+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Токочувствительные (current sensing) чип резисторы компании Panasonic

Введение

В современном мире электроники и автоматики люди не задумываются сколько процессов, связанных с их жизнью, происходят без участия человека. Будь то зарядка аккумуляторной батареи телефона или электрокара, переключение светофора или управление атомным реактором. Все эти процессы происходят без прямого участия человека, человек выполняет лишь функцию оператора, а управление осуществляется автоматически.

В настоящее время выпускается все больше и больше интеллектуальных устройств и очень часто, жизненно важно контролировать процессы, происходящие внутри электроники. Чтобы электроника работала без сбоев, не выходила из строя и служила максимально долго, крайне важно осуществлять контроль этих процессов.

Процесс контроля процессов, происходящих внутри электронных устройств, зачастую осуществляется методом контроль токов, протекающих в цепях. Существуют различные способы контроля токов, происходящих в электрических цепях электроники. Поэтому современные электронные устройства имеют в своем составе ряд сенсоров. Точность контроля зависит от точности выполняемых измерений, и точный контроль силы протекающего тока является одной из важнейших функций. Один из самых распространенных, простых, высокоточных и недорогих способов измерения токов, протекающих в электрических цепях с помощью резисторов.

Резистор и их типы

Резисторы являются самым используемыми компонентами в электронных схемах и занимают примерно 25% позиций в БоМе. В тоже время резистор считается самой простой деталью схемы, зачастую не требующей пристального внимания. Тем не менее незаметный, на фоне полупроводниковых микросхем и других компонентов, резистор выполняет очень важные функции и без резисторов не смогла бы работать практически ни одна электронная схема.

Резисторы — это пассивные элементы, выполняющие ряд второстепенных, но важных функций. Резистор, по определению – сопротивление (от латинского «resisto»), технологически же резистором можно считать любой материал, будь то кусок медного провода, вольфрамовая нить или полоска полупроводникового материала.

Казалось бы, что такого важного в резисторе, но сложно представить современные электронные схемы без тех функций, которые выполняют резисторы: преобразование силы тока в напряжение и наоборот, ограничение протекающего тока, создание делителей напряжения, подавление радиопомех и др.

Существует несколько различных типов резисторов, отличающихся своими параметрами, вариантами исполнения и функциональным назначением: SMD (чип) резисторы, выводные резисторы, проволочные резисторы, токочувствительные резисторы, термисторы, потенциометры и реостаты.

Особую роль играют резисторы в цепях прецизионных схем, где изменение параметров резистора ведет к негативным последствиям. Рассмотрим причины важности правильного выбора резисторов и варианты их применения на основе токочувствительных резисторов.

В качестве параметра, на основе которого можно проводить измерения, контроль и диагностику электронных схем является протекающий в них ток. Такой способ измерения является одним из самых распространенных, и недооценка важности корректного измерения силы тока приводит к дальнейшим проблема работы устройств и добавляет трудностей разработчикам и инженерам, обслуживающим электронику.

Измерение динамического тока всегда было важным параметром для управления производительностью системы и это стало еще более важным с распространением более интеллектуальных функций управления устройств и систем.

Основы измерения тока

Существуют различные способы измерения тока, но измерение тока, протекающего на участке цепи, путем измерения напряжения на резисторе, является самым простым, недорогим и достаточно точным способом. К тому же резисторы не восприимчивы к электромагнитным помехам и имеют компактные размеры.

Способ измерения тока с применением токочувствительного резистора основан на законе Ома (V=IxR), заключается он на измерении падения напряжения на встроенном последовательно с нагрузкой резистором с известным значением сопротивления, и последующим вычислением тока.

Несмотря на видимую простоту и эффективность, такой способ измерения тока имеет ряд конструктивных проблем и тонкостей, которые необходимо учитывать при конструировании устройства.

Поскольку токочувствительный резистор включается в цепь последовательно нагрузке он не должен оказывать существенное влияние на ток в цепи, поэтому номинальные значения сопротивления таких резисторов составляют от единиц ом до долей миллимом. Однако, при выборе измерительного резистора с низким значением может сложится ситуация, что падение напряжения на резисторе может стать сопоставимым с входным напряжением смещения расположенной далее аналоговой цепи нормирования сигнала, что отрицательно скажется на точности измерения.

Если измеряемый ток содержит значимую высокочастотную составляющую, необходимо, что бы измерительный резистор обладал малой собственной индуктивностью, из-за возникшего реактивного напряжения на нем, которое может влиять на точность измерения.

Одним из ограничивающих факторов применения токоизмерительных резисторов является рассеиваемая на них мощность (Pрез. = I

2xUрез.), и связанную с этим проблему теплоотведения, поэтому токочувствительные резисторы редко применяются в цепях с током более 100А.

Еще один важный вопрос, с которым приходится сталкиваться разработчикам электроники, это вопрос обеспечения электрической изоляции между силовой цепью и токоизмерительной схемой.

Существуют два основных способа измерения тока: со стороны нижнего плеча (low-side), когда измерительный резистор включается в цепь между нагрузкой и «землей» (Рис. 1) и со стороны верхнего плеча «high-side», когда резистор включается со стороны источника питания (между нагрузкой и источником питания). У каждого из этих методов измерения есть свои преимущества и недостатки.

Рисунок 1. Low-side принцип измерения тока (резистор между нагрузкой и «землей»).

Топологию измерения тока со стороны нижнего плеча (low-side), так же часто называют топологией с «общей» цепью, простая в исполнении и наиболее бюджетная, имеет низкое входное синфазное напряжение, но имеет свой недостаток, влияющий на точность измерений, она подвержена помехам от заземляющей цепи.

Так же такой способ измерения тока не дает возможности обнаружить протекание тока в «землю» через нагрузку при коротком замыкании.

Применение данной топологии измерения тока является целесообразным, когда требуется простота и дешевизна и не требуется контроль короткого замыкания, а помехи от заземляющей цепи допустимы.

Способ измерения тока со стороны верхнего плеча «high-side», когда резистор включается со стороны источника питания (между нагрузкой и источником питания) (Рис. 2), исключает попадание помех в токоизмерительную цепь, позволяет контролировать ток утечки в случае пробоя и возникновения короткого замыкания.

Рисунок 2. High-side принцип измерения тока (резистор между нагрузкой и источником).

Однако такая измерительная схема подвержена высоким динамическим изменениям синфазных входных напряжений, требует усложнения конструкции, повышает ее стоимость и требует компоненты с высоким рабочим напряжением.

Поскольку токочувствительный резистор не должен оказывать существенного влияния на протекающий в цепи ток, он имеет маленькое номинальное сопротивление, в результате чего падение напряжения на резисторе имеет малые величины и часто требует усиления перед преобразованием значений.

Таким образом конфигурация цепи для измерения тока основанная на токочувствительном резисторе включает в себя аналоговый усилитель (как правило операционный усилитель ОУ), АЦП для преобразования напряжения в цифровое представление и микроконтроллер.

Резистор, усилитель, АЦП и микроконтроллер могут быть как самостоятельными микросхемами, так и единым блоком системы на кристалле (SoC).

Важно при выборе токочувствительного резистора учитывать все его физические величины: номинальное сопротивление, точность, рассеиваемую мощность, тепловой коэффициент (TCR) и тепловую ЭДС, влияющие на точность измеряемых параметров. С учетом того, что на резисторе рассеивается мощность, вызывающая дополнительный нагрев микросхем, влияющий на конечную точность измерений, в системах с высоким током рекомендуется использовать внешние токочувствительные резисторы.

Выбор токоизмерительного резистора

При использовании токоизмерительного усилителя в разработке, весьма важен выбор параметров токочувствительного резистора. В первую очередь выбираются номинальное сопротивление и мощность этого резистора. Номинал резистора подбирают, исходя из желаемого максимального падения напряжения на нем при максимальном ожидаемом токе, или же исходя из планируемой потери мощности на этом резисторе.

После выбора величины и мощности токоизмерительного резистора определяется допустимое отклонение от номинального значения его сопротивления, так как это напрямую повлияет на точность воспринимаемого напряжения и измеряемый ток.

Тепловая ЭДС токочувствительного резистора является еще одной важной характеристикой. Токочувствительные резисторы должны работать в широком диапазоне токов. Когда ток низкий, тепловая ЭДС резистора добавляет измерительную ошибку к напряжению, создаваемому протекающим через резистор током. Это напряжение ошибки должно быть значительно меньше, чем наименьшее ожидаемое напряжение, создаваемое протекающим через токочувствительный резистор током, сводя к минимуму ошибку измерения.

Однако есть еще один параметр, на первый взгляд не вполне очевидный, о котором часто забывают – это температурный коэффициент резистора. Температурный коэффициент часто указывается в размерности миллионная доля на градус Цельсия (ppm/°C). Он важен, поскольку температура резистора будет расти за счет мощности, рассеиваемой при протекании большого тока через этот компонент. Часто в недорогих резисторах с классом точности менее 1% наблюдается изменение рабочих параметров под влиянием температуры.

Рекомендации по монтажу

Несмотря на их внешний вид, современные токочувствительные резисторы не так просты, как кажутся. В частности, сопротивление токочувствительного резистора фактически состоит из трех частей (рис. 3). Во-первых, есть сопротивление самого резистора. Затем, есть сопротивления выводов этого резистора и дорожек на печатной плате, подключаемых к резистору. Сопротивления выводов и дорожек незначительные, но и сами токочувствительные резисторы обычно имеют очень низкие значения сопротивления. При измерениях больших токов даже небольшие сопротивления выводов вносят в результаты измерения чувствительные погрешность, поскольку они не учтены производителем в спецификациях резистора.

Рисунок 3. Токовый резистор с двумя контактами фактически состоит из трех последовательно соединенных сопротивлений: сопротивление самого резистора (Rsens), сопротивление двух выводов резистора (Rlead) и сопротивление подводящих дорожек на плате, подключенных к резистору (не показано). Сопротивление выводов может вызвать ошибку измерений для большого тока.

Одним из способов, позволяющих избежать ошибок измерения, вносимых внешними сопротивлениями выводов, является создание соединения Кельвина, выполнив раздельные токоизмерительные дорожки к двухконтактному токочувствительному резистору (рис. 4).

При этом чрезвычайно большое значение для сохранения точности измерения имеет также правильная трассировка цепей между токоизмерительным резистором и усилителем тока на печатной плате. Чтобы достигнуть высокой точности измерения тока, необходимо использовать схему Кельвина, основанную на четырех точках подключения к токоизмерительному резистору. Первые два соединения нужны для контроля протекающего тока, а два других – для контроля падения напряжения на резисторе. На рисунке 4 показаны различные варианты подключений для контроля тока, протекающего через резистор.

Рисунок 4. Технология монтажа токоизмерительного резистора а), б), в), г

Одной из наиболее распространенных ошибок является подключение входов чувствительного по току усилителя к дорожкам печатной платы, показанное на рисунке 4а, вместо непосредственного подключения к резистору.

Другие допустимые варианты подключения к резистору для измерения тока представлены на рисунках 4б…г. Показанная на рисунке 4г компоновка использует независимое двухпроводное подключение для каждого вывода токоизмерительного резистора. Такой метод наиболее часто используется для резисторов с сопротивлением менее 0,5 мОм, когда паяное соединение способно серьезно изменить сопротивление цепи. Трудно сказать, какой метод компоновки точек подключения даст наилучшие результаты в окончательном варианте печатной платы, так как точность резистора во многом зависит от точки измерения, используемой при его производстве.

Если значение резистора было измерено с внутренней стороны контактных площадок, то наилучший результат измерения обеспечит компоновка, показанная на рисунке 4в. Если значение резистора было измерено на боковой стороне площадок – компоновка, показанная на рисунке 4б, даст наивысшую точность.

Резисторы Panasonic

Компания Panasonic – один из крупнейших мировых производителей электронных компонентов, предлагает более 35 серий токочувствительных резисторов с общим числом элементов более 13 000 наименований.

Все резисторы Panasonic выполнены по специальной технологии «мягкого контакта» (Soft Termination Technology) рис. 5, уменьшающей влияние разностного теплового расширения резистора и PCB, обеспечивающей высокую надежность резисторов и устройства в процессе эксплуатации.

Рисунок 5. Технология производства резисторов с использованием «мягкого контакта»

Разность теплового расширения материалов имеет коэффициент теплового расширения CTE (Coefficient of Thermal Expansion), в процессе пайки и эксплуатации резисторы подвергаются постоянному воздействию механических вибраций и температуры, в результате которых материалы резисторов и PCB сужаются и расширяются с разными значениями. На область припоя (галтели) рис.6 воздействует механическое напряжение, которое может привести к разрушению припоя и/или структуры резистора, увеличить контактное сопротивление, вызвать дополнительный нагрев, ухудшить параметры резистора и привести к выходу из строя как самого компонента, так и устройства в целом. Технология «мягкого контакта» в резисторах Panasonic нивелирует разницу TCE и обеспечивает целостность структуры в течение всего срока эксплуатации.

Рисунок 6. Результат разрушения галтели при разности CTE

Для большего уменьшения влияния сторонних факторов на резисторы, компания Panasonic предлагает резисторы с широкими контактными площадками серии ERJA1, ERJB1, ERJB2, ERJB3, ERJD1, ERJD2 или двойным резистивным слоем серии ERJ2LW, ERJ3LW, ERJ6LW, ERJ2BW, ERJ3BW, ERJ6BW, ERJ8BW, ERJ6CW, ERJ8CW обеспечивающие дополнительную надежность компонентов и схемы в целом.

Резисторы, изготовленные в корпусах с широкой контактной площадкой, обеспечивают рассеивание тепла по всей площади элемента, снижают вероятность разрушения резистора и точек пайки. Кроме того в резисторах с широкими контактами используется технология разделения резистивного слоя на отдельные сегменты и применение компенсационных прорезей в резистивном слое, обеспечивающие превосходные температурные характеристики резистора рис. 7. Материала резистивного слоя, на основе медно-никелевого сплава, примененный при производстве резисторов, обладает низким температурным коэффициентом и позволяет достигнуть максимального уровня рассеивания тепла и отменных температурных характеристик резисторов в процессе эксплуатации рис.8.

Рисунок 7. Структура резистора с широкой контактной площадкой

Рисунок 8. а) теплоотведение резистора с раздельными сегментами, б) обычный резистор

Применение в резисторах двухстороннего резистивного слоя позволяет уменьшить размеры требуемой площади на плате до 45%, увеличить мощность рассеяния резисторов, улучшить характеристики резистора, уменьшить номинальное сопротивление резистора, обеспечить надежность и увеличить срок службы рис. 9.

Рисунок 9. Структура резистора с двусторонним резистивным слоем

Т.к. мощность рассеяния резисторов с двусторонним расположением резистивного слоя выше, а допустимые номиналы сопротивления резисторов ниже, чем у обычных резисторов, такие резисторы способны работать с более высокими токами, что позволяет сохранить площадь платы, и повысить надежность устройства.

Применение

Современные электронные устройства, это сложные устройства с множеством внутренних процессов. И контроль этих процессов является важной и неотъемлемой частью. Основным способом осуществления контроля, является измерение тока, протекающего в цепях электронного устройства. Применение токоизмерительных резисторов в электронике один из самых распространенных, недорогих и высокоточных способов измерения тока.

Гигантская популярность современных мобильных телефонов, гаджетов, мобильных вычислительных машин, автономных и переносных устройств, счетчиков ресурсов, систем умного дома и другой электроники требует громадное количество элементов питания, используемых в этих устройствах. И очень важно осуществлять контроль разряда и заряда этих элементов питания, позволяющего продлить срок службы, как элементов питания, так и самих устройств. Простым, надежным, точным и не дорогим способом контроля, является контроль протекающего тока на основе токоизмерительных резисторов.

Большинство современных блоков питания или драйверов для светотехники являются достаточно интеллектуальными приборами, контролирующими массу входных и выходных параметров, таких как наличие короткого замыкания, наличие/отсутствие нагрузки, коррекция мощности, контроль заряда аккумулятора, контроль выходного напряжения и тока. Контроль многих параметров источников питания осуществляется на основе токоизмерительных резисторов.

Робототехника и автоматика неотъемлемая часть современной жизни человека, поднимается лифт, перемалывается кофе в кофе машине, крутится вентилятор, катится электросамокат, работает вытяжка на кухне, работает шуруповерт, все эти устройства используют электромоторы. Многие из схем управления электромоторов этих устройств включают в себя токочувствительные элементы на основе резисторов позволяющие осуществлять контроль и функции защиты.

Современный автомобиль, это порой серьезный вычислительный центр, со множеством мультимедийных, коммуникационных и силовых электронных блоков, содержащий десятки электромоторов, силовых и сигнальных цепей, и высокой степенью контроля средств управления и безопасности автомобиля. Для обеспечения высокой надежности систем автомобиля, крайне важно контролировать электрические процессы и протекающие токи в цепях. Системы контроля токов на основе токоизмерительных резисторов Panasonic способны обеспечить высокую точность и надежность.

Заключение

Технология измерения тока посредством преобразования напряжения с помощью токочувствительных резисторов, в силу простоты схемного решения, стоимости, точности и надежности, является наиболее распространенной в современной электронике.

Уникальная технология производства резисторов, их высокое качество, подтвержденное наличием сертификатов, регламентированных для применения в автомобильной электронике, AEC-Q200, позволяет проектировать и создавать высоконадежные системы контроля и управления с применением токочувствительных резисторов Panasonic. Широкая номенклатура токочувствительных резисторов позволит подобрать требуемые элемент.

Описание

Серия резисторов

Типоразмер

Диапазон сопротивлений, Ом

Точность, %

T.C.R (ppm)

Мощность рассеяния, Вт

Диапазон рабочих температур, °C

Стандартные низкоомные толстопленочные резисторы

ERJ12RS

ERJ12ZS

ERJ14RS

ERJ1TRS

ERJ3RS

ERJ6RS

ERJ8RS

0402

0603

0805

1206

1210

1812

2010/ 2512

0. 1…0.2

0.5 – D

1 – F

2 – G

5 — J

100

150

200

250

300

0.1

0.125

0.166

0.25

0.33

0.5

1

-55…+155

Стандартные низкоомные толстопленочные резисторы

ERJ12RQ

ERJ12ZQ

ERJ14RQ

ERJ1TRQ

ERJ3RQ

ERJ6RQ

ERJ8RQ

0402

0603

0805

1206

1210

1812

2010/ 2512

0.22…9.1

0.5 – D

1 – F

2 – G

5 — J

100

150

200

250

300

0.1

0.125

0.166

0. 25

0.33

0.5

1

-55…+155

Низкоомные толстопленочные резисторы повышенной мощности

ERJ14BS

ERJ14BQ ERJ2BS

ERJ2BQ

ERJ3BS

ERJ3BQ

ERJ6BS

ERJ6DS

ERJ6BQ

ERJ6DQ

ERJ8BS

ERJ8BQ

0402

0603

0805

1206

1210

0.1…9.1

0.5 – D

1 – F

2 – G

5 — J

100

150

200

250

300

0.166

0.25

0.33

0.5

-55…+155

Низкоомные толстопленочные резисторы с низким TCR

ERJL12

ERJL14

ERJL1D

ERJL1W ERJL03

ERJL06

ERJL08

0603

0805

1206

1210

1812

2010

2512

0. 02…0.1

1 – F

5 — J

100

200

300

0.2

0.25

0.33

0.5

1

-55…+125

Низкоомные толстопленочные резисторы с двухсторонним резистивным слоем, повышенной мощности

ERJ2BW

ERJ2LW

ERJ3BW

ERJ3LW

ERJ6BW

ERJ6CW

ERJ6LW

ERJ8BW

ERJ8CW

0402

0603

0805

1206

0.05…0.1

0.5 – D

1 – F

2 – G

5 — J

75

100

150

200

250

300

500

700

0.2

0.25

0.33

0.5

1

-55…+155

Низкоомные толстопленочные резисторы с широкими выводами, высокой мощности

ERJA1

ERJB1

ERJB2

ERJB3

1225

1020

0612

0508

0. 05…1M

1 – F

2 – G

5 — J

100

150

200

300

0.33

0.75

1

1.33

-55…+155

Низкоомные толстопленочные резисторы с широкими выводами, низким TCR

ERJD1

ERJD2

ERJD3

1020

0612

0508

0.05…0.2

1 – F

5 — J

100

0.5

1

2

-55…+155

Доступность:

Резисторы Panasonic находятся в массовом производстве и доступны для заказа.

Ресурсы:

 

Резистор

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

На этом занятии в школе начинающего радиолюбителя мы рассмотрим очень важную радиодеталь – резистор.

Резистор – это радиодеталь, оказывающая строго определенное сопротивление току, протекающему через него. Зачем это нужно? Все просто, чтобы понизить ток в цепи. Например, нам нужно уменьшить яркость свечения лампочки в карманном фонаре, для этого подадим на нее ток через резистор. И яркость лампы будет тем меньше, чем больше сопротивление резистора. Резисторы бывают разные, но есть две основные группы – постоянные и переменные. Постоянные резисторы обладают неизменным сопротивлением, а у переменных резисторов есть ручка или вал для ручки, поворотом которого можно менять сопротивление резистора от нуля до его максимальной величины.

Любой постоянный резистор имеет два основных параметра – сопротивление и мощность. На схеме, рядом с обозначением резистора указывают его сопротивление. Если надо, указывают мощность, но не буквами и цифрами а линиями на обозначении.

Что такое сопротивление резистора уже понятно, а что такое мощность резистора? Как известно, мощность можно определить из формулы P=UxI, то есть мощность равна произведению напряжения на ток. Вот это и указывается, какую мощность резистор может выдержать, ведь при прохождении тока через сопротивление выделяется тепло и если мощность будет превышена, резистор просто сгорит.

На рисунке слева показано обозначение резистора как на принципиальной схеме.  Рядом с ним указан порядковый номер по схеме (R1) и сопротивление – 12К. Но что такое 12К и как оно сопоставляется с сопротивлением в Омах? Все очень просто – “К” – это кратная приставка “кило”, то есть 1000, таким образом 12К это 12000 Ом. Еще бывает “мега”,  “М”, то есть 1000000, и если 12М то это будет 12000000 Ом. А если вообще нет никаких приставок, к примеру написано просто “20”, то это значит 20 Ом. Бывают и другие обозначения на схемах, в которых буква, обозначающая кратную приставку, используется как децимальная запятая. Например:
1500 Ом – 1К5 или 1,5К
200 Ом -К20 или 0,2К.

Маркировка резисторов. Есть несколько стандартов, первые два логичны и понятны, третий странноват.

Первый способ:

Буквы “Е”, “К” и “М” , обозначающие кратные приставки и расставленные как децимальные запятые. Буква “Е” – 1, буква “К” – 1000 и буква “М” – 1000000. Вот примеры как это выглядит и расшифровывается:

 12Е – 12 Ом
К12 – 0,12К – 120 Ом
1К2 -1,2 кОм
12К – 12 кОм
М12 – 0,12М – 120 кОм
1М2 – 1,2 мОм
12М – 12 мОм Второй способ:

Отличается тем, что все обозначения цифрами, то есть и значение и множитель. Это сложнее, но тоже понятно. Обозначение состоит из трех цифр: первые две – значение, третья – множитель. Множители: “0”, “1”, “2”, “3” и “4”. Понять это можно, если знать, что они показывают сколько нулей надо дописать к значению. Вот примеры:
120 – 12 Ом
121 – 120 Ом
122 – 1200 Ом
123 – 12000 Ом
124 – 120000 Ом

Третий способ:

Обозначение цветными полосами. Каждой цифре соответствует определенный цвет: черный – 0,  коричневый – 1, красный – 2, оранжевый – 3, желтый – 4, зеленый – 5, синий – 6, фиолетовый – 7,  серый – 8, белый – 9. И еще два цвета, которые используются только как множители – серебристый – 0,01 и золотистый – 0,1. На резисторе может быть полосок от 4 до 6. Для определения сопротивления используются первые три. Происходит это также как и во втором способе, например: коричневый-зеленый-красный – 152 – 1500 Ом. Полоски на корпусе резистора кучно смещены к одному концу, вот от него и надо вести отсчет. Остальные три полоски – точность резистора, ТКС (отклонение из-за температуры) и наработка на отказ. Есть специальные радиолюбительские программы которые облегчают жизнь по третьему варианту маркировки транзистора. К примеру: 

  rezistor.zip (239.3 KiB, 8,063 hits)

  

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.

В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.

Характеристики резисторов

1. Основной параметр резистора – это номинальное сопротивление.

2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.

3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.

4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.

5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.

6. Шумовые характеристики.

7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.

8. Влаго- и термоустойчивость.

Есть еще две характеристики, о которых начинающие чаще всего не знают, это:

1. Паразитная индуктивность.

2. Паразитная ёмкость.

Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.

На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.

Мощность резистора

Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I

Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:

I=U/R

Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:

I=U/R

Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.

У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.

В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).

На картинке пример кристаллической решетки, для наглядности.

Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?

То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.

Но как это относится к резисторам?

Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. 2/1=144/1=144 Вт.

Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.

Какие бывают резисторы и как они обозначаются на схеме

Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5

Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.

Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.

Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.

Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).

Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).

Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.

В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента. Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е. охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.

Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.

Что делать, если нет резистора нужной мощности?

Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.

На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.

1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3

2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.

На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.

Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I

Мощность, выделяемая на каждом из них, снизится соответствующим образом.

Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0. 5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.

Я не просто так написал «ПОЧТИ ВСЕГДА». Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.

Заключение

Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.

При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.

Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.

Ранее ЭлектроВести писали, что JinkoSolar объявила, что она установила новый рекорд эффективности для монокристаллических PERC-панелей, который составил 24,38%. Компания также разработала модуль мощностью 469,3 Вт. Кроме того, китайский производитель фотоэлектрических элементов поравнялся с фирмой Trina Solar, которая на прошлой неделе заявила о рекордном 24,58% показателе КПД монокристаллических панелей n-типа.

По материалам: electrik.info.

Резистор

Резистор – пассивный элемент электрической цепи главное свойство которого – сопротивление.  В идеале резистор обладает линейной вольт — амперной характеристикой, а его полное сопротивление равно активному. Но это в идеале, на практике же существуют различные паразитные емкости и индуктивности, которые нарушают линейный характер резистора.

Основные характеристики

Номинальное сопротивление резисторов указывают на их корпусе в виде цветных полос или чисел.

Чтобы расшифровать штриховку в виде полос, нужно расположить резистор так чтобы все полосы были ближе к левому краю, или только широкая полоса была слева. В этой статье мы не будем рассказывать, как сделать расшифровку вручную, вместо этого мы предоставим программу, которая сама выполнит расчет.

Сопротивление это не единственная характеристика резистора, он также обладает такими параметрами как предельное рабочее напряжение, температурный коэффициент сопротивления и номинальная мощность.

Предельное рабочее напряжение – максимальное напряжение, при котором резистор работает стабильно.

Температурный коэффициент сопротивления показывает, как изменяется сопротивление резистора при изменении температуры окружающей среды на 1. Этот коэффициент зависит от материала, из которого резистор изготовлен, если с увеличением температуры сопротивление возрастает, то ТКС положительный, если уменьшается, то ТКС отрицательный.

Номинальная мощность – это мощность рассеяния, создаваемая протекающим через резистор током, при которой он может работать длительное время, не выходя из строя. В основном применяют резисторы мощностью от 0,05 Вт до 2 Вт.

Виды резисторов

Различают два вида резисторов: постоянные и переменные (подстроечные).

Постоянные резисторы делятся на проволочные и непроволочные. Проволочные резисторы представляют из себя стержень на который намотана проволока из металла с высоким удельным сопротивлением. Непроволочные резисторы бывают углеродистые, металлизированные, лакированные эмалью, теплостойкие и другие.

Регулируемые резисторы это радиоэлементы, сопротивление которых можно изменить от нуля до номинальной величины. Они также бывают проволочными и непроволочными.

Резистор, сопротивление которого можно изменить называется реостатом (потенциометром). Обычно реостат это стержень на который намотана проволока, сопротивление изменяется благодаря ползунку, который перемещается вдоль стержня.

 

Также существуют полупроводниковые резисторы. Принцип действия таких резисторов основан на свойствах полупроводников, изменять свое сопротивление под воздействием внешней среды.

Терморезисторы – это полупроводниковые резисторы, сопротивление которых зависит от температуры. ТКС таких резисторов отрицательный, это значит, что при увеличении температуры сопротивление термистора уменьшается. Терморезисторы у которых сопротивление увеличивается с увеличением температуры (то есть положительным ТКС) называются позисторами. 

Варисторами называются полупроводниковые резисторы, сопротивление которых уменьшается при увеличении приложенного напряжения. В основном варисторы применяются для защиты от перенапряжений контактов и для стабилизации и регулирования электрических величин.  

Фоторезистор – это полупроводниковый резистор, сопротивление которого меняется от светового или проникающего электромагнитного поля. В основном используются фоторезисторы с положительным фотоэффектом, при попадании электромагнитных волн на их поверхность, сопротивление уменьшается. Фоторезисторы применяются в фотореле, счетчиках, датчиках и т.д.

Рекомендуем к прочтению — делитель напряжения

 

  • Просмотров:
  • Резисторы / Электроника / RoboCraft. Роботы? Это просто!

    Резистор — самая простая и распространённая радиодеталь. Фактически это просто проводник с точно известным сопротивлением(маркированный и с выводами). Нужен он для выполнения закона ома=)

    То есть, для ограничения тока. Если простым языком — чтоб тока больше чем надо, куда надо не пошло, а лишний улетел в тепло =)
    Но из этого нехитрого назначения, столько всего полезного получается, что ниже вышла, просто неприличных размеров, простыня=)

    На схемах обозначается, по отечественному — прямоугольничком, по зарубежному — угловатой пружинкой:

    Номиналы
    Основной параметр резистора — его сопротивление (их часто так и называют — “сопротивление”), измеряется оно в Омах(Ом, Ω ), если омов больше тысячи, то в КилоОмах (Ком, К), а если перевалили за миллион — в мегаомах (Мом).

    Чтоб не говорить «пятнадцать тысяч ом» или не рисовать нули, говорят 15 кило ом.
    Как граммы-килограммы=)

    Значений сопротивлений резисторов (говорят «номиналов») не бесконечное множество — есть стандартные ряды значений. Так что не надо искать резистор 321ом — вряд ли найдёте, хотя в природе он наверное есть=) Но если вам срочно нужен именно он, то есть два выхода — простроечные-переменные резисторы (см ниже) или несколько соединённых резисторов.

    Соединение резисторов
    Соединять можно последовательно:

    При этом сопротивления сложатся.

    Ещё полезно знать(понимать), что ток через все последовательно соединённые резисторы будет одинаковый, а вот всё приложенное к ним напряжение поделится пропорционально сопротивлениям, согласно всё тому же закону Ома:

    говорят — «на резисторе падает напряжение» На этом принципе строятся делители напряжения и шунты (см ниже).

    А можно параллельно, тогда сопротивление цепочки уменьшится:

    Проще параллелить одинаковые резисторы — общее сопротивление будет равно сопротивлению одного делённому на количество.

    Тут тоже полезно знать(понимать), что при параллельном соединении напряжения на всех резисторах равны, а токи поделятся:

    Старый немец Георг Ом рулит в электронике, ага=)

    Ну и зачем они нужны?
    В цифровой технике резисторы используются в основном для «подтяжки» — например подать на порт МК единичку(напр. питания), пока кнопка не нажата. Собственно резистор тут нужен не столько для подтяжки, сколько для ограничения тока, когда кнопку нажмут, ведь если его не будет — выйдет короткое замыкание:

    Ещё часто светодиоду нужно ток ограничить:

    Для обоих этих целей большого разнообразия номиналов не требуется:
    Для подтяжки вообще не важно конкретное значение, скорее порядки — можно смело ставить единицы-десятки килоом.
    Для светодиода, тоже необязательно выбирать резистор с точностью до 10ом — главное что бы ток был ниже номинального (см документацию, обычно — 20мА), а разница в свечении, скажем с 470ом и с 100ом весьма незначительна.

    Второй вариант применения резисторов, как мы уже упомянули — делители напряжения(подробнее):

    С помощью этой нехитрой схемы, применяя постоянные резисторы, можно измерять напряжения превышающие напряжения питания вашего контроллера — например контролировать заряд батареи.

    А если подать на такую цепочку известное напряжение(стабилизированное напряжение питания, например) можно будет измерить сопротивление резистивного датчика, например фото- или терморезистора:

    То есть померить температуру или узнать освещённость.

    Кстати, обратите внимание на такую закономерность — если значок детали перечёркнут линией с «полкой» а на полке стоит значок какой-нибудь физической величины — то деталь эта чувствительна к этой самой величине. Например — тензорезистор, термистор, варистор. А если две стрелочки снаружи на деталь смотрят — то это неравнодушность к свету означает — фоторезистор например.

    Мы уже сто раз сказали, что на резисторе падает напряжение пропорциональное его сопротивлению, но так же зависит это напряжение и от тока текущего через этот резистор. А значит зная сопротивление резистора и измерив напряжение на нём, можно измерить ток.
    Например выяснить какой ток у нас потребляет двигатель и сделать вывод — буксуем, едем или застряли окончательно:

    Тут тоже стоит обратить внимание на несколько вещей.
    Во первых внутри значка резистора появились чёрточки — это так мощность любители ГОСТов обозначают.
    На нерусских схемах просто рядом с резистором пишут, например — 5W.
    Второй момент, это сопротивление нашего измерительного резистора (такой резистор называют «шунт»)
    Оно довольно мало — это что бы не тратить зря энергию — мы же только измерить ток хотим, а не ограничить его — маршевым двигателям нужна вся доступная нам мощность! Да и выделится эта энергия исключительно в виде тепла:

    Так что при неправильном расчёте/подборе вместо шунта(да кстати и вместо делителя и вместо балластного резистора) выйдет кипятильник.
    А если мощность выделяемая на резисторе значительно превысит его рассеиваемую мощность — он зловонно сгорит:

    Мощность стандартных современных резисторов — 1/4 вата (0,25вт).

    0,25Вт это конечно не очень много, но тут дело ещё и в размере нагреваемой детали. 30Вт-ный паяльник греет довольно массивное жало градусов до 300 и бодро плавит не иллюзорные количества припоя. А для такой мелочи как резистор, хватит и полувата, что бы оставить вам на память о себе ожог.

    Для шунтов применят резисторы мощностью в единицы-десятки ват:

    Если мерить надо жуткие десятки-сотни ампер то на резисторы уже не размениваются, а ставят, собственно шунты:

    (Фотка из вики)
    А в народе применяют куски нержавейки, вольфрамовых электродов, отрезки нихрома и т.п.=)

    Используя всё прочитанное, нетрудно догадаться, что вместо дефицитного, мощного, малоомного резистора можно поставить параллельно, например, десяток четверть-ватных одноомоников. Сопротивление их поделится на 10, а мощность этой колбасы вырастет в 10 раз(токи же поделятся).
    Выйдет 0,1ома, 4Вт — вполне себе шунт на 0,5-6А.

    Переменные и подстроечные резисторы
    Вроде с постоянными резисторами справились. Осталось коротко отметить, что в случаях когда вам надо плавно чего-то настраивать/регулировать — громкость, яркость, задержку какую-нибудь — вам надо сообщить о своих намерениях контроллеру. Сделать это проще всего(в случае ардуины) изменением напряжения на его аналоговом входе. Перетыкать постоянные резисторы в делителе не очень удобно, поэтому лучше использовать переменный резистор:

    Средний вывод(бегунок) — подвижный, механически связан с ручкой и перемещается по резистивной дорожке, подключенной к крайним выводам — её сопротивление — и есть номинал переменного резистора.
    Поворачивая ручку вы меняете длину (а значит и сопротивление) участка дорожки между крайним выводом и бегунком. В среднем положении сопротивления левого и правого участков (говорят плечей) равны, в крайних положениях движок соединяется с соответствующим крайним выводом:

    Так что в руках у нас готовый регулируемый делитель=)
    Такое включение называют «потенциометр«(иногда и сам пер. резистор так называют), можно использовать не только для взаимодействия пользователя и девайса, но и для контроля положения (угла поворота), чего-нибудь как например в сервах. Только не стоит забывать об ограниченном ресурсе резистивной дорожки(стирается) и невысокой нагрузочной способности(механической) вала — см в конце.
    Используя только одно плечо можно получить регулируемое сопротивление — такое включение называют «реостат».
    Иногда, оставшуюся не подключённой ногу, замыкают на среднюю — что бы в воздухе не болталась — помехи не ловила.

    Ещё важное наблюдение по условным обозначениям — если вы видите значок детали перечёркнутый стрелочкой — значит он регулируемый — его значение можно менять.

    Но если крутить надо не беспрестанно, а только несколько раз за время эксплуатации девайса — торчащий вал может быть не удобен — место занимает, да и зацепить его можно, сбив тонкую настройку. В таких случаях применяют подстроечные резисторы (подстроечники, триммеры). Там всё тоже самое только вместо вала — шлиц под отвёртку:

    Обозначаются, если по-честному, не со стрелочкой, а с этаким молоточком:

    Вообще если уведите подобный молоточек на обозначении какой-либо детали — это подстрочный элемент — возможна регулировка.(ага, символ настройки — молоток=)

    Маркировка
    Со всеми вариантами обозначений и применений разобрались, осталось выяснить как выбрать нужный резистор из кучки для втыкания в девайс, собираемый по схеме.
    Раньше, отечественные резисторы маркировались человеко-понятными надписями(вот прям так и писали «1кОм»), и всем было хорошо. Но монтажники-вредители имеют обыкновение втыкать их в плату как попало и надпись часто оказывалась не видна, или неумолимая агрессивная среда, порой уничтожала именно сторону с надписью. А ремонтники-сервисники потом рыдали, пытаясь выяснить сопротивление умершего резистора. В общем всё это, в конце концов, привело к появлению полосатых резисторов. Теперь как ни воткни — маркировка всегда видна, а вредоносной среде стало значительно сложнее стереть цветные кольца до полной не читаемости.
    Вот только в мирных условиях отсутствия монтажников и едких растворителей, читать этот весёлый ГАИ-шный микрожезл, стало затруднительно=\ Или в таблицу глядеть или учить/запоминать или тестером тыкать. Что делать — прогресс.

    Можно попробовать сочинить какую-нибудь мнемо-считалочку для запоминания. Тем более что в середине таблицы цвета расположены в классическом радужно-спектральном порядке: Каждый Охотник Желает Знать где Сидит Фазан.
    Ещё можно воспользоваться ворохом программ на все возможные операционки и платформы. А некоторые из них могут сделать почти всё за вас=)
    Так же встречается на переменных, подстроечных, и SMD — резисторах маркировка тремя (для особо точных — четырьмя) циферками — без букавок. Принцип тот же что и в цветовой маркировке: первые две(три) цифры — значение, последняя — степень десятки на которую это значение умножается. По простому — берём первые цифры и рисуем к ним количество ноликов указанное последней цифрой — получилось сопротивление в омах. Лишние нули переводим в десятичные приставки — кило- или мега-.

    Если кто не в курсе — приставка кило- означает тысячу(применяя её, отбрасываем 3 нолика), мега- миллион (применяя её, отбрасываем 6 ноликов)

    И напоследок пара моих любимых бородатейших баянов по сабжу:

    Применение резисторов в электрических цепях: работа резистора

    Резистор – самый простой пассивный элемент. Его функциональная обязанность заключается в ограничении тока в электроцепи. Некогда их называли сопротивлениями, что является их физическим свойством, однако, чтобы не возникало путаницы, было принято решение переименовать их в резисторы. Если рассматривать такое свойство, как сопротивление, то им обладают все проводники. В этой статье ознакомимся с тем, что такое резистор, и каковы его особенности.

    Внешний вид

    Отличительные черты резистора

    Если отталкиваться от вопроса, как образовалось слово, то от английского «resist». Переводя на русский язык, это звучит, как сопротивляться, противостоять. В электроцепи протекает ток, который испытывает внутренние противодействия. Для определения величины сопротивления тока необходимо обращать внимание на разные наружные факторы и свойства проводника.

    Компактный элемент

    Токовую характеристику измеряют в Омах. Также следует отталкиваться от напряжения и силы тока. Например, если сопротивление проводного элемента 1 Ом, ток также 1 Ампер, то каждый конец проводника будет иметь напряжение в 1 Вольт. Таким образом, вводя и изменяя величину сопротивления, открывается контроль и регулировка всех остальных параметров. Расчет может быть самостоятельным, что немаловажно.

    Обратите внимание! Сейчас наблюдается широкое применение резисторов в различных отраслях науки. Кроме того, деталь широко распространена – используется при производстве плат и электросхем.

    Теперь разберемся, для чего необходимо их использование. Основная функция резистора – контролировать и ограничивать перемещения тока. В некоторых случаях при помощи этой детали делят напряжение в сети. Математическое представление позволяет разобраться с принципом работы. Здесь любая деталь, находящаяся в цепи, зависит от того, какое в ней сформировалось напряжение. Для описания зависимости используется закон Ома, а деталь рассматривается как резистор.

    В нормальных условиях резистор рассеивает тепло. По мнению специалистов, данный элемент актуален для тех электрических цепей, где требуется рассеивание нужной мощности. Однако необходимо быть внимательным, так как повышенная температура прибора может негативно сказываться на близлежащих элементах. Отталкиваясь от теорий, специалисты рассчитывают напряжение, сопротивление и показатель тока.

    Мощность резистора с номинальным характером, как правило, указывается в таблице комплектации. Применяется стандартный показатель мощности – 0.25 и 0.125 Ватт. Если схема создается с применением более мощного резистора, это фиксируется в предварительном списке.

    Обратите внимание! В составе многих резисторов есть серебро, но для сборки особых элементов могут использоваться золото, платина, палладий, рутений и тантал.

    Как классифицируется элемент

    Основные различия

    То, что такое резистор, понятно, но необходимо знать, что существует несколько технологий их изготовления, как и материалов, используемых для этого. Это напрямую влияет на свойства и то, насколько отклонено их сопротивление от номинала, обозначаемого на корпусе. Резисторы бывают:

    • Проволочными. Для их производства используют высокоомную проволоку из металла (особый сплав, имеющий высокое удельное сопротивление). Особенность подобных резисторов заключается в высокой емкости и показателе индуктивности. При нагревании элемента увеличивается его сопротивление, так как под влиянием температуры резистор становится более длинным и широким. Несмотря на это, проволочными резисторами пользуются редко, в основном в тех ситуациях, когда нужна высокая мощность;
    • Полупроводниковые изделия. По сравнению с металлами, данный вид материалов имеет более высокое удельное сопротивление. Поэтому, чтобы создать элемент, нужно намного меньше полупроводника. Также не требуется делать намотку, так как она имеет вид обычной пластинки с определенным показателем сопротивления.

    Есть и прочие параметры, используемые для классификации элемента:

    • Точность маркировки: 10%, 5%, 1% и так далее;
    • Максимально допустимый показатель рассеиваемой мощности: от 0.1 до 2 Вт и более.

    Отдельно стоит отметить переменные и подстроечные элементы. Резисторы такого вида – это изделия в виде пластинки полупроводника или обмотка из высокоомного провода, имеющая отводы. Помимо этого, предусматривается особый контакт, прикасающийся к полупроводнику или проводу. Используя специальную ручку, изменяется место соприкосновения. Переменные резисторы применяются для сборки схем, которые позволяют механическим путем регулировать громкость, уровень сигнала, тока или напряжения. Особенность переменных элементов – в высокой надежности при постоянных регулировках. Что касается подстроечных, они работают, когда необходимы редкие регулировки с установленным сопротивлением.

    Такой резистивный элемент также принято маркировать цветом. Следует понимать, что резистор выполняется круглой формы, процедура его производства полностью автоматизирована. Поэтому иногда бывает, что элементы устанавливаются на монтажных платах надписью вниз. Для определения номинала в таких ситуациях используется маркировка при помощи цветных полосок:

    • 20% точности – 3 полоски;
    • 10%, 5% – 4 полоски;
    • ниже 5% – 5 или 6 полосок.

    Состав резистивного слоя также позволяет классифицировать виды сопротивлений, которые могут быть:

    • Углеродистыми;
    • Металлопленочными;
    • Металлодиэлектрическими;
    • Металлоокисными;
    • Полупроводниковыми.

    Чаще всего из этого списка используются первые два типа.

    Где находят применение

    Некоторое время назад люди задавались вопросом, что такое резистор. Сейчас данный элемент находит все более частое применение, начиная низковольтными карманными устройствами и заканчивая высоковольтными промышленными агрегатами. Речь идет о различных бытовых приборах, техническом и измерительном оборудовании, автоматических системах, высокочастотных линиях, волноводах, радио,- и видеоаппаратуре, цепях питания, робототехнике и многом другом.

    Элемент на плате

    На данный момент встречаются схемы, где сопротивление используется в единичном порядке, а иногда устанавливается цельная конструкция, в которую входит немалое количество элементов.

    Интересно. Резисторы еще долго будут использоваться при построении электрических схем. Это благодаря тому, что данное микроустройство доступное, простое в эксплуатации, малогабаритное и имеет высокий показатель КПД.

    Когда начали появляться микроконтроллеры, у современной техники появилось больше функций, и ее начали производить более компактных размеров. Благодаря таким элементам, упрощаются электрические схемы, а устройства потребляют меньше тока, в результате миниатюрной стала сама элементная база.

    Резистор – что это такое? С первого взгляда, кажется, что этой простой элемент, просто кусок материала, который сопротивляется электрическому току. Но не все так просто, так как в формировании данного элемента играют роль множество параметров, которые необходимо учитывать при составлении электрической схемы.

    Видео

    Оцените статью:

    Немного о РЕЗИСТОРАХ…

    Немного о РЕЗИСТОРАХ…

    Резистор – это самый распространенный электронный компонент, название которого произошло от английского слова «resistor» и от латинского «resisto» — сопротивляюсь. Основным параметром резистора считается сопротивление, которое характеризуется его способностью в препятствии протекания электрического тока. Единицами сопротивления у резисторов являются – Омы (?), Килоомы (1000 Ом или 1К?) и Мегаомы (1000000 Ом или 1М?).

    Основные типы резисторов

    По физическому устройству резисторы бывают следующих типов:

    • углеродные пленочные;

    • углеродные композиционные;

    • металлооксидные;

    • пленочные металлические;

    • проволочные

    Углеродные пленочные выпускают в виде керамического стержня, который покрыт специальной пленкой кристаллического углерода. Она в свою очередь и является резистивным элементом. Их номинальный диапазон сопротивления от двух до одного Мом, а максимальная мощность от 0,2 до 2 Вт. 

     

     Углеродные композиционные являются самыми дешевыми. Поэтому их стабильность не высока и их сопротивление, как правило, может меняться на пару процентов. Также при протекании тока, через такие резисторы могут возникать шумы. Такое обстоятельство имеет большое значение, особенно в медицинской электронной аппаратуре, так как там часто требуется большое усилие, но с малым уровнем шума

     

    Металлооксидные являются вторым типом пленочных резисторов. В этих резисторах окончательное сопротивление получается за счет нанесения спиральной канавки на керамической основе. За счет этого увеличивается эффективная длина между концами резистора, а также сопротивление. Пленочные металлические используются в транзисторных выходных, так как они имеют сопротивление меньшее, чем 10 Ом, что для этого и необходимо. Эти резисторы рассеивают большую мощность при малых размерах. Это и является самым большим их достоинством. Также он имеет стабильность нагрузки, которая достигает не более ±3%, малый коэффициент сопротивления под напряжением, а также очень малый уровень шумов. Еще у него температурный коэффициент достигает от 0 до 600-10~6 1/°С.

     

    Проволочные резисторы делаются из безиндуктивной или обычной обмотки. Они применяются тогда, когда нужна большая рассеиваемая мощность или высокая стабильность, так как другие резисторы не могут этого обеспечить. Они рассеивают мощность до 100 Вт, но их сопротивление ограничено до 50 кОм. Температура их поверхности при работе может достигать очень больших размеров, поэтому их нужно располагать так, чтобы могла обеспечиваться вентиляция воздуха и их охлаждение, потому что в противном случае они выйдут из строя.

     

    По характеру изменения сопротивления различают следующие виды резисторов. Постоянные резисторы – их сопротивление всегда является константой, за исключением изменения сопротивления вследствие воздействия различных климатических факторов. Это самый распространенный вид резисторов.

     

    Переменные резисторы. У переменных резисторов сопротивление можно менять в определенном диапазоне. Переменные резисторы бывают регулировочными и подстроечными. Регулировочные переменные резисторы служат для оперативного изменения сопротивления, подстроечные обычно для отладки различных параметров схем. 

     

    По назначению резисторы можно отнести к следующим видам:

    резисторы общего назначения и резисторы специального назначения. 

    Резисторы общего назначения – используются в качестве нагрузок активных элементов, делителей, поглотителей, элементов фильтров, в цепях формирования импульсов и т. Д. Диапазон сопротивлений резисторов общего назначения лежит в пределах 1 Ом – 10Мом, номинальные мощности рассеяния – 0,125- 100 Вт.

    К резисторам специального назначения относятся прецизионные и сверхпрецизионные, высокочастотные, высоковольтные и высокомегаомные резисторы.

    Прецизионные и сверхпрецизионные резисторы характеризуются высокой стабильностью параметров и высокой точностью изготовления. Эти резисторы применяются в основном в измерительных приборах, в системах автоматики и т. Д.

    Высокочастотные резисторы характеризуются малой собственной индуктивностью и емкостью и применяются в высокочастотных цепях, кабелях и волноводах.

     

     

    Высоковольтные резисторы применяются в схемах с большими значениями напряжения (от единиц до десятков киловольт).

    Высокомегаомные резисторы имеют широкий диапазон номинальных сопротивлений от десятков мегаом до единиц тераом. Высокомегаомные резисторы применяются в схемах с рабочим напряжением до 400 вольт и работают в режиме малых токов.

     

    У резисторов кроме основного параметра – сопротивления, существует ряд других параметров. Одним из таковых является допуск или максимальное допустимое отклонение сопротивления от номинального. Допуск это разница между действительным и номинальным значением сопротивления резистора. Допустимое отклонение выражается в процентах. Резисторы общего назначения выпускаются с допустимым отклонением ±20%, ±10%, ±5%, ±2% и ±1%. Прецизионные резисторы выпускаются с допусками меньше 1%. Обычно в большинстве электронных устройств достаточно применять резисторы с допуском 10%.

     

    В России условные графические обозначения резисторов на схемах должны соответствовать ГОСТ 2.728-74.

    В соответствии с ним, постоянные резисторы обозначаются следующим образом:

    Переменные, подстроечные и нелинейные резисторы обозначаются следующим образом:

     

    Номинальные ряды сопротивлений

    Для постоянных резисторов установлено 6 рядов номинальных сопротивлений E6, E12, E24, E48, E96, E192, для переменных резисторов установлен ряд E6.

    Ряд E6

    1 1. 5 2.2 3.3 4.7 6.8
    Ряд E12

    1 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2
    Ряд E24

    1 1.1 1.2 1.3 1.5 1.6 1.8 2 2.2 2.4 2.7 3  
    3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1
    Ряд E48

    100 105 110 115 121 127 133 140 147 154 162 169 
    178 187 196 205 215 226 237 249 261 274 287 301 
    316 332 348 365 383 402 422 442 464 487 511 536 
    562 590 619 649 681 715 750 787 825 866 909 953

     

    Ряд E96

    100 102 105 107 110 113 115 118 121 124 127 130 
    133 137 140 143 147 150 154 158 162 165 169 174 
    178 182 187 191 196 200 205 210 215 221 226 232 
    237 243 249 255 261 267 274 280 287 294 301 309 
    316 324 332 340 348 357 365 374 383 392 402 412 
    422 432 442 453 464 475 487 499 511 523 536 549 
    562 576 590 604 619 634 649 665 681 698 715 732
    750 768 787 806 825 845 866 887 909 931 953 976

    Ряд E192

     

    100 101 102 104 105 106 107 109 110 111 113 114 
    115 117 118 120 121 123 124 126 127 129 130 132 
    133 135 137 138 140 142 143 145 147 149 150 152 
    154 156 158 160 162 164 165 167 169 172 174 176 
    178 180 182 184 187 189 191 193 196 198 200 203 
    205 208 210 213 215 218 221 223 226 229 232 234 
    237 240 243 246 249 252 255 258 261 264 267 271
    274 277 280 284 287 291 294 298 301 305 309 312 
    316 320 324 328 332 336 340 344 348 352 357 361 
    365 370 374 379 383 388 392 397 402 407 412 417 
    422 427 432 437 442 448 453 459 464 470 475 481 
    487 493 499 505 511 517 523 530 536 542 549 556 
    562 569 576 583 590 597 604 612 619 626 634 642 
    649 657 665 673 681 690 698 706 715 723 732 741
    750 759 768 777 787 796 806 816 825 835 845 856 
    866 867 887 898 909 920 931 942 953 965 976 988

    Допуски по ГОСТ 11076-69 (в %) и коды обозначений
    E
     0. 001%, L 0.002%, R 0.005%,
    P 0.01%, U 0.02%, X 0.05%,
    B 0.1%, C 0.25%, D 0.5%,
    F 1%, G 2%, J 5%, 
    K 10%, M 20%, N 30%.

    Допуски по Публикации 62 и 115-2 МЭК (в %) и коды обозначений
    B
     0.1%, C 0.25%, D 0.5%,
    F 1%, G 2%, J 5%,
    K 10%, M 20%, N 30%.

     

    Маркировка SMD резисторов

     

    Резисторы типоразмера 0402 не маркируются

     

    Маркировка резисторов с допусками 2, 5 и 10% всех типоразмеров состоит из трех цифр. Первые две цифры указывают номинал резистора, третья цифра – показатель степени. При необходимости для обозначения запятой добавляется буква R.

     

    Маркировка резисторов типоразмера 0805 и выше с допуском 1% состоит из четырех цифр. Первые три цифры указывают номинал резистора, четвертая цифра обозначает показатель степени. При необходимости для обозначения запятой добавляется буква R.

     

     

    Маркировка резисторов типоразмера 0603 и выше с допуском 1% состоит из двух кодовых цифр и буквы. По кодовым цифрам определяют номинал резистора, буква обозначает показатель степени.

     

    Соответствие между кодовыми цифрами

    и значениями сопротивления.

    1-100 25-178 49-316 73-562

    2-102 26-182 50-324 74-576

    3-105 27-187 51-332 75-590

    4-107 28-191 52-340 76-604

    5-110 29-196 53-348 77-619

    6-113 30-200 54-357 78-634

    7-115 31-205 55-365 79-649

    8-118 32-210 56-374 80-665

    9-121 33-215 57-383 81-681

    10-124 34-221 58-392 82-698

    11-127 35-226 59-402 83-715

    12-130 36-232 60-412 84-732

    13-133 37-237 61-422 85-750

    14-137 38-243 62-432 86-768

    15-140 39-249 63-442 87-787

    16-143 40-255 64-453 88-806

    17-147 41-261 65-464 89-825

    18-150 42-267 66-475 90-845

    19-154 43-274 67-487 91-866

    20-158 44-280 68-499 92-887

    21-162 45-287 69-511 93-909

    22-165 46-294 70-523 94-931

    23-169 47-301 71-536 95-953

    24-174 48-309 72-549 96-976

     

    Показатель степени

    S – 10-2 0. 01

    R – 10-1 0.1

    A – 100    1

    B – 101 10

    C – 10100

    D – 103 1 000

    E – 104 10 000

     

    F – 105 100 000

    Что такое резистор? | Основы резистора

    Резистор — это пассивный электрический компонент, создающий сопротивление при прохождении электрического тока. Практически во всех электрических сетях и электронных схемах их можно найти. Сопротивление измеряется в Ом. Ом — это сопротивление, которое возникает, когда через резистор проходит ток в один ампер с падением на его выводах один вольт. Ток пропорционален напряжению на концах клемм. Это соотношение представлено законом Ома:

    Резисторы

    используются для многих целей.Несколько примеров включают в себя ограничение электрического тока, деление напряжения, тепловыделение, схемы согласования и нагрузки, усиление управления и фиксированные постоянные времени. Они коммерчески доступны со значениями сопротивления в диапазоне более девяти порядков. Они могут использоваться в качестве электрических тормозов для рассеивания кинетической энергии поездов или быть меньше квадратного миллиметра для электроники.

    Описание резистора и обозначение

    Резистор — это пассивный электрический компонент, основной функцией которого является ограничение протекания электрического тока.

    Международный символ IEC имеет прямоугольную форму. В США очень распространен стандарт ANSI, это зигзагообразная линия (показана справа).

    Обозначение постоянного резистора Стандарт ANSI Обозначение постоянного резистора

    Обзор типов и материалов

    Резисторы

    можно разделить по типу конструкции, а также по материалу сопротивления. По типу можно сделать следующую разбивку:

    Для каждого из этих типов существует стандартный символ.Другая разбивка может быть сделана в зависимости от материала и процесса изготовления:

    Выбор технологии изготовления зависит от цели. Часто это компромисс между стоимостью, точностью и другими требованиями. Например, определение состава углерода — это очень старый метод с низкой точностью, но он все еще используется для конкретных приложений, где возникают импульсы с высокой энергией. Резисторы из углеродистой композиции состоят из смеси мелких частиц углерода и непроводящей керамики. Техника углеродной пленки имеет лучшую переносимость.Они сделаны из непроводящего стержня с тонким слоем углеродной пленки вокруг него. Этот слой обработан спиральным разрезом для увеличения и контроля значения сопротивления. Пленки из металлов и оксидов металлов широко используются в настоящее время и обладают лучшими свойствами в отношении стабильности и устойчивости. Кроме того, они меньше подвержены влиянию колебаний температуры. Они похожи на углеродные пленочные резисторы, построенные из резистивной пленки вокруг цилиндрического корпуса. Пленка из оксида металла обычно более прочная. Резисторы с проволочной обмоткой, вероятно, являются самым старым типом и могут использоваться как для высокоточных, так и для высокопроизводительных приложений.Они изготавливаются путем наматывания проволоки из специального металлического сплава, такого как хромоникелевый сплав, на непроводящий сердечник. Они прочные, точные и могут иметь очень низкое значение сопротивления. Недостатком является то, что они страдают паразитным реактивным сопротивлением на высоких частотах. Для обеспечения высочайших требований к точности и стабильности используются резисторы из металлической фольги. Они изготавливаются путем наложения холоднокатаной пленки из специального сплава на керамическую основу.

    Характеристики резистора

    В зависимости от области применения инженер-электрик определяет различные свойства резистора.Основная цель — ограничить прохождение электрического тока; поэтому ключевым параметром является значение сопротивления. Точность изготовления этого значения указывается с допуском резистора в процентах. Можно указать многие другие параметры, которые влияют на значение сопротивления, например, долговременную стабильность или температурный коэффициент. Температурный коэффициент, обычно указываемый в высокоточных приложениях, определяется резистивным материалом, а также механической конструкцией.

    В высокочастотных цепях, например в радиоэлектронике, емкость и индуктивность могут привести к нежелательным эффектам.Резисторы из фольги обычно имеют низкое паразитное реактивное сопротивление, а резисторы с проволочной обмоткой — одни из худших. Для точных приложений, таких как усилители звука, электрический шум должен быть как можно ниже. Это часто определяется как шум в микровольтах на вольт приложенного напряжения для полосы пропускания 1 МГц. Для приложений с высокой мощностью важна номинальная мощность. Это определяет максимальную рабочую мощность, с которой компонент может работать без изменения свойств или повреждений. Номинальная мощность обычно указывается на открытом воздухе при комнатной температуре.Для более высоких значений мощности требуется больший размер и даже могут потребоваться радиаторы. Многие другие характеристики могут играть роль в проектной спецификации. Примерами являются максимальное напряжение или стабильность импульса. В ситуациях, когда могут возникнуть скачки напряжения, это важная характеристика.

    Иногда важны не только электрические свойства, но проектировщик также должен учитывать механическую прочность в суровых условиях. Военные стандарты иногда предлагают руководство по определению механической прочности или интенсивности отказов.

    В разделе «Характеристики» дается полный обзор основных свойств резистора.

    Стандарты резисторов

    Для резисторов существует множество стандартов. Стандарты описывают способы измерения и количественной оценки важных свойств. Существуют другие нормы для физических размеров и значений сопротивления. Вероятно, наиболее известным стандартом является цветовая маркировка резисторов с осевыми выводами.

    Код цвета резистора

    Резистор сопротивлением 5600 Ом с допуском 2% в соответствии с кодом маркировки IEC 60062.

    Значение сопротивления и допуск указаны несколькими цветными полосами вокруг корпуса компонента. Эта техника маркировки электронных компонентов была разработана еще в 1920-х годах. Технология печати была еще не очень развита, что затрудняло печать цифровых кодов на мелких компонентах. В настоящее время цветовой код все еще используется для большинства осевых резисторов мощностью до одного ватта. На рисунке показан пример с четырьмя цветными полосами. В этом примере две первые полосы определяют значащие цифры значения сопротивления, третья полоса — это коэффициент умножения, а четвертая полоса дает допуск.Каждый цвет представляет собой другое число, и его можно найти в таблице цветовых кодов резистора.

    Калькулятор цветовой кодировки резистора

    Цветовой код можно легко расшифровать с помощью этого калькулятора. Он не только показывает значение сопротивления, но также указывает, принадлежит ли это значение к серии E.

    Резисторы SMD

    Для резисторов SMD (устройство поверхностного монтажа) используется числовой код, поскольку компоненты слишком малы для цветовой кодировки. Резисторы SMD бывают только в виде свинцовых вариантов — в основном доступны в предпочтительных номиналах.1 = 330 Ом.

    Значения резистора (предпочтительные значения)

    В 1950-х годах увеличение производства резисторов привело к необходимости стандартизированных значений сопротивления. Диапазон значений сопротивления стандартизирован так называемыми предпочтительными значениями. Предпочтительные значения определены в серии E. В серии E каждое значение на определенный процент выше предыдущего. Существуют разные серии E для разных допусков.

    Применение резистора

    Существует множество областей применения резисторов; от прецизионных компонентов цифровой электроники до устройств измерения физических величин. В этой главе перечислены несколько популярных приложений.

    Последовательные и параллельные резисторы

    В электронных схемах резисторы очень часто включаются последовательно или параллельно. Разработчик схем может, например, объединить несколько резисторов со стандартными значениями ( E-серия ) для достижения определенного значения сопротивления. При последовательном соединении ток через каждый резистор одинаков, а эквивалентное сопротивление равно сумме отдельных резисторов. При параллельном подключении напряжение на каждом резисторе одинаково, а величина, обратная эквивалентному сопротивлению, равна сумме обратных величин для всех параллельных резисторов.В статьях резисторы параллельно и последовательно дается подробное описание примеров расчета. Для решения даже более сложных сетей можно использовать схемные законы Кирхгофа.

    Измерить электрический ток (шунтирующий резистор)

    Электрический ток можно рассчитать путем измерения падения напряжения на прецизионном резисторе с известным сопротивлением, который включен последовательно со схемой. Сила тока рассчитывается по закону Ома. Это так называемый амперметр или шунтирующий резистор.Обычно это манганиновый резистор высокой точности с низким значением сопротивления.

    Резисторы для светодиодов Для работы светодиодных фонарей

    требуется определенный ток. Слишком низкий ток не загорится светодиодом, а слишком большой ток может привести к сгоранию устройства. Поэтому их часто подключают последовательно с резисторами. Они называются балластными резисторами и пассивно регулируют ток в цепи.

    Сопротивление электродвигателя вентилятора

    В автомобилях система вентиляции воздуха приводится в действие вентилятором, который приводится в действие электродвигателем нагнетателя.Для управления скоростью вращения вентилятора используется специальный резистор. Это называется резистором двигателя вентилятора. Используются разные конструкции. Одна конструкция представляет собой серию резисторов с проволочной обмоткой разного размера для каждой скорости вентилятора. Другая конструкция включает полностью интегральную схему на печатной плате.

    Что такое резистор

    Что такое резистор и расчет резистора.

    Что такое резистор

    Резистор — это электрический компонент, уменьшающий электрический ток.

    Способность резистора уменьшать ток называется сопротивлением и измеряется в омах (символ: Ω).

    Если мы проводим аналогию с потоком воды по трубам, резистор представляет собой тонкую трубку, которая уменьшает поток воды.

    Закон Ома

    Ток резистора I в амперах (А) равен напряжению резистора В в вольтах (В)

    деленное на сопротивление R в омах (Ом):

    Потребляемая мощность резистора P в ваттах (Вт) равна току резистора I в амперах (A)

    умноженное на напряжение резистора В в вольтах (В):

    P = I × V

    Потребляемая мощность резистора P в ваттах (Вт) равна квадрату тока резистора I в амперах (A)

    -кратное сопротивление резистора R Ом (Ом):

    P = I 2 × R

    Потребляемая мощность резистора P в ваттах (Вт) равна квадрату напряжения резистора В в вольтах (В)

    деленное на сопротивление резистора R в омах (Ом):

    пол. = В 2 / р.

    Резисторы параллельно

    Общее эквивалентное сопротивление резисторов, включенных параллельно R Всего определяется по формуле:

    Таким образом, когда вы добавляете резисторы параллельно, общее сопротивление уменьшается.

    Резисторы серии

    Суммарное эквивалентное сопротивление резисторов в серии R Всего — это сумма значений сопротивления:

    R всего = R 1 + R 2 + R 3 + …

    Таким образом, когда вы добавляете резисторы последовательно, общее сопротивление увеличивается.

    Размеры и материал влияют на

    Сопротивление резистора R в омах (Ом) равно удельному сопротивлению ρ в ом-метрах (Ом ∙ м), умноженной на длину резистора l в метрах (м), деленную на площадь поперечного сечения резистора A в квадратных метрах (м 2 ):

    Изображение резистора

    Обозначения резисторов

    Код цвета резистора

    Сопротивление резистора и его допуски обозначены на резисторе полосами цветного кода, которые обозначают значение сопротивления.

    Есть 3 типа цветовых кодов:

    • 4 полосы: цифра, цифра, множитель, допуск.
    • 5 полос: цифра, цифра, цифра, множитель, допуск.
    • 6 диапазонов: цифра, цифра, цифра, множитель, допуск, температурный коэффициент.
    Расчет сопротивления 4-х полосного резистора

    R = (10 × цифра 1 + цифра 2 ) × множитель

    Расчет сопротивления 5- или 6-полосного резистора

    R = (100 × цифра 1 + 10 × цифра 2 + цифра 3 ) × множитель

    Типы резисторов

    Резисторы SMT / SMD
    Переменный резистор Переменный резистор с регулируемым сопротивлением (2 клеммы)
    Потенциометр Потенциометр с регулируемым сопротивлением (3 клеммы)
    Фоторезистор Снижает сопротивление при воздействии света
    Резистор силовой Силовой резистор применяется в цепях большой мощности и имеет большие габариты.
    Поверхностный монтаж

    (SMT / SMD) резистор

    имеют небольшие габариты. Резисторы устанавливаются на печатную плату (PCB), этот метод быстрый и требует небольшой площади платы.
    Резистор сетевой Сеть резисторов — это микросхема, содержащая несколько резисторов с одинаковыми или разными номиналами.
    Резистор угольный
    Чип резистор
    Металлооксидный резистор
    Керамический резистор

    Подтягивающий резистор

    В цифровых схемах подтягивающий резистор — это обычный резистор, подключенный к источнику высокого напряжения (например,g + 5V или + 12V) и устанавливает уровень входа или выхода устройства на «1».

    Подтягивающий резистор устанавливает уровень на «1», когда вход / выход отключен. Когда вход / выход подключен, уровень определяется устройством и отменяет подтягивающий резистор.

    Понижающий резистор

    В цифровых схемах понижающий резистор — это обычный резистор, который подключен к земле (0 В) и устанавливает уровень входа или выхода устройства на «0».

    Понижающий резистор устанавливает уровень на «0», когда вход / выход отключен.Когда вход / выход подключен, уровень определяется устройством и перекрывает понижающий резистор.

    Электрическое сопротивление ►


    См. Также

    Определение резистора по Merriam-Webster

    ре · систор | \ ri-ˈzi-stər \ : Устройство, имеющее электрическое сопротивление и используемое в электрической цепи для защиты, работы или управления током.

    Что такое резистор? — Основы схемотехники

    Резистор — это пассивный двухконтактный электрический компонент, который ограничивает ток, протекающий в электрических или электронных цепях. Его свойство сопротивляться протеканию тока называется сопротивлением , выраженным в Ом (Ом), названном в честь немецкого физика Георга Симона Ома. Резисторы бывают разных размеров. Его размер прямо пропорционален его номинальной мощности. Номинальная мощность — это максимальная мощность, которую резистор может рассеять без повреждения из-за чрезмерного нагрева. Чем больше площадь поверхности, покрываемой резистором, тем больше мощности он может рассеять.

    Типы резисторов

    На самом деле существует два типа резисторов: постоянные и переменные.

    Типы резисторов

    Постоянные резисторы предназначены для установки правильных условий в цепи. Их значения никогда не следует изменять для настройки схемы, так как они были определены на этапе проектирования. Он может иметь углеродный состав или намотанный стружкой и проволокой. Он также может быть изготовлен из смеси тонко измельченного углерода или быть очень маленьким по размеру и иметь высокую мощность.

    Переменные резисторы имеют фиксированные резистивные элементы и ползунок.Ползунок касается основного элемента резистора, так что будет три соединения; два соединены с третьим элементом и один — с ползунком. Примеры этого — потенциометры, реостаты, триммеры и т. Д.

    Как работают резисторы?

    Подключение резистора в цепи уменьшит ток на определенную величину. Если посмотреть на резисторы снаружи, они, скорее всего, выглядят одинаково. Однако, если вы сломаете его, вы увидите изолирующий керамический стержень, проходящий через середину, с медной проволокой, обернутой вокруг.Сопротивление зависит от витков меди. Чем тоньше медь, тем выше сопротивление, так как электронам труднее проходить через нее. Как мы выяснили, электронам легче течь в материалах некоторых проводников, чем в изоляторах.

    Джордж Ом изучил взаимосвязь между сопротивлением и размером материала, из которого изготовлен резистор. Он доказал, что сопротивление (R) материала увеличивается с увеличением его длины. Это означает, что более длинные и тонкие провода обеспечивают большее сопротивление.С другой стороны, сопротивление уменьшается с увеличением толщины проводов. Сказав это, Георг Ом придумал уравнение, объясняющее эту взаимосвязь:

    где ρ = удельное сопротивление (Ом-м)

    Примечание: Проводники имеют гораздо более низкое удельное сопротивление, чем изоляторы. При комнатной температуре алюминий имеет сопротивление около 2,8 x 10 -8 Ом · м, а медь значительно ниже — 1,7 x 10 -8 Ом · м. Кремний имеет удельное сопротивление около 1000 Ом · м, а стекло — около 1012 Ом · м.Удельное сопротивление различается для разных материалов.

    Цветовая маркировка резистора 4-полосный резистор с цветовой кодировкой

    Для четырехполосного резистора с цветовой кодировкой 1-я и 2-я полосы представляют 1-ю и 2-ю значащие цифры, 3-я полоса представляет множитель, а 4-я полоса представляет допуск.

    5-полосный резистор с цветовой кодировкой

    Для пятиполосного резистора с цветовой кодировкой (высокоточного резистора) 1-я, 2-я и 3-я полоса представляют 1-ю, 2-ю и 3-ю значащую цифру, 4-я полоса — множитель, а 5-я полоса — допуск.

    Для некоторых четырехполосных резисторов с цветовой кодировкой другая дополнительная полоса (5-я полоса) указывает надежность в процентах отказов на 1000 часов (1000 ч) использования.

    Таблица цветовой кодировки резисторов

    Резисторы SMD

    SMD означает устройство для поверхностного монтажа . Он используется для создания технологии поверхностного монтажа. SMD имеют небольшие выводы или контакты, которые припаяны к контактным площадкам на поверхности платы, а не провода, которые проходят через печатную плату.Это устраняет необходимость в отверстиях в доске и позволяет более полно использовать обе стороны доски. Поскольку SMD слишком малы, на них нет места для печати традиционного кода цветных полос. По этой причине были разработаны новые коды SMD.

    Система EIA-96

    Эта система основана на серии E96 и предназначена для резисторов с допуском 1%. Значения обозначаются двумя (2) цифрами для обозначения номинала резистора и одной (1) буквой для множителя. Два числа представляют собой код, который указывает значение сопротивления с помощью трех значащих цифр.В таблицах ниже показано значение каждого кода. Например, 38C = 24300 Ом ± 1%.

    Код резистора SMD Таблица значений для системы EIA-96

    Трех- и четырехзначная система

    В этой системе первые две или три цифры указывают числовое значение сопротивления резистора, а последняя цифра дает множитель — степень десяти, на которую следует умножить данное значение сопротивления резистора. Например:

    • 273 = 27 Ом x 10 3 или 27000 Ом (27 кОм)
    • 7992 = 799 Ом x 10 2 или 79900 Ом (79.9 кОм)

    Примечание: Буква «R» используется для обозначения положения десятичной точки для значений сопротивления ниже 10 Ом. Например, 0R5 будет 0,5 Ом, а 0R01 будет 0,01 Ом.

    Номинальная мощность резистора

    Каждый раз, когда через резистор проходит ток из-за наличия напряжения на нем, электрическая энергия теряется в виде тепла. Чем больше ток, тем горячее будет резистор. Резистор может работать при любой комбинации напряжения и тока до тех пор, пока он не превышает номинальную мощность, которую резистор может преобразовывать в тепло или поглощать без каких-либо повреждений.

    Номинальная мощность резистора определяется как количество тепла, которое резистор может выдержать без ущерба для своей производительности за определенное время. По закону Ома, когда ток проходит через сопротивление, на нем падает напряжение, производя продукт, связанный с мощностью. Другими словами, если сопротивление подвергается действию напряжения или проводит ток, оно всегда будет потреблять электрическую мощность. Учитывая это, мы можем сказать, что эти три величины — мощность, напряжение и ток — находятся в треугольнике мощности.

    Треугольник мощности резистора

    Использование треугольника мощности резистора — лучший способ рассчитать мощность, рассеиваемую в резисторе, если мы знаем значения напряжения и тока на нем. Кроме того, закон Ома позволяет нам рассчитать рассеиваемую мощность с учетом значения сопротивления резистора. Мы можем получить два альтернативных варианта приведенного выше выражения для мощности резистора, если нам известны значения по крайней мере двух из трех — напряжения, тока и сопротивления.

    На основе треугольника мощности рассеиваемая электрическая мощность любого резистора в цепи постоянного тока может быть рассчитана по одной из следующих трех стандартных формул:

    где V — напряжение на резисторе в вольтах, I — ток, протекающий через резистор в амперах, а R — сопротивление резистора в омах (Ом).

    Типы материалов резисторов

    Ниже представлены различные типы материалов резисторов, их плюсы и минусы, а также способы их использования:

    1. Углеродный композит состоит из смеси мелких частиц углерода и непроводящего керамического материала, спрессованного в цилиндрическую форму и обожженного. Величина сопротивления зависит от размеров корпуса и соотношения углеродного и керамического материала. Чем больше углерода вы добавите, тем ниже сопротивление.Резисторы из углеродного состава очень надежны, но имеют низкую точность с максимальным допуском около 5%.
    2. Углеродная пленка — это чистая углеродная пленка, заключенная в изолирующий цилиндрический сердечник, разрезанный по спирали для увеличения резистивного пути. Он точнее углепластика. Однако там, где требуется высокая импульсная стабильность, используются специальные углеродные пленочные резисторы.
    3. Металлические пленки производятся из нитрида тантала, но чаще они изготавливаются из нихрома.В качестве резистивного материала используется комбинация керамики и металла. Он имеет лучшую стабильность, температурный коэффициент и устойчивость, чем углеродные пленки. Типичные допуски составляют от 0,5% до 2% с температурным коэффициентом от 50 до 100 ppm / K. Стабильность ниже, чем с проволочной обмоткой, но его высокочастотные свойства лучше.
    4. Проволочная намотка создается с использованием обмоточного провода сопротивления, имеющего спиральный непроводящий сердечник. Провод сопротивления изготовлен из хромоникелевого сплава, а сердцевина — из керамики или стекловолокна с покрытием, защищенным стекловидной эмалью.Он не подходит для приложений с частотой выше 50 кГц, поскольку спиральная обмотка имеет емкостные и индуктивные эффекты. Лучше всего использовать для высокой точности или для приложений с большой мощностью.
    5. Прецизионный резистор представляет собой тонкую объемную металлическую фольгу, приклеенную к керамической подложке. Это наиболее точный и стабильный тип с очень низкотемпературным коэффициентом сопротивления, который используется в приложениях с высокими требованиями к точности.
    6. Металлооксидная пленка .В отличие от металлической пленки, ее резистивный материал обычно представляет собой оксид металла, например оксид олова. Он полезен в приложениях, требующих большей прочности, поскольку имеет более высокую рабочую температуру, что делает его более надежным и стабильным.
    Сводка ключевых показателей эффективности для каждого материала резистора

    Что такое резистор и для чего он нужен?

    «Что такое резистор?» она спросила.

    «Это компонент, который препятствует прохождению тока», — сказал я.

    «Хм… я не понимаю. Что это делает с моей схемой? » она спросила.

    «Ну, на самом деле ничего не делает активно, — сказал я.

    Иногда бывает трудно понять, что делают основные электронные компоненты.

    Ранее я писал о том, что делают индуктивности и конденсаторы.

    А что с резистором?

    Резистор — это компонент, устойчивый к току. Если добавить резистор последовательно со схемой — ток в цепи будет ниже, чем без резистора.

    БЕСПЛАТНЫЙ бонус: Загрузите базовые электронные компоненты [PDF] — мини-книгу с примерами, которая научит вас, как работают основные компоненты электроники.

    Что такое резистор?

    В резисторе нет ничего волшебного. Возьмите длинный провод и измерьте сопротивление, и вы поймете, что сопротивление — это обычное свойство проводов (за исключением сверхпроводников).

    Некоторые резисторы состоят именно из этого. Длинный провод.

    Но вы также можете найти резисторы из других материалов.Как этот резистор из углеродной пленки:

    Что резистор делает с моей схемой?

    Резистор является пассивным устройством и не выполняет никаких активных действий с вашей схемой.

    На самом деле это довольно скучное устройство. Если добавить к нему напряжение, ничего особенного не произойдет. Ну, может, потеплеет, но все.

    НО, используя резисторы, вы можете спроектировать свою схему, чтобы иметь токи и напряжения, которые вы хотите иметь в своей цепи.

    Значит, резистор дает разработчику контроль над своей схемой! Как насчет этого?

    Научиться работать с резисторами

    В начале моей карьеры в электронике я думал, что резисторы были просто случайно размещены в цепи, и я подумал, что они вам действительно не нужны.

    Например, я помню, как видел схему с батареей 9 В, резистором и светодиодом. Затем я попытался использовать только батарею и светодиод, и он все еще работал!

    Но через несколько секунд светодиод действительно стал горячим. Так жарко, что я чуть не обжег пальцы. Потом я начал понимать, что, возможно, в этих резисторах что-то есть.

    Подробнее об использовании токоограничивающего резистора.

    В электронике важно научиться работать с резисторами.Один фундаментальный навык, который вам следует изучить, — это использование закона Ома.

    Узнайте о выборе резистора.

    И когда вы будете готовы сделать еще один шаг, вот еще несколько статей о работе с резисторами и законе Ома:

    Возвращение из «Что такое резистор?» в «Электронные компоненты онлайн»

    Что такое резистор? Конструкция, принципиальная схема и применение

    Резистор является одним из наиболее важных электрических и электронных компонентов, которые используются в различных электронных устройствах. Они доступны в различных размерах и формах на рынке в зависимости от области применения. Мы знаем, что любая базовая электрическая и электронная схема работает с протеканием тока. Кроме того, они также подразделяются на два типа, а именно проводники и изоляторы . Основная функция проводника заключается в пропускании тока, тогда как изолятор не допускает протекания тока. Всякий раз, когда высокое напряжение подается через металлический проводник, через него проходит полное напряжение.Если резистор подключен к этому проводнику, то поток тока, а также напряжение будут ограничены. В этой статье обсуждается обзор резистора.

    Что такое резистор?

    Определение резистора : это базовый двухконтактный электрический и электронный компонент , используемый для ограничения тока в цепи. Сопротивление потоку тока приведет к падению напряжения. Эти устройства могут обеспечивать постоянное регулируемое значение сопротивления. Величину резисторов можно выразить в Ом.

    Резистор

    Резисторы используются в нескольких электрических цепях, а также в электронных схемах , чтобы получить известное падение напряжения, иначе отношение тока к напряжению (C-к-V). Когда ток в цепи идентифицируется, можно использовать резистор для создания идентифицированной разности потенциалов, которая пропорциональна току. Точно так же, если падение напряжения в двух точках в цепи идентифицировано, резистор может быть использован для создания идентифицированного тока, который пропорционален этой несходственности.Пожалуйста, обратитесь к ссылке, чтобы узнать больше о:

    Символ резистора

    Что такое сопротивление?

    Сопротивление может зависеть от закона Ома , открытого немецким физиком, а именно « Георг Симон Ом ».

    Закон Ома

    Закон Ома можно определить как ; напряжение на резисторе прямо пропорционально току, протекающему через него. Уравнение закона Ома:

    V = I * R

    Где «V» — напряжение, «I» — ток, а «R» — сопротивление

    Единицы измерения сопротивления — Ом, а несколько более высоких значений Ом включают кОм (Кило -Ом), МОм (Мега-Ом), Милли Ом и т. Д.

    Конструкция резистора

    Например, углеродный пленочный резистор используется для описания конструкции резистора .Конструкция резистора показана на схеме ниже. Этот резистор состоит из двух выводов, как обычный резистор. Конструкция углеродного пленочного резистора может быть выполнена путем размещения углеродного слоя на керамической подложке. Углеродная пленка представляет собой резистивный материал по отношению к прохождению тока в этом резисторе. Однако он блокирует некоторое количество тока.

    Конструкция углеродного пленочного резистора

    Керамическая подложка действует как изолирующий материал по отношению к току. Таким образом, он не пропускает тепло через керамику.Таким образом, эти резисторы могут без вреда выдерживать высокие температуры. Торцевые заглушки резистора металлические, они размещаются на обоих концах выводов. Две клеммы подключены к двум металлическим торцевым крышкам на резисторе.

    Резистивный элемент этого резистора покрыт эпоксидной смолой, предназначенной для обеспечения безопасности. Эти резисторы в основном используются из-за меньшего шума, который они производят по сравнению с резисторами из углеродного состава. Значение допуска этих резисторов ниже, чем у резисторов из углеродистой стали.Значение допуска может быть определено как несходство между нашим предпочтительным значением сопротивления и истинным значением конструкции. Доступны резисторы в диапазоне от 1 Ом до 10 МОм.

    В этом резисторе предпочтительное значение сопротивления может быть достигнуто путем обрезания толщины углеродного слоя по спирали в зависимости от его длины. Как правило, это можно сделать с помощью LASER . Как только необходимое значение сопротивления будет достигнуто, резка металла будет остановлена.

    В резисторах этого типа, когда сопротивление этих резисторов уменьшается при повышении температуры, это известно как высокий отрицательный температурный коэффициент.

    Схема резистора

    Схема простого резистора показана ниже. Эта схема может быть спроектирована с использованием резистора, батареи и светодиода. Мы знаем, что функция сопротивления заключается в ограничении прохождения тока через компонент. Схема резистора

    В следующей схеме, если мы хотим соединить светодиод напрямую с батареей источника напряжения, он немедленно выйдет из строя.Поскольку светодиод не пропускает через него большое количество тока, по этой причине между батареей и светодиодом используется резистор для управления потоком тока к светодиоду от батареи.

    Значение сопротивления в основном зависит от емкости аккумулятора. Например, если емкость аккумулятора высока, то мы должны использовать резистор с высоким значением сопротивления. Величину сопротивления можно измерить по формуле закона Ома.

    Например, номинальное напряжение светодиода составляет 12 вольт, а номинальное значение тока — 0.1 А, иначе 100 мА, затем рассчитайте сопротивление по закону Ома.

    Мы знаем, что закон Ом V = IXR

    Из приведенного выше уравнения сопротивление можно измерить как R = V / I

    R = 12 / 0,1 = 120 Ом

    Итак, В приведенной выше схеме используется резистор на 120 Ом, чтобы избежать повреждения светодиода из-за перенапряжения батареи.

    Последовательные и параллельные резисторы

    Ниже описан простой способ последовательного и параллельного подключения резисторов в цепи.

    Резисторы в последовательном соединении

    При последовательном соединении цепи, когда резисторы соединены последовательно в цепи, ток через резисторы будет одинаковым. Напряжение на всех резисторах эквивалентно количеству напряжений на каждом резисторе. Принципиальная схема последовательно соединенных резисторов представлена ​​ниже. Здесь резисторы, используемые в схеме, обозначены R1, R2, R3. Общее сопротивление трех резисторов можно записать как

    R Всего = R1 + R2 = R3

    Резисторы в последовательном соединении

    Резисторы в параллельном соединении

    В параллельном соединении , когда резисторы соединены параллельно в цепи, то напряжение на всех резисторах будет одинаковым.Поток тока через три компонента будет таким же, как величина тока через каждый резистор.

    Принципиальная схема резисторов , подключенных параллельно , показана ниже. Здесь резисторы, используемые в схеме, обозначены R1, R2 и R3. Общее сопротивление трех резисторов можно записать как

    R Total = R1 + R2 = R3

    1 / R Total = 1 / R1 + 1 / R2 + 1 / R3.

    В результате Rtotal = R1 * R2 * R3 / R1 + R2 + R3

    Резисторы при параллельном подключении Расчет значения сопротивления

    Значение сопротивления резистора можно рассчитать двумя следующими способами:

      • Расчет значения сопротивления с использованием цветового кода
    • Расчет значения сопротивления с помощью мультиметра
    Расчет значения сопротивления с использованием цветового кода

    Значение сопротивления резистора можно рассчитать с помощью цветовых полос резистора.Перейдите по этой ссылке, чтобы узнать о различных типах резисторов и расчетах их цветовых кодов в электронике.

    Цветовой код резистора
    Расчет значения сопротивления с помощью мультиметра

    Пошаговая процедура расчета сопротивления резистора с помощью мультиметра описана ниже.

    Мультиметр
      • Второй способ расчета сопротивления можно сделать с помощью мультиметра или омметра. Основное назначение мультиметра — вычисление трех функций, таких как сопротивление, ток и напряжение.
      • Мультиметр состоит из двух зондов, таких как черный халат и красный халат.
      • Поместите черный щуп в COM-порт, а также поместите красный щуп в VΩmA на мультиметре.
      • Сопротивление резистора можно рассчитать с помощью двух разных щупов мультиметра.
      • Перед расчетом сопротивления вы должны поместить круглый диск в направлении ома, которое указано на мультиметре символом Ом (Ом).

    Применения резистора

    К применениям резистора относятся следующие.

      • Высокочастотные инструменты
      • Модуляторы и демодуляторы
      • Усилители обратной связи

    Таким образом, это все о резисторе, который включает в себя сопротивление , конструкция резистора, схема резистора, резисторы, включенные последовательно и параллельно, расчет значения сопротивления и приложения.Вот вам вопрос, в чем преимущества резистора ?

    Определение резистора

    Резистор — это электрический компонент, ограничивающий прохождение электрического тока. Один или несколько резисторов могут использоваться для подачи правильного количества тока на определенные компоненты в электронном устройстве.

    Резисторы

    часто припаиваются к печатной плате, чтобы ограничить количество тока, протекающего по различным электрическим путям. Если на компонент поступает слишком маленький ток, он может не работать.Если пропускать слишком большой ток, это может повредить компонент. Следовательно, резисторы играют важную роль в электронной схеме.

    Существует несколько типов резисторов, но большинство из них состоит из углерода и изоляционного материала, например керамики. Ток течет в одном конце, а оставшийся ток вытекает из другого. Результирующий ток обратно пропорционален сопротивлению. Это определено в законе Ома, который гласит, что ток (I) равен напряжению (V), деленному на сопротивление (R).

    I = V / R

    Резисторы

    часто имеют цветовую маркировку, чтобы визуально отображать уровни их сопротивления. Например, типичный резистор с осевыми выводами имеет цилиндрическую форму и несколько цветных полос. Первые несколько полос представляют собой цифры, за которыми следует полоса, которая представляет множитель (10x, 100x и т. Д.). На другом конце полоса представляет собой допуск, который определяет точность резистора. Некоторые резисторы также включают еще одну полосу, которая представляет температурный коэффициент.

    ПРИМЕЧАНИЕ. Резисторы представлены на принципиальных схемах зубчатой ​​линией. Обычно они обозначаются R1, R2, R3 и т. Д.

    Обновлено: 9 ноября 2017 г.

    TechTerms — Компьютерный словарь технических терминов

    Эта страница содержит техническое определение резистора. Он объясняет в компьютерной терминологии, что означает резистор, и является одним из многих терминов по аппаратному обеспечению в словаре TechTerms.

    Все определения на веб-сайте TechTerms составлены так, чтобы быть технически точными, но также простыми для понимания.Если вы найдете это определение резистора полезным, вы можете сослаться на него, используя приведенные выше ссылки для цитирования. Если вы считаете, что термин следует обновить или добавить в словарь TechTerms, отправьте электронное письмо в TechTerms!

    Подпишитесь на рассылку TechTerms, чтобы получать избранные термины и тесты прямо в свой почтовый ящик. Вы можете получать электронную почту ежедневно или еженедельно.

    Подписаться

    .
    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *