+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

инструкция, таблицы и формулы для просчитывания сопротивления заземляющего устройства, пример вычисления и онлайн-калькулятор

Защита от статического электричества устанавливается в случаях работы оборудования из материалов, проводящих ток. Расчет контура заземления выполняется с учетом принятых стандартов.

Содержание

Открытьполное содержание

[ Скрыть]

Принципы и правила вычислений согласно ПУЭ

Перед рассчетом параметров заземления электрических проводников, а также их размеров, надо определить тип грунта. Рекомендуется использовать собранную установщиком информацию и постоянные значения, указанные в таблицах. При выполнении подсчетов нужно руководствоваться требованиями ГОСТа и Правилами устройства электроустановок (ПУЭ).

Порядок расчета и исходные данные

Для определения допустимого вертикального или горизонтального заземления следует:

  1. Рассчитать контур.
  2. Подготовить заземляющие электроды и проводники.
  3. Воспользоваться формулами для расчета.

Определение оптимального контура защитного заземления

Для получения оптимального растекания напряжения подбирается форма контура. Устройство представляет собой прямую линию либо геометрическую фигуру.

Менее затратным вариантом при определении необходимого контура заземления будет использование линейной схемы, в соответствии с которой нужно только выкопать одну траншею.

В процессе эксплуатации показатели напряжения и формы растекания могут измениться, потому при расчетах используется поправочный коэффициент. Подходящим вариантом будет применение треугольной формы контура: монтаж электродных элементов выполняется по вершинам геометрической фигуры. Для частного домовладения достаточно будет использовать три электрода.

Алекс Жук подробно рассказал о вычислении параметров заземления, а также количества проводников и электродов.

Электроды и проводники — выбор и расчет

Вертикальные электродные элементы являются основными составляющими, которые учитываются при расчете контура заземления. Длина приспособлений определяется расстоянием между ними. Непосредственно от размера электродов зависит и величина сопротивления. Значение сечения определяется в соответствии с ПУЭ, в связи с этим необходимо создать максимально износостойкую систему.

При выборе нужных размеров нужно иметь ввиду, что чем бо́льшая часть электрода погружается в землю, тем более эффективным получится контур. Для увеличения метража повышается количество самих стержней или берутся элементы с более высокими показателями длины. Здесь потребитель выбирает самостоятельно, что ему сделать проще: установить много электродов в землю или забивать каждый из них максимально глубоко.

Правила выбора и расчета:

  1. Длина электродных элементов выбирается с учетом того, что заземляться они должны не менее, чем на 0,5 м (среднее значение сезонного промерзания грунта). Установка стержня ниже этого показателя обеспечит корректную работу всех электрических приборов независимо от погодных условий.
  2. Расстояние между вертикальными элементами. Показатель определяется конфигурацией контура, а также длиной составляющих.

Трехметровые электроды устанавливать сложнее. Оптимальным считается использование двухметровых элементов с небольшим отклонением в большую либо меньшую сторону.

Канал «Дни Решений» рассказал о теоретических особенностях определения параметров необходимого защитного заземления и нюансах создания контура.

Размеры материала для заземления

Подбор материалов начинается с расчета минимальной длины.

МатериалПрофиль сеченияДиаметр, ммПлощадь поперечного сечения, ммТолщина стенки, мм
Черная стальКруглый
Для заземлителей вертикального типа16
Для горизонтальных устройств10
В форме прямоугольника1004
В виде угла1004
Трубный323,5
Оцинкованная стальКруглый
Для заземлителей вертикального класса12
Для горизонтальных элементов10
Для устройств с прямоугольным профилем753
Трубный252

Формулы расчета

Для вычислений применяются формулы, исходя из характеристик заземлителя. Необходимо будет посчитать величину сопротивлений растекания тока, а также вертикального стержня.

Как определить сопротивление растеканию тока

Пример расчета приведен на изображении. Выбор формул зависит от расположения стержня электрода. Роль играет и вид логарифма.

Универсальная формула расчета сопротивления вертикального стержня

Обозначение символов:

  • Рэкв — параметр эквивалентного сопротивления почвы, измеряющийся в Ом/м;
  • d — диаметр изделия, мм;
  • L — размер непосредственно стержня, измеряется в метрах;
  • Т — значение расстояния от середины изделия до поверхности земли.
Таблицы вспомогательной информации для расчета заземления

Значение удельного сопротивления почвы зависит от степени влажности грунта. Для обеспечения максимальной стабильности заземлителя, а также предотвращения негативного воздействия погодных условий, его нужно установить на глубине 0,7 м.

Показатели для различных видов почвы.

Тип грунтаЗначение удельного сопротивления, Ом
Торф20
Земля, чернозем50
Глинистый грунт60
Супесь150
Песок, если грунтовые воды находятся на расстоянии 5 метров500
Песчаный, когда подземное течение расположено на глубине более 5 м1000

Установку системы заземления необходимо производить так, чтобы стержень полностью проходил верхний слой почвы, а также часть нижнего. При этом надо учитывать сезонный климатический коэффициент.

Величина сопротивления грунта.

Разновидность электродаКлиматическая зона местности
1234
Вертикальный1,8/21,5/1,81,4/1,61,2/1,4
Горизонтальный4,5/73,5/4,52/2,51,5
Климатические признаки зон, в градусах
Среднее значение самой низкой температуры в январеВ диапазоне от -20 до +15От -14 до +10От -10 до 0От 0 до +5
Величина самой высокой точки температуры, измеряется в июлеВ диапазоне от +16 до +1818-2222-2424-26
Расчет вертикальных заземлителей – таблица и формула

Расчет производится по формуле N=(R1*X)/R2. R2 представляет собой нормируемую величину сопротивления растекания тока электрода, который определяется стандартом ПТЭЭП (Правила технической эксплуатации установок потребителя).

Нормы, которых следует придерживаться.

Свойства электрооборудованияВеличина удельного сопротивления почвы, ОмЗначение сопротивления заземляющего электрода, Ом
Искусственное заземляющее устройство, к которому подключаются генераторные и трансформаторные установки
660/380максимум 10015
больше 1000,5*р
380/220не более 10030
больше 1000,3*р
220/127максимум 10060
больше 1000,6*р
Формула расчета горизонтального проводника

Коэффициенты использования заземлителей.

ГоризонтальныеВертикальные
Расположение по контуру
Количество

Сотношение расстояний между электродами и их длиной, м

Число элементовЧисленность стержней и длина, м
40,450,550,6540,690,780,85
50,40,480,6460,620,730,8
80,360,430,6100,550,690,76
100,340,40,56200,470,640,71
200,270,320,45400,410,580,67
300,240,30,41600,390,550,65
500,210,280,371000,360,520,62
700,20,260,35
1000,190,240,33
Размещение в один ряд
КоличествоСоотношение расстояния и длины, мКоличествоПараметры соотношения расстояний между устройствами и их длиной, м
40,770,890,9220,860,910,94
50,740,860,930,780,870,91
80,670,790,8550,70,810,87
100,620,750,82100,590,750,81
200,420,560,68150,540,710,78
300,310,460,58200,490,680,77
500,210,360,49
650,20,340,47

Канал «Не только СТРОЙКА» рассказал о методике ведения расчетов параметров заземления с помощью специальной программы индивидуально для каждого жилого дома.

Пример расчета контура заземления

Для изготовления заземлителя обычно используется металлический уголок длиной 2,5-3 метра и размером 50х50 мм. При установке расстояние между элементами должно соответствовать их длине, или 2,5-3 метра. Показатель сопротивления для глиняного грунта будет 60 Ом*м. Согласно таблице климатических зон, значение сезонности для средней полосы составит около 1,45. Сопротивление будет равно: 60*1,45=87 Ом*м.

Пошаговый алгоритм монтажа заземления:

  1. Выкопать возле дома траншею по контуру глубиной 0,5 м.
  2. Забить в ее дно металлический уголок. Габариты его полки подобрать с учетом условного диаметра электродного элемента, который вычисляется по формуле d=0.95*p=0.995*0.05=87 Ом*м.
  3. Определить глубину залегания средней точки уголка: h=0.5*l+t=0,5*2,5*0,5=1,75 м.
  4. Подставить данное значение в ранее описанную формулу для расчета величины сопротивления одного заземлителя. Полученный параметр в итоге составит 27,58 Ом.

Необходимое число электродов можно определить по формуле N=R1/(Kисп*Rнорм). В результате получится 7. Изначально в качестве Кисп применяется цифра 1. В соответствии с табличными данными, для семи заземлительных устройств значение составит 0,59. Подставив полученную величину в формулу расчета, получаем результат: для дачного участка необходимо использовать 12 электродных элементов.

Соответственно, производится новый перерасчет с учетом этого параметра. Кисп по таблице теперь составит 0,54. Если использовать это значение в формуле, то в результате получится 13 штук. Тогда величина сопротивления электродов будет равна 4 Ома.

Расчет заземляющего устройства в режиме онлайн

Ускорить расчетный процесс помогает применение онлайн-калькулятора.

Алгоритм работы:

  1. Вычислить удельное сопротивление грунта ρ (1), учитывая его неоднородность. Для этого выбирать состав верхнего и нижнего слоя земли. Калькулятор сам подбирает необходимые значения для ρ1 и ρ2.
  2. Указать климатическую зону (коэффициент k1) и ввести остальные параметры. R1 (2) и R2 (3) определяют сопротивление заземлителей — горизонтального и вертикального.
  3. Провести расчет R (4) на основании полученных результатов.
  4. Ознакомиться с итогом.

Рекомендуется проверить, соответствует ли нормам (ПУЭ 1.7.101) сопротивление заземляющих устройств. Если оно превышает допустимое значение, надо изменить исходные параметры. В частности, уменьшить или увеличить количество вертикальных заземлителей.

Видео

Канал «Pro Дом» рассказал об алгоритме проведения расчетов для установки заземлительных электродов в бумажном формате и выборе резисторов.

Расчет заземления | Пример расчета заземляющего устройства

Без грамотно рассчитанного контура заземления (ЗК) надеяться на эффективность работы защитной конструкции было бы большой ошибкой. Только убедившись в том, что для токов стекания подготовлена цепочка с минимальным сопротивлением можно быть уверенным в безопасности людей, работающих на линии. Поэтому так важно сразу же разобраться со всеми тонкостями и особенностями расчета контуров заземления.

Цель расчета защитного заземления

Обустраиваемое на стороне потребителя заземляющее устройство предназначено для защиты не только персонала, обслуживающего электроустановки, но и рядовых пользователей.

Важно! Опасный потенциал может попасть на металлические части оборудования во время работы с ним совершенно случайно (из-за повреждения изоляции проводов, например).

Полноценный расчет заземления гарантирует образование надежного контакта защитного устройства с землей, приводящего к растеканию тока и снижению уровня опасного напряжения.

Таким образом, назначение расчета заземляющих устройств – создание условий, исключающих риск поражения живых организмов высоким потенциалом путем его снижения в точке замыкания. В отсутствие хорошо просчитанного и функционального заземлителя любое прикосновение к корпусу поврежденного оборудования равнозначно прямому контакту с фазной жилой.

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.

Линейная схема контура заземления для частного дома

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.

Схема монтажа одиночного заземляющего электрода

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).
Комплект модульно-штыревого заземления

Обратите внимание: Для надежной защиты от коррозии все резьбовые элементы стержней покрываются графитной пастой, входящей в комплект фирменной поставки.

Защитная смазка сохраняется долгое время и не растекается при нагревании штырей и других элементов такого ЗУ. Входящая в состав антикоррозийная лента устойчива к воздействию агрессивных сред и защищает от разрушения всю конструкцию в целом.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Исходные данные для расчета заземления

Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:

  • Линейные размеры забиваемых в грунт стальных штырей.
  • Расстояние между ними (шаг монтажа).
  • Допустимая глубина погружения.
  • Характеристики почвы в месте обустройства заземления.

Дополнительное замечание: Перед проведением расчета также потребуется знать величину сопротивления грунта Ом на участке проведения монтажных работ.

При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска).

Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

  • полоса – сечение 48 мм2;
  • уголок 4х4 мм;
  • круглый брусок – сечение 10 мм2;
  • стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.

Полезное замечание: Минимальную длину штырей вычисляют с учетом технических требований (необходимостью получения требуемого сопротивления стеканию в землю).

В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Обратите внимание: Порядок выбора сечения проводников определяется в ПУЭ, поскольку этот показатель характеризует устойчивость к коррозии (электроды должны служить 5-10 лет).

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

Схема установки одиночного вертикального заземлителя

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Таблица определения параметров заземлителей

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления
стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:

где – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

Дополнительная информация: При обустройстве системы из линейно расположенных штырей следует помнить о том, что в этом случае их взаимное влияние проявляется особенно сильно.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Пример расчета заземления

В качестве «классического» примера расчета заземления рассмотрим вариант ЗУ с учетом заданных исходных данных, то есть проведем вычисления для одиночного металлического штыря. Сразу оговоримся, что такие простейшие конструкции применяются при организации повторного заземления высоковольтных опор. В рассматриваемой ситуации согласно положениям ПУЭ (смотрите п.1.7.103.) сопротивление растеканию тока не может быть более 15, 30 и 60 Ом для напряжений 660, 380 и 220 Вольт соответственно.

Расчет одиночного заземляющего элемента для опоры ВЛ 380 Вольт

Согласно оговоренной ранее методике сначала по таблице выбирается тип вертикального штыря со следующими характеристиками:

  • Материал – сталь.
  • Форма – округлый стержень диаметром 16 мм.
  • Длина L — 2,5 метра.

Обратите внимание: В качестве грунта в соответствие с таблицей выбирается полутвердая глина с удельным сопротивлением ρ, равным 60 Ом на•метр.

Глубина траншеи берется равной полметра. Затем из той же таблицы находится поправочный коэффициент, вводимый для средней климатической зоны. Его значение при фактической длине стержней до 2,5 метров с учетом промерзания грунта в данной местности составляет ψ=1,45. Показатель нормированного сопротивления для этого типа ЗУ равен 30 Омам. Следующий показатель – удельное сопротивление грунта находится по формуле:

ρ (по факту) = ψ•ρ = 1.45х60 = 87 Ом•метр

Полученные расчетные данные выглядят так:

  1. заглубление одиночного штыря в грунт составляет h = 0,5l + t = 0,5х2,5 + 0,5 = 1,75 метра;
  2. его сопротивление для нашего примера (смотрите формулы выше) составляет не более 30 Ом, что соответствует требования ПУЭ для данного напряжения.

Когда одного заземляющего штыря для опоры ВЛ недостаточно – допускается добавлять еще один или даже несколько прутьев. В этом случае потребуется другая методика, используемая для линейного контура или треугольной конструкции.

Расчет переносного заземления

Перед расчетом переносного заземления (ПЗ) следует учесть, что для этого типа защитных приборов требования к сопротивлению стеканию тока еще более высокие, чем у стационарных ЗУ (фото ниже).

Обратите внимание: Самое главное в этой ситуации – правильно рассчитать сечение заземляющих проводов переносного устройства, определяющих эффективность его действия.

Устройство переносного заземления из четырех заземлителей

При решении этой проблемы, прежде всего, следует научиться различать сети и установки с различными действующими напряжениями. Провода ПЗ (согласно требованиям действующих стандартов) должны выдерживать продолжительный нагрев при замыкании в питающих линиях трехфазного и однофазного напряжения. Для электроустановок с этим показателем до 1000 Вольт выбирается шина сечением не менее 16 кв. мм.

В сетях, где напряжение превышает 1000 Вольт, предельная величина сечения проводов ПЗ не должна быть менее 25 мм2. Точный расчет этого значения производится обычно по следующей формуле:

S = ( Iуст √tф ) / 272

где Iуст – это ток короткого замыкания;

– время его действия в секундах;

272– коэффициент, указывающий на тип металла проводника и отличающийся для разных токов КЗ (для меди, в частности он равен 250, а в расчетах взят с небольшим запасом).

В случаях, когда действующее напряжение не превышает 6-10 кВ – требуемое для надежной защиты сечение провода колеблется в пределах от 120 до 185 мм2. Поскольку комплект переносных заземлений с такими шинами будет очень тяжелым и неудобным в работе – согласно ПУЭ допускается использовать несколько ПЗ с меньшим сечением. При подготовке рабочего места такие заземления включаются в защищаемую цепь параллельно.

В последнем случае в формулу подставляются максимальные значения по времени воздействия тока короткого замыкания, а в трехфазных цепях искомая величина определяется для каждой их фаз. Во втором случае особое внимание уделяется аккуратности обустройства ПЗ, чтобы избежать недопустимого в условиях наложения защитного заземления межфазного замыкания.

Дополнительная информация: При обустройстве переносной конструкции не допускается применять кабель в изоляции, не позволяющей визуально контролировать состояние рабочих жил.

Помимо этого комплект такого заземления обязательно оснащается достаточно «мощными» зажимами, посредством которых элементы переносной конструкции надежно закрепляются на токопроводящих частях. Для их фиксации на заземляющих проводах должны применяться крепления, позволяющие обходиться без переходных элементов. Такая предусмотрительность позволит увеличить площадь контакта и повысить надежность имеющегося соединения. В этом случае конструкция способна выдержать значительные по величине токи и сохранить свою работоспособность в течение длительного времени.

При наложении такого заземления в трехфазных силовых цепях с напряжениями выше 1000 Вольт для получения более надежного контакта допускается использовать сварку. В исключительных случаях согласно ПУЭ разрешено болтовое сочленение, но только при условии предварительной пайки контактной зоны. В заключение отметим, что в рассмотренной ситуации для образования надежного соединения потребуется комплексный подход (ограничиваться только одной пайкой, например, не допускается).

Примеры расчёта заземляющего устройства | энергетик

Привёдем несколько примеров для расчёта заземления:

   Любой предварительный расчёт заземления сводится к определению сопротивления растекания тока заземлителя в соответствие с требованием ПУЭ, как уже отмечалось ранее, а также на количество требуемых материалов и затрат на изготовления заземляющего устройства (бурение, ручная забивка заземлителей, сварочные работы, электромонтажные работы).

  Так же отметим, что любой расчёт начинается с расчёта одиночного заземлителя, одиночный заземлитель применяется в  основном  для повторного заземления ВЛ опор, где требования ПУЭ (п. 1.7.103.) общее сопротивление растеканию заземлителей должно быть  не более 15, 30 и 60 Ом соответственно при тех же напряжениях: 660, 380 и 220 В.
1.
 Пример расчёта одиночного заземлителя для опоры ВЛ 380 В:

      Выбираем арматуру из таблицы 1 для вертикальных заземлителей — круглую сталь ø 16 мм., длиной L — 2,5 м.В качестве грунта примем глину полутвердую (см.  таблицу 5) с удельным сопротивлением ρ — 60 Ом·м. Глубина траншеи равна 0,5 м. Из таблицы 6 возьмем повышающий коэффициент для третей климатической зоны и длине заземлителей до 2,5 м. с коэффициентом промерзания грунта для вертикальных электродов  ψ — 1,45. Нормированное сопротивление заземляющего устройства равно 30 Ом. Фактическое удельное сопротивление почвы вычислим по формуле: ρфакт = ψ·ρ = 1.45 · 60 = 87 Ом·м. Примечание: расчёт одиночного заземлителя проводим без учёта горизонтального сопротивления заземления.

Расчет:

а)  заглубление равно (рис. 2):  h = 0,5l + t = 0,5 · 2,5 + 0,5 = 1,75 м.;

б) сопротивление одного заземлителя вычислим по формуле, (ρэкв =  ρфакт):

прим. автора, где ln — логарифм, смотри  ⇒  формулы    на Рис. 4

  Нормируемое сопротивления для нашего примера должно быть не больше 30 Ом., поэтому принимается равным R1 ≈ 28 Ом., что соответствует ПУЭ для одиночного вертикального заземлителя (электрода)  заземления опоры ВЛ  — U ∼ 380 В.

Если недостаточно одного заземлителя для опоры, то можно добавить второй или третий, в этом случае для двух заземлителей расчёт выполняется как для заземлителей в ряд, для трёх заземлителей (треугольником) по контуру, при этом надо иметь в виду, что расчёт треугольником малоэффективный, из-за взаимного влияния электродов друг к другу. 

2.  Пример расчёта заземления с расположением заземлителей в ряд:

 Воспользуемся данными из примера 1 , где R = 27,58 Ом·м для расчёт вторичного заземления электроустановок (ЭУ), где нормативное сопротивление требуется не более Rн = 10 Ом, на вводе в здания, при напряжении 380 В  и каждого повторного заземлителя не более Rн = 30 (см. ПУЭ п.1.7.103 см.  Заземлители) . 

Расчет:

а) для расчёта заземления с расположением в ряд заземлителей, как уже отмечалось выше, возьмем данные из примера 1, где  R1 = 27,58 Ом·м  одиночного заземлителя и Ψ — 1,45 для третей климатической зоне;

б)   предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находится по формуле 4.3 (см. Расчёт заземления):

n0 = 27,58 / 10 = 3,54 шт, где коэффициент спроса (использования) примем η = 1; далее по таблице 3 выберем число электродов n = 3 в ряд при отношение расстояние между электродами к их длине a = 1хL и коэффициент спроса  η = 0,78, далее уточняем число электродов:

n = 27,58 / (10 · 0,78) = 3,26 шт; где потребуется увеличить число электродов или изменить расстояние к их длине a = 3хL, для экономии материалов примем отношение a = 3хL  и количество вертикальных электродов равным —  n =  3 шт.  с коэффициентом спроса η = 0,91: n = 27,58 / (10 · 0,91) = 3,03 шт; т.к. общее сопротивление заземлителя уменьшиться за счёт горизонтального заземлителя;

в) длину самого горизонтального заземлителя найдем исходя из количества заземлителей  расположенных в ряд, где а = 3· L = 3 · 2 = 6 м;   Lг = 6 · (3 — 1) = 12 м;

г) сопротивление растекания тока для горизонтального заземлителя находим по формуле 5 (см. Расчёт заземления), где в качестве верхнего грунта принято глина полутвердая с удельным сопротивлением 60 Ом·м., до глубины верхнего слоя нашей траншеи t = 0,5 м. см. пример 1; выберем  полосу заземлителя 40 х 4 мм., где коэффициент III климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 2,2  и коэффициент спроса примем η = 1, т. к. расстояние  между электродами более 5 м., что исключает влияние около электродной зоны, по количеству принятых электродов, их длине и отношению расстояния между ними (см. таблицу 3  Расчёт заземления) :

ширина полки для полосы b = 0,04 м.

Rг = 0,366 · (100 · 2,2 / 12 · 1) · lg (2 · 122 /0,04 · 0,5) = 27,90 Ом·м, примем сопротивление горизонтального заземлителя — Rг = 27,9 Ом·м;

где,  lg- десятичный логарифм (смотри   формулы   формулы для расчёта рис. 4), b — 0,04 м. ширина полосы, t — 0,5 м. глубина траншеи.

д) Определим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Rоб =  (27,9 · 27,58) / (27,58 · 1) + (27,9 · 0,91 ·3) = 7,42 Ом·м 

где Rоб общее сопротивление заземлителей; RВ вертикального; RГ — горизонтальногоηВ и ηГ коэффициенты использования вертикального и горизонтального заземлителя, n —  шт количество вертикальных заземлителей.

Rоб = 7,42  Ом·м соответствует норме при напряжении U — 380 В  для ввода в здание, где нормированное  сопротивление не более Rн = 10 Ом (Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В., ПУЭ п.1.7.103.) 

3.  Пример расчёта заземления с расположением заземлителей по контуру:

     В качестве грунта примем сугли́нок — почва с преимущественным содержанием глины и значительным количеством песка с удельным сопротивлением ρ — 100 Ом·м. Вертикальный заземлитель из стальной трубы с наружным диаметром d — 32 мм., толщена стенки  S — 4 мм.,  длиной электрода L — 2,2 м и расстоянием между ними 2,2 м (a = 1хL). Заземлители расположены по контуру. Глубина траншеи равна t = 0,7 м. Из таблицы 6 возьмем повышающий коэффициент для второй климатической зоны и длине заземлителей до 5 м, его сезонное климатическое значение сопротивление составит Ψ — 1,5. Нормированное сопротивление заземляющего устройства равно Rн10 Ом·м. Фактическое удельное сопротивление почвы вычислим по формуле: ρэкв = Ψρ = 1.5 · 100 = 150 Ом·м.

а) вычислим сопротивление растекания тока одного вертикального заземлителя (стержня) по формуле 2 см.  Расчёт заземления:

RО  = 150 / (2π · 2,2) · (ln (2 · 2,2 / 0,032) + 0,5 · ln (4 · 1,8 + 2,2) / (4 · 1,8 — 2,2)) = 10,85 · (ln 137,5 + 0,5 · ln 1,88) = 56,845 Ом·м. , где T = 0,5 · L + t = 0,5 · 2,2 + 0,7 = 1,8 м.  Примем RО = RВ = 56,85 Ом·м.,

б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находим по формуле  (см. Расчёт заземления):

n = 56,85 /10 = 5,685 шт., округляем по таблице 3 до ближайшего значения, где n = 4 шт., далее по таблице 3 выберем число электродов n = 6 шт по контуру при отношение расстояние между электродами к их длине a = 1хL, где коэффициент спроса  η = 0,62 и уточним количество
стержней с коэффициентом использования вертикальных заземлителей:   n = 56,85 /10 · 0,62  = 9,17 шт., т.е требуется увеличить количество электродов до  n = 10 шт., где коэффициент спроса  ηВ = 0,55 ;  

в) находим длину горизонтального заземлителя исходя из количества заземлителей  расположенных по контуру:  LГ = а · n , LГ = 2,2 · 10 = 22 м. , где а = 1 · L = 1 · 2,2 = 2,2 м;

г)  находим сопротивление растекания тока для горизонтального заземлителя  по формуле 5 (см. Расчёт заземления), где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5, коэффициент спроса примем по таблице 3 — ηГ = 0,34, ширина полосы горизонтального заземлителя b — 40 мм, (если из той же трубы d = 32 мм, то тогда ширина b полосы   будет равна — b = 2 · d = 2 · 32 = 64 мм, b = 0,064 м.) и удельное сопротивление грунта — ρ = 100 Ом.м, по формуле 6:

RГ = 0,366 · (100 · 3,5 / 22 · 0,34) · lg (2 · 222 /0,040 · 0,7) = 17,126 · lg 34571,428 = 77,73 Ом·м, примем сопротивление горизонтального заземлителя — RГ = 77,73 Ом·м;

д) Определим полное сопротивление вертикального заземлителя с учетом сопротивления растекания тока горизонтальных заземлителей по формуле 6:

Rоб =  (77,73 · 56,85) / (56,85 · 0,34) + (77,73 · 0,55 ·10) = 9,89 Ом·м , что соответствует заданной норме сопротивления не более Rн = 10 Ом·м.

         Перейти далее:    ⇒           Продолжение примеров расчёта заземления

Данный расчет следует применять как оценочный. После окончания монтажа заземляющего устройства необходимо пригласить специалистов электролаборатории для проведения электроизмерений (для ООО и ИП обязательно).

Вернутся:

на страницу     Заземляющие устройства

на страницу     Заземлители заземляющего устройства 

на страницу     Расчет заземляющего устройства

Перейти в раздел:  Паспорт ЗУ, Акт освидетельствования скрытых работ, Протокол испытания ЗУ

Примечание: данный раздел пока находится в разработке, могут быть опечатки. 

Технический расчёт традиционного заземляющего устройства для КТП 10/0,4 кВ

Мероприятия выполнены в соответствии с ПУЭ 7-е изд. Глава 1.7..
Объектом установки защитного заземления является комплектная трансформаторная подстанция (КТП) напряжением 10/0,4 кВ. В соответствии с данными заказчика, грунт в предполагаемом месте установки заземляющего устройства суглинок. Удельное сопротивление грунта примем равным 100 Ом∙м.

В соответствии с ПУЭ п.1.7.96, 1.7.97 и 1.7.104 для электроустановок напряжением выше 1 кВ в сетях с изолированной нейтралью (35-10 кВ) сопротивление ЗУ не должно превышать 4 Ом.

В соответствии с ПУЭ п. 1.7.101 сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока.

Комплекс мероприятий по обеспечению необходимых требований к заземляющему устройству представлен следующими решениями:

  • установка 30 вертикальных электродов длиной 3 м из угловой стали размером 50х50х5 мм (ГОСТ 8509-93), объединенных горизонтальным контуром из полосы стальной сечением 5х32 мм (ГОСТ 103-2006), проложенным вокруг КТП. Глубина заложения полосы 0,7 м;
  • до стены КТП прокладывается горизонтальный заземлитель длиной 1 м (полоса стальная сечением 5х32 мм).

 

Расположение элементов заземляющего устройства показано на рисунке 1.


Рисунок 1 — Расположение элементов заземляющего устройства

Расчёт сопротивления заземляющего устройства:

Сопротивление горизонтального электрода:

p — удельное сопротивление грунта, Ом·м;
b — ширина полосы горизонтального электрода, м;
h — глубина заложения горизонтальной сетки, м;
Lгор — длина горизонтального электрода, м.

Сопротивление вертикального электрода:

ρ – удельное сопротивление грунта, Ом·м;
L – длина вертикального электрода, м;
d – диаметр вертикального электрода, м;
T– заглубление — расстояние от поверхности земли до заземлителя, м;


t – заглубление верха электрода, м

Полное сопротивление заземляющего устройства:

n – количество комплектов;
kисп – коэффициент использования;

Расчётное сопротивление заземляющего устройства составляет 3,55 Ом.

Перечень необходимых материалов:

Изделие Размер Коли-чество
1. Уголок стальной горячекатаный равнополочный для заземления ГОСТ 8509-93 50x50x5 длина 3 м 30 шт.
2. Полоса стальная горячекатаная для заземления ГОСТ 103-2006 5×32 93 м

Смотрите далее — Приложение № 2. Локальный сметный расчёт 030 (применение модульного заземления ZANDZ из вертикальных стержней из нержавеющей стали диаметром 16 мм и длиной 1,5 м).

Вам требуется выполнить проект по заземлению и молниезащите? Закажите его, обратившись в Технический центр ZANDZ.ru!


Смотрите также:


Смотрите также:

Расчет заземляющих устройств — Онлайн-журнал «Толковый электрик»

Контур заземления необходим для защиты людей от поражения электрическим током. Для молниезащиты создается собственное заземляющее устройство, не связанное с защитным контуром заземления. Для правильной их постройки требуется расчет.

Заземляющее устройство (ЗУ) имеет параметр, называемый сопротивлением растекания или просто – сопротивлением. Оно показывает, насколько хорошим проводником электрического тока является данное ЗУ. Для электроустановок с линейным напряжением 380 В сопротивление растекания ЗУ не должно быть более 30 Ом, на трансформаторных подстанциях – 4 Ом. Для контуров заземления медицинской техники и оборудования видеонаблюдения, серверных комнат, норма устанавливается индивидуально и составляет от 0,5 до 1 Ом.

Задача расчета заземляющего устройства – определение количества и расположения вертикальных и горизонтальных заземлителей, достаточного для получения требуемого сопротивления.

Определение удельного сопротивления грунта

На результаты расчетов ЗУ оказывает существенное влияние характеристика грунта в месте его постройки, называемая удельным сопротивлением (⍴). Для каждого из видов грунта существует расчетное значение, указанное в таблице.

Удельные сопротивления грунтов и воды

На сопротивление грунта оказывают влияние влажность и температура. Зимой при максимальном промерзании и летом в засуху удельное сопротивление достигает максимальных значений. Для учета влияния погодных условий к величине ⍴ вводятся поправки для климатической зоны.

Поправочные коэффициенты удельного сопротивления

Если есть возможность, перед расчетами производят измерение удельного сопротивления.

Виды заземлителей и расчет их сопротивления

Заземлители бывают естественными и искусственными, и для создания заземляющего устройства используются и те, и другие. Рассчитать влияние естественных заземлителей (железобетонных фундаментов, свай) на величину сопротивления растекания сложно, это проще сделать методом измерений на месте. Сопротивление естественных заземлителей длиной более 100 м можно узнать из таблицы.

Сопротивление естественных заземлителей

Если значение ⍴ отличается от 100 Ом∙м, значение R умножается на соотношение ⍴/100.

В качестве искусственных заземлителей используются арматура, трубы, угловая или полосовая сталь. Сопротивление каждого из них рассчитывается по собственной формуле, указанной в таблице.

Значения переменных в формулах:

— удельное сопротивление грунта, определенное с учетом поправочных коэффициентов, Ом∙м
l— длина электрода, м
d— внешний диаметр электрода, м
t— расстояние до середины электрода от поверхности земли, м
b— ширина полосового электрода или ширина полки угловой стали, м

Теперь рассчитывается суммарное сопротивление штырей искусственных заземлителей:

n— число вертикальных электродов, принятое для расчета
ŋв— коэффициент, учитывающий экранирование электродов соседними, определяемый по следующей таблице
Коэффициент использования вертикальных электродов

Далее нужно учесть влияние полосы, соединяющей электроды. Для этого из следующих таблиц выбирается значение коэффициента использования ŋг.

Коэффициенты использования соединительной полосы

Вычисляем сопротивление проводника, соединяющего вертикальные заземлители по формуле:

И полное сопротивление заземляющего устройства.

Если рассчитанное сопротивление контура заземления оказалось недостаточным, увеличиваем количество вертикальных заземлителей или изменяем их вид. Повторяем расчет до получения требуемого значения сопротивления.

Оцените качество статьи:

Расчет заземляющего устройства подстанции 110/35/10 кВ

В соответствии с техническим заданием на проектирование ПС 110/35/10кВ «Радуга» которая находится в АР Крым рабочим проектом предусматривается новое заземляющее устройство подстанции.

Заземляющее устройство выполняется общим для напряжения 110 кВ, 35 кВ, 10 кВ и 0,4 кВ.

Проектируемое заземляющее устройство представляет собой наружный контур заземления ПС 110/35/10кВ «Радуга», который состоит из горизонтальных и вертикальных заземлителей. Горизонтальные заземлители выполняются из стальной полосы сечением 40х4 мм, прокладываемой на глубине 0,5 м от поверхности земли и представляют собой сетку, служащую также для выравнивания потенциала по площадке ОРУ, вокруг здания ОПУ, ЗРУ подстанции.

Прокладка продольных и поперечных горизонтальных заземлителей выполнена в соответствии с ПУЭ раздел 1.7.90.

Для выравнивания потенциалов на входе и на въезде на территорию подстанции проложить — проводники на расстоянии 1 и 2м от заземлителя на глубину 1 и 1,5м соответственно и соединить эти проводники с заземлителем в соответствии с ПУЭ раздел 1.7.94 пункт 1.

В качестве вертикальных заземлителей (электродов) используется угловая сталь 50х50х5 мм2 длиной 5 м. Протяженность горизонтальных заземлителей и количество вертикальных принято исходя из характеристик грунта в месте расположения подстанции.

По данным инженерно-геологических изысканий, выполненных ОКП «Сельэнергопроект», в основании фундаментов будут залегать глины и суглинки тугопластичные с условным расчетным сопротивлением Rн = 3 кг/см2.

К контуру заземления подстанции присоединяются все металлические части оборудования и строительных конструкций.

Все соединения внутреннего и наружного контура заземления, горизонтальных и вертикальных заземлителей между собой, выполняется сваркой внахлест.

Сопротивление заземляющего устройства ПС 110/35/10кВ «Радуга» в любое время года не должно превышать 0,5 Ом см. ПУЭ раздел 1.7.90.

Расчет заземляющего устройства подстанции 110/35/10кВ «Радуга»

Расчет заземляющего устройства ведётся в соответствии с методическими указаниями Вятского государственного технического института. Прокладку горизонтальных и вертикальных заземлителей см. рис.1

Исходные данные:

  1. S=4950 м2 – площадь подстанции;
  2. Р=282 м – периметр подстанции;
  3. Максимальный ток трехфазного КЗ на ОРУ составляет 5кА, время действия защит составляет 3,8 сек.
  4. Lг =2000 м — суммарная длина всех горизонтальных проводников сетки;
  5. nВ = 60 — число вертикальных электродов, размещенных на рассматриваемой подстанции;
  6. lв = 5м — длина вертикального электрода;
  7. а = 6 м – среднее расстояние между горизонтальными проводниками;
  8. Среднее расстояние между вертикальными проводниками 5м.

1. В соответствии с инженерно-геологическими изысканиями определяем по таблице 1 удельное сопротивление верхнего слоя грунта (глина) ρ=40 Ом*м и нижнего слоя грунта (суглинок) ρ= 100 Ом*м.

2. Определяем толщину слоя сезонных изменений hC = h2 = 1,6 м по таблице 2, исходя из климатической зоны IV, так как подстанция находится в АР Крым см. рис.2.

Рис.2 — Карта схематического районирования территории России и стран СНГ по физико-географическим признакам

3. Определяем полную длину вертикальных электродов:

LВ= lВ*nВ = 5*60 = 300 м

4. Определяем сопротивление заземлителя:

4.1 Определяем по какой формуле будем рассчитывать коэффициент А:

где:

  • lв = 5м — длина вертикального электрода;
  • t = 0,5 м – глубина прокладываемых горизонтальных проводников;
  • S=4950 м2 – площадь подстанции;

4.2 Определяем коэффициент А:

5.

Определяем эквивалентное удельное среднее сопротивление земли:

5.1 Определяем по какой формуле будем рассчитывать коэффициент Δ:

5.2 Определяем коэффициент Δ:

где:

  • lв = 5м — длина вертикального электрода;
  • hc = h2 = 1,6 м – толщина слоя сезонных изменений исходя из климатической зоны, см. выражение 2;

6. Определяем сопротивление заземляющего устройства, включая естественные заземлители:

где:
Re = 1,5 Ом – приближенное сопротивление естественных заземлителей.

Как мы видим, сопротивление заземляющего устройства ниже допустимого, но основной является величина допустимого напряжения прикосновения.

По таблице 3 определяем наибольшее допустимое напряжение прикосновения (UПР.ДОП, В), исходя из расчетной длительности воздействия, принимается τ=tРЗ + tОВ = 3,5+0,3 = 3,8 сек.

где:

  • tРЗ – наибольшее время отключения релейной защиты, в моем случае отключение IV-ступени дистанционной защиты ВЛ-110 кВ, составляет 3,5 сек.
  • tОВ – полное время отключения элегазового выключателя линии 110 кВ, составляет 0,3 сек.

В соответствии с таблицей 3 для длительности воздействия τ = 3,8 сек наибольшее допустимое напряжение прикосновения UПР.ДОП = 65 В.

7. Рассчитываем напряжение, приложенное к человеку:

7.1 Определяем параметр М для ρ1/ ρ2 =0,4 по таблице 4, где М = 0,36.

7.2 Определяем коэффициент распределения потенциала по поверхности земли – α:

7.3 Определяем коэффициент β:

где:

  • Rч = 1000 Ом – сопротивление тела человека, принимается в соответствии с ПУЭ;
  • Rc = 1,5* ρв.с. – сопротивление растекания тока от ступней.
  • ρв.с. = ρ1 = 40 Ом*м – сопротивление верхнего слоя земли.

Определив все коэффициенты, рассчитываем напряжение, приложенное к человеку:

Как мы видим расчётное напряжение больше допустимого значения 65 В – условие не выполняется.

Для уменьшения напряжения прикосновения применим подсыпку слоя гравия или щебня толщиной 0,2 м по всей территории ОРУ.

Можно было еще уменьшить расстояние между горизонтальными заземлителями, увеличить количество вертикальных заземлителями, но в данном случае считаю принимать такие меры не целесообразно.

Определяем удельное сопротивление верхнего слоя с учетом подсыпки щебня при этом ρв.с.=5000 Ом*м, тогда:

Подсыпка щебня не влияет на растекание тока с заземляющего устройства, так как глубина заложения заземлителей 0,5 м больше толщины слоя щебня, поэтому соотношение ρ1/ ρ2 и величина М остаются неизменными, тогда напряжение прикосновения.

Для удобства расчета заземляющего устройства, предлагаю Вам скачать архив, в котором содержится:

  1. Типовой проект А10-93 Заземление и зануление электроустановок.
  2. Справочник «Заземляющие устройства электроустановок» Р.Н. Карякин. 2002 г.
  3. Методические указания к дипломному проектированию расчета заземляющих устройств в установках с эффективно-заземленной нейтралью от Вятского государ-ственного технического университета.
  4. План заземляющего устройства проектируемой подстанции 110/35/10кВ «Радуга» в формате dwg.
  5. Пример заземляющего устройства проектируемой подстанции 110/10 кВ в формате dwg.
  6. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г (возможно у кого-то еще нету :))

Представляю Вашему вниманию не большой фото-отчет со строительства заземляющего устройства подстанции, к сожалению, для данной подстанции фотографий со строительства нету, выкладываю с другой подстанции.

Если у Вас возникли вопросы, замечания или предложения по расчету, оставляйте их в комментариях.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Расчет заземляющего устройства контура заземления онлайн. Расчет контура заземления онлайн

Контур заземления в электропроводке загородного дома или квартиры переоценить очень сложно. Первое и самое главное – это безопасность ваша и близких вам людей. А во-вторых – это долговечный срок эксплуатации практически всей электрической бытовой техники вашем доме. Что случится, если как-то раз исчезнет заземление в вашей квартире или доме? Кружащимся статистическим разрядам электричества не будет куда деться, и они просто начнут накапливаться на металлической поверхности каждого из электроприборов, и, в конечном счете, просто разрядятся на вас или близких вам людей.

Именно по этим причинам незаземленные бытовые потребители, например стиральные машинки или накопительные водонагреватели «бьют» током, правда, не сильно, но все же неприятно. Помимо этого кружащиеся статистические разряды так же пагубно влияют на герметичные емкости, которые используются при работе некоторых бытовых приборов, а также на нагревательные элементы из-за чего они намного меньше служат, чем могли бы при нормальных условиях. Поэтому, исходя, с этого мы понимаем, что при без заземления просто не обойтись. Более подробно о том, «как правильно рассчитать и смонтировать контур заземления?» вы сможете узнать в следующей статье.

Как правильно рассчитать и смонтировать контур заземления

Чтобы точно рассчитать контур заземления придется попотеть, и немало потратиться. Дело в том, что для его вычисления существуют формулы, содержащие в себе очень много коэффициентов, которые отображают и свойства грунтов и климатические условия характерны вашей зоне проживания и влажности грунтов. И чтобы получить значения этих коэффициентов необходимо провести исследования и сложные анализы, которые стоят немало, но мы сделаем намного проще. Как? Спросите вы. Дело в том, что любой бытовой агрегат имеет свой определенный диапазон сопротивления контура заземления, при котором он нормально функционирует. Вот об этой золотой средине мы с вами и поговорим.

Монтаж контура заземления

Для начала выкопайте траншею с глубиной канавы не менее чем 80 сантиметров в виде треугольника длиной сторон около 3 метров. Разметить треугольник думаю, сможете, точность вплоть до миллиметра тут не нужна.


Для монтажа контура заземления понадобится уголок 55х55 миллиметров с толщиной металла более 6 миллиметров, его толщина очень важна, поэтому не стоит на этом экономить. В противном случае он прослужит вам считаные годы, поскольку ржавчина и блуждающий ток съедят его за пару лет. Этого уголка понадобится три куска по длине вашего треугольника это около трех метров. Затем их нужно забить в землю в каждой вершине треугольника. Забиваем до тех пор, пока на поверхности дна траншеи не останется 15 сантиметров уголка.

Следующим этапом монтажа контура заземления будет объединение этих трех уголков в одну цепь. Для этого вам понадобится металлическая полоса с толщиной и шириной 6 миллиметров и соответственно 55 миллиметров или прут арматуры диаметром не менее 8 миллиметров. Затем при помощи сварочного аппарата соединяем треугольник, образовывая одну цепь.

Места соединения нужно качественно соединить, проварив шов по всей длине именно шов, а не прихватки. Затем место сварки тщательно подкрасить, не пропустив ни миллиметра, иначе ржавчина и ток разрушат соединение очень быстро.

Практически ваш контур заземления готов осталось только подвести его в квартиру и дополнительно установить , чем и нужно будет теперь заняться.

Также предоставляем вашему вниманию онлайн калькулятор по расчету заземления.


Расчёт заземления

Верхний слой грунта

Песок сильно увлажненный (60) Песок умеренно увлажненный (130) Песок влажный (400) Песок слегка влажный (1500) Песок сухой (4200) Песчаник (1000) Супесок (300) Супесь влажная (150) Суглинок сильно увлажненный (60) Суглинок полутвердый, лессовидный (100) Суглинок промерзший слой (190) Глина (при t > 0°С) (60) Торф при t = 0°С (50) Торф при t > 0°С (40) Солончаковые почвы (при t > 0°С) (25) Щебень сухой (5000) Щебень мокрый (3000) Дресва (при t > 0°С) (5500) Садовая земля (40) Чернозем (50) Речная вода (1000) Гранитное основание (при t > 0°С) (22500)

Климатический коэффициент

Климатическая зона I (Верт. — 1.9; Горизонт. — 5.75) Климатическая зона II (Верт. — 1.7; Горизонт. — 4.0) Климатическая зона III (Верт. — 1.45; Горизонт. — 2.25) Климатическая зона IV (Верт. — 1.3; Горизонт. — 1.75)

Нижний слой грунта

Песок сильно увлажненный (60) Песок умеренно увлажненный (130) Песок влажный (400) Песок слегка влажный (1500) Песок сухой (4200) Песчаник (1000) Супесок (300) Супесь влажная (150) Суглинок сильно увлажненный (60) Суглинок полутвердый, лессовидный (100) Суглинок промерзший слой (190) Глина (при t > 0°С) (60) Торф при t = 0°С (50) Торф при t > 0°С (40) Солончаковые почвы (при t > 0°С) (25) Щебень сухой (5000) Щебень мокрый (3000) Дресва (при t > 0°С) (5500) Садовая земля (40) Чернозем (50) Речная вода (1000) Гранитное основание (при t > 0°С) (22500)

Количество верт. заземлителей

1 вертикальный заземлитель 2 вертикальных заземлителя 3 вертикальных заземлителя 4 вертикальных заземлителя 5 вертикальных заземлителей 6 вертикальных заземлителей 7 вертикальных заземлителей 8 вертикальных заземлителей 9 вертикальных заземлителей 10 вертикальных заземлителей 11 вертикальных заземлителей 12 вертикальный заземлителей 13 вертикальных заземлителей 14 вертикальных заземлителей 15 вертикальных заземлителей 16 вертикальных заземлителей 17 вертикальных заземлителей 18 вертикальных заземлителей 19 вертикальных заземлителей 20 вертикальных заземлителей

Глубина верхнего слоя грунта, H (м)

Длина вертикального заземлителя, L1 (м)

Глубина горизонтального заземлителя, h3 (м)

Длина соединительной полосы, L3 (м)

Диаметр вертикального заземлителя, D (м)

Мы продолжаем рассматривать лучший софт для электриков, и в этой статье хотелось бы остановиться на обзоре программ для расчета заземления. Перед тем, как переходить к либо на подстанции, первым делом необходимо рассчитать сопротивление защитного заземления, а также количество электродов и длину горизонтального заземлителя. Помимо этого пригодятся рассчитанные данные, касающиеся сечения ГЗШ, главного PE-проводника и даже расчета шагового напряжения. Все это можно сделать, используя специальные программы, о которых мы сейчас и поговорим.

«Электрик»

Первый программный продукт, который хотелось бы рассмотреть, называется «Электрик». Мы уже говорили о нем, когда рассматривали лучшие . Так вот и с вычислениями параметров заземляющего контура «Электрик» может запросто справиться. Преимущество данного продукта заключается в том, что он достаточно прост в использовании, русифицирован и к тому же есть возможность бесплатного скачивания. Увидеть интерфейс программы вы можете на скриншотах ниже:



Все, что вам нужно – задать исходные данные, после чего нажать кнопку «Расчет контура». В результате вы получите не только подробную методику вычислений с используемыми формулами, но и чертеж, на котором будет изображен готовый контур заземления. Что касается точности расчетных работ, то тут мы рекомендуем использовать только самые последние версии программы, т.к. в устаревших версиях множество недоработок, которые были устранены со временем. Если вам нужно рассчитать заземляющий контур для частного дома либо более серьезных сооружений, к примеру, котельной либо подстанции, рекомендуем использовать данный продукт.

Расчет заземления в программе Электрик показан на видео:

«Расчет заземляющих устройств»

Название второй программы говорит само за себя. Благодаря ей можно рассчитать не только контур заземления, но и молниезащиты, что также крайне необходимо. Интерфейс программки довольно простой, собственно, как и в рассмотренном выше аналоге. Выглядит форма для заполнения исходных данных следующим образом:

Если вам нужно выполнить простейший расчет заземляющего контура именно сейчас, можете воспользоваться нашим . Точность вычислений конечно же уступает предоставленным в статье программным продуктам, однако все же приблизительные значения вы получите, на которые и стоит ориентироваться.

«Заземление»

Еще один программный продукт, чье название говорит само за себя. Как и в предыдущих двух программках, в этой можно без проблем разобраться, т.к. интерфейс простейший и представлен на русском языке. Последняя версия программы (v3.2) позволяет не только осуществлять расчет ЗУ, но и оценивать возможность использования ЖБ фундаментов промышленных зданий в качестве защитного контура. Помимо этого программа может помочь выбрать сечение ГЗШ, PE-проводника, а также проводников системы уравнивания потенциалов. Еще одна полезная функциональная возможность продукта – расчет напряжения прикосновения и . Интерфейс вы уже встречали немного выше, выглядит он следующим образом:


Дело в том, что создатели этой программки одновременно являются и создателями «Электрик», поэтому вы можете скачать один из предоставленных в ассортименте продуктов.

«ElectriCS Storm»

Более сложной в использовании программой, для работы с которой требуются навыки моделирования, является ElectriCS Storm. Использовать ее для вычислений заземляющего контура дома не целесообразно, т.к. вы скорее всего запутаетесь и рассчитаете все с ошибками. Мы рекомендуем работать с данным софтом профессионалам в области энергетики или же студентам ВУЗов пересекающихся специальностей.

Преимуществом данного программного продукта является то, что можно осуществлять проектирование заземляющего устройства (ЗУ) и тем самым выводить 3D модель готовых защитных контуров. Помимо этого функциональные возможности программы позволяют рассчитывать электромагнитную обстановку и заземление подстанций.



Все чертежи можно сохранять в dwg формате, благодаря чему потом их можно открыть в AutoCAD.

Ну и замыкает наш список лучших программ для расчета заземления программный комплекс энергетика под названием «Акула», благодаря которому можно рассчитывать:

  • заземляющие устройства;
  • молниезащиту;
  • характеристики защитных аппаратов;
  • потери напряжения до 1 кВ;
  • мощность объектов, а также электрокотлов и кондиционеров;
  • сечение проводки;

Интерфейс также интуитивно понятен и представлен на русском языке:


«Акула» доступна для бесплатного скачивания, поэтому найти ее в просторах интернета не составит труда. Напоследок рекомендуем просмотреть очень полезное видео

  • Системы заземления
  • Расчет заземления
  • Тип грунта:*

    Удельное сопротивление грунта (Ом*м):*

    Мерзлое сопротивление грунта (Ом*м):*

    В данном разделе нашего сайта вы сможете провести расчет заземления, используя исходные данные. Калькулятор расчета заземления позволяет определить величину сопротивления сооружаемого контура. Также вы сможете рассчитать количество необходимого вам для работы материала.

    Если углубиться в технические подробности, то можно пояснить, что контуром заземления принято называть вертикальные, горизонтальные заземлители, а также заземляющий проводник. Все заземлители располагаются на строго обозначенной глубине. Горизонтальные части необходимы для того, чтобы вертикальные находились в связи между собой. Весь контур соединен с главной шиной заземления (ГШЗ). Соединение происходит через заземляющий проводник. В общем, каждый отдельный элемент общей системы имеет тесную связь со всем контуром.

    Сегодня в интернете представлено огромное количество методик расчета системы заземления.

    Расчет контура заземления онлайн

    Мы предлагаем вашему вниманию расчет заземления онлайн калькулятор, который, на наш взгляд, отражает наиболее явно общую картину, дает возможность получить точные расчеты в считанные секунды.

    Выбирать тип грунта. Мы предлагаем вам определиться с видом интересующего вас грунта. Это талый или мерзлый вид. Вы ставите курсив в интересующее вас значение.

    11 элементов. Далее вашему вниманию будут представлены 11 элементов, которые и в талом, и в мерзлом грунте идентичны. Единственная разница в числовом значении, которое стоит рядом с каждым типом грунта (Ом). Эти значения расчет контура заземления онлайн калькулятор оставляет неизменными.

    Выбрать интересующий вид. Вы выбираете только один интересующий вас элемент из 11 представленных. И ставите напротив него курсив. Например, вас интересует торф в мерзлом состоянии грунта. Тогда вы ставите напротив этого фиксированного значения «точку».

    Провести расчет. Расчет производится достаточно просто. После введения цифрового значения, вы нажимаете кнопку «Рассчитать». После этого система, используя специальный алгоритм расчета контура заземления, в доли секунд проведет расчет и переведет вас автоматически в следующий раздел.

    Готовая таблица расчётов. Здесь вы получите расчет заземления онлайн калькулятор с отчетом. Количество проведения расчетов на одного пользователя на нашем сайте не ограничено.

    Если у вас остались вопросы, вы всегда можете задать их специалистам нашей компании по контактным номерам телефона, в так же, написав сообщение через форму обратной связи. Мы предоставим вам все необходимые разъяснения, рекомендации по использованию онлайн калькулятора.

    Страница не найдена | MIT

    Перейти к содержанию ↓
    • Образование
    • Исследование
    • Инновации
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
    • Подробнее ↓
      • Прием + помощь
      • Студенческая жизнь
      • Новости
      • Выпускников
      • О MIT
    Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
    Попробуйте поискать что-нибудь еще! Что Вы ищете? Увидеть больше результатов

    Предложения или отзывы?

    Расчет заземляющего устройства контура заземления онлайн.

    Расчет контура заземления онлайн

    Контур заземления в электропроводке загородного дома или квартиры очень сложно переоценить. Первое и самое главное — это безопасность вас и ваших близких. А во-вторых, это долгий срок службы практически всех бытовых электроприборов в вашем доме. Что будет, если в вашей квартире или доме как-то пропадет заземление? Вихревым статистическим разрядам электричества не будет места, и они просто начнут накапливаться на металлической поверхности каждого из электроприборов и, в конечном итоге, просто разрядятся на вас или ваших близких.

    Именно по этим причинам необоснованные бытовые потребители, такие как стиральные машины или накопительные водонагреватели, «шокированы» хоть и не сильно, но все же неприятно. Кроме того, вихревые статистические разряды также отрицательно влияют на герметичные емкости, которые используются в работе некоторых бытовых приборов, а также на нагревательные элементы, поэтому они служат намного меньше, чем в обычных условиях. Поэтому, исходя из этого, мы понимаем, что без заземления обойтись просто невозможно.Еще подробнее про «как правильно рассчитать и смонтировать контур заземления?» вы сможете узнать в следующей статье.

    Как правильно рассчитать и смонтировать контур заземления

    Чтобы точно рассчитать контур заземления, придется попотеть и потратиться. Дело в том, что для его расчета существуют формулы, содержащие множество коэффициентов, отражающих как свойства грунтов, так и климатические условия, характерные для вашего района проживания, и влажность почвы.И чтобы получить значения этих коэффициентов, необходимо провести исследования и комплексные анализы, которые стоят дорого, но мы сделаем это намного проще. Как? Ты спрашиваешь. Дело в том, что у любого бытового прибора есть свой определенный диапазон сопротивления контура заземления, при котором он нормально функционирует. Поговорим об этой золотой середине.

    Монтаж контура заземления

    Для начала выкопайте траншею глубиной не менее 80 сантиметров в виде треугольника со сторонами около 3 метров. Думаю, треугольник можно разметить, точность до миллиметра здесь не нужна.


    Для монтажа контура заземления понадобится уголок 55х55 мм при толщине металла более 6 миллиметров, его толщина очень важна, поэтому на этом экономить не стоит. В противном случае он прослужит вам несколько лет, так как за пару лет ржавчина и блуждающий ток его съедят. Для этого уголка понадобится три части по длине вашего треугольника, что составляет около трех метров. Затем их нужно вбить в землю в каждом углу треугольника.Забиваем до тех пор, пока на поверхности дна траншеи не останется 15 сантиметров уголка.

    Следующим шагом в установке контура заземления будет объединение этих трех углов в одну цепь. Для этого вам понадобится металлическая полоса толщиной и шириной 6 миллиметров и соответственно 55 миллиметров или стержень арматуры диаметром не менее 8 миллиметров. Затем с помощью сварочного аппарата соединяем треугольник, образуя одну цепь.

    Стыки должны быть правильно соединены сваркой шва по всей длине шва, а не прихваток. Затем аккуратно подкрасить место сварки, не упуская ни миллиметра, иначе ржавчина и ток очень быстро разрушат соединение.

    Фактически ваш контур заземления готов, осталось только занести его в квартиру и дополнительно установить, что теперь и нужно будет сделать.

    Также предлагаем вашему вниманию онлайн-калькулятор для расчета заземления.


    Расчет заземления

    Верхний слой почвы

    Сильновлажный песок (60) Умеренно влажный песок (130) Влажный песок (400) Слегка влажный песок (1500) Сухой песок (4200) Песчаник (1000) Суглинок (300) Влажный суглинок (150) Сильно увлажненный суглинок ( 60) Суглинок полутвердый лессовидный (100) Суглинок мерзлый слой (190) Глина (при t> 0 ° С) (60) Торф при t = 0 ° С (50) Торф при t> 0 ° С (40) Засоленные почвы (при t> 0 ° C) (25) Сухой щебень (5000) Щебень мокрый (3000) Дресва (при t> 0 ° C) (5500) Садовая почва (40) Чернозем ( 50) Речная вода (1000) Гранитная основа (при t> 0 ° C) (22500)

    Климатический коэффициент

    Климатическая зона I (V — 1. 9; H — 5,75) Климатическая зона II (V — 1,7; H — 4,0) Климатическая зона III (V — 1,45; H — 2,25) Климатическая зона IV (V — 1,3; Горизонт — 1,75)

    Нижний слой почвы

    Сильновлажный песок (60) Умеренно влажный песок (130) Влажный песок (400) Слабовлажный песок (1500) Сухой песок (4200) Песчаник (1000) Суглинок (300) Влажный супесчаный суглинок (150) Сильно увлажненный суглинок ( 60) Суглинок полутвердый лессовидный (100) Суглинок мерзлый слой (190) Глина (при t> 0 ° С) (60) Торф при t = 0 ° С (50) Торф при t> 0 ° С (40) Засоленные почвы (при t> 0 ° C) (25) Сухой щебень (5000) Щебень мокрый (3000) Дресва (при t> 0 ° C) (5500) Садовая почва (40) Чернозем ( 50) Речная вода (1000) Гранитная основа (при t> 0 ° C) (22500)

    Кол-во верт.заземляющие электроды

    1 вертикальный заземлитель 2 вертикальных заземлителя 3 вертикальных заземлителя 4 вертикальных заземлителя 5 вертикальных заземлителей 6 вертикальных заземлителей 7 вертикальных заземлителей 8 вертикальных заземлителей 9 вертикальных заземлителей 10 вертикальных заземлителей 11 вертикальных заземлителей 12 вертикальных заземлителей выключатели 13 вертикальные заземлители 14 вертикальные заземлители 15 вертикальные заземлители 16 вертикальные заземлители 17 заземлители 18 вертикальные заземлители 19 вертикальные заземлители 20 вертикальные заземлители

    Глубина верхнего слоя почвы, H (м)

    Длина вертикального заземляющего электрода, L1 (м)

    Глубина горизонтального заземляющего электрода, h3 (м)

    Длина соединительной планки, L3 (м)

    Диаметр вертикального заземляющего электрода, D (м)

    Продолжаем рассматривать лучшие программы для электриков, и в этой статье я хотел бы остановиться на обзоре программ для расчета заземления.Перед тем, как перейти на подстанцию ​​или на подстанцию, первым делом необходимо рассчитать сопротивление защитного заземления, а также количество электродов и длину горизонтального заземляющего электрода. Кроме того, пригодятся расчетные данные относительно сечения ГЗШ, основного PE-проводника и даже расчет ступенчатого напряжения. Все это можно сделать с помощью специальных программ, о которых мы сейчас и поговорим.

    «Электрик»

    Первый программный продукт, который хотелось бы рассмотреть, называется «Электро».Об этом мы уже говорили, когда считали лучшие. Так «Электрик» легко справится с расчетами параметров цепи заземления. Преимущество этого продукта в том, что он достаточно прост в использовании, русифицирован, к тому же есть возможность бесплатной загрузки. Интерфейс программы вы можете увидеть на скриншотах ниже:



    Все, что вам нужно, это установить исходные данные, а затем нажать кнопку «Расчет контура». В результате вы получите не только подробную методику расчета с использованными формулами, но и чертеж, показывающий готовый контур заземления.Что касается точности расчетов, то здесь мы рекомендуем использовать только самые свежие версии программы, поскольку в устаревших версиях есть много недочетов, которые со временем были устранены. Если вам необходимо рассчитать контур заземления для частного дома или более серьезных сооружений, например, котельной или подстанции, мы рекомендуем использовать этот продукт.

    Расчет заземления в программе Электрик показан на видео:

    «Расчет заземляющих устройств»

    Название второй программы говорит само за себя.Благодаря ему можно рассчитать не только контур заземления, но и молниезащиту, что тоже крайне необходимо. Интерфейс программы довольно простой, по сути, как в рассмотренном выше аналоге. Форма для заполнения исходных данных выглядит так:

    Если вам необходимо выполнить простейший расчет заземляющего контура прямо сейчас, воспользуйтесь нашим. Точность расчетов, конечно, уступает программным продуктам, приведенным в статье, но вы все равно получите приблизительные значения, на которые стоит ориентироваться.

    «Заземление»

    Еще один программный продукт, название которого говорит само за себя. Как и в двух предыдущих программах, в этой разобраться без проблем. интерфейс прост и представлен на русском языке. Последняя версия программы (v3.2) позволяет не только рассчитывать память, но и оценивать возможность использования железобетонных фундаментов промышленных зданий в качестве схемы защиты. Кроме того, программа может помочь выбрать сечение ГЗШ, PE-проводника, а также проводов системы уравнивания потенциалов.Еще одна полезная функция продукта — расчет напряжения прикосновения и. Вы уже встречали интерфейс чуть выше, он выглядит так:


    Дело в том, что создатели этой программы одновременно являются создателями «Электрика», поэтому вы можете скачать один из продуктов, представленных в ассортименте.

    ElectriCS Storm

    ElectriCS Storm — это более сложная программа, требующая навыков моделирования. Не рекомендуется использовать его для расчета контура заземления дома, потому что вы, скорее всего, запутаетесь и просчитаете все с ошибками.Мы рекомендуем работать с этой программой специалистам в области энергетики или студентам вузов пересекающихся специальностей.

    Преимущество данного программного продукта в том, что можно спроектировать заземляющее устройство (ЗЗ) и тем самым отобразить трехмерную модель готовых схем защиты … Кроме того, функционал программы позволяет рассчитывать электромагнитную обстановку и заземление. подстанций.



    Все чертежи можно сохранить в формате DWG, чтобы затем их можно было открывать в AutoCAD.

    Ну вот и замыкает наш список лучших программ для расчета заземления энергетического программного комплекса «Акула», благодаря которому можно рассчитать:

    • заземляющих устройств;
    • молниезащита;
    • характеристики защитных устройств;
    • потерь напряжения до 1 кВ;
    • вместимость объектов, а также электрокотлов и кондиционеров;
    • участок электропроводки;

    Интерфейс также интуитивно понятен и представлен на русском языке:


    «Акула» доступна для бесплатного скачивания, поэтому найти ее в Интернете не составит труда.Напоследок рекомендуем посмотреть очень полезное видео

  • Системы заземления
  • Расчет заземления
  • Тип почвы: *

    Удельное сопротивление грунта (Ом * м): *

    Сопротивление промерзшему грунту (Ом * м): *

    В этом разделе нашего сайта вы можете рассчитать заземление по исходным данным. Калькулятор заземления позволяет определить значение сопротивления строящейся цепи. Вы также можете рассчитать количество материала, необходимого для работы.

    Если углубиться в технические подробности, то можно пояснить, что контур заземления принято называть вертикальными, заземляющими электродами горизонтально, а также заземляющим проводником. Все заземляющие электроды расположены на строго обозначенной глубине. Горизонтальные части необходимы, чтобы вертикальные соединялись друг с другом. Вся цепь подключена к главной шине заземления (ГШЗ). Подключение осуществляется через заземляющий провод. В общем, каждый отдельный элемент общей системы тесно связан со всей схемой.

    На сегодняшний день в Интернете представлено огромное количество методик расчета системы заземления.

    Расчет контура заземления онлайн

    Предлагаем вашему вниманию онлайн-калькулятор расчета заземления, который, на наш взгляд, наиболее ярко отражает общую картину, дает возможность получить точные расчеты за считанные секунды.

    Выберите тип почвы. Предлагаем вам определиться с интересующим вас типом грунта.Это талый или замороженный вид. Вы ставите курсивом интересующее вас значение.

    11 элементов. Далее вашему вниманию будут представлены 11 элементов, одинаковых в оттепеле и в мерзлом грунте. Единственное различие заключается в числовом значении, которое стоит рядом с каждым типом грунта (ом). Онлайн-калькулятор оставляет эти значения без изменений.

    Выберите интересующий вид. Вы выбираете только один интересующий вас товар из 11 представленных. И поставьте перед ним курсив.Например, вас интересует торф в мерзлом грунте. Затем вы ставите «точку» перед этим фиксированным значением.

    Рассчитать. Расчет довольно простой. После ввода числового значения нажимаете кнопку «Рассчитать». После этого система, используя специальный алгоритм расчета контура заземления, произведет расчет за доли секунды и автоматически переведет вас в следующий раздел.

    Готовая расчетная таблица. Здесь вы получите расчет онлайн-калькулятора заземления с отчетом.Количество расчетов на одного пользователя на нашем сайте не ограничено.

    Если у вас остались вопросы, вы всегда можете задать их специалистам нашей компании по контактным телефонам, а также написав сообщение через форму обратной связи. Мы предоставим вам все необходимые пояснения, рекомендации по использованию онлайн-калькулятора.

    Электротехника


    В статье « Введение в систему заземления » я объяснил следующие моменты:
    1. Введение
    2. Определение сопротивления заземления
    3. Удельное сопротивление грунта

    Сегодня я объясню, как рассчитать сопротивление заземления.

    2.2 Расчет сопротивления заземления




    Следующая формула (источник: IEEE Std.142: 1991) позволяет рассчитать сопротивление заземления.




    Где:

    R = сопротивление в Ом
    ρ = удельное сопротивление в Ом · см
    d = расстояние в см



    S = расстояние между заземляющими стержнями

    Коэффициент пространства для нескольких заземляющих стержней будет следующим:







    2.2.1 Расчет сопротивления заземления для подстанций

    В идеале система заземления должна быть как можно ближе к нулевому сопротивлению. Для большинства передающих и других более крупных подстанций сопротивление заземления должно составлять около 1 Ом или меньше. На небольших распределительных подстанциях обычно приемлемый диапазон от 1 до 5 Ом, в зависимости от местных условий. Оценка общего сопротивления удаленного заземления является одним из первых шагов при определении размера и базовой компоновки системы заземления.

    Минимальное значение сопротивления заземления подстанции в однородном грунте можно оценить по формуле круглой металлической пластины на нулевой глубине после определения удельного сопротивления грунта.

    Используйте следующую формулу для оценки минимального сопротивления, которое можно ожидать при проектировании системы заземления:


    Где:

    Rg = сопротивление заземления в Ом.



    ρ = среднее удельное сопротивление земли в Ом / м.

    A = площадь, занимаемая наземной сеткой в ​​квадратных метрах.

    Π = 3,14

    Пример № 1:



    Каково сопротивление сети системы, если ρ = 250 Ом / м и A = 3500 м2?

    Решение:

    Расчет по приведенной выше формуле дает следующие результаты:

    Итак, Rg = 1,87 Ом

    Затем можно получить верхний предел удельного сопротивления подстанции, добавив второй член к приведенной выше формуле. .Второй термин учитывает тот факт, что сопротивление любой реальной системы заземления, состоящей из ряда проводников, выше, чем у сплошной металлической пластины. Эта разница будет уменьшаться с увеличением длины скрытых проводников, приближаясь к 0 для бесконечного L, когда достигается состояние твердой пластины. (IEEE-80)

    Чтобы оценить верхний предел, используйте формулу:


    Где:

    Rg = сопротивление заземления в Ом.



    ρ = среднее удельное сопротивление земли в Ом / м.Это измерение должно быть нанесено на отпечатки или может использоваться 1000 Ом / м.

    A = площадь, занимаемая наземной сеткой в ​​квадратных метрах.

    L = общая скрытая длина проводников в метрах.

    Π = 3,14


    Используйте приведенную выше формулу, чтобы приблизить сопротивление заземления системы, а не в качестве замены фактические наземные измерения.

    Общая длина заглубления — это комбинация горизонтальных и вертикальных проводников в сети, а также заземляющих стержней.L можно рассчитать как:


    Где:



    LC = общая длина сетевого проводника (м)

    LR = общая длина заземляющих стержней (м)

    Было определено лучшее приближение с учетом глубины сетки


    Где

    h : глубина решетки (м)

    Эти уравнения показывают, что чем больше площадь и чем больше общая длина используемого заземляющего проводника, тем ниже сопротивление сети заземления.

    3- Проверка установки заземляющего проводника

    Ваша проверка энергосистемы начинается с проверки плана расположения станции, показывающего все основное оборудование и конструкции.

    Площадь системы заземления является самым важным геометрическим фактором при определении сопротивлений сети. Большие заземленные области приводят к более низкому сопротивлению сети и, следовательно, более низким напряжениям GPR и сетки.

    Расчет наземной сети основан на трех основных параметрах:


    1. Максимальный предполагаемый ток замыкания на землю, проходящий между системой заземления и телом земли,
    2. Продолжительность протекания этого тока (исходя из продолжительности 1 секунда),
    3. Удельное сопротивление грунта и характер грунта на участке.

    Невозможно использовать номинальный кратковременный ток выключателей или три секунды для первых двух. из вышеуказанных параметров. Даже в областях с низким удельным сопротивлением почвы это будет трудно, если не невозможно, разработать электрод, подходящий для такого долг. Поэтому необходимо определить максимальный ток и его продолжительность потока (1 секунда, заданная конструкцией), которую электрод должен безопасно передавать на Землю или от нее.

    3.1 Рекомендации и требования к проектированию


    • Сплошная петля из проводов окружает периметр, чтобы охватить как можно большую площадь. Эта практика помогает избежать высокой концентрации тока и, следовательно, высоких градиентов как в области сети, так и вблизи выступающих концов кабеля. Увеличение площади также снижает сопротивление сети заземления.
    • Внутри контура проводники проложены параллельными линиями и, где это возможно, вдоль конструкций или рядов оборудования, чтобы обеспечить короткие заземляющие соединения.
    • Типичная электросеть для подстанции может включать в себя неизолированные медные проводники сечением 70 или 120 квадратных миллиметров (мм2) № 4/0 или 2/0 AWG, проложенные на глубине 18 дюймов (0,5 м) ниже уровня земли, минимум, с интервалом от 10 до 20 на расстоянии 3–6 м друг от друга по сетке. При перекрестных соединениях надежно соедините проводники друг с другом термитной сваркой, пайкой или одобренными компрессионными соединителями. Стержни заземления должны быть размещены по углам сетки и не должны находиться на расстоянии менее 6 футов друг от друга.
    • Энергосистема обычно простирается по всей подстанции подстанции и часто за линией ограждения.Некоторые нормы требуют, чтобы заземляющий провод был проложен на расстоянии около 3 футов (1 м) снаружи и параллельно забору. Используйте несколько заземляющих проводов или проводов большего диаметра, где могут возникать высокие концентрации тока, например, соединение нейтрали с землей генераторов, конденсаторных батарей или трансформаторов.
    • Соотношение сторон сетки обычно составляет от 1: 1 до 1: 3, если точный анализ не требует более экстремальных значений. Частые перекрестные соединения имеют относительно небольшой эффект на снижение сопротивления сети, но они полезны для защиты нескольких путей от токов короткого замыкания.
    • Провода сечением 35 мм2 (2 AWG) или больше должны быть многожильными.
    • Некоторые нормы требуют использования луженой проволоки, если удельное сопротивление почвы меньше 70 Ом / м.
    • Избегайте резких изгибов всех заземляющих проводов. (Это относится к наземным соединениям.)

    В следующей статье я объясню Измерение сопротивления заземления . Пожалуйста, продолжайте следить.







    Общие сведения о контурах заземления — Рекомендации по применению


    Контуры заземления могут быть реальной помехой в системах сбора данных HVAC, поскольку их трудно обнаружить.В большинстве случаев они не причиняют вреда, но могут вызвать непредсказуемые проблемы спустя годы после установки!

    Что такое контур заземления?

    Контур заземления образуется, когда существует более одного токопроводящего пути между клеммами «заземления» двух или более единиц оборудования. Проводящая петля образует большую рамочную антенну, которая легко улавливает токи помех. Чем больше петля, тем больше помех; если вы используете стальной каркас здания в качестве земли, петля может быть такой же большой, как и все здание.Сопротивление в проводах заземления превращает токи помех в колебания напряжения в системе заземления. Земля больше не стабильна; поэтому сигналы, которые вы пытаетесь измерить и которые относятся к этой земле, также нестабильны и неточны.

    Наземные символы
    Наземная мифология

    Универсальная концепция, которой преподают в технических школах и инженерных колледжах, заключается в том, что «земля» всегда имеет нулевое напряжение, может бесконечно поглощать электрический ток и мгновенно безвредно рассеивать ток.Однако идеальная почва — это лабораторная абстракция, которой не существует в реальном мире.

    Настоящее заземление — это проводник, поэтому между всеми точками заземления существует определенное сопротивление электрическому току. Это сопротивление может изменяться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Сопротивление всегда может позволить электрическому напряжению существовать на нем. Сильные токи, проходящие через землю, вызовут падение напряжения в заземляющих проводниках, и потребуется время, чтобы рассеяться.

    Департамент сельскохозяйственной инженерии Университета штата Мичиган измерил сопротивление заземления на входах в электрические сети и обнаружил, что на территории здания может изменяться напряжение до 2 вольт. Фактически, Национальный электротехнический кодекс (NEC) позволяет заземлению изменяться на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока (дополнительную информацию об исследовании штата Мичиган и NEC см. В разделе «Ссылки» ниже. код).

    Понимание того, что идеального заземления не существует в реальном мире, является первым шагом к устранению помех контура заземления, когда они возникают.Если вы помните, что каждое заземление в здании имеет разный и произвольный «нулевой» потенциал, то вы можете спроектировать надлежащие системы заземления.

    Если основания такие порочные, зачем вообще заземление?

    Заземление необходимо по двум причинам: безопасность и безопасность.

    Статья 250 NEC устанавливает, что изолированные вторичные обмотки понижающих распределительных трансформаторов должны быть заземлены на входе в здание. Земля представляет собой медный стержень, вбитый как минимум на 8 футов в землю.NEC требует, чтобы стальной каркас, водопроводные трубы и другие крупные металлические предметы были соединены с землей входа в здание. Если изоляция провода выходит из строя или провод непреднамеренно отсоединяется и соприкасается с металлическим предметом, большие токи короткого замыкания протекают от распределительного трансформатора к земле. Эти чрезмерные токи открывают плавкие предохранители и автоматические выключатели, предотвращая нахождение оборудования под более высоким потенциалом, чем ближайшая раковина или строительная конструкция. Если заземление в распределительном щитке по какой-либо причине отключается, то заземление входа питания здания на трансформаторе обеспечивает протекание чрезмерного тока короткого замыкания, размыкая предохранители и автоматические выключатели.Защита здания от огня и находящихся в нем людей от поражения электрическим током является основной функцией системы заземления распределения электроэнергии.

    Вторая проблема безопасности — поддерживать оборудование в пределах нормального рабочего диапазона напряжения. Большинство современных прямых цифровых контроллеров (DDC) будут работать правильно без заземления где-либо. Единственная загвоздка в том, что незаземленное оборудование может накапливать большие статические заряды из-за утечки изоляции. Первый человек, который подходит и касается оборудования, испытывает ужасный шок.Если статический заряд становится достаточно высоким, он разряжается до ближайшего проводника с более низким потенциалом. Мгновенные токи разряда могут достигать нескольких тысяч ампер и разрушать электронные компоненты системы. Заземление системы позволяет зарядам рассеиваться без повреждений.

    Помехи сигналам от контуров заземления

    Контуры заземления позволяют электрическим и магнитным помехам создавать источники напряжения шума. Эти источники напряжения добавляют к измеряемому сигналу и неотличимы от правильного сигнала.Контроллер, не зная, что он считывает неправильное значение, выполняет неправильное управляющее действие. Это может создать неудобные условия для пассажиров. Он также может приводить в движение механическое оборудование, вызывая преждевременный износ оборудования.

    Помехи сигналам от магнитной индукции

    Основными источниками этих шумов являются магнитная индукция и дисбаланс грунта.

    Любая петля из проводящего материала образует однооборотный трансформатор, если присутствует магнитное поле, и магнитные поля возможны везде, где используется напряжение переменного тока.Магнитные поля создаются переменным напряжением, текущим по проводу, двигателями или флуоресцентными лампами. В цепях очень низкого уровня оборванные провода, движущиеся в магнитном поле земли, могут даже вызвать проблемы. Магнитное поле заставляет ток течь в петле из проводящего материала, а сопротивление петли создает напряжение из этого тока.

    Чем сильнее магнитное поле или чем выше частота магнитного поля, тем сильнее протекает ток. Закон Ома гласит, что ток, умноженный на сопротивление, равен напряжению.Таким образом, чем больше ток, тем больше источник шума напряжения.

    На левом рисунке ниже показан контур заземления под действием магнитного поля. Магнитное поле заставляет электрический ток течь в контуре заземления. Сопротивление контура преобразует ток в источник напряжения между входом заземления контроллера и клеммой заземления датчика, как показано на правом рисунке ниже.

    Контур заземления в магнитном поле (вверху слева) и напряжение датчика и напряжение контура заземления (вверху справа)

    Помехи сигналам из-за дисбаланса грунта

    Электрические нагрузки могут варьироваться в зависимости от здания, создавая различные токи в системе заземления.Если в системе заземления протекает большой ток, и датчик помещен в цепь с заземлением, которая также имеет контур заземления, то к сигналу добавляется разница напряжений между двумя точками заземления.
    На рисунке внизу слева показан источник тока повреждения, подающий ток в систему заземления. Если, как в исследовании штата Мичиган, напряжение в системе заземления составляет два вольта, то к сигналу датчика добавляется напряжение повреждения в два вольта, как показано на рисунке ниже справа.

    Дисбаланс заземления (слева), напряжение датчика и напряжение контура заземления
    Закрытие

    Контуры заземления могут сделать лучшую систему управления неэффективной. Если вы считаете, что контуры заземления могут вызывать проблемы с вашей системой HVAC / R, позвоните своему представителю BAPI или загрузите Примечание по применению BAPI: Избегайте контуров заземления с нашего веб-сайта по адресу www.bapihvac.com

    Список литературы

    ANSI / NFPA 70, Национальный электротехнический кодекс 2002 — Национальная ассоциация противопожарной защиты
    Стратегии строительства для минимизации паразитного напряжения на молочных фермах, Университет штата Мичиган
    Генри Отт, Методы снижения шума в электронных системах, 2-е издание, Wiley and Sons, Нью-Йорк, Нью-Йорк , 1988

    Michigan State Univ.Исследование и код NEC

    Департамент сельскохозяйственной инженерии Университета штата Мичиган измерил сопротивление заземления на входах в электрические сети и обнаружил:
    «Если заземляющий стержень сервисной панели вбить на 8 футов во влажную землю, которая не является настоящим песком, сопротивление между заземляющим стержнем и землей может быть всего 20 Ом. Предположим, что когда в здании используется питание, одна десятая ампер тока нейтрали течет на землю через заземляющий стержень. Основной электрический закон, называемый законом Ома, гласит, что ток, умноженный на сопротивление, равен напряжению.Умножение тока заземляющего стержня (0,1 ампера) на сопротивление заземляющего стержня (20 Ом) дает 2 вольта. Если один щуп вольтметра касается заземляющего стержня, а другой щуп вольтметра вдавливается в землю так далеко от заземляющего стержня, насколько дотянутся провода, измеритель покажет примерно 2 вольта ».

    Код NEC

    Национальный электротехнический кодекс (NEC) также не помогает решить эту проблему. Статья 250 NEC требует, чтобы параллельные цепи заземлялись до ближайшего местного заземления в здании, где бы в здании ни находились панели ответвлений.Цифры в статье 250 показывают заземление на строительную сталь. Как указано в статье штата Мичиган, «территория» здания может варьироваться в зависимости от их измерений на величину до 2 вольт. Статья 647.4 (D) NEC (статья 647 называется «Чувствительное электронное оборудование») позволяет заземлению изменяться на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока.


    Версия этого документа в формате pdf для печати

    Контуры заземления и неизолированные места общего пользования

    Любой установщик оборудования для управления промышленными процессами скажет вам, что контуры заземления являются одной из самых неприятных ошибок подключения сигналов, которые необходимо диагностировать и исправить.Шаги, необходимые для их устранения, часто приравниваются к чему-то столь же загадочному, как магические заклинания. Аналогичным образом рассматриваются проблемы, связанные с совместным использованием неизолированных общин. Проблемы с совместным возвратом сигнала часто даже путают с контурами заземления. Контуры заземления и общие общие могут вызвать непредсказуемые сигналы и сделать ваш текущий контур непригодным для использования.

    Лучший и наиболее практичный способ устранить эти проблемы с сигналом — это в первую очередь предотвратить их возникновение, спланировав правильную разводку устройства и следуя конкретным передовым методам.Однако, если вы подозреваете, что у вас проблемы с сигналом, связанные с контурами заземления или общими общими узлами в существующей сети, нет необходимости вытаскивать книгу и волшебную палочку «Контуры заземления и неизолированного общего пользования», есть некоторые предсказуемые симптомы, которые вы можете ищите, чтобы диагностировать проблему.

    Прежде всего, вам необходимо знать определение контуров заземления и общего пользования. Контур заземления — это поток тока от одной сигнальной земли к другой из-за разницы напряжений между двумя заземлениями.Это может произойти, если два устройства в сети заземлены в разных местах, и в одном из этих мест сигнальная земля испытывает более высокий потенциал напряжения. Любой инженер-электрик скажет вам, что любой перепад напряжения приведет к протеканию тока. Именно этот ток вызывает симптомы замыкания на землю.

    Общий неизолированный общий провод может стать проблематичным при неправильном подключении. Устройства с несколькими входами и выходами, особенно те, через которые проходит более одного контура, печально известны трудностями, связанными с общим доступом.Их обычно называют «контурами заземления» из-за схожести их симптомов, но они не являются настоящими контурами заземления, поскольку они не вызваны проблемами заземления. Проблемы такого рода возникают, когда узлы создаются, намеренно или нет, до достижения всех применимых устройств в цепи, требующих чистого, предсказуемого сигнала. Это приведет к смешанному потоку тока и усреднению сигнала, что приведет к появлению непригодного для использования сигнала процесса.

    На рисунке 1 выше показан источник питания 24 В постоянного тока, обеспечивающий напряжение в токовой петле.Этот контур подключается параллельно к двум парам датчик уровня / локальный дисплей, предположительно, на разных резервуарах в совершенно разных местах промышленного объекта. Два датчика используют подаваемое на них напряжение для генерации сигнала процесса 4-20 мА, который затем проходит по проводу, соединяющему их с локальным дисплеем, на котором отображается переменная процесса. Схема замыкается путем возврата к источнику питания.

    Все это звучит как типичная функциональная токовая петля, пока вы не заметите, что оба входа питания локальных дисплеев заземлены в их отдельных местах.Заземление 2, поскольку среда, в которой он расположен, испытывает больше шума и имеет худшие соединения для его заземляющих шин, чем другое место, имеет более высокий потенциал напряжения, чем земля 1. Это приводит к протеканию тока, обозначенному выше IGND. Этот ток проходит по тем же проводам, которые должны передавать на дисплеи только технологический сигнал 4-20 мА, в результате чего два тока смешиваются, и технологический сигнал становится непредсказуемым и, следовательно, непригодным для использования.

    В примере, показанном на Рисунке 1, это было устройство в контуре 4–20 мА, которое вводило ток заземления в контур.Однако возможно, что виновником может быть устройство, не расположенное на шлейфе. Подумайте, подключено ли какое-либо устройство в контуре через неизолированный RS-485 или через вход / выход питания к устройству, имеющему потенциал земли с более высоким напряжением. Как правило, лучше избегать многоточечного заземления устройств в токовой петле. Потенциалы заземления часто не равны из-за различных электрических шумов, сопротивления пути заземления и плохой начальной установки шины питания.

    Контур заземления также может возникать в системе с одноточечным заземлением.Рассмотрим систему, в которой не используются изолированные провода витой пары, например, показанная на рисунке 2. Могут быть внесены любые электрические помехи, воспринимаемые заземляющим проводом, такие как паразитные магнитные поля или помехи от источника питания переменного тока 50/60 Гц. на токовый контур и приведет к непредсказуемому сигналу. Этот тип контура заземления чаще всего возникает из-за неправильного подключения и отсутствия экранированной витой пары.

    На рисунке 3 показана правильно подключенная токовая петля, а на рисунке 4 — неправильно подключенная токовая петля.На рисунке 3 потенциал напряжения, подаваемый источником питания, вызывает прохождение тока к каждому из трех параллельных передатчиков. Этот ток используется для создания токового сигнала 4-20 мА, который отправляется на локальные дисплеи, отображающие переменную процесса.

    На рисунке 4 устройства были подключены бессистемно, потому что в последовательной электрической цепи порядок устройств обычно не имеет значения. Однако был создан узел на общем общем устройстве с несколькими входами, соединяющий текущие сигналы.Это приводит к смешиванию и усреднению токов технологического сигнала, в результате чего на всех дисплеях отображается одно и то же значение. На этих изображениях проблема такого типа кажется тривиальной.

    исправить: просто удалите дополнительный переход из цепи. Однако, когда сложная сеть оборудования сталкивается с той же проблемой, решение не всегда столь интуитивно понятно.

    Подобные проблемы чаще всего вызваны включением неизолированных устройств с несколькими входами, таких как недорогие ПЛК.Поскольку устройство имеет несколько физических токовых входов, установщик может предположить, что каждый вход изолирован. Однако, если эти входы соединены внутри, токовые сигналы сливаются, что приводит к усреднению тока перед продолжением через цепь. Эта проблема также может быть вызвана неправильной разводкой трехпроводных устройств или сложных многоконтурных сетей.

    Из-за природы проблем с подключением сигналов и уникальных переменных, присутствующих на промышленных объектах, симптомы, вызванные этими проблемами, также будут уникальными.Тем не менее, есть некоторые общие признаки, на которые можно обратить внимание, если вы подозреваете, что испытываете одну из этих проблем с существующей сетью.


    НЕПРЕДСКАЗУЕМЫЕ ФЛУКТУАЦИИ СИГНАЛА 4-20 MA

    Непредсказуемые колебания сигнала — верный признак того, что что-то мешает работе вашего токового контура. Вероятно, это результат электрических помех или замыкания на землю.


    ДОБАВЛЯЕТ, ОБНАРУЖИВАЕТ ИЛИ ВЫВОДИТ ДИСПЛЕЙНЫЙ СИГНАЛ ЗА ПРЕДЕЛЫ ДИАПАЗОНА

    Сигнал может также испытывать сложение или вычитание на некоторое значение от одной точки цикла к другой.Это сложение или вычитание может даже вывести сигнал за пределы диапазона устройств, предназначенных для измерения сигнала.


    ОБЩИЕ ОБЩИЕ ОБЩИЕ, ВЫЗЫВАЮЩИЕ УСРЕДНИЕ СИГНАЛА

    Проблемы с общими, неизолированными общими объектами обычно усредняют сигнал процесса, вызывая регистрацию одной и той же переменной значения на устройствах, которые должны получать разные переменные процесса.


    ФИЗИЧЕСКОЕ ПОВРЕЖДЕНИЕ КОМПОНЕНТОВ

    Самый серьезный (и, к счастью, редкий) симптом этих проблем — физическое повреждение устройств в сети.Если, например, разница напряжений между двумя заземлениями окажется значительной, это может привести к перегрузке чувствительной сигнальной электроники таких устройств, как сигнальные входы и выходы. Повреждение электроники более высокого уровня, такой как блоки питания и реле, чрезвычайно редки из-за их способности выдерживать очень высокие потенциалы напряжения.

    Как упоминалось ранее, лучший способ отремонтировать контуры заземления — это вообще избегать их. Проблемы с многоточечным заземлением можно решить, используя только одноточечное заземление.Любые два места заземления будут иметь разные потенциалы напряжения, хотя серьезность этой разницы зависит от среды, в которой они расположены. По возможности используйте плавающие (незаземленные) устройства. Если возникает ситуация, когда несколько устройств в сети должны быть заземлены (по соображениям безопасности и т. Д.), Убедитесь, что заземление выполнено по всей системе, по возможности, по экранированному кабелю через кабелепровод.

    Все провода в системе должны быть экранированной витой парой, в которой используются оба провода.По возможности и в рамках бюджета все сигналы должны быть изолированы с помощью устройств с изолированными входами и выходами. Наконец, всегда помните о неизолированных многоконтурных устройствах и проявляйте особую осторожность при планировании проводки. Следуя этим нескольким передовым методам установки при установке оборудования для управления технологическим процессом, вы избавитесь от головной боли, пытаясь диагностировать и устранять эти проблемы в будущем.

    Контуры заземления и неизолированные общие контуры могут доставлять неудобства как установщикам оборудования управления производственными процессами, так и обслуживающему персоналу, но их можно легко избежать с помощью надлежащих методов планирования и установки.Контуры заземления создают проблемы для систем, когда несколько устройств заземлены в разных местах, которые имеют разные потенциалы напряжения, или при неправильном подключении заземленных устройств возникает шум, создаваемый их заземлением. Неизолированные общие ресурсы общего пользования могут стать проблемой, когда текущие пути пересекаются и становятся непредсказуемыми. Эти две проблемы подключения сигналов могут привести к непредсказуемым, неправильным, выходящим за пределы диапазона или усредненным сигналам процесса и, в редких случаях, к повреждению устройств. Всего этого можно избежать, не используя магические заклинания, а следуя передовым стандартным методам установки, которые могут уменьшить или потенциально устранить текущее затруднение.

    Если у вас есть идея для будущей темы, которая будет представлена ​​в «Текущем затруднительном положении», свяжитесь с Precision Digital по телефону [адрес электронной почты защищен]


    Саймон Паонесса — технический писатель, Precision Digital Corporation

    Загрузите это приложение заметка в формате PDF.

    Основы контура заземления

    Что такое контур заземления?

    Контур заземления возникает, когда есть более одного пути заземления между двумя единицами оборудования.В повторяющиеся наземные пути образуют эквивалент рамочной антенны, которая очень эффективно улавливает помехи токи. Преобразование сопротивления свинца эти токи превращаются в колебания напряжения. Как следствие замыкания на землю индуцированные напряжения, заземление в система больше не стабильная потенциал, поэтому сигналы движутся на шуме. Шум становится частью программы сигнал.

    Контур заземления — это распространенное состояние проводки, при котором ток заземления может проходить по нескольким путям, чтобы вернуться к заземляющему электроду на СЕРВИСНОЙ ПАНЕЛИ.Все компьютеры с питанием от переменного тока подключены друг к другу через заземляющий провод в общей проводке здания. Компьютеры также могут быть соединены кабелями передачи данных. Поэтому компьютеры часто связаны друг с другом более чем одним путем. Когда существует многолучевое соединение между компьютерными цепями, результирующее устройство известно как «контур заземления». Всякий раз, когда существует контур заземления, существует вероятность повреждения из-за ВНУТРЕННИХ СИСТЕМНЫХ ЗЕМНЫХ ШУМОВ.

    Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в одна и та же система получает питание от другого заземления, чем другие компонентов или потенциал земли между двумя частями оборудования не идентичный.

    Обычно разность потенциалов в заземлении вызывает протекание тока. в межсоединениях. Это, в свою очередь, модулирует вход схемы и обрабатывается как любой другой сигнал, подаваемый через нормальный входы. Вот пример ситуации, когда два заземляющего оборудования соединены между собой через заземление сигнального провода и заземляющий провод сети. В этой ситуации в проводе течет ток 1А. что вызывает разницу в напряжении 0,1 В между этими двумя устройствами. точки заземления.

    Из-за разницы напряжений между электронными приборами сигнал в соединительном проводе видит, что разница добавляется к сигналу. Это можно услышать как гудение на проводе, потому что переменный ток привести к тому, что разность напряжений этих потенциалов земли также будет Напряжение переменного тока. Это одна из причин шума 50 или 60 Гц, который вы слышите. в аудиосигнале (или увидеть в видеосигнале раздражающие горизонтальные полосы).

    Другая проблема — это ток, протекающий в заземляющем проводе сигнального кабеля.Этот ток проходит через кабель и через оборудование. Из способ, которым curren parsses не разработан, это может вызвать много шума оборудование или другие проблемы (например, зависания компьютера). Многие дизайнеры рассчитывают на то, что земля будет заземлена, и не оптимизируют их конструкция исключает их чувствительность к шумам от земли. Если вы дизайнер продукта, не забудьте позаботиться о том, чтобы контур заземления ток не вызывает проблем в вашем оборудовании, проектируя правильная схема заземления внутри оборудования.

    Почему контур заземления является проблемой?

    Контур заземления — распространенная проблема при подключении нескольких аудиовизуальных компоненты системы вместе, есть хорошее изменение, контуры заземления. Проблемы контура заземления — одна из самых распространенных проблем с шумом в аудиосистемах. Типичным признаком проблемы контура заземления является слышно 50 Гц или 60 Гц (в зависимости от частоты сетевого напряжения, используемой в ваша страна) шум в звуке. Наиболее частая ситуация, когда вы сталкиваетесь с проблемами контура заземления, когда ваш система включает оборудование, подключенное к заземленной розетке, и антенная сеть или оборудование, подключенное к разным заземленным розеткам по комнате.

    Все подключено к единой электросети, которая обычно подключается к все контакты заземления во всех розетках в одной комнате. Тогда антенная сеть также заземлен к той же точке заземления. Обычно это нормально, поскольку заземления соединены друг с другом только звездообразным образом от центрального заземляющего провода (ведущего к реальной Земле через заземление кабеля или металлической трубы) заземляющие кабели проходят через силовые кабели в оборудование.

    Как только вы примете во внимание, что часть вашего оборудования связана с экранированный кабель вы, скорее всего, столкнетесь с некоторыми проблемами.Вполне возможно, что токи могут течь от одной части оборудования в кабель заземления, в другую часть оборудования, а затем обратно в первую часть через экранированный аудиокабель. Эта проволочная петля также может улавливать помехи от близлежащих магнитных полей и радиопередатчиков.

    В результате нежелательный сигнал будет усиливаться, пока не будет слышно и явно нежелательно. Даже разница в напряжении ниже чем 1 мВ может вызвать раздражающий жужжащий звук в вашей аудиосистеме.

    Проблема со слышимым шумом от вашей аудиосистемы, когда другой электронные компоненты (холодильник, кулер для воды и т. д.)) может быть результатом загрязненного заземляющего / нейтрального проводника в проводке кондиционера и контур заземления в нашей аудиосистеме. Эта может произойти при включении определенного типа устройств. Обычно их мощность расходные материалы нелинейны и выбрасывают мусор обратно на нейтраль и / или заземляющие проводники. Обычно линейные кондиционеры или устройства ИБП не подходят. все, что поможет решить эту проблему.

    Распространенные причины неполадок компьютерной системы

    Много раз, когда пользователь думает, что его система «плохая» или «испортилась» неисправность имеет электрическую или магнитную природу.Проблемы монитора очень часто вызваны близлежащими магнитными полями, гармоники нейтрального провода или наведенные / передаваемые электрические помехи. Периодические зависания компьютеров очень часто вызваны: Контур заземления, электрическое явление, которое иногда проявляется когда система и ее периферийные устройства неправильно подключены к различных электрических цепей . Многие даже не знают, что их стена розетка правильно подключена и заземлена, что абсолютно необходимо для компьютера и периферийное оборудование для надежной и безопасной работы.

    Вы исключили заземление в своей компьютерной системе? Контуры заземления могут вызвать проблемы с подключением к локальной сети, если не правильно подключен. Контур заземления, вызванный подключением RS-232 к другому компьютеру может вызвать зависание компьютера.

    Когда контур заземления не является проблемой

    Контур заземления не вызывает проблем, если все вещь верна:

    • Ни один из проводов контура не пропускает ток
    • Петля не подвергается воздействию внешних изменяющихся магнитных полей.
    • Рядом нет радиопомех

    Если в каких-либо проводах есть ток, значит, есть потенциальная разница, которая заставляет ток течь и по другим проводам что вызывает проблемы.Петля также будет действовать как катушка и забирать ток из изменяющегося магнитного поля вокруг него. Проволочная петля также действует как антенна, принимающая радио сигналы.

    О каком размере проблемы разности потенциалов земли идет речь?

    В литературе говорится о синфазном шуме от 1 до 2 В в «хорошо заземленных» установках и более 20 Вольт в «слабо заземленных» установках. В литературе также говорится о токе, измеренном в сети. служебное заземление (в большом здании) в амперах.

    Откуда эта разница тока и напряжения?

    Утечка тока в конденсаторах между горячим и заземлением и между нейтралью и землей в течение Например, основные фильтры, вызовите ток в заземляющих проводах (и контурах заземления). Ток утечки обычно измеряется в миллиамперах (обычно меньше чем 1 мА в компьютерном оборудовании) на одно оборудование. Когда вы подводите итог, может быть, сотни такого оборудования вы легко можете получить в амперах.

    Емкость между линией и землей больших нагревателей и двигателей, для Например, может быть намного больше, чем емкость конденсаторов фильтра.Токи от этого источника обычно составляют порядка 1 А (а не 0,1 А или 10 А)

    Даже очень небольшое наведенное напряжение может вызвать очень большой ток в контур заземления, потому что сопротивление (и индуктивность) очень низкий. Эти токи действительно могут составлять десятки ампер. Индукция тока может быть вызвана, например, кабелями, по которым проходят большие токи. и от трансформаторов.

    На что способны эти заземляющие токи и разность напряжений?

    Небольшая разница в напряжении просто приводит к добавлению шума к сигналам.Это может вызвать жужжание звука, помехи для видеосигнала. и ошибки передачи в компьютерные сети.

    Более высокие токи могут вызвать более серьезные проблемы, такие как искрение в соединениях, повреждает оборудование и сгорает проводка. Мой собственный опыт в этой области ограничен к искрообразующим разъемам, нагревательным кабелям и поврежденным платам последовательного порта компьютера. Я читал о сгоревших сигнальных кабелях и дымящих компьютерах из-за перепад заземления и вызванные ими большие токи.Так что будьте осторожны об этой потенциальной проблеме и не выполняйте никаких глупых установок.


    Томи Энгдал <[email protected]>

    Проблемы контура заземления и способы их устранения

    Написано и авторское право Томи Энгдал 1997-2013

    НОТА: Представленная здесь информация считается правильной и доступна здесь автором. Автор этого документа не несет ответственности за какой-либо эффект, который может иметь эта информация или любое ее использование.

    Документы использовались и рекомендовались многими людьми и считаются точными. Настолько точны, что их также называли GB AUDIO Ground loops DATA SHEET на своих веб-страницах (с моего разрешения).

    Основы

    Дилемма состоит в том, что решение «шумовых» проблем — это само по себе искусство. Поскольку это происходит не каждый день, у всех нас ограниченный практический опыт. Это породило индустрию для тех, кто сейчас специализируется на решении проблем шума.

    Хорошая система распределения электроэнергии необходима для правильной работы аудиосистемы. Профессиональные аудиосистемы просто не работают хорошо с обычными удлинителями, идущими на сотни футов до сцены. Помимо питания, необходимо хорошее заземление всей системы. существенный.

    Контур заземления — это состояние, при котором происходит непреднамеренное подключение к земле. через мешающий электрический проводник. Обычно подключение контура заземления существует, когда электрическая система подключена более чем через один путь к электрическому заземлению.

    Когда два или более устройства подключены к общему заземление разными путями, возникает контур заземления. Токи текут по этим многочисленным путям и развиваются напряжения, которые могут вызвать повреждение, шум или 50 Гц / 60 Гц гул в аудио- или видеоаппаратуре. Чтобы предотвратить землю петли, все сигнальные земли должны идти в одну общую точку и когда невозможно избежать двух точек заземления, одна сторона должна изолировать сигнал и заземление от другой.

    Суть в том, что идеальной «тихой» земли не существует.Основа всех проблем с шумом в системе заземления сводится к тому, что такое нежелательный ток. За исключением больничных систем, определение в лучшем случае расплывчато. Стандартная система электрического заземления во всем здании не предназначена для постоянного протекания через нее тока — и, тем не менее, это так, вы не можете остановить это. Причина, по которой заземление не будет и никогда не будет совершенно бесшумным, заключается в том, что провод заземляющего электрода представляет собой не что иное, как длинный провод от точки A до точки B.И чем длиннее провод, тем больше шума он улавливает.

    Звук и видео люди имеют в виду тип шумной земли с термином, подобным контурам заземления: ток, протекающий по заземляющему проводнику оборудования, металлу в здании и проводнику заземляющего электрода. Использование любой из сегодняшних стандартных однофазных систем переменного тока на 120 или 230 вольт создает потенциальные проблемы для аудиооборудования. У компьютерщиков такая же проблема в работе и так далее.

    Обычно контуры заземления возникают постфактум, когда конечный пользователь винит установщика, установщик винит производителя и на самом деле никто не виноват.Ни производитель, ни установщик обычно не могут предсказать, где возникнет петля. Только после установки системы можно определить если проблема будет.

    Проблемы контура заземления можно исправить и избежать. Важно, чтобы продавец, заказчик и конечный пользователь знали что эта проблема может возникнуть. Разработать систему — хорошая идея чтобы избежать наиболее очевидного источника таких проблем, а затем готов все еще столкнуться с некоторыми проблемами при запуске системы.Проблема контура заземления может возникнуть в нескольких точках системы, и каждое возникновение проблемы необходимо устранять индивидуально.

    Почему заземление так важно?

    Заземление электрических систем требуется по ряду причин, главным образом для обеспечения безопасности людей, находящихся рядом с системой, и для предотвращения повреждения самой системы в случае неисправности. Функция защитного проводника или заземления состоит в том, чтобы обеспечить путь с низким сопротивлением для тока короткого замыкания, чтобы устройства защиты цепи сработали быстро и отключили питание.

    Национальный электротехнический кодекс NEC определяет заземление как «проводящее соединение, независимо от того, намеренно или случайно между электрической цепью или оборудованием и землей, или с некоторыми проводящее тело, которое служит вместо земли ». Когда мы говорим о заземлении, на самом деле это два разные предметы, заземление и заземление оборудования. Заземление заземления — преднамеренное соединение проводника цепи, как правило, нейтрали с заземляющим электродом, помещенным в землю. Заземление оборудования предназначено для обеспечения правильной работы оборудования внутри конструкции. заземлен.Эти две системы заземления необходимо держать отдельно, за исключением соединения между двумя системами для предотвращения разницы потенциалов из-за возможного пробоя из-за удар молнии. Назначение земли помимо защиты людей, растений и оборудования — чтобы обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов, EMI и RFI сигналы и помехи.

    Неправильное заземление может создать смертельную опасность. Правильное заземление необходимо для правильной работы и безопасности. электрооборудования.Заземление может решить многие проблемы, но это также может вызвать новые. Одна из наиболее частых проблем — называется «контур заземления».

    Что вызывает гудение в аудиосистемах?

    Аудио- и видеосистемы нуждаются в ориентире для их напряжений. Обычно называется общим или заземленным, хотя может и не быть фактически связанный с землей, эта ссылка остается на нуле вольт », в то время как другие сигнальные напряжения« колеблются »положительным (вверху) и отрицательным (под этим. Физически общим может быть провод, след на печатная плата, металлическое шасси, практически все, что проводит электричество.В идеале это должен быть идеальный дирижер, но в любой практической системе это не так. По мере увеличения сложности и размера системы несовершенные проводимость общего (заземляющего) проводника неизбежно вызывает проблемы.

    Гул и гудение (50 Гц / 60 Гц и его гармоники) возникают в несбалансированных системах, когда токи протекают в соединениях экрана кабеля между различными частями оборудования. Гул и гудение также могут возникать в сбалансированных системах, даже если они обычно Больше

    Токи экрана кабеля и разность напряжений заземления вызываются несколькими механизмами.Вторым наиболее распространенным источником шума и гудения является разница напряжений между двумя защитными заземлениями, разделенными большим расстоянием, или разница напряжений между защитным заземлением и заземлением. (например, заземленная спутниковая антенна или источник кабельного телевидения). Эта проблема обычно называется «контур заземления». Это самый распространенный среди тяжелых проблемы с гудением.

    Гул и гудение могут также индуцироваться магнитным или емкостным образом непосредственно в сигнальных кабелях. Или ток шума может просачиваться из сети через емкость между A.C. первичная и вторичная обмотка силового трансформатора обмотки, что приводит к тому, что часть линейного напряжения переменного тока будет ВСЕГДА иметь емкостную связь непосредственно с землей аудиосхемы. Этот сигнал линии электропередачи с емкостной связью обычно содержит значимые гармоники до 1 МГц и более. Эти сигналы вызывают протекание токов в экранах кабелей, таким образом добавляя этот шум непосредственно к аудиосигналу.

    Почему заземление без проблем сделать сложно?

    Практически все проекты строительства передачи данных и трансляции выполняются в проблемы заземления.Эти проблемы возникают в первую очередь потому что существует конфликт между вопросами безопасности (земля- ing для предотвращения поражения электрическим током) и электронного шумоподавления (используя «землю» как электронную «свалку» шума и помех. ference.) Эти два использования часто несовместимы и могут иногда находятся в прямом конфликте друг с другом. Конечная цель хорошей схемы заземления — сохранение и соблюдение аспектов безопасности при получении возможно максимальное снижение шума. Обычно это нелегкая задача.

    Почему контур заземления является проблемой?

    Контуры заземления являются загадкой для многих людей. Даже инженеры-электронщики, получившие образование в колледже, могут не знать, что такое контуры заземления. Инженеры сосредоточились либо на распределении энергии (для электроэнергетической компании), либо на оборудовании, которое подключается к системе распределения электроэнергии. Не так много внимания уделялось распределению энергии и оборудованию как единому объекту, в котором возникают контуры заземления.

    Контуры заземления являются наиболее частой причиной гудения частоты сети переменного тока в звуковых системах.Контуры заземления обычно можно определить по низкому гудению (60 Гц в США, 50 Гц в Европе) через звуковую систему. Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в одна и та же система получает питание от другого заземления, чем другие компонентов или потенциал земли между двумя частями оборудования не идентичный.

    Контур заземления — распространенная проблема при подключении нескольких аудиовизуальных компоненты системы вместе, есть хорошее изменение, контуры заземления.Контуры заземления обычно вызывают жужжание звуковых сигналов и полосы помех для изображения. Контур заземления делает систему чувствительной улавливать помехи от сетевой проводки, что может привести к работа оборудования или даже повреждение оборудования. В некоторых статьях утверждается, что проблемы с проводкой и заземлением являются причиной до 80 процентов всех проблем, связанных с качеством электроэнергии, связанных с чувствительное электронное оборудование, такое как аудио / видео системы.

    Аудио / видео и электроэнергетика разработали свои системы. и оборудование самостоятельно.В результате есть степень несовместимость. Обычно достаточно мощности чувство безопасности распространения и эксплуатации недостаточно хорошее для AV-систем. Следствием этого является проблема помех контура заземления.

    Всегда при работе с проблемами заземления помните, что не существует абсолютного основания . Есть определенное количество сопротивление электрическому току между всеми точками заземления. Эта сопротивление может меняться в зависимости от влажности, температуры, подключенного оборудования и многие другие переменные.Каким бы маленьким ни был сопротивление всегда может позволить электрическому напряжению существовать на нем когда между этими точками заземления протекает ток (и почти всегда есть ток).

    Проблемы с заземлением на звуковой частоте обычно находятся в диапазоне низких милливольт, так что не должно быть большого вмешательства в систему заземления, чтобы вызвать проблемы в аудиосистемах.

    Помните, что нет абсолютной почвы. Между всеми точками заземления существует определенное сопротивление электрическому току.Это сопротивление может изменяться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Независимо от того, насколько мало, сопротивление всегда может позволить электрическому напряжению существовать на нем. Заземляющие провода между розетками и трансформаторами энергокомпании не являются идеальными проводниками, как и экран вашего коаксиального видеокабеля. Если бы это было так, контуры заземления не были бы проблемой. Эффекты контура заземления на видеоизображениях представлены в виде черной теневой полосы. по экрану или как разрыв в верхнем углу картинки.Это вызвано разными потенциалами земли в системе.

    Общие темы

    Аудио и видеосистемы бытовые

    Профессиональные аудиосистемы

    Профессиональные видеосистемы

    Сети передачи данных

    Лабораторная среда

    Советы по дизайну

    Другая сопутствующая информация

    НОВАЯ ФУНКЦИЯ: Обсуждение контура заземления

    Дискуссионный форум проблем контура заземления на ePanorama.net Система дискуссионных форумов создана для обсуждения всех тем, связанных с контурами заземления, и проблем, которые, по вашему мнению, могут быть вызваны контуром заземления.

    Полезные ссылки на другие сайты и статьи

      Общие инструкции
      Проблемы с заземлением электропроводки
      Установки аудио- и видеосистем
      Решение проблем
      Конструкция оборудования
      Полезные сайты

    Откуда взялась вся эта информация?

    Большая часть информации получена из моих личных знаний в этой области. У меня был опыт проектирования, создания, использования, обслуживания и поиск неисправностей во многих аудио-, видео- и компьютерных сетевых системах.Я также разработал электронные устройства для аудио, видео и телекоммуникационные приложения.

    Когда я обнаружил проблемы со стойкостью на те системы, которые я попытался провести хорошее расследование, в чем причина проблемы и каковы разумные способы ее решения. Различные книги, журнальные статьи и техническая документация со многих веб-сайтов также был очень полезен при составлении этого веб-документа.


    Если у вас есть комментарии к этой странице, пришлите их мне по адресу [адрес электронной почты защищен] или оставьте комментарии по адресу Форум обсуждения проблем контура заземления.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *