+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Устройство и принцип действия электромагнитных реле. Их преимущества и недостатки | RuAut

Реле — называется электрическое устройство, которое предназначается для осуществления коммутации различных участков электрических схем  при изменении электрических или неэлектрических входных воздействий. Впервые, термин «реле» фигурирует в тексте патента на изобретение телеграфа за авторством С. Морзе в 1837 году. А само устройство электромагнитного реле было изобретено Джозефом Генри за два года до этого в 1835 году. Интересно также, что термин «реле» произошел от английского слова «relay», которое в те времена означало действие при передаче эстафеты спортсменами или же подмену почтовых лошадей на станциях, когда они начинают уставать.

Наиболее широкое применение в схемах автоматики и системах защиты электроустановок получили электромагнитные реле, благодаря своей высокой надежности и простоте принципа действия. Электромагнитные реле подразделяются на реле переменного и постоянного тока.

Последние, в свою очередь, подразделяются на поляризованные (реагируют на полярность управляющего сигнала) и нейтральные (в одинаковой степени реагируют на протекающий по его обмотке постоянный ток любой полярности).

Принцип работы электромагнитных реле основан на применении электромагнитных сил, которые возникают в металлическом сердечнике во время прохождения электрического тока по виткам его катушки. Все детали будущего реле необходимо смонтировать на основание и закрыть крышкой, после чего над сердечником электромагнита устанавливается пластина (подвижный якорь), к которой крепятся от одного до нескольких контактов. Напротив закрепленных контактов устанавливают парные им неподвижные контакты.

Поддерживать якорь в исходном положении помогает закрепленная пружина. Во время подачи напряжения на электромагнит якорь начинает притягиваться, преодолевая сопротивление пружины, при этом, в зависимости от конструкции имеющегося реле, происходит размыкание или замыкание контактов. Если отключить напряжение – благодаря пружине якорь вернется в исходное положение. Иные модели реле могут содержать в себе электронные элементы. Примерами таких реле могут послужить резистор, который подключается к обмотке катушки, чтобы реле более четко срабатывало, и конденсатор, расположенный параллельно контактам, дабы снизить вероятность появления искр и помех.

У электромагнитного реле имеется ряд преимуществ, недоступных полупроводниковым конкурентам:

  • Возможность коммутации нагрузок общей мощностью не более 4 кВт в то время когда объем реле не превышает 10см3;
  • Проявление устойчивости к импульсам перенапряжения и способным оказать разрушительное воздействие помехам, возникающим во время разряда молнии или по причине протекания коммутационных процессов в высоковольтном оборудовании;
  • Наличие исключительной электрической изоляции, проложенной между катушкой (управляющей цепью) и группой контактов (требования последнего стандарта – 5 кВ) – недоступная мечта для большей части полупроводниковых ключей;
  • Малый уровень выделения тепла замкнутых контактов вследствие малого падения напряжения: во время коммутации тока 10 А малогабаритным реле суммарно рассеивается по катушке и контактам не более 0,5 Вт, при учете что симисторным реле отдается в атмосферу не менее 15 Вт, в результате чего приходится решать вопрос по интенсивному охлаждению, а попутно усугубляется проблема парникового эффекта на нашей планете;
  • В сравнении с полупроводниковыми ключами электромагнитные реле имеют более низкую стоимость.
  • Кроме достоинств электромагнитные электромеханические реле имеют и свои недостатки: не высокая скорость работы, ограниченность электрического и механического ресурса, возникновение радиопомех во время замыкания и размыкания контактов, и последнее, но наиболее неприятное свойство – возникновение серьезных проблем во время коммутации высоковольтных и индуктивных нагрузок на постоянном токе.

Как правило, электромагнитные реле применяются при коммутации нагрузок при переменном токе с напряжением 220В или при постоянном токе в диапазоне напряжений 5 – 24В и токами коммутации 10 – 16 А. Стандартными нагрузками для мощных реле являются – лампы накаливания, нагреватели, обогреватели, электромагниты, маломощные электродвигатели (к примеру, сервоприводы и вентиляторы), иные активные, индуктивные и емкостные потребители электрической энергии с диапазоном мощностей 1 Вт – 3 кВт.

Рабочее напряжение и сила тока в катушке реле не должны превышать предельно допустимых значений, поскольку уменьшение этих значений значительно снизит надежность контактирования, а их увеличение приведет к перегреву катушки, тем самым снизив надежность реле при предельно допустимых значения положительной температуры. Крайне нежелательно даже кратковременное воздействие повышенного напряжения, поскольку при этом возникают в деталях магнитопровода и в контактных группах механические перенапряжения, а электрическое перенапряжение обмотки катушки может привести к пробою изоляции во время размыкания цепи.

Во время выбора режима работы реле стоит учитывать характер воздействующих нагрузок, род и значение коммутируемого тока, частоту коммутации.

Во время коммутации индуктивных и активных нагрузок самым тяжелым является процесс размыкания цепи, поскольку образовывающийся дуговой разряд становится причиной основного износа контактов.

Что такое реле, устройство, принцип действия, виды, производители

Реле – коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока. Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.

Вот таких типоразмеров может быть это устройство

Содержание статьи

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Первое реле Дж. Генри

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

Простейшая схема устройства электромагнитного соленоида

Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.

В видеоролике ниже разъясняется принцип действия электромагнитного КУ:

Основные характеристики КУ

К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:

  • чувствительность – срабатывание от подаваемого на обмотку тока определенной силы, достаточной для включения устройства;
  • сопротивление обмотки электромагнита;
  • напряжение (ток) срабатывания – минимально допустимое значение, достаточное для переключения контактов;
  • напряжение (ток) отпускания – значение параметра, при котором происходит отключение КУ;
  • время притягивания и отпускания якоря;
  • частота срабатывания с рабочей нагрузкой на контактах.

Классификация и для чего нужно реле

Поскольку реле являются высоконадежными коммутационными устройствами, то не удивительно, что они нашли широкое применение в самых различных областях человеческой деятельности. Они используются в промышленности для автоматизации рабочих процессов, а также в быту в самой различной технике, например в привычных всех холодильниках и стиральных машинах.

Разнообразие видов реле очень велико и каждый предназначен для выполнения определенной задачи

Реле имеют сложную классификацию и делятся на несколько групп:

По сфере применения:

  • управление электрическими и электронными системами;
  • защита систем;
  • автоматизация систем.

По принципу действия:

  • тепловые;
  • электромагнитные;
  • магнитолектические;
  • полупроводниковые;
  • индукционные.

По поступающему параметру, вызывающему срабатывание КУ:

  • от тока;
  • от напряжения;
  • от мощности;
  • от частоты.

По принципу воздействия на управляющую часть устройства:

  • контактные;
  • бесконтактные.
На фото (обведено красным) показано, где находится одно из реле в стиральной машине

В зависимости от вида и классификации реле применяются в бытовой технике, автомобилях, поездах, станках, вычислительной технике и т. д. Однако, чаще всего этот вид коммутирующего устройства используется для управления токами большой величины.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т. д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В

Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.
С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Обозначение реле на схеме

Чтобы отремонтировать или создать новое электрооборудование, мало знать как работает реле, нужно знать как оно выглядит на схемах. В приведенной ниже таблице показаны самые основные буквенно-графические обозначения КУ принятые в международном классификаторе.

Основные обозначения

Подробнее, с символическим обозначением реле и других элементов электронных и электрических схем, можно ознакомиться, заглянув в специальные справочники, которых в интернете довольно много.

Ведущие производители реле

Где приобрести реле и их стоимость

Реле в зависимости от типа КУ, производителя, сферы применения и продавца могут стоить от 15$ до нескольких сотен. Приобрести необходимое коммутационное устройство можно непосредственно у производителя в традиционных специализированных магазинах или интернете. В настоящее время купить нужное реле любого типа и назначения не составит труда. Существуют специальные каталоги, в которых указывается маркировка, компания-производитель, параметры и стоимость изделия.

Заключение

Как следует из этого обзора, реле является неотъемлемой частью практически любой электрической и электронной схемы промышленного оборудования и бытовой техники. Полную информацию об этом виде коммутационного устройства сложно втиснуть в рамки одной статьи. Если у вас возникнут какие-либо вопросы по этой теме, то задавайте и будем вместе разбираться.

 

Предыдущая

ИнженерияНасосная станция для частного дома: критерии выбора и особенности эксплуатации

Следующая

ИнженерияПодбираем с умом сифон для раковины на кухню

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

принцип действия, виды и назначение

Автор aquatic На чтение 7 мин. Просмотров 6.2k. Обновлено

Это устройство используют в бытовых и промышленных электрических сетях. С его помощью включают праздничную иллюминацию и управляют работой двигателей внутреннего сгорания.  Если знать, что такое реле, как оно устроено, некоторые практические задачи можно будет решать самостоятельно.

Реле контроля напряжения в электрическом щитке

Что такое реле

Существуют разные, в том числе очень сложные модификации реле, что это такое простыми словами можно объяснить следующим образом. Допустим, что к сети подключен мощный электродвигатель, обеспечивающий работоспособность помпы системы водоснабжения. Чтобы дорогостоящее оборудование выполняло свои функции длительное время, его защищают от различных неблагоприятных внешних воздействий. На корпусе привода устанавливают датчик температуры. При перегреве он подаст сигнал в сеть управления, отключит питание, предотвратит возникновение аварийной ситуации.

В этой схеме используют два контура:

  • С применением невысоких уровней напряжения 5-24 V работают датчики, электронные схемы управления, контроля, индикации.
  • Электродвигатели, нагревательные элементы, светильники и другие мощные потребители подключают к сетям 220/ 380V.

Реле включает/отключает питание мощных устройств после получения соответствующего сигнала из слаботочной цепи управления. Обратная связь в данном случае отсутствует, что исключает возможность взаимного влияния контуров с разными уровнями напряжений (токов).

Специализированное защитное реле электрического двигателя

Принцип действия электромагнитного реле

На этих рисунках схематически изображено типичное реле данного типа.

Принцип действия устройства

При подаче напряжения на катушку проходящий по ее виткам ток создает ЭДС. Образованное в металлическом сердечнике магнитное поле притягивает якорь. Он размыкает одну группу контактов и замыкает другую. Соответствующие изменения происходят в подсоединенных цепях.

Типичное электромагнитное реле

После изучения общей схемы проще понять, что такое реле, которое применяется на практике. На фото приведено реальное изделие со снятой защитной крышкой. Здесь для фиксации пружины в нужном положении используется специальный элемент, ярмо. Медная проволока катушки намотана на каркас из диэлектрика. Назначение остальных деталей такое же, как в приведенном выше описании.

Приборы этого класса отличаются следующими показателями:

  • Они способны при компактных размерах (9-11 см. куб.) коммутировать цепи нагрузки мощных потребителей (более 3,5 кВт).
  • Электрическая «развязка» цепей получается эффективной. Реле устойчивы к помехам. Их не способны повредить сильные импульсы в силовых контурах.
  • В области механического контакта потери минимальны. Стоимость таких изделий невелика.

Полезная информация! При маленьком электрическом сопротивлении между замкнутыми контактами температура всего узла поднимается незначительно. Так, при коммутации во вторичной цепи нагрузки с током 5А качественное электромагнитное реле будет выделять от 0,4 до 0,6 Вт тепловой энергии. Если взять для сравнения полупроводниковый аналог, то он в подобном режиме излучает от 12 до 16 Вт. Для его долгосрочного функционирования необходима специальная система охлаждения.

Полупроводниковое реле

Но нельзя правильно ответить на вопрос, что такое электромагнитное реле, если не перечислить его недостатки:

  • Скорость перемещения механических контактов невелика. Это ограничивает сферу применения приборов в качестве защитных устройств.
  • Контактные поверхности со временем окисляются, их поверхность деформируется искрами разрядов. Ограниченным ресурсом обладают пружинные блоки. Все перечисленное снижает долговечность реле.
  • При коммутациях возникают сильные электромагнитные помехи. Необходимо использовать дополнительную экранировку, либо повышать дальность до чувствительных к таким помехам блоков электроники.

Обратите внимание! Совместное использование с потребителями постоянного тока (при высоком напряжении) и мощными нагрузками индукционного типа не рекомендуется. Не следует превышать максимальные значения коммутации: 24/220 V постоянного/ переменного тока при 15 А.

Принцип работы реле электронного типа

Некоторые недостатки, перечисленные выше, устраняют с помощью применения полупроводниковых приборов. Транзистор, например, вполне способен выполнять функции коммутатора. Если подать напряжение нужной величины и полярности на переход «база-эмиттер», то цепь «коллектор-эмиттер» будет способна пропускать сильный ток. Его значение будет намного больше, чем в цепи базы. Эту особенность частности, используют для усиления сигналов.

В отличие от электромеханических приборов, полупроводниковые переходы не утрачивают свои полезные функции со временем. Они быстрее выполняют коммутацию, причем даже сотни тысяч переключений в секунду не выведут их из строя. Потенциальных пользователей привлекает компактность, малый вес.

Но, как и в предыдущем случае, объективная оценка дополняется негативными параметрами. Полупроводниковые приборы повреждаются не только сильным током, но и электромагнитными полями чрезмерной интенсивности. Они работают нестабильно при наличии соответствующих помех. Некоторые разновидности могут быть испорчены статическим зарядом. Часть коммутируемой энергии преобразуется в тепло, поэтому необходимо обеспечивать его эффективный отвод.

Принципиальная схема автомобильного реле поворотов

Реле, созданное с применением данной, схемы также называют «электронным». Хотя здесь есть определенная неточность. Электронные компоненты установлены только в цепях управления. Коммутация выполняется герконами, которые помещены внутрь катушек (К1, К2, К3). Буквой «К» обозначено стандартное электромагнитное реле.

Бесконтактные реле

На этом рисунке изображены схемы включения электронной лампы (а), транзистора (б) и тиристора (в) для использования в качестве коммутатора.

Разные виды реле и их назначение

Выше были рассмотрены электромагнитные, бесконтактные и комбинированные реле, некоторые параметры и особенности. Но на практике приходится решать разнообразные задачи. Поэтому спектр модификаций ключей гораздо шире.

Например, принцип действия поляризованного реле отличается от классической схемы. Эти приборы реагируют на то, какой полярности сигнал подан на обмотки.

Поляризованное реле
Применение поляризованного реле в автомобильной технике

На этом рисунке изображена схема подключения ключа в цепи управления габаритными лампами и бортовой магнитолой. В зависимости от полярности сигнала коммутируются соответствующие нагрузки. Данный вариант иллюстрирует функцию светового оповещения пользователя при включении/выключении охранной сигнализации.

Герконы

Отдельная группа реле создана с применением этих приборов. В герконах установлены контакты, обладающие ферромагнитными свойствами. Они срабатывают при появлении достаточно сильного магнитного поля.

Герконовые реле
Термореле с датчиком температуры используется для установки нужного режима работы духового шкафа
Это устройство объединено с микропроцессором. Реле срабатывает по истечении заданного пользователем интервала времени
В этом приборе можно установить максимально допустимый уровень напряжения
Такая техника позволяет контролировать одновременно несколько цепей постоянного тока
Ограничитель потребляемой мощности для трехфазных сетей

Монтаж и особенности применения

Из приведенных примеров понятно, что реле отличают не только по конструкции, но и по назначению. В современных устройствах их совмещают с датчиками, дополняют микропроцессорными блоками управления. Некоторые устройства подключают к информационным сетям. Они в дистанционном режиме передают контрольные данные, сообщают о возникновении опасных ситуаций. В настоящее время выпускают широкий спектр изделий, объединенный единым названием, «реле». Именно поэтому нельзя предложить единую технологию применения. В каждом отдельном случае необходимо выполнять официальные инструкции завода производителя.

Общие выводы и дополнительные рекомендации

Если знаете, какие бывают реле, проще подобрать изделие для решения конкретной задачи. Материалы данной статьи помогут сделать правильный выбор в ходе комплектации бытовых и коммерческих проектов.

Статья по теме:

УЗО: что это такое. Давайте попробуем разобраться, что это такое УЗО, его возможности, особенности работы и варианты применения. А также рассмотрим нюансы, на которые необходимо обратить внимание при выборе.

Как работает реле (видео)

Принцип работы реле.

Основные типы, устройство и назначение.

Всем доброго дня!

В этой статье мы обсудим одно замечательное устройство под названием

реле. Разберемся с принципом его работы, рассмотрим различные виды, ну и, конечно же, обсудим, зачем вообще эти устройства используются в электрических цепях.

Реле – это электронное устройство, представляющее из себя ключ, замыкающий и размыкающий участки цепей при изменении входного воздействия. То есть, проще говоря, мы можем представить реле в виде устройства, имеющего два входных и два выходных контакта. При подаче определенного сигнала на вход, выходные контакты замыкаются, при отсутствии сигнала на входе – выходные контакты размыкаются.  Возможно, сейчас ничего еще не понятно, поэтому давайте не будем забегать вперед и рассмотрим все нюансы постепенно 🙂

И начнем мы с устройства и принципа работы реле. Поскольку наиболее популярным среди радиолюбителей является электромагнитное реле, именно данный тип и изучим более подробно. Электромагнитное реле можно изобразить следующим образом:

Принцип работы реле заключается в следующем…

При подаче напряжения на вход по катушке, по обмотке сердечника потечет ток, который приведет к появлению магнитного поля. В результате действия этого поля якорь станет притягиваться к сердечнику и произойдет механическое замыкание выходного контакта 1 и выходного контакта 2. Таким образом, выходная цепь окажется замкнутой. При отсутствии сигнала на входе якорь вернется в исходное положение и контакты разомкнутся. Как видите принцип работы довольно-таки прост!

Как видно из схемы входная цепь и выходная никак не связаны электрически, и величина тока в выходной цепи может быть намного больше, чем в управляющей. Таким образом, реле позволяет нам небольшим входным сигналом (например, с вывода микроконтроллера) управлять мощной нагрузкой (например, электродвигателем). И именно управление большими токами является главным назначением реле.

Функционально реле представляет из себя устройство, имеющее 4 вывода:

Различают следующие виды реле:

  • с нормально разомкнутыми контактами
  • с нормально замкнутыми контактами
  • с переключающимися контактами

Реле с нормально разомкнутыми контактами оставляет выходные контакты разомкнутыми до тех пор, пока на вход не будет подано управляющее воздействие, которое вызовет протекание тока через обмотку сердечника. То есть при отсутствии сигнала на входе выходная цепь разомкнута, при подаче сигнала на вход – замкнута. Реле с нормально замкнутыми контактами работает в точности наоборот – при отсутствии сигнала на входе выходная цепь замкнута, а при подаче сигнала – цепь размыкается.

В отличие от этих двух видов реле с переключающимися контактами имеет один дополнительный вывод, который называется общим:

Такое реле является комбинацией двух предыдущих видов реле – при отсутствии сигнала на входе вывод 3 и общий вывод замкнуты, а вывод 4 и общий вывод разомкнуты. А при подаче управляющего сигнала цепь – вывод 3 – общий вывод – размыкается, а цепь – вывод 4 – общий вывод замыкается. Таким образом, реле с переключающимися контактами имеет и нормально разомкнутые и нормально-замкнутые контакты.

Кроме того, реле различают еще по множеству признаков – по типу исполнения (электромагнитные, магнитоэлектрические и т. д.), по типу управляющего сигнала (постоянного или переменного тока), по времени срабатывания, по допустимой нагрузке… Таким образом, при выборе конкретного устройства нужно рассмотреть все параметры управляемой и управляющей (выходной и входной) цепей.

Вот вроде бы и все на сегодня – рассмотрели мы и устройство, и назначение, и принцип работы реле, так что до скорых встреч на нашем сайте!

устройство, типы, зачем нужно, описание работы

Реле – это переключатель. Причем не совсем обычный. Когда в подъезде лампочка загорается от звука шагов, это не волшебство, это работает реле. В этой статье расскажем о назначении реле и принципе его работы.

Существует очень много типов и классификаций реле. Но мы поговорим не только о них, но и о том, что такое реле и как оно работает. Поехали!

Что такое реле

Определение реле таково:

Реле – это электромагнитное коммутационное устройство, предназначенное для установки и разрыва соединений в электрических цепях. Реле срабатывает при скачкообразном изменении входной величины.

Говоря проще, когда входная величина меняется (ток, напряжение), реле замыкает или размыкает цепь. При этом в зависимости от типа реле входная величина не обязательно имеет электрическую природу.

Слово «реле» происходит от французского relay. Это понятие обозначало смену почтовых лошадей или передачу эстафеты.

Как работает реле?

Во-первых, вспомним Джозефа Генри, с именем которого связано понятие индуктивности. Провод, по которому течет ток, является магнитом. Если мы намотаем провод витками на сердечник, то получится катушка индуктивности.

Как катушка индуктивности ведет себя в цепи переменного тока? Если катушку включить в цепь, то фаза тока в цепи будет отставать от напряжения. Другими словами, при максимальном значении напряжения ток будет минимален и наоборот.

Это связано с тем, что когда катушка включена в цепь, в ней возникает ЭДС самоиндукции, которая препятствует росту основного тока через катушку.

Теперь вернемся к реле. Простейшее электромагнитное реле состоит из электромагнита (катушки), якоря и соединяющих элементов. При подаче электрического тока на катушку она притягивает якорь с контактом, который замыкает цепь.

Чтобы представить все это, посмотрим на рисунок:

Устройство и вид электромагнитного реле

Здесь 1 — катушка, 2 — якорь, 3 — коммутационные контакты.

Реле имеет две цепи: управляющую и управляемую. Управляющая цепь – это цепь, через которую ток подается на катушку. Управляемая – цепь, которую и замыкает якорь при срабатывании реле.

Таким образом, реле позволяет контролировать большие токи в управляемой цепи при помощи слаботочной управляющей цепи.

На каждом реле есть обозначения контактов управляемой и управляющей цепи. Также на корпусе изделия указаны значения тока и напряжения, на которые рассчитано реле.

Обозначения на корпусе реле

Электромагнитное реле, рассмотренное выше, не работает мгновенно. После подачи тока на катушку должно пройти какое-то время, и лишь потом реле сработает. Это связано с таким явлением, как гистерезис. Гистерезис переводится с латинского как отставание или запаздывание.

Мы уже говорили про ЭДС самоиндукции, возникающую в катушке. Когда реле включается в цепь, в катушке начинает течь ток, но сила тока нарастает постепенно. Нарастание тока в катушке можно представить в виде петли гистерезиса. Когда нужное значение силы тока достигнуто, реле срабатывает.

По этой причине реле не используются в самой быстродействующей аппаратуре, где время срабатывания должно быть сведено практически к нулю.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Типы реле

В зависимости от входной величины, на которую реагирует реле, бывают:

  • реле тока;
  • реле напряжения;
  • реле частоты;
  • реле мощности.

Также в зависимости от принципа действия различают:

  • электромагнитные реле;
  • магнитоэлектрические реле;
  • тепловые реле;
  • индукционные реле;
  • полупроводниковые реле.

Применение реле

В основном реле применяются для защиты силовой аппаратуры от перенапряжений, в электронике автомобилей. Реле также присутствуют во многих бытовых приборах. В чайнике используется тепловое реле. В каждом холодильнике есть пусковое реле.

Джозеф Генри изобрел реле в 1835 году. Первые реле нашли свое предназначение в телеграфии.

Например, логично предположить, что реле тока служит для контроля силы тока в цепи.

Так, при перегрузках на электродвигателе включается реле тока, которое своими контактами включает реле времени. По прошествии допустимого времени работы двигателя в режиме перегрузки реле времени разрывает цепь.

Блок реле тока

Конечно, сначала все это может показаться сложным и запутанным. Однако если начать разбираться и приложить немного усилий, вы в скором времени сами сможете не только рассказать про устройство и принцип действия реле, но и успешно заняться его подключением. А в будущем, возможно, стать специалистом по релейной защите.

Когда есть студенческий сервис, специалисты которого готовы оказать помощь в любое время, больше не нужно бояться трудных предметов и строгих преподавателей.

Напоследок видео, в котором подробно, наглядно и просто рассказывается о том, как работает реле:

Электромагнитные реле. Виды и работа. Устройство и применение

Основной составляющей частью кибернетики и систем автоматики являются процессы коммутации. Первыми устройствами, выполняющими коммутацию в автоматических электрических цепях, были электромагнитные реле.

Благодаря техническому прогрессу появились полупроводниковые коммутаторы. Однако электромагнитные реле не теряют своей популярности по применению в различном электрооборудовании и устройствах. Широкое использование реле обуславливается их неоспоримыми достоинствами, к которым относятся свойства металлических контактов.

Сопротивление контактов реле наименьшее, в отличие от коммутаторов на основе полупроводниковых элементов. Контакты реле выдерживают намного выше токовые перегрузки, чем полупроводниковые коммутаторы. Реле нормально функционируют при наличии статического электричества, радиационного излучения. Основным положительным качеством реле является гальваническая изоляция цепи управления и коммутации без дополнительных элементов.

Основные виды электромагнитных реле.

По конструктивным особенностям исполнительных элементов электромагнитные реле делятся на:

  • Контактные реле, которые оказывают воздействие на силовую цепь группой электрических контактов. Их разомкнутое или замкнутое состояние способно обеспечить коммутацию (разрыв или соединение) выходной силовой цепи.
  • Бесконтактные реле оказывают действие на силовую цепь методом резкого изменения ее параметров (емкости, индуктивности, сопротивления), либо силы тока и напряжения.
По области применения реле:
  • Сигнализации.
  • Защиты.
  • Цепей управления.
По мощности сигнала управления:
  • Высокой мощности более 10 ватт.
  • Средней мощности 1-9 ватт.
  • Малой мощности менее 1 ватта.
По быстродействию управления:
  • Безинерционные менее 0,001 с.
  • Быстродействующие 0,001-0,05 с.
  • Замедленные 0,05-1 с.
  • Регулируемые.
По виду напряжения управления:
  • Переменного тока.
  • Постоянного тока (поляризованные и нейтральные).

Рассмотрим подробнее реле постоянного тока, которые делятся на два подвида – нейтральные и поляризованные. Они имеют отличие в том, что поляризованные устройства имеют чувствительность к полярности подключаемого напряжения. Якорь изменяет направление движения в зависимости от подключенных полюсов питания.

Реле постоянного тока разделяют:
  • 2-х позиционные.
  • 2-х позиционные с преобладанием.
  • 3-позиционные с нечувствительной зоной.

Функционирование нейтральных электромагнитных реле не зависит от порядка подключения полюсов напряжения. Недостатками реле постоянного тока является потребность в блоке питания, а также высокая стоимость.

Реле переменного тока не имеют таких недостатков, у них есть свои отрицательные моменты:
  • Вибрация при эксплуатации, необходимость ее устранения.
  • Параметры работы намного хуже, чем у реле постоянного тока. К ним относятся: магнитное поле, чувствительность.

К достоинствам устройств реле постоянного тока можно отнести отсутствие необходимости в блоке питания, и возможности непосредственного подключения в сеть переменного напряжения.

По защищенности от внешних факторов реле разделяют:
  • Герметичные.
  • Зачехленные.
  • Открытые.
Реле тока

Структура реле напряжения и тока очень похожа. Их отличие заключается только в конструкции катушки. Токовое реле имеет катушку с небольшим числом витков и малым сопротивлением. Намотка провода на катушку осуществляется толстым проводником.

Обмотка реле напряжения выполняется с большим числом витков. Каждое из этих реле выполняет контроль определенных параметров с помощью системы автоматического отключения и включения электрического устройства.

Реле тока осуществляет контроль силы тока в цепи потребителя, к которой оно подключено. Данные поступают в другую цепь с помощью подключения сопротивления контактом реле. Подключение может осуществляться как непосредственно к силовой цепи, так и через измерительные трансформаторы.

Реле времени

В цепях автоматики часто требуется образование задержки при включении устройств, либо подачи сигнала для выполнения определенного технологического процесса по некоторому алгоритму. Для таких целей предназначены специальные устройства, способные коммутировать цепи с некоторой задержкой времени.

 

К таким реле времени предъявляются специальные требования:
  • Необходимая и достаточная мощность контактов.
  • Малые габаритные размеры, вес и небольшой расход электроэнергии.
  • Стабильные рабочие параметры задержки времени, не зависящие от внешних воздействий.

Для реле времени, управляющим электрическими приводами, повышенные требования не предъявляются. Их задержка равна от 0,25 до 10 с. Эксплуатационная надежность таких реле должна быть очень высока, так как условия работы предполагают наличие вибрации.

Устройство и принцип действия
Структуру электромагнитного реле можно разделить на его отдельные составные элементы следующим образом:
  • Первичный (чувствительный) элемент преобразует электрический сигнал управления в магнитную силу. Обычно этим элементом является катушка.
  • Промежуточный элемент может состоять из нескольких частей. Он приводит в работу исполнительный механизм. Таким элементом является якорь с подвижными контактами и пружиной.
  • Исполнительный элемент выполняет передачу воздействия на силовую цепь. Таким элементом чаще всего выступает группа силовых контактов реле.

Электромагнитные реле имеют довольно простой принцип работы, вследствие чего имеют повышенную надежность. Они являются незаменимыми элементами в схемах защиты и автоматики. Действие реле заключается в применении электромагнитных сил, появляющихся в металлическом сердечнике при протекании электрического тока по катушке.

Элементы реле устанавливаются на закрывающемся крышкой основании. Подвижная пластина (якорь) с контактом установлена над сердечником электромагнита. Подвижных контактов может быть несколько. Напротив них расположены соответствующие пары неподвижных контактов.

1 — Катушка реле
2 — Сердечник
3 — Стержень
4 — Подвижный якорь
5 — Группа контактов
6 — Пружина
7 — Питание катушки

В первоначальном положении пружина удерживает подвижную пластину. При подключении питания срабатывает электромагнит и притягивает к себе эту пластину, являющуюся якорем, преодолевая усилие пружины. В зависимости от устройства реле контакты при этом размыкаются или замыкаются. После выключения питания якорь под действием пружины возвращается в исходное положение.

Существуют электромагнитные реле с встроенными электронными компонентами в виде конденсатора, подключенного параллельно контактам для уменьшения помех и образования искр, а также сопротивления, подключенного к катушке, для четкой работы реле.

По силовой цепи, которая подключается контактами, может протекать электрический ток намного больше тока управления. Эта цепь гальванически развязана с цепью управления электромагнитом. Другими словами реле играет роль усилителя мощности, напряжения и тока в электрической цепи.

Электромагнитные реле переменного тока приводятся в действие при подключении к ним переменного тока частотой 50 герц. Устройство такого реле практически не отличается от реле постоянного тока, кроме сердечника электромагнита, который в данном случае выполняется из листовой электротехнической стали. Это делается для снижения потерь энергии от вихревых токов.

Параметры электромагнитных реле

Основными характеристиками таких реле являются зависимости между входным и выходным параметром.

Основные параметры реле:
  • Время срабатывания реле – характеризует промежуток времени от момента подачи сигнала на вход реле до момента начала действия на силовую цепь.
  • Управляемая мощность – это мощность, которой способны управлять контакты реле при коммутации цепи.
  • Мощность срабатывания – это наименьшая мощность, требуемая для чувствительного элемента реле, для перехода в рабочее состояние.
  • Величина тока срабатывания. Такое регулируемое значение называется уставкой.
  • Сопротивление обмотки катушки.
  • Ток отпускания – максимальная величина тока на клеммах обмотки реле, при котором якорь отпадает в исходное положение.
  • Время отпускания якоря.
  • Частота коммутаций с нагрузкой – частота, с которой может осуществляться подключение и отключение силовой цепи.
Преимущества
  • Возможность коммутации силовых цепей с мощностью потребителя до 4 киловатт при объеме реле меньше 10 куб. см.
  • Невосприимчивость к пульсациям и чрезмерным напряжениям, а также устойчивость к помехам от молнии и работы устройств высокого напряжения.
  • Гальваническая развязка между цепью управления и силовыми контактами.
  • Незначительное снижение напряжения на замкнутых контактных группах, вследствие чего низкое тепловыделение.
  • Невысокая стоимость электромагнитного реле в отличие от полупроводниковых устройств.
Недостатки
  • Низкое быстродействие.
  • Небольшой срок службы.
  • Образование радиопомех при коммутации цепей.
  • Проблемы при подключении и отключении высоковольтных нагрузок постоянного тока и индуктивных потребителей.
Сфера использования

Широкую популярность получили реле в области производства и распределения электрической энергии. Безаварийный режим эксплуатации обеспечивает релейная защита линий высокого напряжения на подстанциях и в других местах. Элементы управления, применяемые в релейной защите, способны на подключение высоковольтных цепей. Э

Электромагнитные реле, функционирующие в качестве релейной защиты, получили популярность из-за следующих достоинств:
  • Возможность работы с невосприимчивостью к возникающим паразитным потенциалам.
  • Высокая скорость реагирования на изменение параметров подключенных цепей.
  • Повышенная долговечность.

С помощью релейной защиты выполняется резервирование линий питания и оперативное отключение неисправных участков цепи. Электромагнитные реле являются наиболее надежной защитой, в отличие от релейных устройств.

Электромагнитные реле применяется в управлении производственными линиями, конвейерами, на участках с повышенными паразитными потенциалами, там, где нельзя использовать полупроводниковые элементы.

Принцип действия, по которому работают такие устройства реле, применяется в оборудовании для удаленного управления потребителями, а именно в контакторах, пускателях. По сути дела, это такие же электромагнитный вид реле, только рассчитанные для очень больших токов, достигающих несколько тысяч ампер.

Релейные блоки применяются для управления емкостных установок, служащих для плавного запуска электродвигателей повышенной мощности.

Электромагнитные реле применялись даже в первых вычислительных комплексах. В них реле использовались как логические элементы, выполняющие простые логические операции. Скорость работы таких электронно-вычислительных машин была низкая. Однако такие своеобразные компьютеры были более надежными, в отличие от последующего поколения ламповых моделей вычислительных машин.

Сегодня можно привести множество примеров применения электромагнитных реле в бытовых устройствах: стиральных машинах, холодильниках и т.д.

Рекомендации по выбору
  • Прежде всего, необходимо выяснить параметры рабочего напряжения и тока реле. Рабочая величина тока и напряжения обмотки реле должна соответствовать сети питания места подключения. Если рабочий ток будет меньше допустимого, то это приведет к ненадежному контакту при работе реле. Если ток будет больше допустимого, то обмотка реле будет перегреваться, что приведет к падению надежности работы реле при наибольшей допустимой температуре.
  • Режим действия контактов реле зависит от вида управляемого тока, частоты коммутации, вида нагрузки. Поэтому при выборе необходимо учитывать эти условия работы.
Похожие темы:
  • Модульные контакторы
  • Виды реле и применение
  • Релейная защита. Виды и устройство. Принцип работы.Особенности
  • Реле тока. Виды и устройство, Принцип действия. Как выбрать
  • Промежуточные реле. Разновидности и особенности. Принцип действия

принцип работы, конструкция, обозначение на схеме

В виду высокой стоимости электродвигателей вопрос их защиты от повреждения при нарушении нормального режима работы стоит достаточно остро. Среди наиболее популярных нарушений перегрузка, обрыв одной из фаз, снижение рабочего напряжения. И все они характеризуются большими рабочими  токами, протекающими в обмотках электрической машины, что приводит к перегреву, ухудшению диэлектрических свойств изоляции и перегоранию жил, если ситуацию пустить на самотек. Для защиты электрических двигателей от перегревания в схему питания электропривода вводят тепловое реле.

Конструкция

Современный рынок электрооборудования предлагает огромный выбор тепловых реле различного принципа действия, как следствие, будет отличаться и их конструктивное исполнение. Однако, в соответствии с  п.3.2. ГОСТ 16308-84 все технические параметры конкретной модели должны соответствовать данному типу по габаритам, исполнению и принципиальной схеме этого типа. Наиболее распространенным вариантом за счет простоты исполнения и относительной дешевизны является электротепловое реле на биметаллической пластине. Конструкция которого приведена на рисунке 1.

Рис. 1. Конструкция теплового реле

Как видите, в состав механизма входят:

  • нагревательный элемент – токоведущая часть, пропускающая через себя рабочий ток электрической машины;
  • биметаллическая пластина – выступает в роли действующего индикатора, реагирующего на превышение температуры;
  • толкатель – выполняет функции жесткого рычага, передающего усилие от биметаллической пластины;
  • температурный компенсатор – позволяет внести поправку на температуру окружающей среды для стабилизации величины тока срабатывания;
  • защелка – предназначена для фиксации положения температурного реле;
  • штанга расцепителя – подвижная часть механизма, предназначенного для перемещения контактов;
  • контакты реле – передают питание в блок управления;
  • пружина – создает усилие для перемещения реле в устойчивое положение.

На практике существуют и другие типы реле, конструкция которых будет принципиально отличаться. Данный вариант приведен в качестве примера для наглядности протекания процессов и пояснения принципа работы.

Принцип работы

В основу работы положен принцип разности температурного расширения различных металлов, описанных законом Джоуля-Ленца. При нагревании биметаллической пластины, состоящей из двух металлов с различным коэффициентом теплового расширения, произойдет ее геометрическая деформация. Именно такая пластина и устанавливается в термореле, она реагирует на превышение температуры более установленного предела.

Для рассмотрения принципа работы температурного реле воспользуемся трехмерной моделью реального устройства, приведенной на рисунке 2 ниже:

Рис. 2. Принцип действия температурного реле

Как видите, подключенное в цепь электродвигателя тепловое реле пропускает основную нагрузку электрической машины через токоведущие шины. Если смоделировать ситуацию перегрузки, когда через них потечет ток в несколько раз превышающий номинальный, то шины начнут нагреваться и избыток тепла перейдет на биметаллическую пластину, подключенную к каждой из фаз электродвигателя. При достижении температуры уставки биметаллическая пластина изогнется и приведет в движение один из толкателей. Толкатель, в свою очередь, сместит рычаг защелки на несколько миллиметров, что отпустит пружинный механизм и даст ход штанге расцепителя.

После этого контакты теплового реле отключат питание цепи управления и перекроют контакты цепи сигнализации, которая оповестит об отключении защитного приспособления. После устранения причины перегрева реле возвращается в рабочее положение посредством нажатия механической кнопки. Следует отметить, что сразу после отключения теплового реле включить его не получиться, так как биметаллическая пластина еще не остыла и возможны ложные срабатывания. Поэтому процесс требует определенной выдержки времени, после которой электродвигатель можно запускать в работу.

Обозначение на схеме

При чтении схем важно ориентироваться в обозначении всех устройств, изображенных на них. Это позволяет обеспечивать точное подключение с соблюдением основных параметров работы электроустановки, селективности срабатывания защит и поддерживать нормальный режим электроснабжения. Изображение теплового реле на схемах определяется положениями двух нормативных документов. В соответствии с таблицей 3 ГОСТ 2.755-87 контакты данного вида оборудования изображаются следующим образом (рисунок 3):

Рис. 3. Изображение контакта термореле

В тоже время, само температурное реле имеет обозначение в соответствии с п.21 таблицы 1 ГОСТ 2.756-76, которое отображается на схеме следующим образом (см. рисунок 4):

Рис. 4. Воспринимающая часть электротеплового реле

Знание схематических изображений электротеплового реле позволит вам ориентироваться в принципиальных схемах уже действующих агрегатов. Или самостоятельно составлять и подключать оборудование через защитное приспособление.

Виды

Современное разнообразие тепловых реле охватывает довольно широкий ассортимент. Поэтому деление на виды производиться в соответствии с установленными критериями на основании п. 1.1. ГОСТ 16308-84. Так, по роду тока рабочей цепи все устройства подразделяются на две большие группы: реле переменного и постоянного тока. В зависимости от количества рабочих полюсов встречаются:

  • однополюсные – применяются для двигателей постоянного тока и других однофазных моделей;
  • двухполюсные – устанавливаются в трехфазную цепь, где контроль может осуществляться только по двум фазам;
  • трехполюсные – актуальны для мощных асинхронных агрегатов с короткозамкнутым ротором.

В зависимости от типа контактов вторичных цепей все тепловые приборы подразделяются на модели:

  • только с замыкающим контактом;
  • только с размыкающим контактом;
  • и с замыкающим, и с размыкающим контактом;
  • с переключающими;

В зависимости от способа возврата теплового реле в исходное положение существуют варианты с включением вручную или с самостоятельным возвратом. Также в моделях может реализовываться функция перевода с одного вида работы на другой.

Также существует разделение по наличию или отсутствию приспособления для компенсации температуры окружающего пространства. И модели с возможностью регулировки тока несрабатывания или с отсутствием таковой функции.

Назначение

Основным назначением теплового реле является защита электродвигателя от перекоса фаз, перегрева на затяжных пусках, заклинивании вала или подачи чрезмерной нагрузки. Для решения всех этих задач на практике выпускаются различные типы реле, имеющие узкую специализацию по конкретному направлению, рассмотрим далее более детально каждый из них.

  • РТЛ используется для защиты трехфазных асинхронных электрических машин от воздействия токов перегрузки, перегрева при обрыве или перекосе фаз, проблем с вращением вала. Может применяться как самостоятельно, так и с установкой на пускатель ПМЛ.
  • РТТ предназначено для работы с трехфазными агрегатами с короткозамкнутым ротором, обеспечивает полный охват аварийных режимов, приводящих к перегреванию обмоток. Также может устанавливаться на магнитный пускатель ПМА, ПМЕ или самостоятельно на монтажную панель.
  • РТИ – трехфазное тепловое реле с возможностью монтажа на пускатели серии КМТ, КМИ. Отличаются стабильным низким расходом электроэнергии, включаются в работу совместно с предохранителями.
  • ТРН – применяется для контроля пуска и режима работы электродвигателя, мало зависит от внешних температурных факторов. Является двухполюсной моделью, которую можно использовать для пуска двигателей постоянного тока.
  • Твердотельные — в отличии от предыдущих, не имеет контактных групп и перемещающихся элементов внутри. Применяется в трехфазных цепях, где устанавливаются повышенные требования к пожарной безопасности.
  • РТК – контролирует температурные показатели не через рабочие токи, а путем размещения датчика в корпусе мотора. Поэтому весь процесс взаимодействия осуществляется только по величине температуры.
  • РТЭ – представляет собой подобие предохранителя, так как отключение происходит за счет плавления проводника. Само тепловое устройство монтируется непосредственно с электродвигателем.

Технические характеристики

Корректная работа релейной защиты обеспечивается за счет соответствия параметров теплового устройства заданным условиям работы электрической машины. Поэтому важно изучить основные рабочие параметры реле еще до его приобретения. К основным техническим данным теплового реле относятся:

  • величина номинального  напряжения и частота на которые оно рассчитано;
  • время-токовая характеристика – определяет  время срабатывания при установленной кратности превышения;
  • время возврата теплового элемента в исходное положение;
  • диапазон изменения тока уставки;
  • тепловая устойчивость к превышению рабочей величины;
  • климатическое исполнение и степень пыле- влагозащищенности.

Схемы подключения

Подключение вышеперечисленных моделей тепловых реле может производиться по нескольким схемам, отличающихся в зависимости от конкретного типа оборудования. Рассмотрим наиболее актуальные из них.

Рис. 5. Схема включения теплового реле

Как видите на рисунке 5, трехфазное реле RT1 подключается последовательно к двигателю M. Питание к ним подается через контактор KM. В нормальном режиме работы контакты RT1 нормально замкнуты и через катушку КМ протекает ток. Как только возникнет аварийный режим, тепловая защита разомкнет контакты и катушка контактора обесточится, питание двигателя прекратиться.

Аналогичным образом происходит включение двухполюсного реле, с той разницей, что контакты защитного устройства включаются последовательно только в две фазы из трех, как показано на рисунке ниже:

Рис. 6. Схема включения двухполюсного реле

Помимо этого существует схема включения теплового реле для мощных электродвигателей, рабочий ток которых в разы превышает допустимый предел для защитного приспособления. В таких ситуациях используется трансформаторное преобразование, а схема включения выглядит следующим образом:

Рис. 7. Схема трансформаторного включения

Критерии выбора

Основным критерием при выборе конкретной модели является соответствие номинальной нагрузки допустимому интервалу самого теплового реле. Для нормальной работы электрической машины вам понадобиться срабатывание при 20 – 30% перегрузке не более, чем в 5 минутный интервал. Величина тока вычисляется по формуле:

Iсраб = 1,2*Iном

Это означает, что допустимый предел регулирования должен включать в себя полученную величину тока срабатывания. Затем, проверьте на время-токовой характеристике (см. рисунок 8), за какой промежуток времени будет срабатывать защита при такой кратности:

Рис. 8. Время-токовая характеристика

В данном случае время будет равно 4 минутам при 20% теплового превышения, что вполне удовлетворяет критериям поставленной задачи.

Использованная литература

  • Родштейн Л.П. «Электрические аппараты» 1989
  • Гуревич В.И. «Электрические реле. Устройство, принцип действия и применения. Настольная книга инженера» 2011
  • Фигурнов Е. П. «Релейная защита» 2004
  • Басс Э.И., Дорогунцев В.Г. «Релейная защита электроэнергетических систем» 2002
  • Кацман М.М. «Электрические машины»  2013
  • Агейкин Д.И. Костина Е.Н. Кузнецова Н.Н. «Датчики систем автоматического контроля и регулирования» 1959

Что такое релейный переключатель | Работа, работа и тестирование реле

Что такое реле?

Реле можно определить как переключатель. Переключатели обычно используются для замыкания или размыкания цепи вручную. Реле также является переключателем, который соединяет или отключает две цепи. Но вместо ручного управления применяется реле с электрическим сигналом, которое, в свою очередь, подключает или отключает другую цепь.

Реле бывают разных типов, например, электромеханические, твердотельные.Часто используются электромеханические реле. Давайте посмотрим на внутренние части этого реле, прежде чем узнаем, что оно работает. Хотя присутствовало много разных типов реле, их работа одинакова.

Каждое электромеханическое реле состоит из

  1. Электромагнит
  2. Контакт с механическим перемещением
  3. Точки переключения и
  4. Весна

Электромагнит создается путем намотки медной катушки на металлический сердечник. Два конца катушки подключены к двум контактам реле, как показано на рисунке.Эти два используются в качестве контактов питания постоянного тока.

Обычно присутствуют еще два контакта, называемые точками переключения для подключения высокоамперной нагрузки. Другой контакт, называемый общим контактом, используется для соединения точек переключения.

Эти контакты называются нормально разомкнутыми (NO), нормально замкнутыми (NC) и общими (COM) контактами.

Реле

может работать как от переменного, так и от постоянного тока.

В случае реле переменного тока для каждого текущего нулевого положения катушка реле размагничивается, и, следовательно, существует вероятность продолжения разрыва цепи.

Итак, реле переменного тока сконструированы со специальным механизмом, обеспечивающим постоянный магнетизм, чтобы избежать вышеуказанной проблемы. Такие механизмы включают устройство электронной схемы или механизм с затемненной катушкой.

рабочая

  • Реле работает по принципу электромагнитной индукции.
  • Когда на электромагнит подается ток, он создает вокруг себя магнитное поле.
  • На изображении выше показана работа реле. Переключатель используется для подачи постоянного тока на нагрузку.
  • В реле Медная катушка и железный сердечник действуют как электромагнит.
  • Когда на катушку подается постоянный ток, она начинает притягивать контакт, как показано. Это называется включением реле.
  • Когда расходный материал удаляется, он возвращается в исходное положение. Это называется отключением реле.

Существуют также такие реле, у которых контакты изначально замыкаются и размыкаются при наличии питания, т. е. точно противоположно показанному выше реле.

Твердотельные реле

будут иметь чувствительный элемент для измерения входного напряжения и переключения выхода с помощью оптронной связи.

Типы контактов реле

Как мы видели, реле — это переключатель. Терминология «Столбы и броски» также применима к эстафете. В зависимости от количества контактов и количества цепей переключающие реле можно классифицировать.

Прежде чем мы узнаем об этой классификации контактов, мы должны знать полюса и ход релейного переключателя.

Столбы и броски

Реле могут переключать одну или несколько цепей. Каждый переключатель в реле называется полюсом. Количество цепей, подключаемых реле, указывается бросками.

В зависимости от полюсов и ходов реле подразделяются на

.
  • Однополюсный, одинарный
  • Однополюсный, двойной ход
  • Двухполюсный одинарный
  • Двухполюсный двойной бросок
Однополюсный одинарный

Однополюсное однопозиционное реле может управлять одной цепью и может быть подключено к одному выходу. Он используется для приложений, требующих только состояния ВКЛ или ВЫКЛ.

Однополюсный, двойной бросок

Однополюсное двухходовое реле соединяет одну входную цепь с одним из двух выходов. Это реле также называется реле переключения.

Хотя SPDT имеет два выходных положения, он может состоять более чем из двух выходов, в зависимости от конфигурации и требований приложения.

Двухполюсный одинарный

Двухполюсное однополюсное реле имеет два полюса и одноходовое реле, и его можно использовать для одновременного подключения двух клемм одной цепи.Например, это реле используется для одновременного подключения к нагрузке клемм фазы и нейтрали.

Двухполюсный двойной бросок

Реле DPDT (двухполюсное двойное переключение) имеет два полюса и по два контакта на каждый полюс. При управлении направлением двигателя они используются для смены фазы или полярности.

Переключение между контактами всех этих реле выполняется, когда катушка находится под напряжением, как показано на рисунке ниже.

Реле

можно разделить на разные типы в зависимости от их функций, конструкции, применения и т. Д.Узнайте о различных типах реле. Классификация реле.

Применение реле

Реле

используются для защиты электрической системы и сведения к минимуму повреждения оборудования, подключенного к системе, из-за повышенных токов / напряжений. Реле используется с целью защиты подключенного к нему оборудования.

Они используются для управления цепью высокого напряжения с сигналом низкого напряжения в прикладных усилителях звука и некоторых типах модемов.

Они используются для управления сильноточной цепью с помощью слаботочного сигнала в таких приложениях, как соленоид стартера в автомобиле. Они могут обнаруживать и изолировать неисправности, возникшие в системе передачи и распределения электроэнергии. Типичные области применения реле включают

  • Системы управления освещением
  • Телекоммуникации
  • Контроллеры промышленных процессов
  • Управление движением
  • Управление моторными приводами
  • Системы защиты электроэнергетической системы
  • Компьютерные интерфейсы
  • Автомобильная промышленность
  • Бытовая техника

Работа реле — принцип работы реле, основы, проектирование, конструкция, применение

Реле рабочее

В этой статье подробно объясняются основы реле, такого как реле под напряжением и реле без напряжения. Также подробно объясняется конструкция, конструкция, работа, применение, а также выбор реле.

Что такое реле?

  Реле - это электромагнитный переключатель, который используется для включения и выключения цепи с помощью сигнала малой мощности или когда несколько цепей должны управляться одним сигналом.  

Мы знаем, что большинство высокопроизводительных промышленных устройств имеют реле для их эффективной работы. Реле — это простые переключатели, которые управляются как электрически, так и механически.Реле состоят из электромагнита, а также набора контактов. Механизм переключения осуществляется с помощью электромагнита. Есть и другие принципы его работы. Но они различаются в зависимости от их применения. В большинстве устройств есть реле.

Почему используется реле?

Основная операция реле происходит там, где для управления цепью может использоваться только сигнал малой мощности. Он также используется в местах, где только один сигнал может использоваться для управления множеством цепей. Применение реле началось с изобретения телефонов. Они сыграли важную роль в переключении звонков на телефонных станциях. Они также использовались в междугородной телеграфии. Они использовались для переключения сигнала, поступающего из одного источника в другой пункт назначения. После изобретения компьютеров они также использовались для выполнения логических и других логических операций. Для высокопроизводительных реле требуется большая мощность, приводимая в движение электродвигателями и т. Д. Такие реле называются контакторами.

ПОСМОТРЕТЬ: ТИПЫ РЕЛЕ

ПОСМОТРЕТЬ: КАК ПРОВЕРИТЬ РЕЛЕ

Конструкция реле

В реле всего четыре основные части. Их

  • Электромагнит
  • Подвижная арматура
  • Контакты точки переключения
  • Весна

На приведенных ниже рисунках показана реальная конструкция простого реле.

Конструкция реле

Это электромагнитное реле с проволочной катушкой, окруженное железным сердечником. Для подвижного якоря, а также для контактов точки переключения предусмотрен путь с очень низким сопротивлением для магнитного потока. Подвижный якорь соединен с ярмом, которое механически связано с контактами точки переключения. Эти детали надежно удерживаются с помощью пружины. Пружина используется для создания воздушного зазора в цепи при обесточивании реле.

Как работает реле?

Функцию реле можно лучше понять, объяснив следующую схему, приведенную ниже.

Конструкция реле

На схеме показан внутренний разрез реле. Железный сердечник окружен управляющей катушкой. Как показано, источник питания подается на электромагнит через переключатель управления и через контакты на нагрузку. Когда через управляющую катушку начинает течь ток, на электромагнит подаётся питание и, таким образом, усиливается магнитное поле. Таким образом, верхний контактный рычаг начинает притягиваться к нижнему фиксированному рычагу и, таким образом, замыкает контакты, вызывая короткое замыкание для питания нагрузки. С другой стороны, если реле уже было обесточено, когда контакты были замкнуты, то контакт перемещается в противоположную сторону и замыкает цепь.

Как только ток в катушке пропадет, подвижный якорь силой вернется в исходное положение. Эта сила будет почти равна половине силы магнитного поля. Эта сила в основном обеспечивается двумя факторами. Это весна, а также сила тяжести.

Реле

в основном предназначены для двух основных операций. Один — это приложение низкого напряжения, а другое — высокого напряжения.Для приложений с низким напряжением предпочтение будет отдаваться снижению шума всей цепи. Для приложений с высоким напряжением они в основном предназначены для уменьшения явления, называемого дуговым разрядом.

Основы реле

Основы для всех реле одинаковы. Взгляните на 4-контактное реле, показанное ниже. Показаны два цвета. Зеленый цвет представляет цепь управления, а красный цвет — цепь нагрузки. К цепи управления подключена небольшая катушка управления. К нагрузке подключен выключатель. Этот переключатель управляется катушкой в ​​цепи управления. Теперь давайте предпримем различные шаги, которые происходят в эстафете.

релейная операция

Как показано на схеме, ток, протекающий через катушки, представленные контактами 1 и 3, вызывает возникновение магнитного поля. Это магнитное поле вызывает замыкание контактов 2 и 4. Таким образом, переключатель играет важную роль в работе реле. Поскольку он является частью цепи нагрузки, он используется для управления подключенной к нему электрической цепью.Таким образом, когда электрическое реле находится под напряжением, ток будет проходить через контакты 2 и 4.

Реле под напряжением (ВКЛ)
  • Реле под напряжением (ВЫКЛ)

Как только ток через контакты 1 и 3 прекращается, релейный переключатель размыкается и, таким образом, разомкнутая цепь предотвращает протекание тока через контакты 2 и 4. Таким образом, реле обесточивается и, таким образом, находится в выключенном положении.

Обесточенное реле (ВЫКЛ.)

Проще говоря, когда на контакт 1 подается напряжение, электромагнит активируется, вызывая развитие магнитного поля, которое затем замыкает контакты 2 и 4, вызывая замкнутую цепь.Когда на контакте 1 нет напряжения, не будет электромагнитной силы и, следовательно, магнитного поля. Таким образом переключатели остаются открытыми.

Шест и бросок

Реле

работают как выключатели. Итак, применяется та же концепция. Говорят, что реле переключает один или несколько полюсов. На каждом полюсе есть контакты, которые можно перекинуть тремя способами. Их

  • Нормально разомкнутый контакт (NO) — НО контакт также называется замыкающим контактом. Он замыкает цепь при срабатывании реле.Он отключает цепь, когда реле неактивно.
  • Нормально замкнутый контакт (NC) — нормально замкнутый контакт также известен как размыкающий контакт. Это противоположно замыкающему контакту. Когда реле срабатывает, цепь размыкается. Когда реле деактивировано, цепь подключается.
  • Переключающие (CO) / Двухходовые (DT) контакты — Этот тип контактов используется для управления двумя типами цепей. Они используются для управления нормально разомкнутым контактом, а также нормально замкнутым контактом с общей клеммой.По своему типу они называются именами размыкают перед замыканием и замыкают до размыкания контакта.

Реле могут использоваться для управления несколькими цепями одним сигналом. Реле переключает один или несколько полюсов, каждый из контактов которых может быть сброшен при подаче напряжения на катушку.

Реле

также имеют обозначения вроде

.
  • Single Pole Single Throw (SPST) — Реле SPST имеет всего четыре клеммы. Эти две клеммы могут быть подключены или отключены.Две другие клеммы необходимы для подключения катушки.
  • Однополюсный, двусторонний (SPDT) — реле SPDT имеет в общей сложности пять клемм. Из этих двух клемм катушки. Также имеется общий терминал, который подключается к любому из двух других.
  • Двухполюсный односторонний (DPST) — Реле DPST имеет в общей сложности шесть клемм. Эти клеммы делятся на две пары. Таким образом, они могут действовать как два SPST, которые приводятся в действие одной катушкой.Из шести выводов два являются выводами катушки.
  • Double Pole Double Throw (DPDT) — Реле DPDT является самым большим из всех. Он имеет в основном восемь клемм реле. Эти два ряда предназначены для переключения терминалов. Они предназначены для работы как два реле SPDT, которые активируются одной катушкой.

Применение реле

  • Релейная схема используется для реализации логических функций. Они играют очень важную роль в обеспечении критической для безопасности логики.
  • Реле используются для обеспечения функций задержки времени. Они используются для отсрочки размыкания и замыкания контактов.
  • Реле используются для управления цепями высокого напряжения с помощью сигналов низкого напряжения. Точно так же они используются для управления сильноточными цепями с помощью сигналов низкого тока.
  • Они также используются как реле защиты. С помощью этой функции все сбои во время передачи и приема могут быть обнаружены и изолированы.
Применение реле перегрузки

Реле перегрузки — это электромеханическое устройство, которое используется для защиты двигателей от перегрузок и сбоев питания.Реле перегрузки устанавливаются в двигатели для защиты от внезапных скачков тока, которые могут повредить двигатель. Реле перегрузки работает по характеристикам с изменением тока во времени и отличается от автоматических выключателей и предохранителей, где происходит внезапное отключение для выключения двигателя.
Наиболее широко используемым реле перегрузки является тепловое реле перегрузки, в котором биметаллическая полоса используется для отключения двигателя. Эта полоса предназначена для контакта с контактором, изгибаясь при повышении температуры из-за чрезмерного протекания тока.Контакт между полосой и контактором вызывает обесточивание контактора и ограничивает мощность двигателя, тем самым отключает его.

Другой тип электродвигателя перегрузки — это электронный тип, который постоянно отслеживает ток электродвигателя, тогда как тепловое реле перегрузки отключает электродвигатель в зависимости от повышения температуры / нагрева полосы.

Все реле перегрузки, доступные для покупки, имеют разные спецификации, наиболее важными из которых являются диапазоны тока и время срабатывания.Большинство из них предназначены для автоматического возврата к работе после повторного включения двигателя.

Выбор реле

Вы должны учитывать некоторые факторы при выборе конкретного реле. Их

  • Защита — Необходимо учитывать различные меры защиты, такие как защита от прикосновения и защита катушки. Защита контактов помогает уменьшить искрение в цепях с использованием индукторов. Защита катушки помогает снизить импульсное напряжение, возникающее при переключении.
  • Ищите стандартное реле со всеми нормативными разрешениями.
  • Время переключения — Запросите высокоскоростные переключающие реле, если они вам нужны.
  • Рейтинги — Существуют номиналы по току и напряжению. Текущие параметры варьируются от нескольких ампер до примерно 3000 ампер. В случае номинального напряжения они варьируются от 300 до 600 вольт переменного тока. Есть также высоковольтные реле примерно на 15000 вольт.
  • Тип используемого контакта — НЗ, НО или замкнутый контакт.
  • Выберите «Сделать перед разрывом» или «Разорвать перед». Собирайте контакты с умом.
  • Изоляция между цепью катушки и контактами

Как работают реле? — Объясни это!

Как работают реле? — Объясни это!

Реклама

Криса Вудфорда. Последнее изменение: 19 августа 2020 г.

Вы можете этого не осознавать, но вы постоянно настороже, остерегаетесь угроз, готовы действовать в любой момент. Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию.Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока — достаточно быстро, чтобы защитите свое зрение. Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех машинах и электрических приборы, где датчики готовы включить или выключается за доли секунды с помощью умных магнитных переключателей, называемых реле.Давайте подробнее рассмотрим, как они работают!

На фото: типичное реле со снятым пластиковым внешним корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа. В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле электронного программатора погружного нагревателя горячей воды.Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет протекать через пружинные контакты гораздо большему току для питания элемента, который нагревает горячую воду.

Что такое реле?

Иллюстрация: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если вы купите еще и маленькую, очень бдительную собаку? Если маленькая собака услышал шум, он начал лаять и разбудил большую собаку, которая могла атаковать злоумышленника.Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле — это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле — электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток.Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и вырабатывают только малые электрические токи. Но часто они нужны нам для управления более крупными устройствами, использующими большие токи. Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность проходит через первую цепь (1), она активирует электромагнит (коричневый), генерируя магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). При отключении питания пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток.Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что через них по умолчанию течет ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты. Обычно разомкнутые реле являются наиболее распространенными.

Вот еще одна анимация, показывающая, как реле связывает две цепи. вместе. По сути, это то же самое, нарисованное немного по-другому. Слева — входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический переключатель и активирует вторую, выходную цепь (с правой стороны).Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи протекает небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. В выходной цепи работает сильноточный прибор, например, лампа или электрический двигатель.

Реле на практике

Фото: Другой взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа.Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от температуры в помещении изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но будет производить только небольшие электрические токи — слишком малы, чтобы приводить в действие электродвигатель в большой большой вентилятор. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают вещи. В Например, для оборудования электростанций и линий электропередачи вы найдете защитных реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждение от таких вещей, как скачки тока. Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное значение. предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты на устаревшей силовой подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но есть довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле. К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки срабатывания: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в оборудовании для выработки электроэнергии, распределения или снабжения).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: Реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в Колледже Нью-Джерси, Генри использовал маленький электромагнит, чтобы включать и выключать больший, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях. Генри применил эту идею к другому изобретению, над которым работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более знаменитым) Сэмюэлем Ф. Соединенные Штаты. Реле позже использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле.Транзисторы — это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели. Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов подтолкнула компьютерную революцию с середины 20 века. Но без реле не было бы транзисторов, поэтому реле — и такие пионеры, как Джозеф Генри — тоже заслуживают похвалы!

Узнать больше

На этом сайте

Другие сайты

  • Электромеханическое реле Джозефа Генри: краткое описание того, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как первопроходец электротехники Бэнкрофта Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри. Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о том, что я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые и практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле — отличное практическое введение. Вы можете открыть реле и поэкспериментировать с внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена.New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После начала краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и упаковка, а также сопутствующие устройства, такие как герконы.В следующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают реле? — Объясни это!

Как работают реле? — Объясни это!

Реклама

Криса Вудфорда. Последнее изменение: 19 августа 2020 г.

Вы можете этого не осознавать, но вы постоянно настороже, остерегаетесь угроз, готовы действовать в любой момент.Миллионы лет эволюции заставили ваш мозг спасти вашу кожу, когда малейшая опасность угрожает вашему существованию. Если вы используете силу инструмент, например, и крошечная щепа летит к вашему глазу, один из ваши ресницы отправят сигнал в ваш мозг, который заставит вас веки закрываются в мгновение ока — достаточно быстро, чтобы защитите свое зрение. Здесь происходит то, что крошечный стимул вызывает гораздо больший и полезный отклик. Вы можете найти тот же трюк работает во всех машинах и электрических приборы, где датчики готовы включить или выключается за доли секунды с помощью умных магнитных переключателей, называемых реле. Давайте подробнее рассмотрим, как они работают!

На фото: типичное реле со снятым пластиковым внешним корпусом. Вы можете увидеть два пружинных контакта слева и катушку электромагнита (красно-коричневый цилиндр медного цвета) справа. В этом реле, когда через катушку протекает ток, он превращает ее в электромагнит. Магнит толкает переключатель влево, сжимая пружинные контакты вместе и замыкая цепь, к которой они прикреплены. Это реле электронного программатора погружного нагревателя горячей воды.Электронная схема в программаторе включает или выключает магнит в заранее запрограммированное время дня, используя относительно небольшой ток. Это позволяет протекать через пружинные контакты гораздо большему току для питания элемента, который нагревает горячую воду.

Что такое реле?

Иллюстрация: Если бы реле были собаками: Предположим, у вас есть огромная свирепая собака, которая так крепко спит, что никогда не просыпается, когда он услышал шум. В качестве сторожевой собаки это было бы бесполезно! Но что, если вы купите еще и маленькую, очень бдительную собаку? Если маленькая собака услышал шум, он начал лаять и разбудил большую собаку, которая могла атаковать злоумышленника. Так работают реле: они используйте небольшой электрический ток, чтобы вызвать гораздо больший.

Реле — это электромагнитный переключатель, управляемый относительно небольшой электрический ток, который может включать или выключать гораздо более мощный электрический Текущий. Сердце реле — электромагнит (катушка с проводом, которая становится временный магнит, когда через него проходит электричество). Вы можете думать о реле как своего рода электрический рычаг: включите его слабым током, и он включает («усиливает») другой прибор используя гораздо больший ток.Почему это полезно? Как имя предполагает, что многие датчики являются невероятно чувствительными частями электронное оборудование и вырабатывают только малые электрические токи. Но часто они нужны нам для управления более крупными устройствами, использующими большие токи. Реле перекрывают разрыв, позволяя токи, чтобы активировать более крупные. Это означает, что реле могут работать как переключатели. (включение и выключение) или как усилители (преобразование малых токи в более крупные).

Как работают реле

Вот две простые анимации, иллюстрирующие, как реле используют одну цепь для включения второй цепи.

Когда мощность проходит через первую цепь (1), она активирует электромагнит (коричневый), генерируя магнитное поле (синее), которое притягивает контакт (красный) и активирует вторую цепь (2). При отключении питания пружина возвращает контакт в исходное положение, снова отключая вторую цепь.

Это пример «нормально разомкнутого» (NO) реле: контакты во второй цепи по умолчанию не подключены и включаются только тогда, когда через магнит протекает ток.Другие реле являются «нормально замкнутыми» (NC; контакты соединены так, что через них по умолчанию течет ток) и отключаются только тогда, когда срабатывает магнит, растягивая или раздвигая контакты. Обычно разомкнутые реле являются наиболее распространенными.

Вот еще одна анимация, показывающая, как реле связывает две цепи. вместе. По сути, это то же самое, нарисованное немного по-другому. Слева — входная цепь, питаемая от переключателя. или какой-то датчик. Когда этот контур активирован, он питает ток к электромагниту, который замыкает металлический переключатель и активирует вторую, выходную цепь (с правой стороны).Относительно небольшой ток во входной цепи, таким образом, активирует больший ток в выходная цепь:

  1. Входная цепь (синяя петля) отключена, и ток не течет через нее, пока что-то (датчик или замыкание переключателя) не включит ее. Выходная цепь (красная петля) также отключена.
  2. Когда во входной цепи протекает небольшой ток, он активирует электромагнит (показанный здесь темно-синей катушкой), который создает вокруг него магнитное поле.
  3. Электромагнит, находящийся под напряжением, притягивает к себе металлический стержень в выходной цепи, замыкая переключатель и позволяя гораздо большему току проходить через выходную цепь.
  4. В выходной цепи работает сильноточный прибор, например, лампа или электрический двигатель.

Реле на практике

Фото: Другой взгляд на реле. Вверху: Если смотреть прямо вниз, вы можете увидеть пружинные контакты слева, механизм переключения посередине и катушку электромагнита справа.Внизу: то же реле, снятое спереди.

Предположим, вы хотите построить систему охлаждения с электронным управлением. система, которая включает или выключает вентилятор в зависимости от температуры в помещении изменения. Вы можете использовать какую-то схему электронного термометра, чтобы почувствовать температуру, но будет производить только небольшие электрические токи — слишком малы, чтобы приводить в действие электродвигатель в большой большой вентилятор. Вместо этого вы можете подключить цепь термометра к входная цепь реле. Когда в этом цепь, реле активирует свою выходную цепь, пропустить гораздо больший ток и включить вентилятор.

Реле не всегда включаются; иногда вместо этого они очень услужливо выключают вещи. В Например, для оборудования электростанций и линий электропередачи вы найдете защитных реле , которые срабатывают при возникновении неисправностей, чтобы предотвратить повреждение от таких вещей, как скачки тока. Когда-то для этой цели широко применялись электромагнитные реле, подобные описанным выше. В наши дни электронные реле на основе интегральных схем вместо этого выполняют ту же работу; они измеряют напряжение или ток в цепи и автоматически принимают меры, если они превышают заданное значение. предел.

Реле прочие

На фото: четыре старомодных реле максимальной токовой защиты на устаревшей силовой подстанции в 1986 году, незадолго до ее сноса. Фото любезно предоставлено Библиотекой Конгресса США.

До сих пор мы рассматривали переключающие реле очень общего назначения, но есть довольно много вариантов эта основная тема, включая (и это далеко не исчерпывающий список):

  • Реле высокого напряжения: они специально разработаны для коммутации высоких напряжений и токов. значительно превышает возможности обычных реле (обычно до 10 000 вольт и 30 ампер).
  • Электронные и полупроводниковые реле (также называемые твердотельными реле или SSR): переключают токи полностью электронными, без движущихся частей, поэтому они быстрее, тише, меньше, надежнее, и служат дольше, чем электромагнитные реле. К сожалению, они обычно дороже, меньше эффективны и не всегда работают так чисто и предсказуемо (из-за таких проблем, как токи утечки).
  • Реле таймера и задержки срабатывания: они запускают выходные токи на ограниченный период времени (обычно от доли секунды до примерно 100 часов или четырех дней).
  • Тепловые реле: они включаются и выключаются, чтобы останавливать такие вещи, как электродвигатели, от перегрева, что-то вроде биметаллических ленточных термостатов.
  • Реле максимального тока и направленные реле: сконфигурированные различными способами, они предотвращают протекание чрезмерных токов в неправильном направлении по цепи (обычно в оборудовании для выработки электроэнергии, распределения или снабжения).
  • Реле дифференциальной защиты: срабатывают при несимметрии тока или напряжения в двух разных частях цепи.
  • Реле защиты по частоте (иногда называемые реле понижения и повышения частоты): эти твердотельные устройства срабатывают, когда частота переменного тока слишком высока, слишком мала или и того, и другого.

Кто изобрел реле?

Фото: Реле широко использовались для коммутации и маршрутизации вызовов на телефонных станциях. например, этот, сделанный в 1952 году. Фото любезно предоставлено NASA Glenn Research Center (NASA-GRC).

Реле были изобретены в 1835 году пионером американского электромагнетизма. Джозеф Генри; на демонстрации в Колледже Нью-Джерси, Генри использовал маленький электромагнит, чтобы включать и выключать больший, и предположил, что реле можно использовать для управления электрическими машинами на очень больших расстояниях.Генри применил эту идею к другому изобретению, над которым работал в то время, электрическому телеграфу (предшественнику телефона), который был успешно разработан Уильямом Куком и Чарльзом Уитстоном в Англии и (гораздо более знаменитым) Сэмюэлем Ф. Соединенные Штаты. Реле позже использовались в телефонной коммутации и первых электронных компьютерах и оставались чрезвычайно популярными до появления транзисторов в конце 1940-х годов; по словам Бэнкрофта Герарди, в ознаменование 100-летия работы Генри по электромагнетизму, к тому времени только в Соединенных Штатах работало около 70 миллионов реле. Транзисторы — это крошечные электронные компоненты, которые могут выполнять ту же работу, что и реле, работая как усилители или переключатели. Хотя они переключаются быстрее, потребляют гораздо меньше электроэнергии, занимают небольшую часть места и стоят намного меньше, чем реле, они обычно работают только с небольшими токами, поэтому реле все еще используются во многих приложениях. Именно разработка транзисторов подтолкнула компьютерную революцию с середины 20 века. Но без реле не было бы транзисторов, поэтому реле — и такие пионеры, как Джозеф Генри — тоже заслуживают похвалы!

Узнать больше

На этом сайте

Другие сайты

  • Электромеханическое реле Джозефа Генри: краткое описание того, как Джозеф Генри изобрел реле в 1835 году.
  • Генри как первопроходец электротехники Бэнкрофта Герарди, Bell Systems Technical Journal, июль 1932 г. Эта интересная историческая статья из архивов Bell была опубликована в ознаменование столетия электрических открытий Джозефа Генри. Он дает прекрасное представление о важности Генри и о том, как он при своей жизни помог «подключить» мир к электричеству.

Видео

  • Как сделать реле: довольно простое 2,5-минутное видео-руководство покажет вам, как намотать собственные электромагниты и установить их на плату, чтобы создать собственное самодельное реле.
  • Как работает автомобильное реле: это короткое и простое видеообъяснение расскажет вам о том, что я объяснил выше. То же объяснение, немного другие слова.

Книги

Простые и практичные руководства
  • СДЕЛАТЬ: Электроника Чарльза Платта. Maker Media, 2015. Эксперимент 7 по исследованию реле — отличное практическое введение. Вы можете открыть реле и поэкспериментировать с внутренними механизмами!
  • Свидетель: Электроника Роджера Бриджмена.New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
Подробные технические книги
  • Электрические реле: принципы и применение Владимира Гуревича. CRC Press, 2018. После начала краткой истории реле эта книга проведет нас через магнитные принципы, работа релейных контактов, внешний вид и упаковка, а также сопутствующие устройства, такие как герконы.В следующих главах рассматриваются варианты основных реле, включая реле высокого напряжения, тепловые реле и реле времени.
  • Свидетель: Электроника Роджера Бриджмена. New York: DK, 2007. (Для младших читателей в возрасте 9–12 лет. Включает историю, науку и технологии.)
  • Телефонные проекты для злого гения Томаса Петруцеллиса. McGraw-Hill Professional, 2008. (Включает некоторые цепи, в которых используются реле.)
История науки

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Реле. Получено с https://www.explainthatstuff.com/howrelayswork.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Реле

— принцип работы, конструкция, типы, применение

Типы реле

Они имеют широкий спектр классификаций. Здесь мы классифицировали их на основе их применения следующим образом:

Классификация реле

Вспомогательные или миниатюрные реле

Вспомогательные или миниатюрные реле — это реле, используемые в цепях управления для переключения любого устройства / цепи, когда выполняется какое-либо условие.Это основная форма реле с катушкой и набором контактов для переключения. Они доступны в различных конфигурациях контактов.

Реле блокировки с

Реле с защелкой удерживают положение контактов неопределенно долго, даже если питание катушки отключено. Он состоит из двух отдельных катушек, одна для фиксации, а другая — для отпускания. Когда ток течет через первую катушку (катушка A), York намагничивается, и якорь притягивается к сердечнику. York изготовлен из специального магнитного материала, который удерживает якорь в притянутом состоянии, даже если напряжение, приложенное к катушке, снимается.

Чтобы вернуть якорь в исходное положение, на вторую катушку (катушка B) подается напряжение. Вторая катушка намотана на Йорк таким образом, что ток, протекающий через катушку, генерирует магнитный поток, противоположный существующему полю. Это ослабляет существующее магнитное поле, и якорь высвобождается. Следовательно, контакты возвращаются в исходное положение.

Реле таймера с

Таймеры задержки являются примером реле таймера. Они сделаны таким образом, что контакты срабатывают через короткое время после подачи напряжения на катушку.

Контакторы Контакторы

используются для переключения электродвигателей, конденсаторов, осветительных нагрузок и других мощных устройств, с которыми реле не может справиться. Принцип действия контакторов такой же, как и у реле. Контакторы рассчитаны на больший ток, чем реле. У них есть специально разработанные дугогасительные камеры для смягчения электрических дуг, образующихся при переключении сильноточных нагрузок.

Контактор

Реле для станков

Они используются для логического управления оборудованием. Это электромеханические реле с большим количеством контактов. Сейчас они устарели и заменены ПЛК.

Реле перегрузки Реле перегрузки

используются для защиты электродвигателей от перегрузок и обрывов фаз. Они могут быть как электронного, так и теплового типа. Электронные реле перегрузки используют электронные схемы и трансформаторы тока для измерения тока, протекающего к двигателю, тогда как тепловые реле имеют внутри биметаллические полоски, которые деформируются, когда ток через них превышает заданные пределы.

Подробнее: Реле перегрузки — Принцип работы, типы, подключение

Реле утечки на землю

Реле утечки на землю или замыкания на землю (ELR) используется для защиты устройства или цепи от замыканий на землю, а человека — от поражения электрическим током. Он определяет утечку тока на землю и помогает безопасно изолировать цепь или устройство. Их контакты подключены к цепи отключения автоматического выключателя. ELR активирует цепь отключения, как только ток утечки превышает заданное значение, и размыкает автоматический выключатель.

Помимо вышеперечисленных классификаций, реле также классифицируются по типу рабочего напряжения, подаваемого на катушку, как реле постоянного и переменного тока, классифицируются по конструкции как герметичные, шарнирные, плунжерные реле и т. Д.

Что такое электрическое реле? | Основы работы с реле 1-1 | OMRON

Определение электрического реле

Реле

— это переключатели с электрическим управлением, которые размыкают и замыкают цепи, получая электрические сигналы от внешних источников. Некоторые люди могут ассоциировать «эстафету» с гоночным соревнованием, когда члены команды по очереди передают дубинки, чтобы завершить гонку.
«Реле», встроенные в электрические изделия, работают аналогичным образом; они получают электрический сигнал и отправляют сигнал на другое оборудование, включая и выключая переключатель.

Например, когда вы нажимаете кнопку на пульте дистанционного управления для просмотра телевизора, он посылает электрический сигнал на «реле» внутри телевизора, включая основное питание. Существуют различные типы реле, которые используются во многих приложениях для управления разной величиной токов и количеством цепей.

Типы и классификация электрических реле

Технологию реле

можно разделить на две основные категории: подвижные контакты (механическое реле) и неподвижные контакты (реле MOS FET, твердотельное реле).

Подвижные контакты

(механическое реле)

Этот тип реле имеет контакты, которые механически приводятся в действие для размыкания / замыкания под действием магнитной силы для переключения сигналов, токов и напряжений в положение ВКЛ или ВЫКЛ.

Без подвижных контактов

(реле MOS FET, твердотельное реле)

В отличие от механических реле, этот тип реле не имеет подвижных контактов, но вместо этого использует полупроводниковые и электрические переключающие элементы, такие как симистор и МОП-транзистор.При работе этих электронных схем сигналы, токи и напряжения включаются или выключаются электронным способом.

Устройство электрического реле и принципы работы

1. Механическое реле
Базовая конструкция механических реле
Реле

состоит из катушки, которая принимает электрический сигнал и преобразует его в механическое действие, и контактов, размыкающих и замыкающих электрическую цепь.

Принцип действия механических реле

Рассмотрим подробнее, как включается лампа с помощью переключателя и реле.

Для перехода к следующему слайду: Щелкните мышью.

2. Реле на полевых МОП-транзисторах
Базовая структура реле MOS FET
Реле

MOS FET — это полупроводниковое реле, в выходных элементах которого используются силовые MOS FET. Реле
MOS FET состоит из следующих трех компонентов:

  1. LED (светодиод) микросхема
  2. микросхема КПК (фотодиодная матрица)

    * Фотодиодная матрица (солнечная батарея + цепь управления)

  3. микросхема MOS FET

    * Металлооксидный полупроводниковый полевой транзистор (металл, оксид, полупроводник, полевой, эффектный, транзистор)

Принцип работы реле MOS FET
Реле

MOS FET работают в соответствии со следующими принципами.

Для перехода к следующему слайду: Щелкните мышью.

Электрическое реле Характеристики и механизм

1. Характеристики электрического реле
Механическое реле

Одной из основных характеристик механического реле является физическое расстояние между катушкой и контактным элементом для достижения соответствующего уровня изоляции (изоляционного расстояния) как на входе, так и на выходе.

Катушка
Электромагнит притягивает якорь.
MOS FET реле

Одной из основных характеристик реле MOS FET является то, что в нем используется полупроводник, поэтому контакты не размыкаются / закрываются механически. В результате преимущества включают уменьшение занимаемой площади, бесшумную работу, более длительный срок службы и устранение необходимости в дополнительном обслуживании.

Реле
Сверхмалый и вес В дополнение к SSOP и USOP, наш новый сверхкомпактный пакет VSON обеспечивает значительную экономию места для всей системы.
Низкий управляющий ток Стандартный управляющий ток должен составлять 2-15 мА. Также доступны сверхчувствительные модели
с приводными токами от 0,2 мА (макс.), Что позволяет экономить энергию всей системы.
Увеличенный срок службы В конструкции используется световой сигнал, следовательно, нет контактов; предотвращает сокращение срока службы из-за износа контактов и продлевает срок службы.
Малый ток утечки MOS FET может выдерживать внешний импульсный ток без добавления демпфирующей цепи.В нормальных условиях ток утечки составляет около 1 нА или ниже, а в закрытом состоянии утечка очень мала. (Модель: G3VM- □ GR □, — □ LR □, — □ PR □, — □ UR □)
Отличная ударопрочность Все внутренние части изготовлены методом литья, подвижные части не используются; повышает устойчивость к ударам и вибрации.
Бесшумная работа В отличие от электромеханического реле, реле MOS FET не использует механические контакты; следовательно, отсутствует шум переключения, что способствует бесшумной работе системы.
Высокая изоляция Обеспечивает электрическую изоляцию входов / выходов путем преобразования сигнала напряжения в световой сигнал для передачи. Стандартные модели обеспечивают выдерживаемое напряжение 2500 В переменного тока между входом и выходом. Также доступны превосходные продукты, предлагающие 5000 В переменного тока, обеспечивающие высокий уровень изоляции.
Высокоскоростное переключение Достигает 0,2 мс (SSOP, USOP, VSON) времени переключения; намного более высокая скорость по сравнению с механическим реле (от 3 до 5 мс), обеспечивая быстрое срабатывание.
Точный контроль аналогового микро сигнала По сравнению с симистором, МОП-транзистор значительно уменьшает мертвую зону, позволяя очень мало искажений формы входного сигнала микроаналогового сигнала для правильного преобразования в форму выходного сигнала.
2. Три действия электрических реле
1. Реле пропускает небольшое количество электрического тока для управления сильноточной нагрузкой.

Когда на катушку подается напряжение, через катушку проходит небольшой ток, в результате чего через контакты проходит большее количество тока для управления электрической нагрузкой.

2. Реле посылает различные типы электрических сигналов.

Нагрузки переменного тока также могут электрически управляться (переключаться) от источника постоянного тока.

3. Реле управляет несколькими выходами только с одним входом.

Один входной сигнал катушки может одновременно управлять несколькими независимыми цепями (переключаемыми).

Принцип работы реле

и его типы | Теория реле

Реле — это переключатель с электрическим управлением.Многие реле используют электромагнит для механического управления переключателем, но также используются другие принципы работы, такие как твердотельные реле.

Реле

используются там, где необходимо управлять цепью с помощью отдельного маломощного сигнала или когда несколько цепей должны управляться одним сигналом.

Реле Анимация

Простое электромагнитное реле состоит из катушки с проволокой, обернутой вокруг сердечника из мягкого железа, стального ярма, которое обеспечивает путь с низким сопротивлением для магнитного потока, подвижного железного якоря и одного или нескольких наборов контактов (в корпусе имеется два контакта. реле на фото).

Якорь шарнирно прикреплен к ярму и механически связан с одним или несколькими наборами подвижных контактов. Он удерживается на месте пружиной, поэтому при отключении реле в магнитной цепи образуется воздушный зазор. В этом состоянии один из двух наборов контактов в изображенном реле замкнут, а другой — разомкнут. Другие реле могут иметь больше или меньше наборов контактов в зависимости от их функции.

Реле на картинке также имеет провод, соединяющий якорь с ярмом.Это обеспечивает непрерывность цепи между подвижными контактами на якоре и дорожкой на печатной плате (PCB) через ярмо, которое припаяно к PCB.

Детали реле

Когда электрический ток проходит через катушку, он генерирует магнитное поле, которое активирует якорь, и последующее движение подвижного контакта (ов) либо замыкает, либо разрывает (в зависимости от конструкции) соединение с неподвижным контактом. Если набор контактов был замкнут, когда реле было обесточено, то движение размыкает контакты и разрывает соединение, и наоборот, если контакты были разомкнуты.

Когда ток в катушке отключается, якорь возвращается силой, примерно вдвое меньшей, чем сила магнитного поля, в расслабленное положение. Обычно эта сила создается пружиной, но сила тяжести также обычно используется в промышленных пускателях двигателей. Большинство реле производятся для быстрой работы. В низковольтном приложении это снижает шум; в приложениях с высоким напряжением или током уменьшает искрение.

Когда на катушку подается постоянный ток, поперек катушки часто помещается диод для рассеивания энергии коллапсирующего магнитного поля при деактивации, что в противном случае могло бы вызвать скачок напряжения, опасный для компонентов полупроводниковой схемы.

Такие диоды не использовались широко до применения транзисторов в качестве драйверов реле, но вскоре стали повсеместными, поскольку первые германиевые транзисторы легко разрушались этим скачком. Некоторые автомобильные реле включают в себя диод внутри корпуса реле.

Если реле управляет большой или, особенно, реактивной нагрузкой, может возникнуть аналогичная проблема с импульсными токами вокруг выходных контактов реле. В этом случае демпфирующая цепь (конденсатор и резистор, включенные последовательно) на контактах может поглощать скачок напряжения.Конденсаторы подходящего номинала и соответствующий резистор продаются как единый компонент для этого обычного использования.

Электромеханическое реле — это электрический переключатель, приводимый в действие катушкой электромагнита. В качестве переключающих устройств они демонстрируют простое поведение «включено» и «выключено» без промежуточных состояний. Электронный схематический символ простого однополюсного одноходового реле (SPST) показан здесь:

Катушка с проволокой, намотанная вокруг многослойного железного сердечника, создает магнитное поле, необходимое для приведения в действие механизма переключения. Управляющее воздействие этой катушки электромагнита на контакт (-ы) реле показано пунктирной линией.

Это конкретное реле оснащено нормально разомкнутыми (NO) контактами переключателя, что означает, что переключатель будет в разомкнутом (выключенном) состоянии, когда катушка реле обесточена. «Нормальный» статус переключателя — это состояние покоя при отсутствии стимуляции. Контакт переключателя реле будет в «нормальном» состоянии, когда его катушка не находится под напряжением.

Однополюсное реле на одно переключение с нормально замкнутым (NC) переключающим контактом может быть представлено на электронной схеме следующим образом:

В мире электрического управления метки «Форма-A» и «Форма-B» являются синонимами «нормально разомкнутых» и «нормально замкнутых» контактов соответственно.Таким образом, мы могли бы обозначить контакты реле SPST как «Form-A» и «Form-B» соответственно:

Продолжением этой темы является релейный однополюсный двухпозиционный контакт (SPDT), также известный как контакт «Form-C».

Данная конструкция переключателя предусматривает как нормально разомкнутые, так и нормально замкнутые контакты в одном блоке, приводимые в действие катушкой электромагнита:

Еще одним расширением этой темы является двухполюсный двухпозиционный контакт реле (DPDT).

Данная конструкция переключателя предусматривает два набора контактов Form-C в одном блоке, одновременно приводимые в действие катушкой электромагнита:

Реле

DPDT — одни из самых распространенных в промышленности из-за их универсальности. Каждый набор контактов Form-C предлагает выбор между нормально разомкнутыми или нормально замкнутыми контактами, и два набора (два «полюса») электрически изолированы друг от друга, поэтому их можно использовать в разных цепях.

Распространенным комплектом промышленных реле является так называемое реле в форме кубика льда, названное так из-за прозрачного пластикового корпуса, позволяющего проверять рабочие элементы.

Эти реле подключаются к многоконтактным базовым розеткам для легкого снятия и замены в случае неисправности. Реле DPDT «кубик льда» показано на следующих фотографиях, готовое к установке в его основание (слева) и со снятой пластиковой крышкой, чтобы открыть оба набора контактов Form-C (справа):

Эти реле подключаются к розетке с помощью восьми контактов: по три для каждого из двух наборов контактов Form-C, плюс еще два контакта для соединений катушек. Из-за количества выводов (8) этот тип релейной базы часто называют восьмеричной базой.

При более близком рассмотрении одного контакта Form-C показано, как движущаяся металлическая «пластина» контактирует с одной из двух неподвижных точек, причем фактическая точка соприкосновения осуществляется с помощью покрытой серебром «кнопки» на конце пластины. На следующих фотографиях показан один контакт Form-C в обоих положениях:

Промышленные управляющие реле обычно имеют схемы соединений, нарисованные где-нибудь на внешней оболочке, чтобы указать, какие контакты подключаются к каким элементам внутри реле.

Стиль этих диаграмм может несколько отличаться, даже для реле с идентичным назначением.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *