Резистор. Резисторы переменного сопротивления | Для дома, для семьи
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о резисторах. В первой части статьи мы познакомились с резисторами постоянного сопротивления (постоянными резисторами), а в этой части статьи поговорим о резисторах переменного сопротивления, или переменных резисторах.
Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.
1. Потенциометры.
Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.
Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.
Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.
При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.
Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.
В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные.
1.1 Непроволочные.
В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.
Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.
Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.
Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.
1.2. Проволочные.
В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.
Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.
Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.
Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.
Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.
2. Основные параметры переменных резисторов.
Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.
2.1. Номинальное сопротивление.
Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.
У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.
Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.
Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.
2.2. Форма функциональной характеристики.
Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.
Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по
Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.
Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.
Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.
Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.
К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.
3. Обозначение переменных резисторов на схемах.
На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.
Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.
Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.
Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.
Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.
В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.
Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.
4. Подстроечные резисторы.
Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.
В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б) перемещение контактной щетки осуществляется червячной передачей.
При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.
На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.
5. Включение переменных резисторов в электрическую цепь.
В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.
При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.
Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.
На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.
При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.
По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.
Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.
Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы.
Удачи!
Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.
sesaga.ru
Переменный резистор: характеристики, виды, проверка мультиметром
В аппаратуре часто присутствуют подстраиваемые параметры. Для реализации используют переменный резистор. В зависимости от подключения они позволяют менять ток или напряжение в цепи.
Содержание статьи
Что такое резистор с изменяемым (переменным) сопротивлением
Среди радиоэлементов существуют детали, которые могут изменять свой основной параметр. Именно такими являются переменные или регулируемые резисторы. Они отличаются от постоянных тем, что их сопротивление можно плавно менять практически от нуля до определенного значения. Изменение происходит путем механического перемещения ползунка.
Регулируемые или переменные резисторы — виды и размеры разные
Есть у переменных резисторов разновидности — подстроечные и регулировочные. Чем отличаются переменные резисторы от подстроечных? Тем что подстроечные рассчитаны на небольшое количество регулировок. У некоторых моделей их количество может исчисляться сотнями или десятками (например, у НР1-9А перемещать ползунок можно не более 100 раз). Если посмотреть на таблицу ниже, можно увидеть что у некоторых подстроечных SMD резисторов циклов регулировки всего 10.
Пример характеристик подстроечных резисторов SMD
У переменных резисторов этот показатель значительно выше. Количество перемещений регулятора может исчисляться десятками и даже сотнями тысяч. Так что использовать подстроечные резисторы вместо переменных явно не стоит.
Основной недостаток переменных резисторов — их недолговечность. Контакт между резистивным слоем и щеткой постепенно ухудшается. Для акустической аппаратуры это может выражаться во все усиливающихся шумах, при подстройке частоты в радиоприемниках все тяжелее «поймать» нужную длину волны и т.д.
Анимация дает понять, как работает переменный резистор и почему выходит из строя
Способы производства
Переменный резистор может быть двух типов: проволочным и пленочным. У проволочных на диэлектрическую трубку намотана проволока, вдоль нее перемещается металлический передвижной контакт — ползунок. Его местоположение и определяет сопротивление элемента. Витки проволоки уложены вплотную друг к другу, но они разделены слоем лака с высокими диэлектрическими свойствами.
Ползунковые переменные резисторы проволочного типа
Переменные проволочные резисторы — это необязательно трубка с намотанной на нее проволокой как на фото выше. Такие элементы выпускались в основном несколько десятков лет назад. Современные мало чем отличаются от пленочных, разве что корпус чуть выше, так как проволока все-таки занимает больше места, чем пленка.
Со снятой крышкой видна проволочная спираль и бегунок
У пленочных переменных резисторов на диэлектрическую пластину (обычно выполнена в виде подковы) нанесен слой токопроводящего углерода. В этом случае контакт тоже подвижный, но он закреплен на стержне в центре подковы и чтобы изменить сопротивление, надо повернуть стержень.
Пленочный регулируемый резистор
Регулировочное переменное сопротивление может быть и проволочным, и пленочным, а подстроечные, в основном, делают пленочными. Есть у них внешнее отличие: нет стержня с ручкой, а есть плоский диск с отверстием под отвертку. Сопротивления этого типа используются только для наладки параметров при пуске или техническом обслуживании аппаратуры.
Переменные резисторы SMD
Кроме способа производства есть еще две формы выпуска: для обычного навесного монтажа и SMD-элементы для поверхностного монтажа. SMD резисторы отличаются миниатюрными размерами, выполнены по пленочной технологии.
Схематическое обозначение и цоколевка
В отличие от постоянных резисторов, у регулируемых не два вывода, а как минимум три. Почему как минимум? Потому что есть модели с дополнительными выводами — их может быть несколько. На электрических схемах переменные и подстроечные резисторы обозначаются прямоугольниками как постоянные, но имеют дополнительный вывод, который схематически представлен как ломанная линия, упирающаяся в середину изображения. Чтобы можно было отличить переменный от подстроечного, у переменного на конце третьего ввода рисуют стрелку, подстроечный изображается более длинной перпендикулярной линией без стрелки.
Обозначение на схемах переменных и подстроечных резисторов
Если говорить о расположении выводов, то средний вывод подключен к ползунку, крайние — к началу и концу резистивного элемента.
Цоколевка переменного резистора
Виды и особенности применения
Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.
Переменные резисторы бывают разных видов
Характер изменения сопротивления
Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:
- сопротивление изменяется по логарифмическому закону;
- по показательному типу (обратному логарифмическому).
Характер изменения сопротивления в переменных резисторах
В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.
Сдвоенные, тройные, счетверенные
В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:
- С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
- С раздельным изменением параметров. Называются еще соосными, так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.
Сдвоенный регулируемый резистор и его обозначение
Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева). Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа). Буквенное обозначение такое же.
Так выглядят сдвоенные и тройные переменные сопротивления
Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного — R15.1 и R15.2.
Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.
Дискретный переменный резистор
Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.
Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме
Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.
С выключателем
Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.
Переменный резистор с выключателем в одном корпусе: внешний вид и обозначение на схемах
На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.
Способы подключения: реостат и потенциометр
Любое регулируемое сопротивление может подключаться как реостат или потенциометр. Реостат изменяет силу тока в цепи, для этого подключается подвижный контакт и один из крайних выводов.
Переменный резистор может использоваться как реостат или потенциометр
Потенциометр изменяет напряжение, при подключении задействуют все контакты, получая таким образом делитель напряжения.
Основные параметры
Выбирать переменный резистор необходимо не только по стандартным параметрам — сопротивлению, рассеиваемой мощности и допустимой погрешности. Как вы уже, наверное, поняли, придется еще и другие принять во внимание:
- Диапазон изменения сопротивлений. Стоит обычно две цифры — минимальная и максимальная.
- Рабочая температура.
- Тепловое сопротивление. Показывает насколько увеличивается сопротивление при нагреве.
- Эффективный угол поворота регулятора.
Параметры мощных переменных резисторов
Конечно, основные параметр важны и именно они являются определяющими. Но стоит обращать внимание и на температурный режим. Если оборудование будет работать в помещении, важно, чтобы резистор не перегревался. Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры.
Как проверить переменный резистор при помощи тестера
Проверка переменных резисторов не слишком отличается от тестирования обычных. Нужен будет мультиметр с функцией омметра. Положение щупов стандартное, диапазон измерений выбираем в зависимости от измеряемого параметра. Если меряем минимальное сопротивление, имеет смысл поставить самый малый диапазон. Для измерения максимального сопротивления, подбираем в зависимости от заявленной характеристики. При измерениях положение щупов произвольное, так как полярность подаваемого тестового напряжения неважна.
Как проверить переменное сопротивление тестером
Провести надо будет несколько несложных замеров:
- Максимальное сопротивление измеряется между крайними выводами.
- Чтобы измерить минимальное сопротивление, бегунок переводят в крайнее левое положение. Измерения проводят между крайним левым и средним (первым и вторым выводами). Полученные измерения сравнивают с заявленным диапазоном. Обычно бывают отклонения в ту или другую сторону. Это не страшно, если величина отклонений находится в рамках допуска (зависит от точности).
- Главная проблема переменных резисторов — ухудшение контакта между щеткой и токопроводящим элементом. Подключаем мультиметр в режиме омметра к одному из крайних выводов и центральному, затем медленно вращаем ось резистора и наблюдаем за показаниями мультиметра. Если резистор исправен, но показания должны изменяться плавно. Проверку рекомендуется повторить переключив мультиметр ко второму крайнему выводу резистора (см. видео ниже).
elektroznatok.ru
что нужно знать о переменных резисторах / Habr
Регулировка громкости звуковой системы, фиксация положения пальца на сенсорном экране и определение появления в автомобиле человека – вот всего лишь несколько примеров использования переменных резисторов в повседневной жизни. Возможность изменять сопротивление – это возможность взаимодействовать, поэтому переменные резисторы можно найти во множестве вещей. (Всё, что необходимо знать о постоянных резисторах, описано в предыдущей статье).
Принципы одинаковы, но способов разделения напряжения существует довольно много. Рассмотрим, что лежит в основе верньеров, реостатов, мембранных потенциометров, резистивных сенсорных экранов, а также датчиков изгиба и растяжения.
Потенциометры, по сути – это делители напряжения. Это метод разделения заданного напряжения на меньшие значения. Согласно схеме, у потенциометра (серый) есть три точки соединения. Средняя – переменная (обозначена стрелкой), и она контактирует с материалом резистора внутри где-то в одной из точек протяжённого резистора.
Напряжение между регулируемой точкой и одной из оставшихся (концов резистора) определяется сопротивлением между ними. Если соединены только две точки, тогда у нас получится переменный резистор, или реостат.
На фото – потенциометр с цилиндрической поворотной ручкой. Круглая пластиковая ручка громкости на вашей звуковой системе прячет один из таких потенциометров. Обратите внимание на три контакта, из которых средний соединён с переменной точкой. На фото изображён новый потенциометр. А вот статья о том, как я использовал такое устройство на усилителе, сделанном из банки из-под арахисового масла.
У потенциометров может быть линейный или логарифмический диапазон сопротивления. Линейный означает, что при повороте ручки сопротивление меняется линейно. Если повернуть её на четверть, сопротивление изменится на четверть.
Но если так будет с ручкой громкости, нашим ушам покажется, что громкость растёт слишком быстро; так происходит из-за особенностей восприятия звуков мозгом. Поэтому для ручки громкости лучше использовать потенциометр, чьё сопротивление меняется логарифмически. На графике показано, как меняется громкость при повороте ручки, как для линейного, так и для логарифмического потенциометра. Некоторые потенциометры обеспечивают лишь псевдо-логарифмический рост, и они дешевле тех, что дают настоящий логарифм. Они состоят из двух линейных частей, встречающихся на 50% поворота. Их работа также отражена на графике.
Логарифмическое поведение достигается изменением формы резистивного элемента – его ширина меняется по всей длине. Поэтому потенциометры часто делят на линейно сужающиеся и логарифмически сужающиеся.
Ещё одна разновидность потенциометра – подстроечное сопротивление, или триммер. Они меньше размером, и используются на электронных платах. Подстраиваются одни обычно один раз, или очень редко – только для калибровки схемы.
Триммеры
Эквалайзер
Не все потенциометры работают с вращением. Они могут быть сделаны и в форме ползунов, как на фото с эквалайзером. Такие ползуны подвержены попаданию грязи, нарушающей их работу – именно такая проблема появилась у клавиатуры на фото (это моя клавиатура, и её ползуны действительно трудно передвигать).
Как я уже упомянул, при подсоединении только двух контактов потенциометр часто называют реостатом. Реостаты обычно используются для больших токов, и, конечно же, не только для регулировки громкости.
Чтобы работать с большими токами, они обычно делаются при помощи провода, намотанного на изолированный сердечник, по которому ходит скользящий контакт. Вспомним символ потенциометра, у которого использовано три контакта. Поскольку здесь мы подключаем два контакта, мы используем другой символ; сопротивление со стрелочкой (не подсоединённой) поперёк. На изображении ниже вы можете видеть два варианта этого символа – по стандартам IEEE и IEC.
Мембранный потенциометр состоит из гибкой диэлектрической, часто прозрачной мембраны с присоединённой снизу полоской сопротивления.
Ниже её находится основание, на поверхности которого нанесена токопроводящая дорожка. Когда палец, или другой объект прикасается к мембране, полоска устанавливает контакт с дорожкой. В результате на контактах полоски появляется напряжение. Оно зависит от того, в каком месте полоска соприкоснулась с дорожкой. Схема тут та же, что и самая первая схема на странице для потенциометра.
Сопротивление мембранного потенциометра SoftPot с сайта Sparkfun меняется линейно от 100 Ом до 10 кОм с номинальной мощностью в 1 Вт.
В случае, когда контакт не постоянен (например, он возникает только при нажатии пальцем), в схеме необходим подтягивающий резистор (к примеру, 100 кОм). Но у некоторых мембранных потенциометров есть магнит или скользящий контакт, всегда давящий на мембрану и поддерживающий постоянный контакт.
Резистивный сенсорный экран похож на мембранный потенциометр, только резистивный материал есть на обоих его слоях, причём материал прозрачный. Передняя мембрана гибкая и также прозрачная, так что палец или стилус может надавить на неё и создать контакт. Технология использовалась в некоторых дешёвых карманных компьютерах или детских игрушках. Она всё ещё применяется, но революция смартфонов произошла благодаря ёмкостным экранам, не требующим гибкой мембраны.
Для 4-проводного резистивного сенсорного экрана напряжение подаётся на верхний слой, а результат считывается с нижнего, и таким образом считывается координата X. Затем всё происходит наоборот и получается координата Y. Всё это происходит за миллисекунды, и опрос экрана проводится непрерывно.
Все подсчёты ведутся вспомогательным контроллером. Резистивные экраны не такие отзывчивые, как ёмкостные, и для высокой точности обычно требуется стилус. Используются в очень дешёвых смартфонах.
Датчики давления состоят из токопроводящего полимера, в котором есть проводящие и непроводящие частицы. Он расположен между двумя проводниками, переплетёнными, но не соединёнными. Прижимание полимера к проводникам создаёт контакт. Увеличение силы или площади нажатия увеличивает проводимость и уменьшает сопротивление. Без нажатия сопротивление конструкции может быть более 1 МОм, а точность обычно составляет около 10%. Этого достаточно для использования в музыкальных инструментах, протезах, датчиках наличия человека в машине и портативной электроники.
Гибкий датчик – это резистивный материал, например, углерод, нанесённый на гибкую мембрану. При изгибании датчика материал растягивается и сопротивление увеличивается пропорционально радиусу изгиба. Судя по одной из спецификаций, сопротивление плоского датчика в 10 кОм может удваиваться при сгибании его на 180 градусов, когда оба конца соединяются. Распространённый пример – пальцы в игровых перчатках, такие, как в контроллере Nintendo Power Glove (в одном из проектов его хакнули для управления квадрокоптером). Сгибание пальцев приводит к изменению сопротивления, показывающему степень сгиба.
Датчик растяжения работает по тому же принципу, только его сопротивление увеличивается при растяжении. Резиновый шнур с углеродом выглядит, как шнур для банджи. Судя по одному примеру с Adafruit, 6-дюймовый шнурок сопротивлением 2,1 кОм при растяжении до 10″ меняет сопротивление до 3,5 кОм. Ещё один пример – проводящая нить из стальных волокон, смешанных с полиэстером, а ещё бывают датчики в виде резинок или ремней.
habr.com
Переменный резистор | Электроника для всех
Вроде бы простая деталька, чего тут может быть сложного? Ан нет! Есть в использовании этой штуки пара хитростей. Конструктивно переменный резистор устроен также как и нарисован на схеме — полоска из материала с сопротивлением, к краям припаяны контакты, но есть еще подвижный третий вывод, который может принимать любое положение на этой полоске, деля сопротивление на части. Может служить как перестариваемым делителем напряжения (потенциометром) так и переменным резистором — если нужно просто менять сопротивление.Хитрость конструктивная:
Допустим, нам надо сделать переменное сопротивление. Выводов нам надо два, а у девайса их три. Вроде бы напрашивается очевидная вещь — не использовать один крайний вывод, а пользоваться только средним и вторым крайним. Плохая идея! Почему? Да просто в момент движения по полоске подвижный контакт может подпрыгивать, подрагивать и всячески терять контакт с поверхностью. При этом сопротивление нашего переменного резистора становится под бесконечность, вызывая помехи при настройке, искрение и выгорание графитовой дорожки резистора, вывод настраимого девайса из допустимого режима настройки, что может быть фатально.
Решение? Соединить крайний вывод с средним. В этом случае, худшее что ждет девайс — кратковременное появление максимального сопротивления, но не обрыв.
Борьба с предельными значениями.
Если переменным резистором регулируется ток, например питание светодиода, то при выведении в крайнее положение мы можем вывести сопротивление в ноль, а это по сути дела отстутствие резистора — светодиод обуглится и сгорит. Так что нужно вводить дополнительный резистор, задающий минимально допустимое сопротивление. Причем тут есть два решения — очевидное и красивое 🙂 Очевидное понятно в своей простоте, а красивое замечательно тем, что у нас не меняется максимально возможное сопротивление, при невозможности вывести движок на ноль. При крайне верхнем положении движка сопротивление будет равно (R1*R2)/(R1+R2) — минимальное сопротивление. А в крайне нижнем будет равно R1 — тому которое мы и рассчитали, и не надо делать поправку на добавочный резистор. Красиво же! 🙂
Если надо воткнуть ограничение по обеим сторонам, то просто вставляем по постоянному резистору сверху и снизу. Просто и эффективно. Заодно можно и получить увеличение точности, по принципу приведенному ниже.
Повышение точности.
Порой бывает нужно регулировать сопротивление на много кОм, но регулировать совсем чуть чуть — на доли процента. Чтобы не ловить отверткой эти микроградусы поворта движка на большом резисторе, то ставят два переменника. Один на большое сопротивление, а второй на маленькое, равное величине предполагаемой регулировки. В итоге мы имеем две крутилки — одна «Грубо» вторая «Точно» Большой выставляем примерное значение, а потом мелкой добиваем его до кондиции.
easyelectronics.ru
принцип действия. Как подключить переменный резистор? :: SYL.ru
Большое количество людей обращаются в радиомагазины, чтобы сделать что-то своими руками. Главная задача любителей собирать радиоприемники и схемы – это создавать полезные предметы, которые будут приносить пользу не только себе, но и окружающим. Переменный резистор помогает выполнить ремонт или создать прибор, который работает от электрической сети.
Основные свойства переменных резисторов
Когда человек имеет четкое представление об условных элементах графического отображения на схемах, тогда у него возникает проблема переноса чертежа в реальность. Требуется найти или приобрести отдельные компоненты уже готовой схемы. Сегодня есть большое количество магазинов, которые продают необходимые детали. Найти элементы можно и в старой поломанной радиоаппаратуре.
Переменный резистор должен присутствовать в любой схеме. Его находят в любых электронных устройствах. Эта конструкция представляет собой цилиндр, который включает в себя диаметральные противоположные выводы. Резистор создает ограничение поступления тока в цепи. В случае необходимости он будет выполнять сопротивление, которое можно измерить в омах. Переменный резистор обозначается на схеме в виде прямоугольника вместе с двумя черточками. Они расположены на противоположных сторонах внутри прямоугольника. Таким образом, человек обозначает на своей схеме мощность.
Аппаратура, которая имеется практически в каждом доме, включает в себя резисторы с определенным номиналом. Они располагаются по ряду Е24 и условно обозначают диапазон от единицы до десяти.
Разновидности резисторов
Сегодня существует большое количество резисторов, которые встречаются в современных бытовых электроприборах. Можно выделить следующие виды:
- Резистор металлический лакированный теплостойкий. Его можно встретить в ламповых приборах, которые имеют мощность не меньше чем 0,5 ватта. В советской аппаратуре можно отыскать такие резисторы, которые выпускали в начале 80-х годов. Они имеют разную мощность, которая напрямую зависит от размеров и габаритов радиоаппаратуры. Когда на схемах нет условного обозначения мощности, тогда разрешается использовать переменный резистор в 0,125 ватта.
- Водостойкие резисторы. В большинстве случаев их находят в ламповых электроприборах, которые производились в 1960 году. В черно-белом телевизоре и радиолах обязательно встречаются эти элементы. Их маркировка очень похожа на обозначение металлических резисторов. В зависимости от номинальной мощности они могут иметь разные размеры и габариты.
Сегодня широко используется общепринятая маркировка резисторов, которые разделены на разные цвета. Таким образом, можно быстро и легко определить номинал без использования пайки схемы. Благодаря цветовой маркировке можно значительно ускорить поиск необходимого резистора. Сейчас производством таких элементов для микросхем занимается большое количество зарубежных и отечественных фирм.
Основные характеристики и параметры переменного резистора
Можно выделить несколько главных параметров:
- Номинальное сопротивление.
- Предельные показатели рассеивания мощности.
- Температурные коэффициенты сопротивления.
- Допустимые значения отклонения сопротивления. Его вычисляют от номинальных значений. Когда изготавливаются такие резисторы, производители используют технологический разброс.
- Предельные показатели рабочего напряжения.
- Избыточный шум.
Во время проектирования представленных устройств используются конкретные характеристики. Эти параметры относятся к приборам, которые работают на высоких частотах:
- Паразитные емкости.
- Паразитная индуктивность.
Общепринятая классификация резисторов
Проволочный переменный резистор считается основным и главным элементом в любой электронной аппаратуре. Его применяют в качестве дискретного компонента или составной части к интегральной микросхеме. Он классифицируется по основным параметрам, таким как способ защиты, монтаж, характер изменения сопротивления или технология производства.
Классификация по общему использованию:
- Общего предназначения.
- Специального назначения. Они бывают высокоомные, высоковольтные, высокочастотные или прецизионные.
В зависимости от характера изменения сопротивления можно выделить следующие резисторы:
- Постоянные.
- Переменные, с возможностью регулировки.
- Подстроенные переменные.
Если брать во внимание способ защиты резисторов, то можно выделить следующие конструкции:
- С изоляцией.
- Без изоляции.
- Вакуумные.
- Герметизированные.
Подключение переменного резистора
Большое количество людей не знают, как подключить переменный резистор. Эти элементы зачастую имеют две схемы подключения. Сделать эту работу сможет человек, который хоть немного разбирается в электронике и имел дело с пайкой микросхем.
- Первый вариант подключения заключается в том, что верхний вывод необходимо подсоединить к основному источнику питания. Нижний припаивается к общему проводу. Специалисты называют его «земля». Стоит отметить, что средние выводы соединяются исключительно с управляющими элементами схемы. Это может быть база или главный затвор транзистора. В таком случае эти конструкции будут играть роль потенциометра.
- Существует и второй способ, который поможет узнать, как подключить переменный резистор. Верхние выводы необходимо подсоединять к основному источнику питания. Нижние концы конструкции припаиваются к проводу общего назначения, а средние соединяются с нижними или верхними выводами. Именно они способны подавать на управляющие элементы схемы необходимую мощность питания. Этот способ подключения заключается в том, что переменные резисторы будут играть немаловажную роль и регулировать поступающий ток.
Технология изготовления переменных резисторов
Существует классификация, которая зависит от технологии изготовления резисторов. Во время производственного процесса используются разные этапы и схемы. Сегодня можно выделить следующие конструкции:
- Проволочный переменный резистор. Подключение производится по простой технологии, которую сможет освоить даже начинающий специалист. Его наматывают из проволоки, где есть высокие показатели удельного сопротивления. При этом используется каркас. Эти конструкции имеют большую паразитную индуктивность. Чтобы значительно снизить этот показатель, нужно применять бифилярную намотку. Проволочные резисторы в некоторых случаях могут изготавливаться из прочного микропровода.
- Металлопленочные резисторы. Их еще принято называть композитными. В них имеется резистивный элемент, который представлен в виде тонкой пленки. Ее получают из металлических сплавов или композитных материалов. Такие конструкции обладают высокими показателями удельного сопротивления и низким коэффициентом термического сопротивления. Проволоку наносят на цилиндрические керамические сердечники. Сегодня именно этот тип элементов пользуется особенным спросом, поэтому люди чаще всего спрашивают композитный переменный резистор. Подключение выполняется любым из вышеописанных способов.
Особенности переменных резисторов в 10 кОм
Сегодня на радио рынках можно встретить большое количество элементов для составления схемы. Наиболее востребованным является переменный резистор 10 кОм. Он бывает переменным, проволочным или регулировочным. Основная его отличительная особенность – одинарная однооборотность. Этот тип резисторов предназначен для работы в электрической цепи, где есть постоянный или переменный ток.
Номинальные показатели мощности составляют 50 вольт, а сопротивление — 15 кОм. Эти элементы производились в середине восьмидесятых годов, поэтому сегодня их можно найти не только в специализированных магазинах, но также и в старых схемах радиоприемников. Переменный резистор 10 кОм имеет несколько функциональных и возможных аналогов.
Шум переменного резистора
Даже новые и надежные резисторы при высоком температурном режиме, который значительно выше абсолютного нуля, могут стать основным источником появления шума. Резистор переменный сдвоенный применяется в электрической цепи в микросхеме. О появлении шума стало известно из фундаментальной флуктуационно-диссипационной теоремы. Она известна под общепринятым названием «теорема Найквиста».
Если в схеме есть резистор переменный СП с большими показателями сопротивления, то человек будет наблюдать эффективное напряжение шума. Оно будет иметь прямую пропорциональность к корням из температурного режима.
www.syl.ru
Резисторы переменные, постоянные вся истина!
Друзья, всем привет! На дворе зима а календарь говорит мне, что будни перетекают в приятные праздничные выходные, так что самое время для новой статьи. Для тех кто меня не знает, скажу, что меня зовут Владимир Васильев и я веду вот этот самый радиолюбительский блог, так что добро пожаловать!
В прошлой статье мы разбирались с понятием электрического тока и напряжения. В ней буквально на пальцах я постарался объяснить что представляет собой электричество. В помощь применял некие «сантехнические аналогии».
Боле того, я наметил для себя написать ряд обучающих статей для совсем начинающих радиолюбителей- электронщиков, так что дальше будет больше — [urlspan]не пропустите.[/urlspan]
Содержание статьи
Сегодняшняя статья будет не исключением, сегодня я постараюсь как можно подробнее осветить тему резисторов. Резисторы хоть и являются, наверно самыми простыми радиокомпонентами, но у начинающих могут вызвать массу вопросов. А отсутствие ответов на них может привести к полному бардаку в голове и привести к отсутствию мотивации и желанию развиваться.
Что такое сопротивление?
Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.
Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.
Чтобы ответить на этот вопрос, давайте вернемся снова к нашей сантехнической аналогии. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.
Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.
В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.
Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока измеряемую в амперах. Сопротивление которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов измеряемое в омах.
Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.
Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить сравнив с медью у которой удельное сопротивление 0,0175Ом*мм². Неплохо да?
При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.
Как выглядит резистор?
В природе встречаются абсолютно различные резисторы. Есть резисторы с постоянным сопротивление, есть резисторы с переменным сопротивлением. И каждый вид резисторов находит свое применение. Так давайте остановимся и постараемся уделить вниманием некоторые из них.
Постоянные резисторы.
Само название говорит о том, что они обладают постоянным фиксированным сопротивлением. Каждый такой резистор изготавливается с определенным сопротивлением, определенной рассеиваемой мощностью.
Рассеиваемая мощность — это еще одна характеристика резисторов, так же как и сопротивление. Мощность рассеяний говорит о том, какую мощность может рассеять резистор в виде тепла (вы наверное замечали, что резистор во время работы может значительно нагреваться).
Естественно, что на заводе не могут изготавливать резисторы абсолютно любые. Поэтому постоянные резисторы имеют определенную точность указываемую в процентах. Эта величина показывает в каких пределах будет гулять результирующее сопротивление.И естественно, чем точнее резистор, тем дороже он будет. Так зачем переплачивать?
Также сама величина сопротивления не может быть любой. Обычно сопротивление постоянных резисторов соответствует определенному номинальному ряду сопротивлений. Эти сопротивления обычно выбираются из рядов типо Е3, Е6, Е12,Е24
Как видите резисторы из ряда Е24 имеют более богатый набор сопротивлений. Но это еще не предел так как существуют номинальные ряды E48, E96, E192.
На электрических схемах постоянные резисторы обозначаются эдаким прямоугольником с выводами. На самом условном графическом обозначении может надписываться мощность рассеяния.
Переменные резисторы
Вы когда-нибудь обращали внимание на различные «крутилки» в старой аналоговой технике. Например, задумывались ли о том что вы крутите, прибавляя громкость в старом, возможно даже ламповом телевизоре?
Многие регуляторы и различные «крутилки»представляют собой переменные резисторы. Так же как и постоянные резисторы, переменные также имеют различную рассеивающую мощность. Однако их сопротивление может меняться в широких пределах.
Переменные резисторы служат для регулирования напряжения или тока в уже готовом изделии. Как я уже упоминал этим резистором может регулироваться сопротивление в схеме формирования звука. Тогда громкость звука будет меняться пропорционально углу поворота ручки резистора. Так сам корпус находится внутри устройства, а та самая крутилка остается на поверхности.
Более того, бывают еще и сдвоенные , строенные , счетверенные и так далее переменные резисторы. Обычно их применяют, когда нужно параллельное изменение сопротивления сразу в нескольких участках схемы.
Условное графическое изображение резистора на электрических схемах. |
Подстроечные резисторы.
Переменный резистор это очень хорошо, но что если нам нужно изменение или подстройка сопротивления лишь на этапе сборки изделия?
Переменный резистор нам в этом не очень подходит. Переменный резистор обладает меньшей точностью нежели постоянный. Это плата за возможность регулировки, в результате которой сопротивление может гулять в некоторых пределах.
Конечно на этапе налаживания изделия может применяться так называемый подборочный резистор. Это обычный постоянный резистор, только при монтаже он подбирается из кучки резисторов с близкими номиналами.
Подбор резисторов имеет место быть когда требуется регулировка параметров изделия и при этом требуется высокая точность работы (чтобы требуемый параметр как можно меньше плавал). Таким образом нужно чтобы резистор был как можно большей точностью 1% или даже 0,5%.
Так для подстройки параметров схемы чаще всего применяют подстроечные резисторы. Эти резисторы специально придуманы для этих целей. Подстройка осуществляется посредством тоненькой часовой отвертки, причем после достижения требуемой величины сопротивления ползунок резистора часто фиксируют краской или клеем.
Условное графическое изображение подстроечного резистора |
Формулы и свойства
При выборе резистора, помимо его конструктивной особенности, следует обращать внимания на основные его характеристики. А основными его характеристиками, как я уже упоминал, являются сопротивление и мощность рассеяния.
Между этими двумя характеристиками есть взаимосвязь. Что это значит? Вот допустим в схеме у нас стоит резистор с определенной величиной сопротивления. Но по каким-либо причинам мы выясняем, что сопротивление резистора должно быть значительно меньше того, что есть сейчас.
И вот что получается, мы ставим резистор с значительно меньшим сопротивлением и в соответствии с законом Ома мы можем получить небольшое западло.
Так как сопротивление резистора было большим, а напряжение в цепи у нас фиксированное, то вот что получилось. При уменьшении номинала резистора общее сопротивление в цепи упало, следовательно ток в проводах возрос.
Но что если мы поставили резистор с прежней мощностью рассеяния? При возросшем токе , новый резистор может и не выдержать нагрузки и умереть, его душа улетит вместе с клубком дыма из бездыханного тельца резистора 🙂
Выходит, что при номинале резистора 10 Ом, в цепи будет течь ток равный 1 А. Мощность которая будет рассеиваться на резисторе будет равняться
Видите какие грабли могут подстерегать на пути. Поэтому при выборе резистора, обязательно нужно смотреть его допустимую мощность рассеяния.
Последовательное соединение резисторов
А давайте теперь посмотрим как будут меняться свойства цепи при последовательном расположении резисторов. Итак у нас есть источник питания и далее стоят последовательно три резистора с различным сопротивлением.
Попробуем определить какой ток протекает в цепи.
Здесь хочется упомянуть, для тех кто не в теме, что электрический ток в цепи только один. Есть правило Кирхгофа, которое гласит что сумма токов втекающих в узел равно сумме токов вытекающих из узла. А так как в данной схеме у нас последовательное расположение резисторов и никаких узлов и в помине нет , то ясно, что ток будет один.
Для определения тока, нам нужно определить полное сопротивление цепи. Находим сумму всех резисторов показанных на схеме.
Здесь я приведу формулу полного сопротивления при последовательном расположении резисторов. |
Полное сопротивление получилось равным 1101 Ом. Теперь зная что полное напряжение (напряжение источника питания)равно 10 В, а полное сопротивление равно 1101 Ом, тогда ток в цепи равняется I=U/R=10В/1101 Ом=0,009 А =9 мА
Зная ток мы можем определить напряжение, высаживаемое на каждом резисторе. Для этого также воспользуемся законом Ома. И получается напряжение на резисторе R1 будет равно U1=I*R1=0.009А*1000Ом=9В. Ну и тогда для остальных резисторов U2=0.9В, U3=0.09В. Теперь можно и проверить сложив все эти напряжения, ну и получив в результате значенье близкое напряжению питания.
Ах да вот вам и делитель напряжения. Если сделать отвод после каждого резистора то можно убедиться в наличии еще некоторого набора напряжений. Если при этом использовать равные сопротивления то эффект делителя напряжения будет еще более очевиден.
Кликните для увеличения
На изображении видно как меняется напряжение между разными точками -потенциалами.
Так как резисторы сами по себе являются хорошими потребителями тока, то понятно, что при использовании делителя напряжения, стоит выбирать резисторы с минимальными сопротивлениями. Кстати мощность расходуемая на каждом резисторе будет одинаковой.
Для резистора R1 мощность будет равняться P=I*R1=3.33A*3.33В=11,0889Вт. Округляем и получаем 11Вт. И каждый резистор естественно должен быть на это рассчитан. Потребляемая мощность всей цепи будет P=I*U=3.33A*10В=33,3Вт.
Сейчас я вам покажу какая мощность будет для резисторов имеющих разное сопротивление.
Кликните для увеличения
Мощность потребляемая всей цепочкой, изображенной на рисунке, будет равняться P=I*U=0.09A*10В=0,9Вт.
Теперь рассчитаем мощность потребляемую каждым резистором:
Для резистора R1: P=I*U=0.09A*0.9В=0,081Вт;
Для резистора R2: P=I*U=0.09A*0.09В=0,0081Вт;
Для резистора R3: P=I*U=0.09A*9В=0,81Вт.
Из этих наших расчетов становится понятной закономерность:
- Чем больше общее сопротивление цепочки резисторов, тем меньше будет ток в цепи
- Чем больше сопротивление конкретного резистора в цепи, тем большая мощность будет на нем выделяться и тем больше он будет греться.
Поэтому становится понятной необходимость подбирать номиналы резисторов в соответствии с их потребляемой мощностью.
Параллельное соединение резисторов
С последовательным расположение резисторов думаю более менее понятно. Так давайте рассмотрим параллельное соединение резисторов.
Здесь на этом изображении схемы показано различное расположение резисторов. Хотя в заголовке я упомянул о параллельном соединении, думаю наличие последовательно соединенного резистора R1 позволит нам разобраться в некоторых тонкостях.
Итак суть заключается в том что последовательная схема соединения резисторов является делителем напряжения, а вот параллельное соединение представляет собой делитель тока.
Рассмотрим это подробнее.
Ток течет от точки с большим потенциалом к точке с меньшим потенциалом. Естественно, что ток из точки с потенциалом 10В стремится к точке нулевого потенциала — земле. Маршрут тока будет : Точка10В —>>точка А—>>точка В—>>Земля.
На участке пути Точка 10 —Точка А, ток будет максимальным, ну просто потому, что ток бежит по прямой и не разделяется на развилках.
Далее по правилу Кирхгофа, ток будет раздваиваться. Получается ток в цепи резисторов R2 и R4 будет одним а в цепи с резистором R3 другим. Сумма токов этих двух участков будет равняться току на самом первом отрезке (от источника питания до точки А).
Давайте рассчитаем эту схему и узнаем значение тока на каждом участке.
Для начала узнаем сопротивление участка цепи резисторов R2, R4
Значение резистора R3 нам известен и равен 100Ом.
Теперь находим сопротивления участка АВ. Сопротивление цепи резисторов, соединенных параллельно будет вычислено по формуле:
Ага, подставили в формулу наши значения для суммы резисторов R2 и R4 (Сумма равна 30 Ом и подставляется вместо формульной R1) и значение резистора R3 равное 100 Ом (Подставляется вместо формульной R2). Вычисленное значение сопротивления на участке АВ равняется 23 Ом.
Как видите выполнив несложные вычисления наша схема упростилась и свернулась и стала нам уже более знакомой.
Ну и полное сопротивление цепи будет равняться R=R1+R2=23Ом+1Ом=24Ом. Это мы нашли уже по формуле для последовательного соединения. Мы это рассматривали так что на этом останавливаться не будем.
Теперь ток на участке до разветвлений (участок Точка 10В —>>Точка А) мы сможем найти по формуле Ома.
I=U/R=10В/24Ом=0,42A . Получилось 0,42 ампера. Как мы уже обсуждали этот ток будет один на всем пути от точки максимального потенциала, до точки А. На участке А В, значение тока будет равно сумме токов с участков полученных после разделения.
Чтобы определить ток на каждом участке между точками А и В, нам нужно найти напряжение между точками А и В.
Оно как уже известно будет меньше напряжения питания 10В. Его мы найдем по формуле U=I*R=0.42A*23Ом=9,66В.
Как вы могли заметить полный ток в точе А (равный сумме токов параллельных участков) умножается на результирующее сопротивление запараллеленных (сопротивление резистора R1 мы не учитываем) участков цепи.
Теперь мы можем найти ток в цепи резисторов R2, R4. Для этого напряжение между точками А и В разделим на сумму этих двух резисторов. I=U/(R2+R4)=9.66В/ 30Ом=0,322А.
Ток в цепи резистора R3 тоже найти не сложно. I=U/R3=9.66В/100Ом=0,097А.
Как видите при параллельно соединении резисторов ток делится пропорционально значениям сопротивлений. Чем больше сопротивление резистора, тем меньше будет ток на этом участке цепи.
В тоже время напряжение между точками А и В, будет относиться к каждому из параллельных участков (напряжение U=9.66В мы использовали для расчетов и там и там ).
Здесь хочется сказать как напряжение и ток распределяются по схеме.
Как я уже говорил ток до разветвления равен сумме токов после развилки. Впрочем умный мужик Кирхгоф нам это уже рассказывал.
Получается следующее: Ток I на развилке разделится на три I1, I2, I3, а затем снова воссоединится в I как было и в самом начале, получаем I=I1+I2+I3.
Для напряжения или разности потенциалов, что есть одно и тоже будет следующее. Разность потенциалов между точками А и С (далее буду говорить напряжение AC), не равна напряжениям BE, CF,DG. В тоже время напряжения BE, CF,DG , будут равны между собой. Напряжение на участке FH вообще равно нулю, так как напряжению просто не на чем высаживаться (нет резисторов).
Думаю тему параллельного соединения резисторов я раскрыл, но если есть еще какие-то вопросы то пишите в комментариях, чем смогу помогу 🙂
Преобразование звезды в треугольник и обратно
Существуют схемы, в которых резисторы соединены так, что не совсем понятно где есть последовательное соединение а где параллельное. И как же с этим быть?
Для этих ситуаций есть способы упрощения схем и вот одни из них это преобразование треугольника в эквивалентную звезду или наоборот, если это необходимо.
Для преобразования треугольника в звезду считать будем по формулам:
Для того чтобы совершить обратное преобразование нужно воспользоваться несколько другими формулами:
С вашего позволения я не буду приводить конкретные примеры, все что требуется это только подставить в формулы конкретные значения и получить результат.
Этот метод эквивалентного преобразования будет служить хорошим подспорьем в мутных случаях, когда не совсем понятно с какой стороны подступиться к схеме. А тут порой поменяв звезду на треугольник ситуация проясняется и становится более знакомой.
Ну чтож дорогие друзья вот и все, что я хотел вам сегодня рассказать. Мне кажется эта информация будет полезной для вас и принесет свои плоды.
Хочу еще добавить, что многое из того что я здесь выложил очень хорошо расписано в книгах «Искусство схемотехники» и «Занимательная микроэлектроника», так что рекомендую прочитать обзорные статьи и скачать себе эти книжки. А будет еще лучше, если вы их раздобудете где-нибудь в бумажном варианте.
P.S. У меня на днях возникла одна идея о том как можно получить интересный способ заработка на знаниях электроники и вообще радиолюбительском хобби так что обязательно [urlspan]подпишитесь на обновления.[/urlspan]
Кроме того относительно недавно появился еще один прогрессивный способ подписки через форму сервиса Email рассылок, так что люди подписываются и получают некие приятные бонусы, так что добро пожаловать.
А на этом у меня действительно все, я желаю вам успехов во всем , прекрасного настроения и до новых встреч.
С н/п Владимир Васильев.
Конструктор ЗНАТОК 320-Znat «320 схем»
Конструктор ЗНАТОК 320-Znat «320 схем» — это инструмент, который позволит получить знания в области электроники и электротехники а также достичь понимания процессов происходящих в проводниках.
Конструктор представляет собой набор полноценных радиодеталей имеющих спец. конструктив, позволяющий их монтаж без помощи паяльника. Радиокомпоненты монтируются на специальную плату — основание, что позволяет в конечном итоге получить вполне функциональные радиоконструкции.
Используя этот конструктор можно собрать до 320 различных схем, для построения которых есть развернутое и красочное руководство. А если подключить фантазию в этот творческий процесс то можно получить бесчисленное количество различных радиоконструкций и научиться анализировать их работу. Этот опыт я считаю очень важен и для многих он может оказаться бесценным.
Вот несколько примеров того, что Вы можете сделать благодаря этому конструктору:
Летающий пропеллер;
Лампа,включаемая хлопком в ладоши или струей воздуха;
Управляемые звуки звездных войн, пожарной машины или скорой помощи;
Музыкальный вентилятор;
Электрическое световое ружье;
Изучение азбуки Морзе;
Детектор лжи;
Автоматический уличный фонарь;
Мегафон;
Радиостанция;
Электронный метроном;
Радиоприемники, в том числе FM диапазона;
Устройство, напоминающее о наступлении темноты или рассвета;
Сигнализация о том, что ребенок мокрый;
Защитная сигнализация;
Музыкальный дверной замок;
Лампы при параллельном и последовательном соединении;
Резистор как ограничитель тока;
Заряд и разряд конденсатора;
Тестер электропроводимости;
Усилительный эффект транзистора;
Схема Дарлингтона.
popayaem.ru
Электронный переменный резистор — Diodnik
В своих самодельных поделках радиолюбители практически всегда применяют переменные резисторы для регулировки громкости или напряжения ну и естественно, каких либо других параметров. Но прибор с кнопками на лицевой панели смотрится куда более интересно и современно, чем с обыкновенными ручками-крутилками. Применения микроконтроллерного управления не всегда целесообразно в простеньких поделках, а также тяжело для новичка, а вот повторить описанный ниже электронный переменный резистор сможет, наверное, каждый.
Электронный переменный резистор
Схема имеет настолько малые габариты, что ее можно впихнуть в практически любое самодельное устройство. Она полностью выполняет функцию обыкновенного переменного резистора, не содержит дефицитных и специфических компонентов.
Основу ее составляет полевой транзистор КП 501 (или любой другой его аналог).
Нажимая кнопку SB1, мы накапливаем заряд на электролитическом конденсаторе С 1, что позволяет приоткрыть транзистор и повлиять на сопротивление на выходных клеммах схемы. Нажимая кнопку SB2, мы разряжаем конденсатор С 1, что приводит к постепенному закрыванию транзистора. При постоянном зажатии, какой либо из кнопок, изменения сопротивления производиться плавно.
Плавность регулировки такого электронного переменного резистора зависит от емкости конденсатора С 1 и номинала резистора R 1. Максимальное сопротивление, которое способна имитировать схема зависит от подстроечного резистора R 2. Схема начинает работать сразу и дополнительной настройки не требует, кроме как подстройки максимального сопротивления резистором R 2.
После отключения питания схемы, такой электронный переменный резистор не сбрасывает настройки сразу, а сопротивление схемы увеличивается постепенно, что связанно с саморазрядом конденсатора С 1. При использовании нового и качественного конденсатора С 1 настройки схемы могут продержаться около суток.
Наверное, самым востребованным применением этой схемы станет электронный регулятор громкости. Такая электронная регулировка громкости не лишена своих недостатков, но важнейшим фактором для радиолюбителей наверняка станет простота повторения.
Демонстрацию работы этой схемы смотрим ниже, ставим лайк, а также подписываемся на наши странички в соц. сетях!
Прим. В ролике электронный аналог переменного резистора настроен на 10 кОм. Используемый мультиметр Bside ADM01 имеет автоматическое переключение диапазонов и при их переключении не всегда слету определяет текущее сопротивление схемы.
Вконтакте
Одноклассники
comments powered by HyperCommentsdiodnik.com