда первый заставляет второй вибрировать с высокой амплитудой. Так возникает акустический резонанс. Примером служит игра на любом музыкальном инструменте. Акустический резонанс отвечает за музыку, создаваемую трубой, флейтой, тромбоном и многими другими инструментами. Как работает это удивительное явление? Можно привести пример резонанса, который имеет положительный эффект.

    Пройдя в собор, где играет органная музыка, можно заметить, что вся стена заполнена огромными трубами всех размеров. Некоторые из них очень короткие, а другие доходят до потолка. Для чего нужны все трубы? Когда начинает играть прекрасная музыка, можно понять, что звук исходит от труб, он очень громкий и, кажется, заполняет весь собор. Как такие трубы могут звучать так громко? Во всем виноват акустический резонанс, и он не является единственным инструментом, который использует это удивительное явление.

    Пример резонанса музыка

    Создание звуковых волн

    Чтобы понять, что происходит, вам сначала нужно немного узнать о том, как звук проходит по воздуху. Звуковые волны создаются, когда что-то вызывает вибрацию молекул воздуха. Затем эта вибрация перемещается, как волна, наружу во всех направлениях. Когда волна проходит по воздуху, есть области, где молекулы сжимаются ближе друг к другу, и области, где молекулы вытягиваются дальше друг от друга. Расстояние между последовательными сжатиями или расширениями известно как длина волны. Частота измеряется в единицах Герца (Гц), а один Герц соответствует одной скорости сжатия волны в секунду.

    Люди могут обнаруживать звуковые волны с частотами от 20 до 20 000 Гц! Однако они не все звучат одинаково. Некоторые звуки высокие и скрипучие, в то время как другие низкие и глубокие. То, что вы на самом деле слышите, – это разница в частоте. Итак, как частота относится к длине волны? Скорость звука немного меняется в зависимости от температуры воздуха, но обычно она составляет около 343 м/с. Поскольку все звуковые волны движутся с одинаковой скоростью, частота будет уменьшаться по мере увеличения длины волны и возрастать при уменьшении длины волны.

    Примеры полезного резонанса

    Вредный резонанс: примеры

    Часто люди принимают мостостроение и безопасность как должное. Однако иногда происходят катастрофы, заставляющие поменять свою точку зрения. 1 июля 1940 года в Вашингтоне был открыт мост Такома-Нэрроуз. Это был подвесной мост, третий по величине в мире для своего времени. Во время строительства мост получил прозвище «Галопирование Герти» из-за того, как он качался и сгибался на ветру. Это волнообразное колебание в конце концов привело к его крушению. Мост рухнул 7 ноября 1940 года во время бури, всего через четыре месяца его эксплуатации. Прежде чем узнавать о резонансной частоте и о том, что это связано с катастрофой моста Такома-Нэрроуз, сначала нужно понять что-то, называемое гармоническим движением.

    Примеры проявления резонанса

    Когда у вас есть объект, периодически колеблющийся назад и вперед, мы говорим, что он испытывает гармоническое движение. Один прекрасный пример проявления резонанса, испытывающего гармоническое движение, – свободная подвесная пружина с прикрепленной к ней массой. Масса заставляет пружину растягиваться вниз, пока в конце концов пружина не сжимается назад, чтобы вернуться к своей первоначальной форме. Этот процесс продолжает повторяться, и мы говорим, что пружина находится в гармоническом движении. Если вы посмотрите видео с моста Такома-Нэрроуз, то увидите, что он колебался, прежде чем рухнул. Он проходил гармоническое движение, как пружина с прикрепленной к ней массой.

    Примеры проявления резонанса

    Резонанс и качели

    Если вы один раз толкнете своего друга на качелях, они несколько раз будут совершать колебательные движения и через некоторое время остановятся. Эта частота, когда колебание самопроизвольно колеблется, называется собственной частотой. Если вы даете толчок каждый раз, когда ваш друг возвращается к вам, он будет качаться все выше и выше. Вы нажимаете с частотой, аналогичной собственной частоте, и амплитуда колебаний возрастает. Такое поведение называется резонансом.

    Резонанс в жизни

    Несомненно, это один из примеров полезного резонанса. Среди прочих нагревание пищи в микроволновой печи, антенна на радиоприемнике, принимающем радиосигнал, игра на флейте.

    Резонанс примеры

    На самом деле, есть также множество плохих примеров. Разрушение стекла высоким тональным звуком, разрушение моста легким ветерком, обрушение зданий при землетрясениях – все это примеры резонанса в жизни, которые не просто вредные, но и опасные, в зависимости от силы воздействия.

    Разрушительный резонанс

    Разрушительная сила звука

    Многие наверняка слышали о том, что винный бокал можно разбить голосом оперной певицы. Если вы слегка ударите бокал ложкой, он будет «звонить», как колокол, на своей резонансной частоте. Если на стекло оказывается звуковое давление на определенной частоте, оно начинает вибрировать. По мере того как стимул продолжается, вибрация в бокале накапливается до тех пор, пока он не разрушится, когда будут превышены механические пределы.

    Примеры резонанса в жизни

    Примеры полезного и вредного резонанса повсюду. Микроволны окружают все вокруг, от микроволновой печки, которая разогревает пищу без применения внешнего тепла, до вибраций в земной коре, приводящих к разрушительным землетрясениям.

    www.syl.ru

    Резонанс: польза и вред

    В нашей жизни происходит много удивительных и порой непонятных явлений. Однако объяснение многих из них может быть достаточно простым, но сразу не бросающимся в глаза. Например, одна из любимейших детских забав – качание на качелях. Казалось бы, что тут сложного – все ясно и понятно. Но задумывались ли вы, почему, если правильно действовать на качели, то размах качаний будет становиться все больше и больше? Все дело в том, что действовать нужно строго в определенные моменты времени и в определенном направлении, иначе результатом действия может быть не раскачивание, а полная остановка качелей. Чтобы этого не произошло, нужно, чтобы частота внешнего воздействия совпадала с частотой колебаний самих качелей, в этом случае размах качания будет увеличиваться. Это явление называется резонансом. Давайте попробуем разобраться, что такое резонанс, где он встречается в нашей жизни и что об этом явлении нужно знать.

    С точки зрения физики «резонанс» – это резкое увеличение амплитуды вынужденных колебаний при совпадении собственной частоты колебательной системы с частотой внешней вынуждающей силы. Это только внешнее проявление резонанса. Внутренняя причина заключается в том, что увеличение амплитуды колебаний свидетельствует об увеличении энергии колебательной системы. Это может происходить только в том случае, если физической системе сообщается энергия извне согласно закону сохранения и изменения энергии. Следовательно, внешняя сила должна совершать положительную работу, увеличивая энергию системы. Это возможно только, когда внешняя сила является периодически изменяющейся с частотой, равной собственной частоте колебательной системы. Самый простой вариант – вариант с качелями, который мы уже описали, и который возникает во всех маятниковых системах и устройствах. Но это далеко не единственный случай применения человеком эффекта резонанса.

    Резонанс, как и любое другое физическое явление, имеет как положительные, так и отрицательные последствия. Среди положительных можно выделить использование резонанса в музыкальных инструментах. Особенная форма скрипки, виолончели, контрабаса, гитары способствует резонансу стоячих звуковых волн внутри корпуса инструмента, составляющих гармонику, и музыкальный инструмент дарит любителям музыки необыкновенное звучание. Известнейшие мастера музыкальных инструментов, такие как Николо Амати, Антонио Страдивари и Андреа Гварнери, совершенствовали форму, подбирали редкие породы древесины и изготавливали специальный лак, чтобы усилить резонирующий эффект, сохранив при этом мягкость и нежность тембра. Именно поэтому каждый такой инструмент имеет свой особенный, неповторимый звук.

    Помимо этого, известен способ резонансного разрушения при дроблении и измельчении горных пород и материалов. Это происходит так. При движении дробимого материала с ускорением силы инерции будут вызывать напряжения и деформации, периодически меняющие свой знак, – так называемые вынужденные колебания. Совпадение соответствующих частот вызовет резонанс, а силы трения и сопротивления воздуха будет сдерживать рост амплитуды колебаний, однако все равно она может достичь величины, значительно превышающей деформации при ускорениях, не меняющих знак. Резонанс сделает дробление и измельчение горных пород и материалов существенно эффективнее. Такую же роль резонанс играет при сверлении отверстий в бетонных стенах при помощи электрической дрели с перфоратором.

    Явление резонанса мы также используем в различных устройствах, использующих радиоволны, таких как телевизоры, радиоприемники, мобильные телефоны и так далее. Радио- или телесигнал, транслируемый передающей станцией, имеет очень маленькую амплитуду. Поэтому, чтобы увидеть изображение или услышать звук, необходимо их усилить и, вместе с тем, понизить уровень шума. Это и достигается при помощи явления резонанса. Для этого нужно настроить собственную частоту приемника, в основе представляющего собой электромагнитный колебательный контур, на частоту передающей станции. При совпадении частот наступит резонанс, и амплитуда радио- или телесигнала существенно вырастет, а сопутствующие ему шумы останутся практически без изменений. Это обеспечит достаточно качественную трансляцию.

    Один из видов магнитного резонанса, электронный парамагнитный резонанс, открытый в 1944 году русским физиком Е.К. Завойским, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т. д. Электроны в веществах ведут себя как микроскопические магниты. В разных веществах они переориентируются по-разному, если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении. Этот метод представляет собой один из видов спектроскопии.

    Несмотря на все преимущества, которые можно получить при помощи резонанса, не следует забывать и об опасности, которую он способен принести. Землетрясения или сейсмические волны, а также работа сильно вибрирующих технических устройств могут вызвать разрушения части зданий или даже зданий целиком. Кроме того, землетрясения могут привести к образованию огромных резонансных волн – цунами с очень большой разрушительной силой.

    Также резонанс может стать причиной разрушения мостов. Существует версия, что один из деревянных мостов Санкт-Петербурга (сейчас он каменный) действительно был разрушен воинским соединением. Как сообщали газеты того времени, подразделение двигалось на лошадях, которых пришлось впоследствии извлекать из воды. Естественно, что лошади гвардейцев двигались строем, а не как попало. Еще один мост – Такомский – висячий мост через пролив Такома-Нэрроуз в США был разрушен 7 ноября 1940 года. Причиной обрушения центрального пролета стал ветер со скоростью около 65 км/ч.

     

    В наше время резонансные колебания, вызванные ветром, чуть не стали причиной обрушения волгоградского моста, теперь неофициально называемого «Танцующим мостом». 20 мая 2010 года ветер и волны раскачали его до такой степени, что его пришлось закрыть. При этом был слышен оглушающий скрежет многотонных металлических конструкций. Дорожное покрытие моста через Волгу в течение часа было похоже на развивающееся на ветру полотнище. Бетонные волны, по словам очевидцев, были высотой около метра. Когда мост «затанцевал», по нему ехало несколько десятков автомашин. К счастью, мост устоял, и никто не пострадал.

    Таким образом, резонанс – это очень эффективный инструмент для решения многих практических задач, но и одновременно может быть причиной серьёзных разрушений, вреда здоровью и других негативных последствий.

    Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы

    Матвеева Е.В., учитель физики

    ГБОУ Школа № 2095 «Покровский квартал» 

    life.mosmetod.ru

    Эмоциональный резонанс | ЭМПАТИЯ

    Явление резонанса колебательных систем известно всем еще из школьного курса
    по физике. Возьмем для примера два камертона. Возбудим один камертон на частоте в 500 Гц и поднесем его к другому камертону с такой же собственной частотой в 500 Гц. Что же произойдет? Он – зазвучит. С таким же успехом резонанс взаимодействия, может быть, применим и ко всему живому на Земле – это человек, животное, растительный мир.

    Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.

    (Материал из Википедии — свободной энциклопедии)

    Резонанс  — это основной способ передачи эмоций от человека к человеку.

    Так описан резонанс в Википедии. Зачем эмпату или экстрасенсу знать о резонансе? Для экстрасенса, работающего с потоками энергии, чувствами, эмоциями, это явление можно использовать как инструмент. Резонанс — это физическое явление, оно также влияет на чувства, эмоции и другие биоэнергетические проявления как, к примеру, на звук. Звук — это тоже своего рода поле, вернее его вибрация, она заполняет собой всё вокруг, куда сможет проникнуть. Чувства и эмоции — это обычное поле и подчиняются физическим законам.

    К примеру, чтобы усилить чувство-эмоцию достаточно найти ещё одного человека с подобной эмоцией или возбудить её в другом человеке. Чем больше людей находятся вместе в одной эмоции, тем она становится сильней. Если наращивать количество людей с одной эмоцией, то она, в какой то момент поглотит личности людей, и люди теряют над собой контроль. Толпа болельщиков на стадионе, митинги, просто собрания единомышленников, религиозные служения — вот несколько примеров эффекта резонанса в эмоциональном плане.

    Чем опасно телевидение в этом плане.

    Выше я писал:- чем больше людей находятся вместе в одной эмоции, тем она становится сильней. А теперь представьте, идёт какая нибудь передача, или художественный фильм не оставляющие людей равнодушными. Это та же самая групповая медитация, то-есть имеет огромную силу влияющую на общее сознание людей города, страны, планеты. Всё зависит от того, сколько людей смотрит данный продукт.  Если по телевидению осуждают кого то или что то не важно заслуженно или нет, и все телезрители испытывают негодование, то тому о ком идёт речь не будет ни чего хорошего.

    Но если к примеру идёт художественный фильм, там чаще всего персонажи вымышленные, то-есть особо расстраиваться нечего, вреда ни кому нет. Но не так всё просто. Если человеком переживаются негативные эмоции, то он разрушает сам себя, а представьте что будет если учесть резонанс от всех телезрителей в этот момент. Для подобных вещей расстояние не помеха. Это получается групповая медитация на самоуничтожение. По этому если смотреть по телевидению передачи или фильмы, то только вызывающие позитив. Но и тут не всё просто, та энергия которая выделяется человеком, она не остаётся ему лично, она забирается определёнными эгрегорами.

    Проведите эксперимент, или просто вспомните, если что то подобное в жизни с вами уже случалось. Посмотрите фильм по одному из центральных каналов, в пиковое время когда много людей смотрит телевизор а через какое то время посмотрите тот же фильм в интернете или просто с диска, так сказать в одиночестве и обратите внимание что эмоции когда вы смотрите в одиночестве с DVD гораздо мене яркие, чем при просмотре по центральному каналу телевидения когда одновременно с вами смотрят этот фильм тысячи человек.

    Проявления резонанса в бытовом плане.

    Если вы думаете, что в жизни вам может не встретиться резонанс, потому что вы не болельщик и вообще избегаете сборищ людей, вы ошибаетесь.

    Несколько примеров.

    • Дружба. Друг, подруга — это резонанс уровня сознаний, интересов.
    • Любовь. Влюблённость — резонанс чувств, внешнего и внутреннего соответствия вашим идеалам обеих участников.
    • Влюблённость односторонняя безответная. Это тоже резонанс, но резонанс уже не с человеком, а с образом человека, созданным собственным умом. А объект влюблённости просто похож на образ, живущий в подсознании влюблённого.
    • Обсуждение. Резонанс совпавших взглядов, мнений на событие, вещь, человека.
    • Сочувствие, сострадание. Со-настройка с человеком, осознанное вхождение с человеком в резонанс. Это действие происходит намеренно или по привычке, на автомате, если на ваш взгляд эти проявления являются правильными.
    • Обида, злость. Это сильные эмоциональные взрывы. Большинство людей легко входят в эти эмоции, практически моментально, так как они для нашего низко-вибрационного мира являются обычными, естественными.
    • Страх. Групповой страх — это также любимое занятие многих людей. Серьёзность — это скрытое проявление страха, эта игра одна из любимых людьми.

    У вас есть выбор — не резонировать.

    Не резонировать — значит оставаться нейтральным по отношению к эмоции, мировоззрению, убеждению, разделяемой группой людей. Человек, понимающий и узнающий явление резонанса, может усилием воли или, используя выбор, не участвовать в резонансе. Для экстрасенсов и особенно для эмпатов это очень важное понимание. Да, усиленная эмоция, во много раз будет ослепительней, это неприятно, но, осознавая, что вы можете не резонировать, можно не терять разум. Просто относиться к резонирующим людям как к опьяненным. Сами понимаете, что опьяненный человек не совсем адекватен, нужно просто подождать, когда человек протрезвеет, и тогда он станет нормальным.

    В энергетических практиках часто используют резонанс в групповых медитациях. Да, групповая медитация дает значительно больший эффект, чем медитация в одиночестве, при условии, что все участники примерно одного уровня и духовного настроя. Но нужно не забывать, что любое эмоциональное, энергетическое излучение, особенно сильное, резонансное включает закон кармического уравновешивания. Это может выглядеть как эмоциональный взрыв, чаще проявляется в негативных эмоциях у большинства участников групповой медитации. Обычно это происходит на следующий день, хотя может наступить и через несколько часов. Некоторые это явление называют чисткой. Но это всего-лишь плата за искажения, внесенные в пространство мироздания во время медитации. Чистка проходила во время медитации, за счёт усиления энергетических потоков.

    Зная о резонансе, можно сглаживать и даже избегать многих эмоциональных перегрузок, стрессов.  Резонанс – это инструмент, хотя его и не возьмешь в руки. Но если не учитывать влияние резонанса, тогда резонанс будет управлять тобой.

    автор статьи Игорь Ваганов

    Статьи на эту тему.
    Резонансно-полевая теория распространения эмоций

    xn--80aqkmq6dta.com

    Резонанс — Википедия

    Эффект резонанса для разных частот внешнего воздействия и коэффициентов затухания

    Резона́нс (фр. resonance, от лат. resono «откликаюсь») — частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы[1]. Для линейных колебательных систем значения частот резонанса совпадает с частотами собственных колебаний, а их число соответствует числу степеней свободы[1].

    Под действием резонанса, колебательная система оказывается особенно отзывчивой на действие внешней силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротностью. При помощи резонанса можно выделить и/или усилить даже весьма слабые периодические колебания.

    Явление резонанса впервые было описано Галилео Галилеем в 1602 г. в работах, посвященных исследованию маятников и музыкальных струн.[2][3]

    Механика

    Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния можно найти по формуле:

    f=12πgL{\displaystyle f={1 \over 2\pi }{\sqrt {g \over L}}},

    где g — это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна и включает эллиптический интеграл.) Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).

    Резонансные явления могут приводить как к разрушению, так и к усилению устойчивости механических систем.

    В основе работы механических резонаторов лежит преобразование потенциальной энергии в кинетическую и наоборот. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.

    Другие механические системы могут использовать запас потенциальной энергии в различных формах. Например, пружина запасает энергию сжатия, которая, фактически, является энергией связи её атомов.

    Струна

    Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины, массы и силы натяжения струны. Длина волны первого резонанса струны равна её удвоенной длине. При этом, её частота зависит от скорости v, с которой волна распространяется по струне:

    f=v2L{\displaystyle f={v \over 2L}}

    где L — длина струны (в случае, если она закреплена с обоих концов). Скорость распространения волны по струне зависит от её натяжения T и массы на единицу длины ρ:

    v=Tρ{\displaystyle v={\sqrt {T \over \rho }}}

    Таким образом, частота главного резонанса зависит от свойств струны и выражается следующим отношением:

    f=Tρ2L=Tm/L2L=T4mL{\displaystyle f={{\sqrt {T \over \rho }} \over 2L}={{\sqrt {T \over m/L}} \over 2L}={\sqrt {T \over 4mL}}},

    где T — сила натяжения, ρ — масса единицы длины струны, а m — полная масса струны.

    Увеличение натяжения струны и уменьшение её массы (толщины) и длины увеличивает её резонансную частоту. Помимо основного резонанса, струны также имеют резонансы на высших гармониках основной частоты f, например, 2f, 3f, 4f[4], и т. д. Если струне придать колебание коротким воздействием (щипком пальцев или ударом молоточка), струна начнёт колебания на всех частотах, присутствующих в воздействующем импульсе (теоретически, короткий импульс содержит все частоты). Однако частоты, не совпадающие с резонансными, быстро затухнут, и мы услышим только гармонические колебания, которые и воспринимаются как музыкальные ноты.

    Электроника

    В электрических цепях резонансом называется такой режим пассивной цепи, содержащий катушки индуктивности и конденсаторы, при котором ее входное реактивное сопротивление или ее входная реактивная проводимость равны нулю. При резонансе ток на входе цепи, если он отличен от нуля, совпадает по фазе с напряжением.

    В электрических цепях резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

    Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

    Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно (тогда возникает резонанс напряжений), так и параллельно (резонанс токов). При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

    Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения

    ωL=1ωC⇒ω=1LC{\displaystyle \omega L={\frac {1}{\omega C}}\Rightarrow \omega ={\frac {1}{\sqrt {LC}}}},

    где ω=2πf{\displaystyle \omega =2\pi f} ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах. Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.

    В электронных устройствах также применяются различные электромеханические резонансные системы.

    СВЧ

    В СВЧ электронике широко используются объёмные резонаторы, чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны, в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями. Наивысшей добротностью обладают сверхпроводящие резонаторы, стенки которых изготовлены из сверхпроводника и диэлектрические резонаторы с модами шепчущей галереи.

    Оптика

    В оптическом диапазоне самым распространенным типом резонатора является резонатор Фабри-Перо, образованный парой зеркал, между которыми в резонансе устанавливается стоячая волна. Применяются также кольцевые резонаторы с бегущей волной и оптические микрорезонаторы с модами шепчущей галереи.

    Акустика

    Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, корпус у барабанов.

    Для акустических систем и громкоговорителей резонанс отдельных элементов (корпуса, диффузора) является нежелательным явлением, так как ухудшает равномерность амплитудно-частотной характеристики устройства и верность звуковоспроизведения. Исключением являются акустические системы с фазоинвертором, в которых намеренно создаётся резонанс для улучшения воспроизведения низких частот.

    Астрофизика

    Орбитальный резонанс в небесной механике — это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное влияние друг на друга, которое может стабилизировать их орбиты.

    См. также

    Видео-урок: резонанс

    Примечания

    Литература

    • Richardson LF (1922), Weather prediction by numerical process, Cambridge.
    • Bretherton FP (1964), Resonant interactions between waves. J. Fluid Mech., 20, 457—472.
    • Бломберген Н. Нелинейная оптика, М.: Мир, 1965. — 424 с.
    • Захаров В. Е. (1974), Гамильтонов формализм для волн в нелинейных средах с дисперсией, Изв. вузов СССР. Радиофизика, 17(4), 431—453.
    • Арнольд В. И. Потеря устойчивости автоколебаний вблизи резонансов, Нелинейные волны / Ред. А. В. Гапонов-Грехов. — М.: Наука, 1979. С. 116—131.
    • Kaup PJ, Reiman A and Bers A (1979), Space-time evolution of nonlinear three-wave interactions. Interactions in a homogeneous medium, Rev. of Modern Phys, 51(2), 275—309.
    • Haken H (1983), Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and devices, Berlin, Springer-Verlag.
    • Филлипс O.М. Взаимодействие волн. Эволюция идей, Современная гидродинамика. Успехи и проблемы. — М.: Мир, 1984. — С. 297—314.
    • Журавлёв В. Ф., Климов Д. М. Прикладные методы в теории колебаний. — М.: Наука, 1988.
    • Сухоруков А. П.. Нелинейные волновые взаимодействия в оптике и радиофизике. — Москва: Наука, 1988. — 230 с. — ISBN 5-02-013842-8. Архивировано 13 апреля 2014 года.
    • Брюно А. Д. Ограниченная задача трёх тел. — М.: Наука, 1990.
    • Широносов В. Г. Резонанс в физике, химии и биологии. — Ижевск: Издательский дом «Удмуртский университет», 2000. — 92 с.
    • Резонанс // Музыкальная энциклопедия. — М.: Советская энциклопедия, 1978. — Т. 4. — С. 585—586. — 976 с.

    Ссылки

    wikipedia.green

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *