+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Все о системах рекуперации электроэнергии торможением: применение в транспорте

При выполнении энергией какой-либо работы она тратится безвозвратно в полном объёме. Рекуперация, как процесс, позволяет сохранить часть энергии: кинетической или тепловой, и вернуть её обратно в технологическую цепочку.

Рекуперация тепла

Что такое рекуперация

Рекуперация – это намеренное возвращение затрачиваемого материала или любого вида энергии с целью повторного применения. В переводе с латыни recuperatio – «обратное получение», возврат вещества или вида энергии в тот процесс, куда затрачивается расходный материал.

Принцип рекуперации применяют:

  • при производстве (обработке) сырья;
  • для сохранения тепла при воздухообмене;
  • при работе с кинетической энергией.

Такие методы позволяют не только снижать затраты на производство, но и организовывать самостоятельные схемы для работы различных устройств.

Рекуперативное торможение

Электрические тяговые двигатели, применяемые для движения городского и железнодорожного электротранспорта, работают с использованием рекуперативного торможения (РТ). В тот момент, когда электродвигатель совершает торможение, он превращается в генератор.

Подобные электродвигатели применяют:

  • в троллейбусах;
  • в трамваях;
  • в электропоездах.

Получаемая в процессе торможения электроэнергия передаётся обратно в общую энергосеть.

Внимание! В аналогичной ситуации электромобили или гибридные автомашины используют такую энергию для зарядки собственного аккумулятора.

Электропоезд с двигателями РТ

Как работает система рекуперации

Работу подобной системы можно рассмотреть на примере рекуперации воздуха при вентиляции помещения. При замене воздуха в помещении устройство выполняет передачу части тепла от удаляемого воздуха подаваемому потоку.

Важно! При этом действии смешивания потоков не происходит. Таким способом достигается наибольшая энергоэффективность помещения при невысоком КПД теплообмена.

На повышение передачи тепла в этом случае влияют:

  • повышение температурной разницы;
  • отношение площади теплового соприкосновения к массе воздуха, текущего через теплообменник.

Снижение утечки тепла при вентиляции помещения – вот основная задача у системы рекуперации. Большая часть тепла не покидает помещение без толку, подогревает подаваемый извне воздух.

Рекуператор воздуха

Силовой спуск

Недостатки устройств с рекуперацией, применяемых на транспорте, не позволяют использовать её как основной узел торможения. К основным минусам относятся:

  • отсутствие стояночного тормоза;
  • недопустимость полной остановки.

В связи с этим на всех устройствах и транспортных средствах применяют механические тормоза.

Эти же недостатки позволяют использовать рекуперацию для организации силового спуска. Её применяют при движении электротранспорта вниз на уклонах или для снижения скорости подачи груза вниз при опускании краном.

Силовой спуск при опускании грузов

Применение рекуперации в транспорте

При работе электротранспорта происходит рекуперация энергии электрического тока. Для каждого из видов транспорта существуют свои конструктивные нюансы.

В электромобилях и электровелосипедах

Электровелосипед, как и частный электромобиль, хотя и оснащен такой системой обратного возврата электроэнергии на аккумулятор, обладает низким КПД. Электропривод этих средств передвижения потребляет энергию при движении. Поскольку режим торможения очень редок и кратковременен, то доля возвращённого электричества мала. С её помощью лишь увеличивают расстояние пробега на одной зарядке АКБ.

Электрокар BMW i3

На железной дороге

Тяговые двигатели электровозов при рекуперации переходят в режим генерирования электроэнергии, которая снова возвращается в сеть.

Важно! Применение в системе рекуперации ШИМ-контроллера взамен контакторов позволяет вернуть энергию в любую сеть: постоянного или переменного тока. Контроллер работает в двух режимах. При движении он выпрямляет ток, при торможении, определив частоту и фазу сети, – отдаёт электричество.

В метро

При рекуперации электроэнергии в подземке правильно подобранный график движения поездов даёт значительную экономию. Чередование разгона и торможения поезда можно синхронизировать с несколькими составами на разных ветках и возвращать энергию в сеть по максимуму.

Применение рекуперативной энергии в метро

В городском общественном транспорте

Все модели троллейбусов и трамваев снабжены подобной системой торможения и возврата энергии. Существует ограничение по нижней границе скорости торможения. Она составляет 1-2 км/ч. Далее в работу вступают стояночные механические тормоза.

В Формуле-1

В 2014 году регламент Формулы-1 подразумевал переход на турбо моторы с системой (ERS). Это двойная рекуперация, в результате которой используют и кинетическую при торможении, и тепловую энергию выхлопа. При этом используют модули ERS-K и ERS-H. В систему включены два дополнительных генератора: MGU-K и MGU-H. Буквой К и Н маркируют кинетическую и тепловую энергию, соответственно.

Торможение асинхронных двигателей

Что это такое рекуперация применительно к асинхронным машинам? В данном случае это лишь один из видов торможения. Два других это:

  • динамическое замедление;
  • торможение противовключением.

Каждый из  них имеет свои особенности.

Рекуперативное торможение асинхронного двигателя

Асинхронный двигатель (АД) превращается в генератор тогда, когда скольжение ротора в поле статора увеличивается. Это осуществимо тремя способами:

  • уменьшение частоты напряжения питания, при котором ротор начинает вращаться со скоростью, опережающей синхронную;
  • в машинах, имеющих две и более скорости вращения, при переключении обмоток или изменении количества включенных полюсов;
  • в двигателях с фазным ротором, путём изменения сопротивления, включенного в цепи обмоток ротора.

Величина скольжения во всех случаях превышает единицу, и машина переходит в режим генерации и возвращает энергию.

Схема пуска двигателя с фазным ротором

Противовключение

Такой способ редко применяется из-за недостатков, связанных с тем, что есть необходимость менять местами фазы между собой. Это вызывает изменение направления движения, но величина рабочего тока возрастает в десять раз. К тому же необходимо прекращать дальнейшую подачу напряжения, чтобы после торможения двигатель не вращался в противоположную сторону.

Динамическое торможение асинхронного двигателя

Такое снижение скорости вращения получают при подаче постоянного напряжения на статорную обмотку. Созданное в результате этого магнитное поле статора действует на обмотки ротора. В них появляется ЭДС, и начинает протекать ток. Сила тормозного момента, возникающего при выделившейся при этом мощности, напрямую зависит от скорости вращения электродвигателя. Двигатель превращается в генератор с закороченными выходными клеммами и отдаёт в сеть энергию.

Схема динамического торможения АД

Замена или дополнение механического тормоза на рекуперативное замедление движения позволяет вернуть энергию для её повторного использования. Рекуперация, как одно из направлений экономии сырья и энергии, позволяет повысить экономию и эффективность технологических процессов.

Видео

amperof.ru

Рекуперация энергии в сеть

На протяжении долгого времени, излишнюю энергию,  накопленную в преобразователях частоты (ПЧ) при торможении ими асинхронных двигателей с высокоинерционной нагрузкой (ПТО, нагрузочные стенды, электротранспорт, намотчики, центрифуги и т.д.), рассеивали на специальных тормозных резисторах.  Это было крайне необходимо для ограничения уровня напряжения на шинах постоянного тока преобразователей при работе в этих режимах. В противном случае, отказ от использования тормозных резисторов грозил бы выходом преобразователей частоты из строя или невозможностью задания необходимых временных рамп разгона и торможения управляемых механизмов.

Применение тормозных резисторов не сильно влияет на стоимость оборудования систем, однако, влечет за собой ряд определенных неудобств при их проектировании и эксплуатации, а именно: большие габариты тормозных резисторов, разогрев поверхности тормозных резисторов до температуры 100°С и выше, обязательная защита резисторов от попадания пыли и влаги и т.д. Но, самым неприятным в этом случае является то, что излишняя энергия преобразуется в ненужное тепло, за которое предприятие платит деньги. В теплое время года, когда температура в помещениях с технологическим оборудованием и так достаточно высокая, тормозные резисторы, подключенные к ПЧ, способствуют еще большему ее повышению. Это значит, что крайне необходима дополнительная вентиляция помещений или даже их кондиционирование, а это опять дополнительные затраты. Но, ведь можно не рассеивать излишнюю энергию на резисторы, а возвращать ее обратно в питающую сеть, обеспечивая экономию дорогостоящих энергоресурсов. Для этого используются системы рекуперации энергии.

Фактически доказано, что современные преобразователи частоты позволяют значительно сократить энергопотребление оборудования и оптимизировать различные технологические процессы, что в свою очередь ведет к экономии сырья и других ресурсов, а так же способствует улучшения качества конечного продукта. Но, с заменой систем частотного регулирования с использованием тормозных резисторов на системы с использованием рекуперации энергии в сеть, появилась возможность дополнительной экономии. Теперь, энергию, возникающую при торможении двигателей можно возвращать в питающую сеть, осуществляя полную корректировку ее параметров в соответствии с параметрами сети. Ведущие производители промышленного оборудования и механизмов уже широко применяют такие системы, такие системы нашли применение в электротранспорте (электропоезда, трамваи, троллейбусы, эскалаторы).

Немного физики. Для того чтобы накопленную мощность можно было возвращать в источник переменного тока, в качестве входного выпрямителя привода рекуперации используются преобразователи с ШИМ источником напряжения. Теперь поток мощности переменного тока может течь в любую сторону, током можно управлять и получить почти единичный коэффициент мощности. В случае работы преобразователя частоты в режиме рекуперации, каскад IGBT транзисторов (используемый в моторном приводе в качестве выходного каскада) работает как синусоидальный выпрямитель, преобразующий переменный ток в постоянное напряжение для питания системы. При интенсивном торможении двигателя и, как следствие, превышении напряжения на звене постоянного тока преобразователя частоты выше определенного уровня, каскад IGBT транзисторов ПЧ генерирует ШИМ — сигнал в сторону сети. Разница напряжений между фазным напряжением ШИМ и сетевым напряжением питания прикладывается к индуктивностям (индуктору рекуперации). Это напряжение содержит много высокочастотных гармоник, которые блокируются индуктивностью и на выходе ПЧ получается синусоидальный ток с малой примесью высших гармоник. Для синхронизации привода рекуперации с сетью не требуется дополнительного оборудования. Определение частоты и угла вектора сетевого напряжения происходит за счет подачи ШИМ — модулятором трех специальных тестирующих импульсов в питающую сеть.

Одним из проверенных и эффективных решений по рекуперации энергии является применение частотных преобразователей Unidrive SP фирмы Control Techniques. Примеры их использования можно увидеть на стендах динамических испытаний автомобилей многих автомобильных заводов (Nissan, Ford, Lamborghini и др.), в металлургии, на эскалаторах, кранах, и т.д. Конфигурация такой системы может иметь несколько видов, но суть ее сводится к одному — организовать двунаправленный поток энергии в источник переменного электропитания и из него. При определении мощностей/ номиналов компонентов системы рекуперации нужно учитывать следующие факторы:

1. Изменение уровня сетевого напряжения

2. Номинальные ток двигателя, напряжение, коэффициент мощности

3. Максимальную мощность нагрузки и условия перегрузки

4. Потери в приводах и других компонентах

 На рис.1 представлена общая схема система рекуперации при использовании одного моторного привода и одного привода рекуперации. Как правило, для такой системы моторный привод и привод рекуперации имеют одинаковые номиналы. Однако, при детальном расчете может выясниться, что характер нагрузки подразумевает работу моторного привода с перегрузкой, если при этом напряжение питания привода рекуперации находится на нижнем пределе, то он может не покрыть мощность выделяемую моторным приводом и потери в системе. Тогда необходимо использовать привод рекуперации большего номинала.

 

Рис.1 Система с одним приводом рекуперации и одним моторным приводом

На рис.2 представлена общая схема система рекуперации при использовании нескольких моторных приводов и одного привода рекуперации. В таких многоприводных конфигурациях привод рекуперации выбирается таким образом, чтобы выдать суммарную мощность всех моторных приводов, учитывая потери, включая собственные. В этом случае, конечно, нужно учитывать характер нагрузки для каждого моторного привода индивидуально, ведь возможен вариант одновременного торможения всех двигателей системы.

 

Рис.2 Система с одним приводом рекуперации и несколькими моторными приводами

При включении системы с несколькими приводами, объединенными по шине постоянного тока, необходимо ограничивать пусковой ток, поскольку электролитические конденсаторы в звене постоянного тока преобразователей частоты имеют малое сопротивление. Для этого применяется тиристорный выпрямительный модуль SPMC, который подключается контактором для заряда конденсаторов объединенной шины постоянного тока преобразвателей. После обеспечения плавного заряда шины до номинального напряжения, выпрямительный модуль SPMC отключается.

Как видно, система рекуперации предлагаемая Control Techniques может иметь различные конфигурации и может быть спроектирована индивидуально под конкретное применение.

По всем вопросам, касательно данного применения обращайтесь в ООО «Драйвика» по тел. 8 (812) 635 90 30 или Email: [email protected]

driveka.ru

Все о системах рекуперации электроэнергии торможением

Электродвигатели предназначены для приведения в движение различных механизмов, но после завершения движения механизм необходимо остановить. Для этого можно использовать тоже электрическую машину и метод рекуперации. О том, что такое рекуперация электроэнергии, рассказывается в этой статье.

Рекуперация электроэнергии в электровелосипеде

Что такое рекуперация

Название этого процесса происходит от латинского слова “recuperatio”, которое переводится как  “обратное получение”. Это возврат части израсходованной энергии или материалов для повторного использования.

Этот процесс широко используется в электротранспорте, особенно работающем на аккумуляторах. При движении под уклон и во время торможения системы рекуперации возвращает кинетическую энергию движения обратно в аккумулятор, подзаряжая их. Это позволяет проехать без подзарядки большее расстояние.

Рекуперативное торможение

Один из видов торможения – это рекуперативное. При этом скорость вращения электродвигателя больше, чем заданная параметрами сети: напряжением на якоре и обмотке возбуждения в двигателях постоянного тока или частотой питающего напряжения в синхронных или асинхронных двигателях. При этом электродвигатель переходит в режим генератора, а выработанную энергию отдаёт обратно в сеть.

Основным достоинством рекуператора является экономия электроэнергии. Это особенно заметно при движении по городу с постоянно изменяющейся скоростью, пригородном электротранспорте и метрополитене с большим количеством остановок и торможением перед ними.

Кроме достоинств, рекуперация имеет недостатки:

  • невозможность полной остановки транспорта;
  • медленная остановка при малых скоростях;
  • отсутствие тормозного усилия на стоянке.

Для компенсации этих недостатков на транспортных средствах устанавливается дополнительная система механических тормозов.

Как работает система рекуперации

Для обеспечения работы эта система должна обеспечивать питание электродвигателя от сети и возврат энергии во время торможения. Проще всего это осуществляется в городском электротранспорте, а также в старых электромобилях, оснащенных свинцовыми аккумуляторами, электродвигателями постоянного тока и контакторами, – при переходе на пониженную передачу при высокой скорости режим возврата энергии включается автоматически.

В современном транспорте вместо контакторов используется ШИМ-контроллер. Это устройство позволяет возвращать энергию как в сеть постоянного, так и переменного тока. При работе оно работает как выпрямитель, а во время торможения определяет частоту и фазу сети, создавая обратный ток.

Интересно. При динамическом торможении электродвигателей постоянного тока они так же переходят в режим генератора, но вырабатывающаяся энергия не возвращается в сеть, а рассеивается на добавочном сопротивлении.

Силовой спуск

Кроме торможения, рекуператор используется для уменьшения скорости при опускании грузов грузоподъёмными механизмами и во время движения вниз по наклонной дороге электротранспорта. Это позволяет не использовать при этом изнашиваемый механический тормоз.

Применение рекуперации в транспорте

Этот метод торможения используется много лет. В зависимости от вида транспорта, его применение имеет свои особенности.

В электромобилях и электровелосипедах

При движении по дороге, а тем более, по бездорожью электропривод почти всё время работает в тяговом режиме, а перед остановкой или перекрёстком – “накатом”. Остановка производится, используя механические тормоза из-за того, что рекуперация при малых скоростях неэффективна.

Кроме того, КПД аккумуляторов в цикле “заряд-разряд” далёк от 100%. Поэтому, хотя такие системы и устанавливаются на электромобили, большую экономию заряда они не обеспечивают.

Схема рекуперации в автомобиле

На железной дороге

Рекуперация в электровозах осуществляется тяговыми электродвигателями. При этом они включаются в режиме генератора, преобразующего кинетическую энергию поезда в электроэнергию. Эта энергия отдаётся обратно в сеть, в отличие от реостатного торможения, вызывающего нагрев реостатов.

Рекуперация используется также при длительном спуске по склону для поддержания постоянной скорости. Этот метод позволяет экономить электроэнергию, которая отдается обратно в сеть и используется другими поездами.

Раньше этой системой оборудовались только локомотивы, работающие от сети постоянного тока. В аппаратах, работающих от сети переменного тока, есть сложность с синхронизацией частоты отданной энергии с частотой сети. Сейчас эта проблема решается при помощи тиристорных преобразователей.

Режим рекуперации поезда

В метро

В метрополитене во время движения поездов происходит постоянный разгон и торможение вагонов. Поэтому рекуперация энергии даёт большой экономический эффект. Он достигает максимума, если это происходит одновременно в разных поездах на одной станции. Это учитывается при составлении расписания.

В городском общественном транспорте

В городском электротранспорте эта система устанавливается практически во всех моделях. Она используется в качестве основной до скорости 1-2 км/ч, после чего становится неэффективной, и вместо неё включается стояночный тормоз.

В Формуле-1

Начиная с 2009 года, в некоторых машинах устанавливается система рекуперации. В этом году такие устройства ещё не давали ощутимого превосходства.

В 2010 году такие системы не использовались. Их установка с ограничением на мощность и объём рекуперированной энергии возобновилась в 2011 году.

Торможение асинхронных двигателей

Снижение скорости асинхронных электродвигателей осуществляется тремя способами:

  • рекуперация;
  • противовключение;
  • динамическое.

Рекуперативное торможение асинхронного двигателя

Рекуперация асинхронных двигателей возможна в трёх случаях:

  • Изменение частоты питающего напряжения. Возможно при питании электродвигателя от преобразователя частоты. Для перехода в режим торможения частота уменьшается так, чтобы скорость вращения ротора оказалась больше синхронной;
  • Переключением обмоток и изменением числа полюсов. Возможно только в двух,- и многоскоростных электродвигателях, в которых несколько скоростей предусмотрены конструктивно;
  • Силовой спуск. Применяется в грузоподъёмных механизмах. В этих аппаратах устанавливаются электродвигатели с фазным ротором, регулировка скорости в которых осуществляется изменением величины сопротивления, подключаемого к обмоткам ротора.

В любом случае при торможении ротор начинает обгонять поле статора, скольжение становится больше 1, и электромашина начинает работать как генератор, отдавая энергию в сеть.

Схема электродвигателя с фазным ротором

Противовключение

Режим противовключения осуществляется переключением двух фаз, питающих электромашину, между собой и включением вращения аппарата в обратную сторону.

Возможен вариант включения при противовключении добавочных сопротивлений в цепь статора или обмоток фазного ротора. Это уменьшает ток и тормозной момент.

Важно! На практике этот способ применяется редко из-за превышения токов в 8-10 раз выше номинальных (за исключением двигателей с фазным ротором). Кроме того, аппарат необходимо вовремя отключить, иначе он начнёт вращаться в обратную сторону.

Динамическое торможение асинхронного двигателя

Этот метод осуществляется подачей в обмотку статора постоянного напряжения. Для обеспечения безаварийной работы электромашины ток торможения не должен превышать 4-5 токов холостого хода. Это достигается включением в цепь статора дополнительного сопротивления или использованием понижающего трансформатора.

Постоянный ток, протекающий в обмотках статора, создаёт магнитное поле. При пересечении его в обмотках ротора наводится ЭДС, и протекает ток. Выделившаяся мощность создаёт тормозной момент, сила которого тем больше, чем выше скорость вращения электромашины.

Фактически асинхронный электродвигатель в режиме динамического торможения превращается в генератор постоянного тока, выходные клеммы которого закорочены (в машине с короткозамкнутым ротором) или включенные на добавочное сопротивление (электромашина с фазным ротором).

Схема динамического торможения асинхронного электродвигателя

Рекуперация в электрических машинах – это вид торможения, позволяющий сэкономить электроэнергию и избежать износа механических тормозов.

Видео

Оцените статью:

jelectro.ru

«Рекуперация электроэнергии на РЖД превысила лучший показатель советских железных дорог» в блоге «Энергетика и ТЭК»

По итогам 11 месяцев текущего года на железных дорогах объём возвращённой в контактную сеть электроэнергии при рекуперативном торможении составил почти 1,173 млрд кВт/ч.  Этот показатель для компании является рекордным. Интересно сравнить это достижение с аналогичным периодом 1988 года, пикового в советские времена по грузоперевозкам. Тогда эта величина достигла 1,259 млрд кВт/ч. 


Рекуперацией считается возврат в сеть части затраченной электроэнергии для повторного её использования. Так, в режиме торможения тяговыми двигателями электроподвижного состава (ЭПС) они переводятся в генераторный режим, и механическая энергия движения поезда превращается в электрическую энергию. В основном рекуперативное торможение необходимо для обеспечения безопасности движения поездов. Его роль особенно важна на линиях с горным профилем, а также для высокоскоростного подвижного состава. 

Длительное торможение колодочными тормозами невозможно из-за снижения их эффективности при нагреве, поэтому пользоваться ими можно лишь прерывисто. В результате скорость поезда постоянно меняется, в его составе возникают продольно-динамические усилия, которые способны разорвать поезд или привести к выдавливанию вагонов, а в пассажирском движении ещё и снизить комфортность проезда. При высоких скоростях стабильность механических тормозов недостаточна для плавного замедления, поэтому их применяют только для дотормаживания поезда перед остановкой.

Кроме основной функции по обеспечению безопасности движения применение рекуперативного торможения позволяет использовать возвращённую энергию на тягу поездов другими локомотивами, а также для привода вспомогательных электрических машин, для освещения и отопления, повышая энергоэффективность перевозочного процесса. 

При отсутствии других поездов на участке рекуперированная электроэнергия может быть возвращена во внешнюю питающую сеть. На линиях, электрифицированных на постоянном токе, – только при наличии выпрямительно-инверторных преобразователей. Рекуперацию электрической энергии нельзя считать её производством, поскольку не требуется расход энергоносителей.

Как рассказал «Гудку» заместитель начальника департамента технической политики ОАО «РЖД» Борис Иванов, в компании реализуется целевая программа повышения энергетической эффективности тягового электроснабжения, в рамках которой специалистами ведущих транспортных вузов выполняется крупномасштабная научно-исследовательская работа «Оценка энергоэффективности системы тягового электроснабжения и электроподвижного состава и потенциала её повышения», где значительное внимание уделено выявлению «узких мест» применения рекуперативного торможения и повышению эффективности его использования. Перед компанией стоит целевая задача в 2013 году обеспечить величину рекуперированной энергии не менее 1,5 млрд кВт/ч.

Оценить эффективность применения рекуперативного торможения можно при помощи имитационного моделирования, которое позволяет определить величину нереализованной энергии рекуперации из-за превышения напряжения в тяговой сети допустимых значений и вынужденного перехода на реостатное или пневматическое торможение, а также доли реализованной энергии, которая складывается из потребляемой поездами в режиме тяги, и энергии, поступающей на шины тяговых подстанций. При этом снижается потребление электроэнергии из энергосистемы, измеряемой счётчиками тяговых подстанций.

В департаменте технической политики ОАО «РЖД» пояснили, что сегодня на сети дорог, электрифицированных на постоянном токе, актуальна задача замены физически и морально устаревших инверторов, установленных ещё в 80-е годы. В настоящее время специалистами разработан инвертор на новой элементной базе с применением более мощных тиристоров, рассчитанных на более высокий класс напряжения. Для повышения эффективности целесообразно выполнить его дальнейшее совершенствование в части обеспечения не только шести-, но и двенадцати- и двадцатичетырёхпульсового выпрямления. Предстоит серьёзная работа конструкторов и других учёных-специалистов по доведению до совершенства логико-программного управления инвертором и совершенствованию системы диагностики.

Необходимо отметить, что условия работы устройств энергоснабжения в режиме рекуперативного торможения в большей степени зависят от режима напряжения в контактной сети, чем в режиме тяги. Важнейшей задачей сегодняшнего дня является доведение до широкой реализации предложений учёных по системе управления напряжением в контактной сети в зависимости от поездной ситуации. Самым сложным вопросом в этом является обеспечение работы системы регулирования напряжения в условиях применения рекуперативного торможения и обеспечения устойчивого приёма инверторами энергии рекуперации.

Процессы распределения и использования энергии рекуперации на однопутных участках постоянного тока не вызывают сомнений, так как они изучены достаточно основательно. Экспериментальные исследования показывают, что баланс реализованной энергии рекуперации складывается из потреблённой энергии поездами в режиме тяги в данной и смежных межподстанционных зонах, возвращённой энергии через инверторы на шины переменного тока тяговых подстанций и потерь в тяговой сети от передачи энергии рекуперации, причём последние в процентном соотношении соизмеримы с потерями в режиме тяги.

При том состоянии измерительных средств на тяговых подстанциях, которое имеется на сегодняшний день, наиболее остро стоит вопрос потокораспределения энергии рекуперации и, естественно, эффективности её использования на двухпутных участках постоянного тока. Поэтому глубокие натурные исследования процессов рекуперативного торможения и эффективности использования энергии рекуперации сегодня целесообразно проводить на двухпутных участках при наличии сложного профиля пути и поездов повышенной массы.

В соответствии с поручением старшего вице-президента ОАО «РЖД» Валентина Гапановича на Свердловской железной дороге определён участок постоянного тока  для использования в качестве опытного полигона по исследованию процессов рекуперативного торможения и эффективности использования энергии рекуперации в системе тягового электроснабжения.

По словам Бориса Иванова, организация постоянно действующего полигона для исследования процессов рекуперации является достаточно затратным мероприятием, требующим получения информации о значениях токов, напряжений, мощности и энергии за короткие промежутки времени с фидеров контактной сети и электроподвижного состава, а также наличия автоматизированной системы сбора и обработки этой информации. 

Апробация на таком полигоне процессов рекуперации с применением современных методов и систем управления позволит обеспечить широкое внедрение на сети дорог отработанных технических решений и обеспечить реализацию планов ОАО «РЖД» по повышению объёма рекуперации и эффективности её использования.

sdelanounas.ru

Рекуперативное торможение асинхронного электродвигателя

Асинхронная машина, в принципе, как и все электрические машины, является обратимой. Это значит, что она может работать как в режиме двигателя, выполняя какую-то полезную работу, так и в режиме генератора – вырабатывая электрическую энергию.

Если к валу асинхронного электродвигателя приложить момент нагрузки, то преодолевая этот момент, машина будет потреблять энергию из сети. При работе на холостом ходу будет потребляться только энергия, необходимая для покрытия механических потерь в самой машине. Если к валу асинхронной машины подсоединить еще один электродвигатель и с его помощью вращать асинхронную машину, то потери в роторе будут компенсированы за счет приводного двигателя, а в случае, если скорость вращения вала асинхронной машины превысить синхронную частоту вращения (скорость вращения магнитного поля статора), то начнется рекуперация энергии в сеть. Давайте более подробно рассмотрим процесс рекуперации энергии в сеть.

При работе машины в двигательном режиме вращающееся магнитное поле пересекает проводники роторной и статорной обмотки в одинаковом направлении, следствием чего становится совпадение ЭДС статора Е1 и ротора Е2 по фазе. При переходе асинхронника в режим рекуперативного торможения магнитное поле пересекает проводники статора в прежнем направлении, а вот роторные проводники при n>n0 – в противоположном. При этом ЭДС ротора изменит свой знак на обратный и будет равна:

Соответственно ток ротора:

Отсюда следует, что при переходе в режим рекуперации направление изменит только активная составляющая роторного тока, реактивная не поменяет свое направление. Активный ток поменяет направление из-за изменения направления момента асинхронной машины, по сравнению с двигательным режимом.

Векторная диаграмма асинхронного электродвигателя в генераторном режиме:

Векторная диаграмма показывает, что между U и I1 угол сдвига фазы φ1>(π/2), что будет соответствовать режиму, в котором первопричиной появления тока I1 будет не напряжение питающей сети, а ЭДС Е1. Таким образом, статорная обмотка работает в режиме генератора, отдавая энергию в сеть.

Такие же выражения возможно получить и с помощью эквивалентной схемы. Активная составляющая роторного тока будет равна:

Это значит, что при ω>ω0, скольжение s изменит знак, соответственно поменяет знак I2a/, что значит переход машины в режим рекуперативного торможения. Это подтверждает и выражение электромагнитной мощности:

Данное выражение показывает, что при переходе в режим рекуперативного торможения мощность электромагнитная изменяет свой знак, что означает отдачу мощности вторичным контуром.

Обратившись к выражению мощности вторичного контура:

Из этого выражения мы можем увидеть, что знак реактивной мощности будет сохранятся независимо от режима работы.

Это значит что – асинхронный электродвигатель в рекуперативном режиме тоже потребляет реактивную мощность. И чтоб осуществить рекуперацию, необходим источник реактивной мощности, который необходим для создания вращающегося магнитного поля.

Рекуперативное торможение часто используют в подъемно-транспортных механизмах, при спуске тяжелых грузов. Груз, который опускается, развивает на валу машины отрицательный момент и скорость становится n>n0. Таким образом, машина переходит в режим рекуперативного торможения и тем самым создает тормозной момент на валу. В точке пересечения характеристики со значением статического момента скорость двигателя устанавливается, и груз опускается с постоянной скоростью, как это показано ниже:

тормозной момент будет отсутствовать  в том случае, если момент на валу машины будет больше, чем критический момент этой же машины.

Рекуперативное торможения при наличии на валу асинхронной машины реактивного статического момента возможно только при наличии преобразователя частоты или двигателя, с переключающимся числом пар полюсов. Рассмотрим для двигателя с переключающимся числом пар полюсов.

Если обмотки статорные двигателя, работающего на высокой скорости

То есть число пар полюсов меньше, переключить на большее число пар полюсов р1, то в таком случае скорость вращения вала асинхронной машины станет больше, чем синхронная скорость, соответствующая новому числу полюсов

Машина перейдет в режим генератора:

На рисунке, область рекуперативного торможения соответствует участку BCD на механической характеристике.

Довольно часто такой способ применяют в металлорежущих станках, в которых применяю асинхронные машины с переключающимся количеством пар полюсов.

elenergi.ru

Система рекуперативного торможения — DRIVE2

В современных гибридных автомобилях используется система рекуперативного торможения. В основу системы положен электрический способ рекуперации кинетической энергии.


Движение автомобиля сопровождается кинетической энергией. При торможении с использованием традиционной тормозной системы избыток кинетической энергии преобразуется в тепловую энергию трения тормозных колодок и тормозного диска и, соответственно, расходуется вхолостую.

В системе рекуперативного торможения для замедления используется электродвигатель, включенный в трансмиссию автомобиля. При торможении электродвигатель начинает работать в генераторном режиме, на валу двигателя создается тормозной момент и вырабатывается электрическая энергия, которая сохраняется в аккумуляторной батарее. Запасенная электрическая энергия используется в дальнейшем для движения автомобиля.

Применение системы рекуперативного торможения обеспечивает максимальную отдачу от каждого заряда аккумуляторной батареи и высокую топливную экономичность. Рекуперативное торможение наиболее эффективно на передней оси автомобиля, т.к. до 70% кинетической энергии при торможении приходится именно на переднюю ось.
Эффективность системы рекуперативного торможения значительно снижается на низких скоростях движения автомобиля. Поэтому для доведения автомобиля до полной остановки используются традиционные фрикционные тормоза. Совместная работа двух систем находится под управлением электроники.

Отдельный электронный блок управления реализует следующие функции:
— контроль скорости вращения колес;
— поддержание тормозного момента электродвигателя, необходимого для замедления автомобиля;
— перераспределение тормозного усилия на фрикционную тормозную систему;
— поддержание крутящего момента, необходимого для зарядки аккумуляторной батареи.

В данной тормозной системе механическая связь между педалью тормоза и тормозными колодками отсутствует. Решение о торможении принимает электроника на основании анализа действий водителя и характера движения автомобиля.

В работе электронная система рекуперативного торможения взаимодействует с антиблокировочной системой тормозов, системой распределения тормозных усилий, системой курсовой устойчивости, усилителем экстренного торможения.

Система рекуперации кинетической энергии
Помимо электрического способа рекуперации кинетической энергии существуют и другие способы: механический, гидравлический, пневматический. Самый распространенный из них является механический способ и построенные на его основе система рекуперации кинетической энергии (Kinetic Energy Recovery Systems, KERS). В данной системе кинетическая энергия движущегося автомобиля возвращается при торможении и сохраняется для дальнейшего использования с помощью маховика. В отличие от рекуперативного торможения система KERS не создает тормозной момент.

Маховик включен в трансмиссию автомобиля, вращается в вакуумной камере и при торможении разгоняется до 60000 об/мин. Конструкция обеспечивает сохранение энергии до 600 кДж и передачу мощности до 60 кВт (80 л.с.). Запасенная энергия используется для кратковременного скоростного рывка в движении или при трогании с места.
Система KERS применяется в автоспорте на автомобилях Formula 1 с 2009 года. На автомобилях массового использования применение данной системы только планируется. Ближе всех к серийному применению системы рекуперации кинетической энергии находятся разработки компании Volvo.

Cистему KERS предлагается использовать при движении автомобиля в городском цикле. При торможении двигатель автомобиля выключается, маховик раскручивается и запасает энергию. При трогании с места используется энергия маховика, автомобиль трогается, а двигатель запускается уже в движении.

По заявлениям Volvo применение системы рекуперации кинетической энергии обеспечивает снижение расхода топлива на 20% и сокращение вредных выбросов.

www.drive2.ru

Рекуперация электроэнергии в сеть в задачах электропривода — Технологии — Приводные системы — Каталог статей

Введение

Часто, условия той или иной приводной задачи диктуют необходимость работы электропривода в так называемом четвертом квадранте механической характеристики, т.е. в условиях, когда вращающий момент на валу электродвигателя направлен в сторону, противоположную направлению вращения вала.

В этом случае электродвигатель уже не приводит в движение механизм, а создает тормозящий механизм момент и превращается в генератор электроэнергии.

Стоит отметить, что при работе электродвигателя непосредственно от сети электроэнергия, вырабатываемая электродвигателем передается непосредственно в питающую сеть и рекуперация электроэнергии осуществляется естественным образом.

В случае, если электродвигатель питается от преобразователя частоты с явным звеном постоянного тока (какими являются большинство из присутствующих на рынке приводов), картина существенно меняется, т.к. на входная силовая цепь такого преобразователя частоты представляет из себя трехфазный управляемый диодно-тирристорный выпрямитель и не пропускает электрический ток в направлении от электродвигателя к питающей сети.

В результате электроэнергия вырабатываемая электродвигателем в процессе динамического торможения накапливается в конденсаторах звена постоянного тока и приводит к повышению напряжения на звене постоянного тока и аварийному отклонению преобразователя частоты.

При небольшой длительности торможения двигателем или небольших значениях тормозного момента вырабатываемую в таких режимах электроэнергию «сжигают» на тормозных резисторах, отапливая атмосферу.

Если необходимые в задаче величины тормозных моментов или длительность торможения достаточно велики, габариты подходящих тормозных резисторов и их стоимость существенно увеличиваются и не всегда изготовление походящего тормозного резистора становится возможным.

Задачами с длительными режимами торможения и большими тормозными моментами являются: приводы сахарных центрифуг периодического действия, приводы штанговых глубинных насосов (ШГН), лифты и краны и т.п.

Во всех этих случаях экономически эффективным решением может оказаться возврат генерируемой электродвигателем электроэнергии в сеть, хотя данное решение и имеет существенно большую стоимость.

В настоящей статье излагаются основы функционирования преобразователей частоты с синхронным выпрямителем, или так называемых приводов с выпрямителем AFE (Active Front End) на примере преобразователя частоты POWERDRVE MDR производства компании Leroy-Somer.

Устройство рекуперативного преобразователя частоты с синхронным выпрямителем

Силовые элементы входного преобразователя обычного «нереверсивного» электронного регулятора скорости состоят из неуправляемого диодного моста или управляемого диодно-тирристорного выпрямителя, исключающих возврат электроэнергии в питающую сеть.
Силовые элементы входного преобразователя Рекуперативного POWERDRIVE состоят из шести специальных IGBT модулей включенных встречно. Эта сборка, управляемая специальным контроллером рекуперации, образует синхронный выпрямитель, который не только преобразует переменное питающее напряжение в управляемое постоянное напряжение, но и позволяет обратное движение энергии в питающую сеть.
Этот реверсируемый регулятор имеет на своих трех вводах 3-х фазную систему напряжений, формируемую широтно-импульсной модуляцией (ШИМ), которая в согласуется с питающей сетью через «выпрямительный» дроссель.
Фильтр радиочастотных помех и сиунс-фильтр, установленные последовательно, устраняют остаточные компоненты тока во входном преобразователе.

Передача электроэнергии

 

Векторная диаграмма ниже иллюстрирует взаимосвязь между напряжением питающей сети и напряжением, генерируемым реверсируемым регулятором скорости и показывает направление потока энергии.

Воздействие на амплитуду и фазу системы напряжений генерируемых Рекуперативным POWERDRIVE фиксирует направление потока энергии. Угол между двумя векторами напряжений составляет примерно 5° при полной нагрузке и при этих условиях регулятор имеет коэффициент мощности близкий к 1.

Такая реверсируемая система обладает следующими основными преимуществами:
— Возможен возврат энергии в питающую сеть;
— Очень низкий коэффициент нелинейных искажений синусоидальной формы входного тока;
— Коэффициент мощности регулятора при возврате энергии в сеть очень близок к 1;
— Выходное напряжение регулятора на электродвигателе может быть больше чем напряжение сети, таким образом, снижая потребляемый электродвигателем ток;

— При торможении перенапряжения, воздействующие на изоляцию электродвигателя снижаются на 25%, что увеличивает срок службы электродвигателя по отношению к электроприводу, укомплектованному тормозным резистором.

К недостаткам схемы с синхронным выпрямителем следует отметить относительную громоздкость рекуперативного преобразователя частоты, построенного по технологии AFE.

Другие схемы рекуперации электроэнергии в сеть

Другим способом возврата электроэнергии в сеть является запатентованная компанией Leroy-Somer технология «С-Light 4 Quadrant» прямого включения IGBT-транзисторов в питающую сеть. При этом исключаются входные фильтры и необходимость в громоздкой цепи предзаряда шины постоянного тока.

Это приводит к существенному снижению габаритов рекуперативного преобразователя частоты. Кроме того, стабилизрованное напряжение в звене постоянного тока дает возможность существенно снизить габариты конденсаторов в звене постоянного тока и изменить их тип с электролитических на твердотельные пленочные.

В результате, рекуперативный преобразователь частоты, спроектированный и изготовленный по технологии «С-Light 4 Quadrant» имеет почти в два раза меньшие габариты по сравнению со стандартным преобразователем частоты с 6-и пульсным выпрямителем.

Об Emerson (Эмерсон)

Об Emerson Industrial Automation TM

О Leroy-Somer

xn—-7sboc0ajnnfgt.xn--p1ai

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о