+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как рассчитать повышающий трансформатор — Инженер ПТО

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали.

Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Статистика

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

1, 4 – броневые,
2, 5 – стержневые,
6, 7 – кольцевые.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Трансформаторы с витыми кольцевыми магнитопроводами.

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.

Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.
Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

Где:
P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

Сначала определяем сечение, для чего перемножаем размеры А и Б.

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции.

КАК РАССЧИТАТЬ ПОНИЖАЮЩИЙ ТРАНСФОРМАТОР.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.

В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт .
Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт .

В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт . Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.

Если вы найдете лампочку другой мощности, например на 40 ватт , нет ничего страшного — подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.

Мощность во вторичной цепи: Р2 = U2 • I2 = 60 ватт

Где:
Р2 – мощность на выходе трансформатора, нами задана 60 ватт ;
U2 — напряжение на выходе трансформатора, нами задано 36 вольт ;
I2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1 , мощности потребляемой от сети 220 вольт , зависит площадь поперечного сечения магнитопровода S .

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

Где:
S — площадь в квадратных сантиметрах,
P1 — мощность первичной сети в ваттах.

По значению S определяется число витков w на один вольт по формуле:

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв .

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

Число витков во вторичной обмотке на 36 вольт:

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков .

Величина тока в первичной обмотке трансформатора:

Ток во вторичной обмотке трансформатора:

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:

Для первичной обмотки диаметр провода будет:

Диаметр провода для вторичной обмотки:

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА , то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

где: d — диаметр провода.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм .

Площадь поперечного сечения провода диаметром 1,1 мм равна:

Округлим до 1,0 мм² .

Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм² .

Например, это два провода диаметром по 0,8 мм . и площадью по 0,5 мм² .

Или два провода:

— первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,
— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм² .

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.

Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц. Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения. Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее. Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2: . С помощью сечения сердечника необходимо определить количество витков n, соответствующее 1 вольту напряжения: n= 50/Q.

На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xnxU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…

Любая обмотка трансформатора имеет следующий диаметр проводов:
где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1.Здесь используется общая мощность трансформатора.

Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника. Необходимо воспользоваться формулой: Sм = 4 x (d1 2 n1 + d2 2 n2 +d3 2 n3 + d4 2 n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках. В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.

Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.

Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.

Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.

Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.

Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.

Расчёт трансформатора по сечению сердечника

Конструкция трансформатора зависят от формы магнитопровода. Они бывают стержневыми, броневыми и тороидальными. В стержневых трансформаторах обмотки наматываются на стержни сердечника. В броневых – магнитопроводом только частично обхватываются обмотки. В тороидальных конструкциях выполняется равномерное распределение обмоток по магнитопроводу.

Для изготовления стержневых и броневых сердечников используются отдельные тонкие пластины из трансформаторной стали, изолированные между собой. Тороидальные магнитопроводы представляют собой намотанные рулоны из ленты, для изготовления которых также используется трансформаторная сталь.

Важнейшим параметром каждого сердечника считается площадь поперечного сечения, оказывающая большое влияние на мощность трансформатора. КПД стержневых трансформаторов значительно превышает такие же показатели у броневых устройств. Их обмотки лучше охлаждаются, оказывая влияние на допустимую плотность тока. Поэтому в качестве примера для расчетов рекомендуется рассматривать именно эту конструкцию.

В зависимости от параметров сердечника, определяется значение габаритной мощности трансформатора. Она должна превышать электрическую, поскольку возможности сердечника связаны именно с габаритной мощностью. Эта взаимная связь отражается и в расчетной формуле: Sо хSс = 100 хРг /(2,22 * Вс х j х f х kох kc). Здесь Sо и Sс являются соответственно площадями окна и поперечного сечения сердечника, Рг – значение габаритной мощности, Вс – показатель магнитной индукции в сердечнике, j – плотность тока в проводниках обмоток, f – частота переменного тока, kо и kc – коэффициенты заполнения окна и сердечника.

Как определить число витков обмотки трансформатора не разматывая катушку

При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.

Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.

Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.

Как рассчитать трансформатор, количество витков намотки на вольт. Габаритная мощность трансформатора. Диаметр провода обмотки.

В раздел: Советы → Расcчитать силовой трансформатор

Как рассчитать силовой трансформатор и намотать самому.
Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?
Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.
Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника — сможете ли разместить обмотку.
Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток — амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.

Формула для расчета витков трансформатора

50/S

Сопутствующие формулы: P=U2*I2    Sсерд(см2)= √ P(ва)    N=50/S    I1(a)=P/220    W1=220*N    W2=U*N    D1=0,02*√i1(ma)    D2=0,02*√i2(ma)   K=Sокна/(W1*s1+W2*s2)

   50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
   Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода.
   Если вы планируете намотать трансформатор с достаточно «жёсткой» характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора. Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.
Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений.

Вариант 2 расчета трансформатора.
Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности:

1. Определяют значение тока, протекающего через вторичную обмотку трансформатора:
I2 = 1,5 Iн,
где: I2 — ток через обмотку II трансформатора, А;
Iн — максимальный ток нагрузки, А.
2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:
P2 = U2 * I2,
где: P2 — максимальная мощность, потребляемая от вторичной обмотки, Вт;
U2 — напряжение на вторичной обмотке, В;
I2 — максимальный ток через вторичную обмотку трансформатора, А.
3. Подсчитываем мощность трансформатора:
Pтр = 1,25 P2,
где: Pтр — мощность трансформатора, Вт;
P2 — максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.
Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.
4. Определяют значение тока, текущего в первичной обмотке:
I1 = Pтр / U1,
где: I1 — ток через обмотку I, А;
Ртр — подсчитанная мощность трансформатора, Вт;
U1 — напряжение на первичной обмотке трансформатора (сетевое напряжение).
5. Рассчитываем необходимую площадь сечения сердечника магнитопровода:
S = 1,3 Pтр,
где: S — сечение сердечника магнитопровода, см2;
Ртр — мощность трансформатора, Вт.
6. Определяем число витков первичной (сетевой) обмотки:
w1 = 50 U1 / S,
где: w1 — число витков обмотки;
U1 — напряжение на первичной обмотке, В;
S — сечение сердечника магнитопровода, см2.
7. Подсчитывают число витков вторичной обмотки:
w2 = 55 U2 / S,
где: w2 — число витков вторичной обмотки;
U2 — напряжение на вторичной обмотке, В;
S-сечение сердечника магнитопровода, см2.
8. Высчитываем диаметр проводов обмоток трансформатора:
d = 0,02 I,
где: d-диаметр провода, мм;
I-ток через обмотку, мА.

Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1.

  Таблица 1
Iобм, ma <25 25 — 60 60 — 100 100 — 160 160 — 250 250 — 400 400 — 700 700 — 1000
d, мм 0,1 0,15 0,2 0,25 0,3 0,4 0,5 0,6

После выполнения расчетов, приступаем к выбору самого трансформаторного железа, провода для намотки и изготовление каркаса на которой намотаем обмотки. Для прокладки изоляции между слоями обмоток приготовим лакоткань, суровые нитки, лак, фторопластовую ленту. Учитываем тот факт, что Ш — образный сердечник имеют разную площадь окна, поэтому будет не лишним провести расчет проверки: войдут ли они на выбранный сердечник. Перед намоткой производим расчет — поместится ли обмотки на выбранный сердечник.
Для расчета определения возможности размещения нужного количества обмоток:
1. Ширину окна намотки делим на диаметр наматываемого провода, получаем количество витков наматываемый
на один слой — N¹.
2. Рассчитываем сколько необходимо слоев для намотки первичной обмотки, для этого разделим W1 (количество витков первичной обмотки) на N¹.
3. Рассчитаем толщину намотки слоев первичной обмотки. Зная количество слоев для намотки первичной обмотки умножаем на диаметр наматываемого провода, учитываем толщину изоляции между слоями.
4. Подобным образом считаем и для всех вторичных обмоток.
5. После сложения толщин обмоток делаем вывод: сможем ли мы разместить нужное количество витков всех обмоток на каркасе трансформатора.

Еще один способ расчета мощности трансформатора по габаритам.
Ориентировочно посчитать мощность трансформатора можно используя формулу:
P=0.022*S*С*H*Bm*F*J*Кcu*КПД;
P — мощность трансформатора, В*А;
S — сечение сердечника, см²
L, W — размеры окна сердечника, см;
Bm — максимальная магнитная индукция в сердечнике, Тл;
F — частота, Гц;
Кcu — коэффициент заполнения окна сердечника медью;
КПД — коэффициент полезного действия трансформатора;
Имея в виду что для железа максимальная индукция составляет 1 Тл.
   Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 — магнитная индукция [T], j =2.5 — плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 — 0,33.

Если вы располагаете достаточно распространенным железом — трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?
Расшифровка обозначений ОСМ: О — однофазный, С — сухой, М — многоцелевого назначения.
По техническим характеристикам он не подходит в для включения однофазную сеть 220 вольт т.к. рассчитан на напряжение первичной обмотки 380 вольт.
Что же в этом случае делать?
Имеется два пути решения.
1. Смотать все обмотки и намотать заново.
2. Смотать только вторичные обмотки и оставить первичную обмотку, но так как она рассчитана на 380В, то с нее необходимо смотать только часть обмотки оставив на напряжение 220в.
При сматывании первичной обмотки получается примерно 440 витков (380В) когда сердечник Ш-образной формы, а когда сердечник трансформатора ОСМ намотан на ШЛ данные другие — количество витков меньше.
Данные первичных обмоток на 220в трансформаторов ОСМ Минского электротехнического завода 1980 год.

  • 0,063 — 998 витков, диаметр провода 0,33 мм
  • 0,1 — 616 витков, диаметр провода 0,41 мм
  • 0,16 — 490 витков, диаметр провода 0,59 мм
  • 0,25 — 393 витка, диаметр провода 0,77 мм
  • 0,4 — 316 витков, диаметр провода 1,04 мм
  • 0,63 — 255 витков, диаметр провода 1,56 мм
  • 1,0 — 160 витков, диаметр провода 1,88 мм

ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма

Подключение обмоток трансформаторов ТПП

Рассмотрим на примере ТПП-312-127/220-50 броневой конструкции, параллельное включение вторичных обмоток.

В зависимости от напряжения в сети подавать напряжение на первичную обмотку можно на выводы 2-7, соединив между собой выводы 3-9, если повышенное — то на 1-7 (3-9 соединить) и т.д. На схеме подключение показано случае пониженного напряжение в сети.
Часто возникает необходимость применять унифицированные трансформаторы типа ТАН, ТН, ТА, ТПП на нужное напряжение и для получения необходимой нагрузочной способности, а простым языком нам надо подобрать, к примеру, трансформатор со вторичной обмоткой 36 вольт и чтобы он отдавал 4 ампера под нагрузкой, первичная конечно 220 вольт.
Как подобрать трансформатор?
С начало определяем необходимую мощность трансформатора, нам необходим трансформатор мощностью 150 Вт.
Входное напряжение однофазное 220 вольт, выходное напряжение 36 вольт.
После подбора по техническим данным определяем, что в данном случае нам больше всего подходит трансформатор марки ТПП-312-127/220-50 с габаритной мощностью 160 Вт (ближайшее значение в большую сторону ), трансформаторы марки ТН и ТАН в данном случае не подходят.
Вторичные обмотки ТПП-312 имеют по три раздельные обмотки напряжением 10,1в 20,2в и 5,05в, если соединить их последовательно 10,1+20,2+5,05=35,35 вольт, то получаем напряжение на выходе почти 36 вольт. Ток вторичных обмоток по паспорту составляет 2,29А, если соединить две одинаковые обмотки параллельно, то получим нагрузочную способность 4,58А (2,29+2,29).
После выбора нам только остается правильно соединить выходные обмотки параллельно и последовательно.
Последовательно соединяем обмотки для включения в сеть 220 вольт. Последовательно включаем вторичные обмотки, набирая нужное напряжение по 36В на обеих половинках трансформатора и соединяем их параллельно для получения удвоенного значения нагрузочной способности.
Самое важное, правильно соединить обмотки при параллельном и последовательном включении, как первичной так и вторичной обмоток.

Если неправильно включить обмотки трансформатора, то он будет гудеть и перегреваться, что потом приведет его к преждевременному выходу из строя.

По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины.
Разные вопросы и советы.
   1. Проверяем готовый трансформатор, а у него ток первичной обмотки оказывается завышенным, что делать? Чтобы не перематывать и не тратить лишнее время домотайте поверх еще одну обмотку, включив ее последовательно с первичной.
   2. При намотке первичной обмотки когда мы делаем большой запас, чтобы уменьшить ток холостого хода, то учитывайте, что соответственно уменьшается и КПД транса.
   3. Для качественной намотки, если применен провод диаметром от 0,6 и выше , то его обязательно надо выпрямить, чтоб он не имел малейшего изгиба и плотно ложился при намотке, зажмите один конец провода в тиски и протяните его с усилием через сухую тряпку, далее наматывайте с нужным усилием, постепенно наматывая слой за слоем. Если приходится делать перерыв, то предусмотрите фиксацию катушки и провода, иначе придется делать все заново. Порой подготовительные работы занимают много времени, но это того стоит для получения качественного результата.
   4. Для практического определения количества витков на вольт, для попавшегося железа в сарае, можно намотать на сердечник проводом обмотку. Для удобства лучше наматывать кратное 10, т.е. 10 витков, 20 витков или 30 витков, больше наматывать не имеет большого смысла. Далее от ЛАТРа постепенно подаем напряжение его увеличивая от 0 и пока не начнет гудеть испытываемый сердечник, вот это и является пределом. Далее делим полученное напряжение подаваемое от ЛАТРа на количество намотанных витков и получаем число витков на вольт, но это значение немного увеличиваем. На практике лучше домотать дополнительную обмотку с отводами для подбора напряжения и тока холостого хода.
   5. При разборке — сборке броневых сердечников обязательно помечайте половинки, как они прилегают друг к другу и собирайте их в обратном порядке, иначе гудение и дребезжание вам обеспечено. Иногда гудения избежать не удается даже при правильной сборке, поэтому рекомендуется собрать сердечник и скрепить чем либо (или собрать на столе, а сверху через кусок доски приложить тяжелый груз), подать напряжение и попробовать найти удачное положение половинок и только потом окончательно закрепить. Помогает и такой совет, поместить готовый собранный трансформатор в лак и потом хорошо просушить при температуре до полного высыхания (иногда используют эпоксидную смолу, склеивая торцы и просушка до полной полимеризации под тяжестью).

Соединение обмоток отдельных трансформаторов

Иногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения?
Для того чтобы получить от двух трансформаторов постоянное напряжение, к примеру 600 вольт постоянного тока, то необходимо иметь два трансформатора которые бы после выпрямителя выдавали бы 300 вольт и после соединив их последовательно два источника постоянного напряжения получим на выходе 600 вольт.

Расчет понижающего трансформатора

Типы магнитопроводов силовых трансформаторов.

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.




Простой расчет понижающего трансформатора.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

Магнитопроводы бывают:

1, 4 – броневые,
2, 5 – стержневые,
6, 7 – кольцевые.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.




Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.




Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.




Трансформаторы с витыми кольцевыми магнитопроводами.

Реклама
10 шт., пружинный датчик вибрации,
Реклама
кулисный переключатель

Как определить габаритную мощность трансформатора.

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов. Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.
Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.
Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

P = B * S² / 1,69

Где:
P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.




Пример:

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

P = 1,5 * 6,25² / 1,69 = 35 Ватт

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

S = ²√ (P * 1,69 / B)

Пример:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции.





КАК РАССЧИТАТЬ ПОНИЖАЮЩИЙ ТРАНСФОРМАТОР.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.


В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт.
Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.

В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт.
Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.

Если вы найдете лампочку другой мощности, например на 40 ватт, нет ничего страшного — подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р2 = U2 • I2 = 60 ватт

Где:
Р2 – мощность на выходе трансформатора, нами задана 60 ватт;
U2 — напряжение на выходе трансформатора, нами задано 36 вольт;
I2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8.
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р1 = Р2 / η = 60 / 0,8 = 75 ватт.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1, мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S.




Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 • √P1

Где:
S — площадь в квадратных сантиметрах,
P1 — мощность первичной сети в ваттах.

S = 1,2 • √75 = 1,2 • 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

w = 50 / S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50 / 10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U1 • w = 220 • 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U2 • w = 36 • 4,8 = 172.8 витков, округляем до 173 витка.

Реклама
Liitokala 18650 3000 мАч аккумулятор — разряд, 30A Отзывы: ***аккумы отличные . поставил в шурик 12 вольт пашет как зверь.***
Реклама
-_- **Распродажа** Отзывы: ***Подробный обзор https://youtu.be/9OFp1VbCDqE Доработка https://youtu.be/UxvcYOhed6w ***

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I1 = P1 / U1 = 75 / 220 = 0,34 ампера.

Ток во вторичной обмотке трансформатора:

I2 = P2 / U2 = 60 / 36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:

d = 0,8 √I

Для первичной обмотки диаметр провода будет:

d1 = 0,8 √I 1 = 0,8 √0,34 = 0,8 * 0,58 = 0,46 мм. Возьмем 0,5 мм.

Диаметр провода для вторичной обмотки:

d2 = 0,8 √I 2 = 0,8 √1,67 = 0,8 * 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 • d²

где: d — диаметр провода.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм равна:

s = 0,8 • d² = 0,8 • 1,1² = 0,8 • 1,21 = 0,97 мм²

Округлим до 1,0 мм².

Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм².




Например, это два провода диаметром по 0,8 мм. и площадью по 0,5 мм².

Или два провода:

— первый диаметром 1,0 мм. и площадью сечения 0,79 мм²,
— второй диаметром 0,5 мм. и площадью сечения 0,196 мм².
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.

И конечно можно воспользоватся программой для расчета

Как выполнить расчет трансформатора в полном объеме

Как бы ни развивалась электроника, но всё же отказаться от такого устройства, как трансформатор пока не удаётся. Каждый надёжный блок питания и преобразователь напряжения содержит этот электромагнитный аппарат с гальванической развязкой обмоток. Они применяются широко и на производстве, и в быту, и представляют собой статическое электромагнитное устройство, работающее по принципу взаимоиндукции. Состоят такие устройства из двух основных элементов:

  1. замкнутого магнитопровода;
  2. двух и более обмоток.

Обмотки трансформаторов не имеют между собой никакой связи, кроме индуктивной. Предназначен он для преобразования только переменного напряжения, частота которого, после передачи по магнитопроводу, будет неизменна.

Расчет параметров трансформатора необходим для того, чтобы на вход этого устройства было подано одно напряжение, а на выходе генерировалось пониженное или повышенное напряжение другой заданной величины. При этом нужно учесть токи, протекающие во всех обмотках, а также мощность устройства, которая зависит от подключаемой нагрузки и от назначения.

Любой даже простейший расчет трансформатора состоит из электрической и конструктивной составляющей. Электрическая часть включает в себя:

  • Определение напряжений и токов, протекающих по обмоткам;
  • Определение коэффициента трансформации.

К конструктивным относятся:

  • Размеры сердечника и тип устройства;
  • Выбор материала сердечника трансформатора;
  • Возможные варианты закрывающего корпуса и вентиляции.

Через один квадратный сантиметр сечения магнитопровода протекает магнитная индукция, единица измерения её — Тесла. Тесла, в свою очередь, выдающийся физик, в честь которого и она и названа. Это значение напрямую зависит от частоты тока. И так при частоте 50 Гц и, допустим, 400 Гц величины индукция (тесла) будет разной, а значит и габариты устройства с увеличением частоты снижаются.

После этого определяют падение напряжения и потери в магнитопроводе, на этапе электрического расчёта все эти величины определяются лишь примерно. Расчет нагрузки в трансформаторе является ключевым в его исполнении. В сварочном, например, нагрузочную особенность выражают из режима короткого замыкания. Большое значение тока короткого замыкания, связано с малым значением сопротивления трансформатора в данных условиях работы.

Важнейшим элементом всех формул данного расчёта является коэффициент трансформации, который определяется как соотношение числа намотанных витков в первичной обмотке, к количеству витков во вторичной обмотке. Если обмоток не две, а больше, значит и соответственно таких коэффициентов тоже будет несколько. Если известны напряжения обмоток, то можно его рассчитать как отношение напряжений первичной обмотки, ко вторичной.

Расчет силового трансформатора

Расчет силового трансформатора напрямую зависит от количества фаз в питающей сети, то есть однофазной или же трехфазной. Прежде всего в силовом трансформаторе основную роль играет его мощность. Упрощенный расчет трансформаторов малой мощности и большой можно выполнить и в домашних условиях. Расчёт потерь неизбежен, как и для любых электромагнитных устройств, здесь же он состоит из двух основных магнитных составляющих:

  1. вихревые токи;
  2. намагничивание.

Расчет однофазного трансформатора

Рассчитывая понижающие трансформаторы однофазного тока, как самые распространенные в быту, для начала нужно выяснить его мощность. Конечно, понизить напряжение можно и другими способами, но этот самый эффективный и даёт ещё вдобавок гальваническую развязку, а значит возможность подключения силовой нагрузки.

Например, если напряжение первичной обмотки 220 Вольт, что свойственно для стандартных сетей однофазного тока, то вторичное напряжение нужно определить по нагрузке, которая будет подключаться к нему. Это может быть как низшее, так и высшее напряжение. Например, для зарядки автомобильных аккумуляторов необходимо напряжение 12-14 Вольт. То есть вторичное напряжение и ток тоже должно быть заранее известно.

Примерная мощность будет равна произведению тока на напряжение. Стоит учесть также и КПД. Для силовых аппаратов он составляет примерно 0,8–0,85. Тогда с учётом этого коэффициента полезного действия расчётная мощность будет составлять:

Ррасч= P*КПД

Именно эта мощность и ложится в основу расчёта поперечного сечения сердечника, на котором будут произведены намотки обмоток. Кстати, видов этих сердечников магнитопровода может быть несколько, как показано на рисунке снизу.

Далее, по этой формуле определяем сечение

S (см2) = (1,0 ÷1,3) √Р

Коэффициент 1–1,3 зависит от качества электротехнической стали. К электротехнической стали относится чистое железо в виде листов или ленты толщиной 0,1–8 мм либо в виде сортового проката (круг или квадрат) различных размеров.

После чего определяется количество витков, на один вольт напряжения.

N = (50 ÷70)/S (см2)

Берем среднюю величину коэффициента 60.

Теперь зная количество витков на один вольт есть возможность подсчитать количество витков в каждой обмотке. Осталось всего лишь найти сечение провода, которым выполнится намотка обмоток. Медь, для этого лучший материал, так как обладает высокой токопроводимостью и быстро остывает в случае нагрева. Тип провода ПЭЛ или ПЭВ. Кстати, нагрев даже самого идеального электромагнитного устройства неизбежен, поэтому при изготовлении сетевого трансформатора актуален и вопрос вентиляции. Для этого хотя бы предусмотреть на корпусе естественную вентилируемую конструкцию путём вырезания отверстий.

Ток в обмотке равен

I=P/U

Диаметр сечения проводника для обмотки определяется по формуле:

D= (0,7÷0,9)√I

где 0,7-0,9 это коэффициент плотности тока в проводнике. Чем больше его значение, тем меньше будет греться провод при работе.

Существует множество методов расчёта характеристик и параметров, этот же самый простой, но и примерный (неточный). Более точный расчет обмоток трансформатора применяется для производственных и промышленных нужд.

Расчёт трехфазного трансформатора

Изготовление трехфазного трансформатора и его точный расчёт процесс более сложный, так как здесь первичная и вторичная обмотка состоят уже из трёх катушек. Это разновидность силового трансформатора, магнитопровод которого выполнен чаще всего стержневым способом. Здесь уже появляются такие понятие, как фазные и линейные напряжения. Линейные измеряются между двумя фазами, а фазные между фазой и землёй. Если трансформатор трехфазный рассчитан на 0,4 кВ, то линейное напряжение будет 380В, а фазное 220 В. Обмотки могут быть соединены в звезду или треугольник, что даёт разные величины токов и напряжений.

Обмотки трехфазного трансформатора расположены на стержнях так же, как и в однофазном, т. е. обмотки низшего напряжения НН размещаются ближе к стержню, а обмотки высшего напряжения ВН — на обмотках низшего напряжения.

Высоковольтные трансформаторы трёхфазного тока рассчитываются и изготавливаются исключительно в промышленных условиях. Кстати, любой понижающий трансформатор при обратном включении, выполняет роль повышающего напряжение устройства.

Расчет тороидального трансформатора

Такая конструкция трансформаторов используется в радиоэлектронной аппаратуре, они обладают меньшими габаритами, весом, а также повышенным значением КПД. За счёт применения ферритового стержня помехи практически отсутствует, это даёт возможность не экранировать данные устройства.

Простой расчет тороидального трансформатора состоит из 5 пунктов:

  • Определение мощность вторичной обмотки P=Uн*Iн;
  • Определение габаритной мощности трансформатора Рг=Р/КПД. Величина его КПД примерно 90-95%;
  • Площадь сечения сердечника и его размеры

  • Определение количества витков на вольт и соответственно количества витков для необходимой величины напряжения.

  • Расчёт тока в каждой обмотке и выбор диаметра проводника делается аналогично, как и в силовых однофазных трансформаторах, описанных выше.

Расчет трансформатора для сварочного полуавтомата

Сварочный полуавтомат предназначен для сварки с механической подачей специальной сварочной проволоки вместо электрода. Источник питания такого устройства также имеет в своей основе мощный трансформатор. Расчёт основан на принципе его работы, на выходе которого должно быть 60 Вольт при холостом ходу. Работает он в короткозамкнутом режиме поэтому и нагрев его обмоток явление нормальное. Расчёт в принципе тоже аналогичен, только в этом случае ещё стоит учесть мощность при продолжительной сварке

Pдл = U2I2 (ПР/100)0.5 *0.001.

Напряжение и силу одного витка измеряют в вольтах и оно будет равно E=Pдл0.095+0.55. Зная эти величины можно приступить и к полному расчёту.

Расчет импульсного трансформатора двухтактного преобразователя

Преимуществом двухтактных преобразователей является их простота и возможность наращивания мощности. В правильно сконструированном двухтактном преобразователе через обмотку проходит неизменный ток, поэтому сильное подмагничивание сердечника отсутствует. Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность. Так как он выполняется на ферритовом сердечнике то и расчет выходного напряжения трансформатора аналогичен обычному тороидальному.

Упростить варианты расчета трансформатора можно применяя специальные калькуляторы расчета, которые предлагают некоторые интернет-ресурсы. Стоит только внести желаемые данные, и автомат выдаст нужные параметры планируемого электромагнитного устройства.

Видео с расчетом трансформатора

Расчет сечения вторичной обмотки трансформатора по току


Как рассчитать мощность трансформатора

Особенность работы стандартного трансформатора представлена процессом преобразования электроэнергии переменного тока в показатели переменного магнитного поля и наоборот. Самостоятельный расчет трансформаторной мощности может быть выполнен в соответствии с сечением сердечника и в зависимости от уровня нагрузки.

Расчет обмотки преобразователя напряжения и его мощности

По сечению сердечника

Электромагнитный аппарат имеет сердечник с парой проводов или несколькими обмотками. Такая составляющая часть прибора, отвечает за активное индукционное повышение уровня магнитного поля. Кроме всего прочего, устройство способствует эффективной передаче энергии с первичной обмотки на вторичную, посредством магнитного поля, которое концентрируется во внутренней части сердечника.

Параметрами сердечника определяются показатели габаритной трансформаторной мощности, которая превышает электрическую.

Расчетная формула такой взаимосвязи:

Sо х Sс = 100 х Рг / (2,22 х Вс х А х F х Ко х Кc), где

  • Sо — показатели площади окна сердечника;
  • Sс — площадь поперечного сечения сердечника;
  • Рг — габаритная мощность;
  • Bс — магнитная индукция внутри сердечника;
  • А — токовая плотность в проводниках на обмотках;
  • F — показатели частоты переменного тока;
  • Ко — коэффициент наполненности окна;
  • Кс — коэффициент наполненности сердечника.

Показатели трансформаторной мощности равны уровню нагрузки на вторичной обмотке и потребляемой мощности из сети на первичной обмотке.

Самые распространенные разновидности трансформаторов производятся с применением Ш —образного и П — образного сердечников.

По нагрузке

При выборе трансформатора учитывается несколько основных параметров, представленных:

  • категорией электрического снабжения;
  • перегрузочной способностью;
  • шкалой стандартных мощностей приборов;
  • графиком нагрузочного распределения.

В настоящее время типовая мощность трансформатора стандартизирована.

Варианты трансформаторов

Чтобы выполнить расчет присоединенной к трансформаторному прибору мощности, необходимо собрать и проанализировать данные обо всех подключаемых потребителях. Например, при наличии чисто активной нагрузки, представленной лампами накаливания или ТЭНами, достаточно применять трансформаторы с показателями мощности на уровне 250 кВА.

В системах электрического снабжения показатели трансформаторной мощности приборов должны позволить обеспечивать стабильное питание всех потребителей электроэнергии.


Повышающий трансформатор как рассчитать

Трансформаторы используются в блоках питания различной аппаратуры для преобразования переменного напряжения.

Блоки питания, собранные по трансформаторной схеме, постепенно снижают распространенность благодаря тому, что современная схемотехника позволяет понизить напряжение без самого громоздкого и тяжелого элемента системы питания.

Трансформаторы для блока питания актуальны в тех случаях, когда габариты и масса не критичны, а требования к безопасности велики. Обмотки (кроме автотрансформатора) осуществляют гальваническое разделение и изоляцию цепей первичного (или сетевого) и вторичного (выходного) напряжений.

Трансформатор

Принцип действия и разновидности трансформаторов

Работа устройства основана на всем известном явлении электромагнитной индукции. Переменный ток, проходящий через провод первичной обмотки, наводит переменный магнитный поток в стальном сердечнике, а он, в свою очередь, вызывает появление напряжения индукции в проводе вторичных обмоток.

Совершенствование трансформатора с момента его изобретения сводится к выбору материала и конструкции сердечника (магнитопровода).

Типы сердечников

Металл для магнитопровода должен иметь определенные технические характеристики, поэтому были разработаны специальные сплавы на основе железа и особая технология производства.

Для изготовления трансформаторов наибольшее распространение получили следующие типы магнитопроводов:

  • броневые;
  • стержневые;
  • кольцевые.

Силовой трансформатор низкой частоты, как понижающий, так и повышающий, имеет сердечник из отдельных пластин трансформаторного железа. Такая конструкция выбрана из соображения минимизации потерь из-за образования вихревых токов в сердечнике, которые нагревают его и снижают КПД трансформатора.

Броневые сердечники наиболее часто выполняются из Ш-образных пластин. Стержневые магнитопроводы могут изготавливаться из П-образных, Г-образных или прямых пластин.

Кольцевые магнитопроводы выполняются из тонкой ленты трансформаторной стали, намотанной на оправку и скрепленной клеящим составом.

Из ленты также могут выполняться броневые и стержневые сердечники, причем такая технология наиболее часто встречается у маломощных устройств.

Виды магнитопроводов

Ниже приведена методика расчета трансформатора, где показано:

  • как рассчитать мощность трансформатора;
  • как выбрать сердечник;
  • как определить количество витков и сечение (диаметр) проводов обмоток;
  • как собрать и проверить готовую конструкцию.

Исходные данные, необходимые для расчета

Расчет сетевого трансформатора начинается с определения его полной мощности. Поэтому, перед тем, как рассчитать трансформатор, нужно определиться с мощностью потребления всех, без исключения, вторичных обмоток. Согласно мощности выбирается сечение сердечника. Опять же, от мощности определенным образом зависит и КПД. Чем больше полная мощность, тем выше КПД. Принято в расчетах ориентироваться на такие значения:

  • до 50 Вт – КПД 0.6;
  • от 50 Вт до 100 Вт – КПД 0.7;
  • от 100 Вт до 150 Вт – КПД 0.8;
  • выше 150 Вт – КПД 0.85.

Количество витков сетевой и вторичной обмоток рассчитывается уже после выбора магнитопровода. Диаметр или поперечное сечение проводов каждой обмотки определяется на основании протекающих через них токов.

Выбор магнитопровода сердечника

Минимальное сечение сердечника в см2 определяется из габаритной мощности. Габаритная мощность трансформатора – это суммарная полная мощность всех вторичных обмоток с учетом КПД.

Итак, мощность трансформатора можно определить, это полная суммарная мощность всех вторичных обмоток:

Умножая полученное значение на КПД, завершаем расчет габаритной мощности.

Определение площади стержня сердечника производится после того, как произведен расчет габаритной мощности трансформатора из такого выражения:

S=√P.

Зная площадь сечения центрального стержня магнитопровода, можно подбирать нужный из готовых вариантов.

Важно! Сердечник, на котором будут располагаться обмотки, должен иметь, по возможности, сечение, как можно более близкое к квадрату. Площадь сечения должна быть равной или несколько больше расчетного значения.

Качество работы и технологичность сборки также зависит от формы магнитопровода. Наилучшим качеством обладают конструкции, выполненные на кольцевом магнитопроводе (тороидальные). Их отличает максимальный КПД для заданной мощности, наименьший ток холостого хода и минимальный вес. Основная сложность заключается в выполнении обмоток, которые в домашних условиях приходится мотать исключительно вручную при помощи челнока.

Проще всего делать трансформаторы на разрезных ленточных магнитопроводах типа ШЛ (Ш-образный) или ПЛ (П-образный). Как пример, можно привести мощный трансформатор блока питания старого цветного телевизора.

Трансформатор телевизора УЛПЦТИ

Трансформаторы старого времени выпуска или современные дешевые выполнены с использованием отдельных Ш,- или П-образных пластин. Технологичность выполнения обмоток у них такая же, как у ленточных разрезных, но трудность состоит в сборке магнитопровода. Такие устройства практически всегда будут иметь повышенный ток холостого хода, особенно, если используемое железо низкого качества.

Расчет количества витков и диаметра проводов

Расчет трансформатора начинается с определения необходимого количества витков обмоток на 1 В напряжения. Найденное значение будет одинаковым для любых обмоток. Для собственных целей можно применить упрощенный метод расчета. Посчитать, сколько надо витков на 1 В можно, подставив площадь сечения стержня магнитопровода в см2 в формулу:

где k – коэффициент, зависящий от формы магнитопровода и его материала.

На практике с достаточной точностью приняты следующие значения коэффициента:

  • 60 – для магнитопровода из Ш,- и П-образных пластин;
  • 50 – для ленточных магнитопроводов;
  • 40 – для тороидальных трансформаторов.

Большие значения связаны с невозможностью плотного заполнения сердечника отдельными металлическими пластинами. Как видно, наименьшее количество витков будет иметь тороидальный трансформатор, отсюда и выигрыш в массе изделия.

Зная, сколько витков нужно на 1 В, можно легко узнать количество витков каждой из обмоток:

где U – значение напряжения холостого хода на обмотке.

У маломощных трансформаторов (до 50 Вт) нужно получившееся количество витков первичной обмотки увеличить на 5%. Таким образом, компенсируется падение напряжения, которое возникает на обмотке под нагрузкой (в понижающих трансформаторах первичная обмотка всегда имеет большее количество витков, чем вторичные).

Диаметр провода рассчитываем с учетом минимизации нагрева вследствие протекания тока. Ориентировочным значением считается плотность тока в обмотках 3-7 А на каждый мм2 провода. На практике расчет диаметра проводов обмоток можно упростить, используя простые формулы, что дает допустимые значения в большинстве случаев:

Меньшее значение применяется для расчета диаметров проводов вторичных обмоток, поскольку у понижающего трансформатора они располагаются ближе к поверхности и имеют лучшее охлаждение.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт

Где:Р_2 – мощность на выходе трансформатора, нами задана 60 ватт ;

U _2 — напряжение на выходе трансформатора, нами задано 36 вольт ;

I _2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт .

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1

, мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S .

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:S — площадь в квадратных сантиметрах,P _1 — мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков ,

округляем до 173 витка .

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера .

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода,

принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм .

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где : d — диаметр провода .

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм² .

Округлим до 1,0 мм².

Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм . и площадью по0,5 мм² .

Или два провода:
— первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .что в сумме дает: 0,79 + 0,196 = 0,986 мм².
Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Смотрите статьи:
— «Как намотать трансформатор на Ш-образном сердечнике».— «Как изготовить каркас для Ш — образного сердечника».
Электрический аппарат — трансформатор используется для преобразования поступающего переменного напряжения в другое — исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Силовые трансформаторы, простой расчет

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см 2 ) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см 2 .

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

Источник

Расчет

Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.


Трансформатор позволяет понизить напряжение до необходимых параметров.

Формула закона трансформации

Итак, закон трансформации определяется нижеследующей формулой:

U1/U2=n1/n2, где:

  • U1 – напряжение на первичной обмотке,
  • U2 – на вторичной,
  • n1 – количество витков на первичной обмотке,
  • n2 – на вторичной.

Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.

Советуем изучить Конденсатор электролитический

Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.

А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.

Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.

И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.

Площадь сердечника

Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:

S=1,15 * √P

В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.


Разновидности сердечников для трансформатора.

Количество витков в первичной обмотке

Здесь используется следующая формула:

n=50*U1/S, понятно, что U1 равно 220 В.

Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче

Здесь важно, чтобы количество обмоток уместилось

Сечение провода

И последняя четвертая формула касается сечения используемого медного провода в обмотках.

d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.

Расчетный диаметр необходимо также округлить до стандартной величины.

Итак, вот четыре формулы, по которым проводится подбор трансформатора тока

Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц


Обозначение трансформатора на схеме.

Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.

Расчет трансформатора

Многие электронные и радиотехнические устройства получают питание от нескольких источников постоянного напряжения. Они относятся к так называемым вторичным источникам питания. В качестве первичных источников выступают сети переменного тока, напряжением 127 и 220 вольт, с частотой 50 Гц. Для обеспечения аппаратуры постоянным напряжением, вначале требуется выполнить повышение или понижение сетевого напряжения до необходимого значения. Чтобы получить требуемые параметры, необходимо произвести расчет трансформатора, который выполняет функцию посредника между электрическими сетями и приборам, работающими при постоянном напряжении.

  1. Расчет силового трансформатора
  2. Как рассчитать мощность трансформатора
  3. Расчёт трансформатора по сечению сердечника
  4. Как определить число витков обмотки трансформатора не разматывая катушку

Примеры реальных расчетов

В качестве примера рассчитаем трансформатор питания для зарядного устройства. Исходные данные:

  • напряжение сети – 220В;
  • выходное напряжение – 14В;
  • ток вторичной обмотки – 10А;

Используя выходные параметры, определяем мощность вторичной обмотки: P=14∙10=140 Вт

Габаритная мощность: P=1.25∙ 140=175 Вт.

Площадь сечения магнитопровода сердечника составит: S=√175=13.3 см2

Наилучшими параметрами обладают конструкции, у которых сечение сердечника приближается к квадратному. Таким образом выбираем ленточный бронепровод с размерами сердечника 3.5х4 см. Его площадь равняется 14 см2.

Для данного сердечника К=50. Таким образом: W=50/14=3.6 вит/вольт

Для обмоток общее количество витков равняется:

  • первичная обмотка n1=220∙3.6= 792 витка;
  • вторичная обмотка n2=14∙3.6=50 витков.

Определяем диаметр обмоточных проводов: d2=0.7√10=2.2 мм.

Ближайшее стандартное значение – 2.4 мм.

Для нахождения диаметра провода первичной обмотки найдем ток через нее: I=P/U=175/220=0.8А.

Данному току соответствует диаметр: d1=0.7√0.8=0.63 мм.

Ближайшее стандартное значение имеет как раз такое значение.

Более углубленный расчет предполагает оценку коэффициента заполнения свободного окна магнитопровода. Большое значение числа вторичных обмоток может не поместиться в свободном окне, тогда необходимо будет выбрать более мощный сердечник. При слишком свободном размещении обмоток ухудшается КПД устройства, увеличивается магнитное поле рассеивания. Однако, как показывает практика, при правильном выборе сечения сердечника подобные расчеты становятся излишними.

Примеры реальных расчетов

В качестве примера можно выбрать питающую подстанцию жилого района. Нагрузка подстанции является III категории, поэтому коэффициент загрузки допустимо выбирать из большего значения – 0.9-0.95.

Характер потребления тока бытового сектора зависит от времени суток и сезона, но с учетом высокого коэффициента загрузки допустимо учитывать среднее значение потребляемой мощности. Для повышения надежности работы в период максимального потребления рекомендуется использование маслонаполненных трансформаторов, которые отличаются большой перегрузочной способностью в течение длительного периода времени (30% перегрузки в течение 2-х часов).

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:
P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Токи в обмотках

Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее. Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2:

. С помощью сечения сердечника необходимо определить количество витков n , соответствующее 1 вольту напряжения: n = 50/Q.


На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xn xU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…

Любая обмотка трансформатора имеет следующий диаметр проводов: где I – сила тока, проходящего через обмотку в амперах, d – диаметр медного провода в мм. Определить силу тока в первичной (сетевой) обмотке можно по формуле: I1 = P/U1.

Здесь используется общая мощность трансформатора.

Далее выбираются пластины для сердечника с соответствующими типоразмерами. В связи с этим, вычисляется площадь, необходимая для размещения всей обмотки в окне сердечника. Необходимо воспользоваться формулой: Sм = 4 x (d1 2 n1 + d2 2 n2 +d3 2 n3 + d4 2 n4 + …), в которой d1, d2, d3 и d4 – диаметр провода в мм, n1, n2, n3 и n4 – количество витков в обмотках. В этой формуле берется в расчет толщина изоляции проводников, их неравномерная намотка, место расположения каркаса в окне сердечника.

Полученная площадь Sм позволяет выбрать типоразмер пластины таким образом, чтобы обмотка свободно размещалась в ее окне. Не рекомендуется выбирать окно, размеры которого больше, чем это необходимо, поскольку это снижает нормальную работоспособность трансформатора.

Заключительным этапом расчетов будет определение толщины набора сердечника (b), осуществляемое по следующей формуле: b = (100 xQ)/a, в которой «а» – ширина средней части пластины. После выполненных расчетов можно выбирать сердечник с необходимыми параметрами.

Плотность тока можно выбрать по таблице

Конструкция трансформатораПлотность тока (а/мм2) при мощности трансформатора (Вт)
5-1010-5050-150150-300300-1000
Однокаркасная3,0-4,02,5-3,02,0-2,51,7-2,01,4-1,7
Двухкаркасная3,5-4,02,7-3,52,4-2,72,0-2,51,7-2,3
Кольцевая4,5-5,04,0-4,53,5-4,53,0-3,52,5-3,0

Пример:

Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.

А плотность тока я выбрал – 2,5 А/ мм².

1,13√ (1,2 / 2,5) = 0,78 мм

У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.

На картинке два варианта конструкции каркаса: А – обычная, В– секционная.

  1. Количество витков в одном слое.
  2. Количество слоёв.

Ширина моего не секционированного каркаса 40мм.

Советуем изучить Указатель напряжения, разновидности, функции, инструкции по использованию

Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.

124 * 1,08 * 1,1 : 40 ≈ 3,68 слоя

1,1 – коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.

Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.

Определяем толщину обмотки:

1,08 * 4 ≈ 4,5 мм

У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.

Ток катушки «II» вряд ли будет больше чем – 100мА.

1,13√ (0,1 / 2,5) = 0,23 мм

Диметр провода катушки «II» – 0,23мм.

Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.

Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.

Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.

Длина проводов будет равна:

L – длина провода,

p – периметр каркаса в середине намотки,

ω – количество витков,

1,2* – коэффициент.

Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.

Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.

Закрепить конец провода можно обычными нитками.

Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.

Если катушка разделена на секции для первичных и вторичных обмоток трансформатора, то тогда и вовсе можно обойтись без изоляционных прокладок.

Видео: Расчет сечения провода в силовом трансформаторе. Excel

Пример использования Excel в качестве универсального калькулятора для расчета диаметра провода в импульсном трансформаторе. Произведен расчет зависимости максимального тока от сечения проводника.

Типы магнитопроводов

Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо). В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора. Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.

По типу используемого металла сердечники разделяют на:

  • Пластинчатые;
  • Ленточные.

Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.

По типу магнитопровода различают сердечники:

  • Броневые;
  • Стержневые.

Каждый из перечисленных типов может различаться формой пластин или сегментов:

  • Броневый;
  • Ш образный;
  • Кольцевой.

Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.


Типы сердечников

Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.

Как определить число витков обмотки трансформатора не разматывая катушку

При отсутствии данных о конкретной модели трансформатора, количество витков в обмотках определяется при помощи одной из функций мультиметра.

Мультиметр следует перевести в режим омметра. Затем определяются выводы всех имеющихся обмоток. Если между магнитопроводом и катушкой имеется зазор, то сверху всех обмоток наматывается дополнительная обмотка из тонкого провода. От количества витков будет зависеть точность результатов измерений.

Один щуп прибора подключается к концу основной обмотки, а другой щуп – к дополнительной обмотке. По очереди выполняются измерения всех обмоток. Та из них, у которой наибольшее сопротивление, считается первичной. Полученные данные позволяют выполнить расчет трансформатора и вместе с другими параметрами выбрать наиболее оптимальную конструкцию для конкретной электрической цепи.

Сайт для радиолюбителей

Если у Вас есть некий трансформаторный сердечник, из которого нужно сделать трансформатор, то необходимо замерить сердечник (как показано на рисунке), а так же замерить толщину пластины или ленты.

Первым делом необходимо рассчитать площадь сечения сердечника — Sc (см²) и площадь поперечного сечения окна — Sо (см²).

Для тороидального трансформатора:

  • Sc = H * (D – d)/2
  • S = π * d 2 / 4

Для Ш и П — образного сердечника:

Определим габаритную мощность нашего сердечника на частоте 50 Гц:

  • η — КПД трансформатора,
  • Sc — площадь поперечного сечения сердечника, см 2 ,
  • So — площадь поперечного сечения окна, см 2 ,
  • f — рабочая частота трансформатора, Гц,
  • B — магнитная индукция, T,
  • j — плотность тока в проводе обмоток, A/мм 2 ,
  • Km — коэффициент заполнения окна сердечника медью,
  • Kc — коэффициент заполнения сечения сердечника сталью.

При расчете трансформатора необходимо учитывать, что габаритная мощность трансформатора должна быть больше расчетной электрической мощности вторичных обмоток.

Расчет броневого трансформатора

Распространен вид трансформаторов, используемый практически во всех устройствах от зарядных аппаратов для шуруповертов, заканчивая боками питания магнитофонов. В процессе эксплуатации всех этих устройств часто возникают поломки в питателе, связанные со сгоревшим намоточным изделием. Тогда для его восстановления потребуется перемотка, но это проблемы не решает.

Часто требуется увеличить мощность источника, тогда как рассчитать трансформатор, чтобы его железо не перегревалось? Потребуется выбрать железо больших размеров и использовать более толстый провод. Такой ход поможет сохранить работоспособность устройства и даже улучшить характеристики, сделав его стабильнее и устойчивее при скачках напряжений в сети.

К сожалению, не все производители учитывают этот фактор, а ведь наша сеть неустойчива и регулярно в ней наблюдаются помехи в виде высоковольтных игольчатых импульсов. Также возникают ситуации, когда наблюдается просадка сети до 170 В, что характерно в зимний период. Тогда необходимо предусмотреть запас по напряжению как минимум на 40−45%, увеличив мощность и компенсационного стабилизатора. Часто такие ситуации наблюдаются в частном секторе.

Вернемся к расчету Ш-образного трансформатора на ШП-сердечнике. Принцип будет одинаков и с сердечником типа ПЛ при условии размещения обмотки на средней части. Для чего потребуется выполнить следующие шаги:

  • Определить площадь поперечного сечения средней части сердечника. Она выражается буквой S сеч. и находится из произведения ее сторон. Взяв линейку, измеряем параметры сечения, перемножаем и получаем значение в квадратных сантиметрах.
  • На следующем этапе решается вопрос, как рассчитать мощность трансформатора. Это расчетная величина, которую можно определить, возведя S сеч. в квадрат. Значение будет измеряться в Вт и обозначаться буквой «P».
  • При расчете мощности сердечника необходимо учитывать тип использованных пластин. Например, если были применены для набора Ш-20, то общая толщина сердечника должна быть 30 мм при мощности в 36 Вт. Если для трансформатора были использованы пластины Ш-30, то толщина набора будет достаточно в 20 мм, а при использовании Ш-24 — 25 мм. Существуют справочные таблицы, в которых можно найти мощность трансформатора по сечению магнитопровода для конкретной ситуации. Для обеспечения наилучшей стабильности работы источников питания следует использовать железо с избытком мощности как минимум на 25%. То есть, если ранее была расчетная мощность равна 6 Вт, то для надежности работы и исключения насыщения сердечника следует брать в расчет как минимум 8 Вт. Это обязательное условие. Если использовать магнитопровод с меньшей площадью сечения сердечника, то трансформатор быстро выйдет из строя, потому что железо окажется в насыщении, что приведет к увеличению токов в обмотках.
  • На следующем этапе необходимо определиться с количеством обмоток. Для современных транзисторных устройств достаточно будет всего одной или сдвоенной со средней точкой. Поэтому рассмотрим пример расчета именно такого трансформатора. Для этого потребуется воспользоваться понятием «вольт на виток». Значение определяется следующим образом: W /В=(50÷70) / S сеч. Формула справедлива только для сердечников типа ШП и П. Л. При расчете первичной и вторичной обмоток потребуется взять произведение полученного отношения и входного напряжения: W1 = W / B∙U1, W2 = 1,2 ∙ W /B∙U2.
  • Выполняется расчет и выбор диаметра провода. Он выбирается исходя из хорошего теплоотвода и изоляции, для чего рекомендуется применять ПЭЛ или ПЭВ, покрытые лаком. Определить его размер можно по формуле: d =0,7∙√ I. Величина выражается в мм. Провод выбирается с небольшим запасом до 4−6%.

Все программы расчета трансформаторов позволяют находить параметры изделий в любом порядке. Они используют стандартные алгоритмы, по которым выводятся значения. При необходимости можно создать собственный калькулятор с помощью таблиц Excel. Подобным образом работает и калькулятор расчета трансформатора на стержневом сердечнике.

Как измерить диаметр провода.

Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.

Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.

Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.

Пример.

Я намотал 100 витков провода и получил длину набора –39 мм.

39 / 100 = 0,39 мм

По таблице определяю диметр провода по меди – 0,35мм.

Таблица данных обмоточных проводов.
Диаметр без изоляции, ммСечение меди, мм²Сопротив-ление 1м при 20ºС, ОмДопустимая нагрузка при плотности тока 2А/мм²Диаметр с изоляцией, ммВес 100м с изоляцией, гр
0,030,000724,7040,00140,0450,8
0,040,001313,920,00260,0551,3
0,050,0029,290,0040,0651,9
0,060,00286,440,00570,0752,7
0,070,00394,730,00770,0853,6
0,080,0053,630,01010,0954,7
0,090,00642,860,01270,1055,9
0,10,00792,230,01570,127,3
0,110,00951,850,0190,138,8
0,120,01131,550,02260,1410,4
0,130,01331,320,02660,1512,2
0,140,01541,140,03080,1614,1
0,150,01770,990,03540,1716,2
0,160,02010,8730,04020,1818,4
0,170,02270,7730,04540,1920,8
0,180,02550,6880,0510,223,3
0,190,02840,6180,05680,2125,9
0,20,03140,5580,06280,22528,7
0,210,03460,5070,06920,23531,6
0,230,04160,4230,08320,25537,8
0,250,04910,3570,09820,27544,6
0,270,05730,3060,1150,3152,2
0,290,06610,2бб0,1320,3360,1
0,310,07550,2330,1510,3568,9
0,330,08550,2050,1710,3778
0,350,09620,1820,1920,3987,6
0,380,11340,1550,2260,42103
0,410,1320,1330,2640,45120
0,440,15210,1150,3040,49138
0,470,17350,1010,3460,52157
0,490,18850,09310,3780,54171
0,510,20430,08590,4080,56185
0,530,22060,07950,4410,58200
0,550,23760,07370,4760,6216
0,570,25520,06870,510,62230
0,590,27340,06410,5470,64248
0,620,30190,0580,6040,67273
0,640,32170,05450,6440,69291
0,670,35260,04970,7050,72319
0,690,37390,04690,7480,74338
0,720,40720,0430,8140,78367
0,740,43010,04070,860,8390
0,770,46570,03760,930,83421
0,80,50270,03481,0050,86455
0,830,54110,03241,0820,89489
0.860,58090,03011,160,92525
0,90,63620,02751,270,96574
0,930,67930,02581,360,99613
0,960,72380,02421,451,02653
10,78540,02241,571,07710
1,040,84950,02061,71,12764
1,080,91610,01911,831,16827
1,120,98520,01781,971,2886
1,161,0570,01662,1141,24953
1,21,1310,01552,261,281020
1,251,2270,01432,451,331110
1,31,3270,01322,6541,381190
1,351,4310,01232,861,431290
1,41,5390,01133,0781,481390
1,451,6510,01063,31,531490
1,51,7670,00983,5341,581590
1,561,9110,00923,8221,641720
1,622,0610,00854,1221,711850
1,682,2170,00794,4331,771990
1,742,3780,00744,7561,832140
1,812,5730,00685,1461,92310
1,882,7770,00635,5551,972490
1,952,9870,00595,982,042680
2,023,2050,00556,4092,122890
2,13,4640,00516,922,23110
2,264,0120,00448,0232,363620
2,444,6760,00379,3522,544220

Советуем изучить Полезная мощность

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки

. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля

. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку

. Таким образом, катушки связаны силовыми магнитными линиями.
Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС)
. Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии

. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Возможные схематические решения

Схем подключения вторичной обмотки трансформаторов, да и вообще всей электроники две:

  • Звезда, которая используется для повышения мощности сети.
  • Треугольник, который поддерживает постоянное напряжение в сети.

Вне зависимости от выбранной схемы, наиболее трудными считается изготовление и подключение небольших трансформаторов. Сюда относится и столь популярный в запросах поисковиков аtx. Это модель, которая устанавливается в системных блоках компьютеров, и изготовить ее самостоятельно крайне трудно.

В число трудностей при изготовлении маленьких трансформаторов стоит отнести сложность обмотки и изоляции, правильного подключения вторичной обмотки вне зависимости от выбранной схемы, а так же сложности с поиском сердечника. Короче говоря, проще и дешевле такой трансформатор купить. А вот как выбрать подходящую модель – это совсем другая история.

На что влияет количество витков в трансформаторе

Если говорить о вторичных обмотках трансформатора, то значение числа витков в них в основном влияет на выходное напряжение. Сложнее все обстоит с первичной обмоткой, поскольку напряжение на ней задано питающей сетью. Параметры первичная обмотка оказывают влияние на ток холостого хода, а, следовательно, на коэффициент полезного действия. При изменении параметров первичной обмотки потребуется перерасчет всех вторичных обмоток.

И стоит заметить, что лучше не размыкать вторичную обмотку ТТ.

Формулы и измерение

Формулы для расчета индуктивности катушек довольно сложны и имеет различный вид для различных типов исполнения обмоток:

  • линейный проводник;
  • одновитковая катушка;
  • плоская катушка;
  • соленоидальная обмотка;
  • тороидальная форма.

Наибольшие сложности возникают при расчетах многовитковых многослойных катушек, то есть тех, которые составляют обмотку трансформаторов.

Формулы для расчета индуктивности трансформатора основаны на расчетах соленоида:

L=µµN2S/l, где

µ0 – магнитная постоянная;

µ – магнитная проницаемость сердечника;

N – количество витков;

S – площадь одного витка;

l – длина обмотки.

Для измерения индуктивности существует несколько методик и приборов, созданных на их основе. В большинстве случаев измерение производится путем вычислений индуктивного сопротивления катушки при подаче образцового напряжения заданной частоты и измеренного значения тока через обмотку.

В специализированных приборах вычисления производятся автоматически, и пользователь только считывает показания шкалы прибора, выраженные в единицах индуктивности – Гн, мГн или мкГн.

Расчет трансформатора

Силовой трансформатор является наиболее простым примером преобразования электрической энергии. Даже при условии постоянного совершенствования радиоэлектронных устройств и источников питания на их основе блоки питания на основе трансформаторов переменного напряжения не теряют актуальности.

Трансформаторы для блока питания имеют большие габариты и массу, работают в ограниченном диапазоне допустимого входного напряжения, но при этом очень просты в реализации, отличаются высокой надежностью и ремонтопригодностью.

Как выбрать ферритовый кольцевой сердечник?

Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в .

Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.

Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.

Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.

В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.

Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».

Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.

Как правильно мотать

Получив большинство технических данных, определив точное назначение и сферу использования будущего устройства, элементов обмоток катушки трансформатора, получив заводские шаблоны для выбранного вида обмотки приступают к практической реализации намоточных процессов.

Здесь большую роль будет играть опытность исполнения таких работ, наличие инструментов для такой работы, а также терпение.

Требуется использовать обязательный алгоритм действий в таком формате работ и приготовится к нескольким неудачам заблаговременно, если опыта проведения намотки витков катушки трансформатора ранее не было. В настоящее время как электронных, так и бумажных обучающих источников по всем правилам намотки обмотки трансформатора достаточно много для того, чтобы новичок через некоторое время в этих работах смог стать профессионалом.

Принцип действия аппарата

Принцип действия устройства основан на импульсной подачи энергии. Оборудование разделяется на две обширных группы: с сигмамодуляцией и импульсной модуляцией. Первые отличаются тем, что они изменяются соотношения продолжительности импульсов с их частотой. Момент выбирается, когда закончится подача энергии и включится транзистор.

Продолжительность функционирования зависит от характеристик выходного напряжения. Если говорить о вариантах с широтно-импульсной модуляцией, то тут частота идентичная и постоянная. Напряжение — характеристика стабильная, определяется оно длительностью импульса к периоду его прохождения.

Также принцип работы определяется тем непрерывный или прерывистый поток магнитного поля установлен. Нельзя сказать, что какой-то из них лучше, просто это определяет вариативность использования.

Любой одноходовый импульсный трансформатор имеет как достоинства, так и недостатки. Среди преимуществ использования выделяют:

  • минимальный вес и размеры, если сравнивать с другим видом оборудования, предназначенным для работы с частотой около 50 Гц;
  • не нужна защита от короткого замыкания, так как оно произойти теоретически не может;
  • сокращение использования меди, в результате чего трансформатор имеет минимальную цену;
  • изменение показателей в зависимости от характеристик питающей цепи;
  • нет помех, передача туда и обратно исключена из-за конструктивных особенностей.

Но, как и любое другое оборудование, обратноходовый импульсный трансформатор имеет и недостатки. К их числу относятся:

  • максимальный запас энергии составляет 200 Вт — показатель ограничен работой дросселя;
  • нет возможности работы на холостом ходу, то есть нагрузка подключается в обязательном порядке;
  • возникают электромагнитные помехи и передаются, так как они есть в нагрузке, а она нужна.

Необходимые сведения

Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания. Следует грамотно подойти к процессу расчета, учесть такие показатели, как магнитную индуктивность, КПД и плотность тока. Иначе изделие получится ненадежным и скоро выйдет из строя. К основным характеристикам следует отнести:

  • Входное напряжение сети. Оно зависит от источника, к которому будет подключен трансформатор. Стандартными являются: 110 В, 220 В, 380 В, 660 В. На практике оно может быть любым, что зависит от характеристик промежуточных цепей.
  • Выходное напряжение трансформатора — величина, требуемая для обеспечения стабильной работы потребителя. Часто требуется изготовить изделие с несколькими номиналами или с регулируемым напряжением. Тогда необходимо учитывать максимальную его величину.
  • Ток в нагрузке. При фиксированном значении рассчитываются жесткие характеристики устройства, но часто требуется обеспечить регулируемую величину, тогда потребуется учесть максимальную его величину.
  • Частота сети. У нас применяется европейский стандарт, то есть 50 Гц.
  • Мощность нагрузки. Это не основной параметр, потому что ее можно определить по напряжению и току.
  • Количество выходных обмоток. В некоторых электронных приборах используются блоки питания с несколькими выходными напряжениями. Для изготовления силовой электроники используется в основном один номинал, например, для сварочных трансформаторов.



Также потребуется учесть тип сердечника, потому что от его конструкции напрямую зависит принцип расчета показателей изделия. Существует много разновидностей как конструкций, так и материалов. Если учитывать последние нет смысла из-за незначительных погрешностей, то форма и размеры имеют большое значение. Поэтому необходимы разные алгоритмы расчета, что зависит от этого критерия. Начнем с самого простого и распространенного.

Не всегда требуется расчет вести с требуемых данных. Нередко в наличии есть какое-то железо, тогда потребуется определить мощность трансформатора по сечению магнитопровода. Программы онлайн, имеющиеся в интернете, позволяют определять параметры любым порядком.

Силовые трансформаторы, простой расчет — Радиомастер инфо

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

 

 

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и  токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см2) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см2.

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

N = (50 ÷70)/S (см2)

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

N = 60/13,5 = 4,44

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

D(мм) = (0,7÷0,8)√I(А)

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

формулы, фото и видео как рассчитать потери трансформатора

Автор Aluarius На чтение 6 мин. Просмотров 4.3k. Опубликовано

В основе сборки лежит расчет трансформатора, он же блок питания. Поэтому стоит поговорить именно о проводимых расчетах, то есть, разобраться с формулами и указать на нюансы.

Но проще и дешевле собрать его своими руками. К тому же сам процесс сборки достаточно интересный. Но как показывает практика, в основе сборки лежит расчет трансформатора, он же блок питания. Поэтому стоит поговорить именно о проводимых расчетах, то есть, разобраться с формулами и указать на нюансы.

Конструкция трансформатора.

Конструкция трансформатора

Если посмотреть на трансформатор с внешней стороны, то это Ш-образное устройство, состоящее из металлического сердечника, картонного или пластикового каркаса и обмотки из медной проволоки. Обмоток две.

Сердечник – это несколько стальных пластин, которые обработаны специальным лаком и соединены между собой. Лак наносится специально, чтобы между пластинами не проходило напряжение. Таким способом борются с так называемыми вихревыми токами (токами Фуко). Все дело в том, что токи Фуко просто будут нагревать сам сердечник. А это потери.

Именно с потерями связан и состав пластин сердечника. Трансформаторное железо (так чаще всего называют сталь для сердечника специалисты), если посмотреть ее в разрезе, состоит из больших кристаллов, которые, в свою очередь, изолированы друг от друга окисной пленкой.

Назначение и функциональность

Итак, какие функции выполняет трансформатор?

  1. Это снижение напряжения до необходимых параметров.
  2. С его помощью снижается гальваническая развязка сети.

Что касается второй функции, то необходимо дать пояснения. Обе обмотки (первичная и вторичная) трансформатора тока между собой напрямую не соединены. Значит, сопротивление прибора, по сути, должно быть бесконечным. Правда, это идеальный вариант. Соединение же обмоток происходит через магнитное поле, создаваемой первичной обмоткой. Вот такой непростой функционал.

Расчет

Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.

Трансформатор позволяет понизить напряжение до необходимых параметров.

Формула закона трансформации

Итак, закон трансформации определяется нижеследующей формулой:

U1/U2=n1/n2, где:

  • U1 – напряжение на первичной обмотке,
  • U2 – на вторичной,
  • n1 – количество витков на первичной обмотке,
  • n2 – на вторичной.

Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.

Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.

А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.


Внимание! Если в собираемом вами трансформаторе не одна вторичная обмотка, то мощность первичной состоит из суммы мощностей вторичных.

Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.

И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.

Площадь сердечника

Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:

S=1,15 * √P

В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.

Обратите внимание! Все полученные расчетным путем параметры имеют неокругленную цифру, поэтому округлять надо обязательно и всегда только в большую сторону. К примеру, расчетная мощность получилась 35,8 Вт, значит, округляем до 40 Вт.

Разновидности сердечников для трансформатора.

Количество витков в первичной обмотке

Здесь используется следующая формула:

n=50*U1/S, понятно, что U1 равно 220 В.

Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче. Здесь важно, чтобы количество обмоток уместилось.

Сечение провода

И последняя четвертая формула касается сечения используемого медного провода в обмотках.

d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.

Расчетный диаметр необходимо также округлить до стандартной величины.

Итак, вот четыре формулы, по которым проводится подбор трансформатора тока. Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц.

Обозначение трансформатора на схеме.

Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.

Заключение по теме

В этой статье мы постарались ответить на вопрос, как рассчитать трансформатор сетевого типа? Данный принцип подбора является упрощенным. Но для практических целей он даже очень достаточный. Так что новичкам лучше использовать именно его, и не лезть в дебри математических выкладок с большим количеством составляющих. Конечно, в нем не учитываются все потери, но округления показателей компенсируют их.

Расчеты повышающего трансформатора

Производитель Модель Усиление (дБ) X-фактор Собственное сопротивление Рекомендуемое сопротивление
Ортофон T5 26 20,0 118,1 3-40 Ом
T10 32 39,8 29,7 2-4 Ом
Т10 МК2 28 25,1 74,5 2-6 Ом
T20 32 39,8 29,7 2-4 Ом
Т20МКИИ 28 25,1 74,5 2-6 Ом
СПУ-Т100 26 20,0 118,1 1-6 Ом
Т1000 26 20,0 118,1 2-6 Ом
T2000 35 56,2 14,9 3
T3000 30 31,6 47,0 2-10 Ом
Fidelity Research FRT-4 31 35,5 37,3 3
26 20,0 118,1 10
25 17,8 148,6 30
20 10,0 470,0 100
FR XF-1 30 31,6 47,0 4-18 Ом
FRT-3 26 20,0 118,1 30
31 год 35,5 37,3 10
XG5 34 50,1 18,7 <3 Ом
26 20,0 118,1 3-18 Ом
22 12,6 296,5 18-40
X1-M 30 31,6 47,0 4-18 Ом
X1-H 25 17,8 148,6 19-40 Ом
X1-L 36 63,1 11,8 3
Denon 320 австралийских долларов 31,1 36 36 3
20,0 10 470 40
340 австралийских долларов 30,4 33 43 год 3
20,0 10 470 40
AU310 20,0 10 470 40
AUS1 22,3 13 278 3-40 Ом
AU300LC 20,0 10 470 40
Audio Technica AT700T 34 50,1 18,7 3
26 20,0 118,1 20
23 14,1 235,6 40
УХО MC4 29,5 30 52,2 3
27,6 24 81,6 6
25,1 18 145,1 12
20,0 10 470,0 40
MC3 29,5 30 52 4
26,0 20 118 12
20,0 10 470 40
Supex SDT 3300 28,5 26,6 66,4 2-10 Ом
Bryston TF1 22,5 13,3 264,3 5-35 Ом
16,5 6,7 1052,2 40-250 Ом
Накамичи MCB100 26,0 20 117,5 2-20 Ом
Sony HA-T110 26 20 117,5 3-40 Ом
Понижающий трансформатор

— принцип работы, уравнения, типы, преимущества и недостатки

Понижающий трансформатор снижает напряжение и, следовательно, используется почти во всех бытовых электроприборах.Наша сегодняшняя электроника сильно зависит от этого. В этом посте мы постараемся разобраться, что это такое, принцип его работы, уравнение, типы, преимущества и недостатки.

Что такое понижающий трансформатор

Понижающий трансформатор — это устройство, которое преобразует высокое первичное напряжение в низкое вторичное напряжение. В понижающем трансформаторе первичная обмотка катушки имеет больше витков, чем вторичная обмотка. На рисунке 1 ниже показано изображение обмотки типичного понижающего трансформатора.

Рис. 1: Изображение обмоток понижающего трансформатора

Принцип работы понижающего трансформатора

Трансформатор работает по принципу «закона Фарадея электромагнитной индукции». Взаимная индукция между обмотками отвечает за передачу сигнала в трансформаторе.

Закон Фарадея гласит, что «когда магнитный поток, связывающий цепь, изменяется, в цепи индуцируется электродвижущая сила, пропорциональная скорости изменения магнитной связи».

ЭДС (электродвижущая сила), индуцированная между двумя обмотками, определяется количеством витков в первичной и вторичной обмотках соответственно. Это соотношение называется , коэффициент .

Способность понижающих трансформаторов снижать напряжение зависит от соотношения витков первичной и вторичной обмоток. Поскольку количество обмоток во вторичной обмотке меньше по сравнению с количеством обмоток в первичной обмотке, количество магнитной связи со вторичной обмоткой трансформатора также будет меньше по сравнению с первичной обмоткой.

Соответственно, наведенная ЭДС во вторичной обмотке будет меньше. Вследствие этого напряжение на вторичной обмотке снижается по сравнению с первичной обмоткой.

Уравнение понижающего трансформатора

Формула, используемая для расчета понижающего трансформатора:

Где,

  • Ns = количество витков во вторичной обмотке
  • Np = количество витков первичной обмотки
  • Vs = напряжение вторичной обмотки
  • Vp = напряжение первичной обмотки

Число витков вторичной обмотки всегда должно быть меньше числа витков первичной обмотки трансформатора i.e Np > Ns для работы трансформатора в качестве «понижающего трансформатора».

Поскольку количество витков во вторичной обмотке будет меньше, общая наведенная ЭДС будет и, следовательно, выходное напряжение во вторичной обмотке также будет меньше, чем входное напряжение первичной обмотки.

Давайте разберемся, рассмотрев ситуацию с понижающим трансформатором, в котором количество витков вторичной обмотки [Ns] составляет 250, число витков первичной обмотки [Np] составляет 5000, а входное напряжение [Vp] составляет 240. Затем напряжение на вторичной обмотке [Vs] можно рассчитать по формуле:

Купить перестроив уравнение, получим:

Следовательно, напряжение на вторичной обмотке трансформатора составляет 12 В, что меньше, чем на первичной обмотке.Таким образом, трансформатор называется понижающим трансформатором.

Типы понижающих трансформаторов

Понижающие трансформаторы можно разделить на три категории на основе ответвлений во вторичной обмотке. Это:

  • Однофазный понижающий трансформатор
  • Понижающий понижающий трансформатор с центральным ответвлением
  • Многоканальный понижающий трансформатор

Однофазный понижающий трансформатор

Используется для понижения номинальных значений тока и входного напряжения, дает низкий уровень выходное напряжение и ток.

Ex: 12 В переменного тока.

Рис. 2 — Символ и физический вид однофазного понижающего трансформатора

Понижающий понижающий трансформатор с центральным ответвлением

Понижающие трансформаторы этого типа будут иметь одну первичную обмотку и центральное разделение вторичной обмотки. по которому он дает выходное напряжение с центральной пинтой.

Пример: 12v-0-12v.

Рис. 3 — Символ и физический вид понижающего трансформатора с центральным отводом

Многоканальный понижающий трансформатор

Этот тип понижающих трансформаторов имеет несколько ответвлений во вторичной обмотке.Множественные отводы используются для получения желаемого переменного выхода с вторичными обмотками.

Пример: 0-12 В, 0-18 В.

Рис. 4 — Символ и физический вид многоотводного понижающего трансформатора

Применения понижающего трансформатора

Различные применения понижающего трансформатора включают:

  • В основных адаптерах и зарядных устройствах для сотовых телефонов, стереосистемы и проигрыватели компакт-дисков
  • Для понижения уровня напряжения в линии передачи
  • В сварочных аппаратах путем снижения напряжения и увеличения тока.
  • В телевизорах, стабилизаторах напряжения, инверторах и т. Д.

Преимущества понижающего трансформатора

Преимущества понижающего трансформатора следующие:

  • Полезно для понижения напряжения, что упрощает и удешевляет передачу энергии
  • КПД более 99%
  • Обеспечивает различные требования к напряжению
  • Низкая стоимость
  • Высокая надежность
  • Высокая долговечность

Недостатки понижающего трансформатора

Недостатки понижающего трансформатора следующие:

  • Требуется количество отказов при техническом обслуживании, которые могут повредить трансформатор
  • Неустойчивость затрат на сырье
  • Устранение неисправности требует больше времени

Роль понижающего трансформатора в передаче напряжения

Рис.5 — Цепь распределения напряжения с использованием трансформатора

На электростанциях электричество переменного тока генерируется при почти низком пиковом напряжении около 440 В. Обычный конечный пользователь использует напряжение от 220 В до 240 В для дома и бизнеса. Сгенерированное выходное напряжение электростанции передается на повышающий трансформатор, который увеличивает его пиковое напряжение с нескольких сотен вольт до нескольких киловольт.

Выход повышающего трансформатора подается на линию передачи высокого напряжения, которая транспортирует мощность / электричество на большие расстояния.Это сделано для уменьшения падения напряжения. Как только эта мощность достигает точки потребления / конечной подстанции, с помощью понижающего трансформатора она снижается до желаемого значения, то есть 220-240 В.

  Также читают:
  Однопереходный транзистор (UJT) - конструкция, работа, характеристики и применение
Технология сотовых сетей для телефонов 5G - рабочая архитектура, характеристики, преимущества и недостатки 

Калькулятор трансформатора (расчет трех фаз, кВА и обмоток)

Формулы расчета трансформатора

Этот бесплатный онлайн-калькулятор трансформатора позволяет рассчитать ток полной нагрузки в первичной обмотке. и вторичные обмотки трансформатора.Входами являются трансформатор кВА (мощность), а также напряжение в первичной и вторичной обмотках. Вы можете использовать этот калькулятор как для однофазных, так и для трехфазных расчетов трансформаторов, для расчета коэффициента витков (коэффициента обмоток), а также для определения того, является ли это понижающим трансформатором или повышающим трансформатором.

Обратите внимание, что все расчеты, приведенные ниже, относятся к идеальному трансформатору, то есть с коэффициентом мощности, равным 1.

Количество фаз

Вы можете выбрать трехфазный трансформатор или однофазный трансформатор.Обратите внимание, что это повлияет на итоговый расчет, поскольку используются разные уравнения. Формула для трехфазных и однофазных трансформаторов приведена ниже.

3-фазный ток трансформатора равен:

I 3-фазный = P 3-фазный / (√3 × V 3-фазный )

Где:

  • I 3-фазный [кА] [кА] ток, протекающий через обмотки
  • P 3 фазы [кВА] = номинальная трехфазная мощность трансформатора
  • В 3 фазы [кВ] = трехфазное напряжение на обмотках

и одиночное ток фазного трансформатора равен:

I = P / V

Где:

  • I [кА] = ток, протекающий по обмоткам
  • P [кВА] = номинальная однофазная мощность трансформатора
  • В [кВ] = однофазное напряжение на обмотках

Обратите внимание, что обе эти формулы применимы как к первичной, так и к вторичной стороне соответственно, но не вместе.Не смешивайте напряжение / ток на первичной стороне с напряжением / током на вторичной стороне.

Номинальные параметры трансформатора

Номинальные параметры трансформатора - это номинальная мощность трансформатора. Обычно это значение указывается в кВА, но также может быть указано в ВА или МВА.

Напряжение первичного трансформатора

Напряжение первичного трансформатора - это напряжение на первичных обмотках трансформатора . Обычно это значение указывается в кВ, но может быть также выражено в В или МВ.

Напряжение вторичного трансформатора

Напряжение вторичного трансформатора - это напряжение на вторичных обмотках трансформатора . Обычно это значение указывается в кВ, но может быть также выражено в В или МВ.

Первичный ток полной нагрузки

Первичный ток полной нагрузки - это ток, протекающий через первичные обмотки трансформатора . Обычно это значение выражается в амперах (A), но может быть выражено в кА или мА.

Для 3-фазных трансформаторов , первичный ток полной нагрузки (т.е.е. ток в первичных обмотках) равен:

I p = P / (√3 × V p )

Где

  • I p [кА] = текущий ток через первичные обмотки
  • P [кВА] = номинальная трехфазная мощность трансформатора
  • В p [кВ] = трехфазное напряжение на первичных обмотках

Для однофазных трансформаторов , первичный ток полной нагрузки (т.е.е. ток в первичных обмотках) равен:

I p = P / V p

Где

  • I p [кА] = ток, протекающий через первичные обмотки
  • P [кВА] = номинальная однофазная мощность трансформатора
  • В p [кВ] = однофазное напряжение на первичной обмотке

Вторичный ток полной нагрузки

Вторичный ток полной нагрузки - это ток, протекающий через вторичные обмотки трансформатора .Обычно это значение выражается в амперах (A), но может быть выражено в кА или мА.

Для 3-фазных трансформаторов вторичный ток полной нагрузки (т. Е. Ток во вторичных обмотках) равен:

I с = P / (√3 × V с )

Где

  • I с [кА] = ток, протекающий через вторичные обмотки
  • P [кВА] = номинальная трехфазная мощность трансформатора
  • В с [кВ] = 3-фазное напряжение на вторичных обмотках

Для однофазных трансформаторов , вторичный ток полной нагрузки (т.е.е. ток во вторичных обмотках) равен:

I с = P / V с

Где

  • I с [кА] = ток, протекающий по вторичным обмоткам
  • P [кВА] = номинальная однофазная мощность трансформатора
  • В с [кВ] = однофазное напряжение на вторичных обмотках

Коэффициент трансформации трансформатора

Коэффициент трансформации трансформатора ( также известное как соотношение обмоток трансформатора) представляет собой соотношение между первичной и вторичной обмотками трансформатора.Это важно, поскольку оно прямо пропорционально величине напряжения, которое будет понижаться или повышаться между первичной и вторичной обмотками.

Формула для коэффициента трансформации трансформатора:

n = V p / V s = N p / N s

Где

  • n = отношение витков трансформатора
  • В p = напряжение на первичных обмотках
  • В с = напряжение на вторичных обмотках
  • N p = количество обмоток на первичной стороне трансформатора
  • N s = количество обмоток вторичной стороны трансформатора

Тип трансформатора

Тип трансформатора может быть понижающим или повышающим трансформатором.

Понижающий трансформатор преобразует высокое напряжение и низкий ток первичной обмотки трансформатора в низкое напряжение и большой ток во вторичных обмотках трансформатора. Следовательно, понижающий трансформатор будет иметь первичное напряжение трансформатора, которое на больше, чем на , чем его вторичное напряжение трансформатора.

Повышающий трансформатор преобразует низкое напряжение и большой ток первичных обмоток трансформатора в высокое напряжение и низкое значение тока во вторичных обмотках трансформатора.Следовательно, напряжение повышающего трансформатора будет иметь первичное напряжение трансформатора, которое на меньше , чем напряжение вторичного трансформатора.

Как рассчитать коэффициент трансформации трансформатора

Обновлено 28 декабря 2020 г. (DC) за счет использования трансформатора. Через все различные типы тока, который может протекать через цепь, помогает иметь возможность управлять этими электрическими явлениями.Во всех случаях использования трансформаторов для изменения напряжения в цепях трансформаторы в значительной степени полагаются на коэффициент передачи.

Расчет коэффициента витков трансформатора

Коэффициент витков трансформатора - это деление числа витков в первичной обмотке на число витков во вторичной обмотке по уравнению

T_R = \ frac {N_P } {N_S}

Это соотношение также должно равняться напряжению первичной обмотки, деленному на напряжение вторичной обмотки, как указано как V p / V s .Первичная обмотка относится к активной катушке индуктивности, элемент схемы, который индуцирует магнитное поле в ответ на поток заряда трансформатора, а вторичная обмотка - это катушка индуктивности без питания.

Эти соотношения верны при предположении, что фазовый угол первичной обмотки равен фазовым углам вторичной обмотки по уравнению Φ P = Φ S . Этот первичный и вторичный фазовый угол описывает, как ток, который чередуется между прямым и обратным направлениями в первичной и вторичной обмотках трансформатора, синхронизируется друг с другом.

Для источников переменного напряжения, используемых с трансформаторами, форма входящего сигнала является синусоидальной, то есть формой, которую создает синусоидальная волна. Коэффициент трансформации трансформатора показывает, насколько изменяется напряжение через трансформатор при прохождении тока от первичной обмотки ко вторичной обмотке.

Также обратите внимание, что слово «соотношение» в этой формуле относится к дроби , а не является фактическим соотношением. Доля 1/4 отличается от соотношения 1: 4. В то время как 1/4 - это одна часть целого, разделенная на четыре равные части, соотношение 1: 4 означает, что для одного чего-то есть четыре других.«Передаточное число» в соотношении витков трансформатора - это дробная часть, а не соотношение в формуле коэффициента трансформации трансформатора.

Коэффициент трансформации трансформатора показывает, что относительная разница напряжения зависит от количества катушек, намотанных вокруг первичной и вторичной частей трансформатора. Трансформатор с пятью обмотками первичной обмотки и 10 обмотками вторичной обмотки разрезает источник напряжения пополам, как указано в 5/10 или 1/2.

Повышение или понижение напряжения в результате этих катушек определяет, является ли это повышающий трансформатор или понижающий трансформатор, по формуле коэффициента трансформации.Трансформатор, который не увеличивает и не уменьшает напряжение, является «трансформатором полного сопротивления», который может либо измерять импеданс, сопротивление цепи току, либо просто указывать на разрывы между различными электрическими цепями.

Конструкция трансформатора

Основные компоненты трансформатора - это две катушки, первичная и вторичная, которые наматываются на железный сердечник. В ферромагнитном сердечнике или сердечнике из постоянного магнита трансформатора также используются тонкие электрически изолированные пластины, так что эти поверхности могут уменьшать сопротивление току, который проходит от первичных катушек ко вторичным катушкам трансформатора.

Конструкция трансформатора обычно рассчитана на минимальные потери энергии. Поскольку не весь магнитный поток от первичной обмотки проходит во вторичную, на практике будут некоторые потери. Трансформаторы также будут терять энергию из-за вихревых токов , локализованного электрического тока, вызванного изменениями магнитного поля в электрических цепях.

Трансформаторы получили свое название, потому что они используют эту установку намагничивающего сердечника с обмотками на двух отдельных его частях для преобразования электрической энергии в магнитную энергию посредством намагничивания сердечника из тока через первичные обмотки.

Затем магнитный сердечник индуцирует ток во вторичных обмотках, который преобразует магнитную энергию обратно в электрическую. Это означает, что трансформаторы всегда работают от входящего источника переменного напряжения, который переключается между прямым и обратным направлениями тока через равные промежутки времени.

Типы эффектов трансформатора

Помимо формулы напряжения или количества катушек, вы можете изучить трансформаторы, чтобы узнать больше о природе различных типов напряжений, электромагнитной индукции, магнитных полях, магнитном потоке и других свойствах, которые возникают в результате строительство трансформатора.

В отличие от источника напряжения, который посылает ток в одном направлении, источник переменного напряжения , передаваемый через первичную катушку, создает собственное магнитное поле. Это явление известно как взаимная индуктивность.

Напряженность магнитного поля увеличится до максимального значения, равного разнице магнитных потоков, деленной на период времени, dΦ / dt . Имейте в виду, что в этом случае Φ используется для обозначения магнитного потока, а не фазового угла.Эти силовые линии магнитного поля направлены наружу от электромагнита. Инженеры, создающие трансформаторы, также принимают во внимание потокосцепление, которое является произведением магнитного потока Φ и количества витков в проводе N , вызванного магнитным полем, передаваемым от одной катушки к другой.

Общее уравнение для магнитного потока:

\ Phi = BA \ cos {\ theta}

для площади поверхности, через которую проходит поле A в м 2 , магнитное поле B в теслах и θ как угол между перпендикулярным вектором к площади и магнитным полем.Для простого случая намотанных катушек вокруг магнита поток задается как

\ Phi = NBA

для количества катушек N , магнитного поля B и на определенной площади A Поверхности, параллельной магниту. Однако для трансформатора магнитная связь заставляет магнитный поток в первичной обмотке равняться магнитному потоку вторичной обмотки.

Согласно закону Фарадея, вы можете рассчитать напряжение, индуцированное в первичной или вторичной обмотке трансформатора, вычислив N x dΦ / dt .Это также объясняет, почему соотношение витков трансформатора напряжения одной части трансформатора относительно другой равно количеству витков одной части трансформатора по отношению к другой.

Если вы сравните N x dΦ / dt одной части с другой, dΦ / dt будет компенсироваться из-за того, что обе части имеют одинаковый магнитный поток. Наконец, вы можете рассчитать ампер-витки трансформатора как произведение тока на количество катушек как метод измерения силы намагничивания катушки

Практические трансформаторы

Электрораспределительные сети отправляют электричество от электростанций в здания и дома.Эти линии электропередач начинаются на электростанции, где электрический генератор вырабатывает электрическую энергию из некоторого источника. Это может быть гидроэлектростанция, использующая энергию воды, или газовая турбина, которая использует горение для создания механической энергии из природного газа и преобразования ее в электричество. К сожалению, это электричество вырабатывается как постоянного напряжения , которое для большинства бытовых приборов необходимо преобразовать в переменное напряжение.

Трансформаторы делают это электричество пригодным для использования, создавая однофазные источники питания постоянного тока для домашних хозяйств и зданий из поступающего переменного напряжения переменного тока.Трансформаторы в распределительных сетях также обеспечивают необходимое напряжение для домашней электроники и электрических систем. В распределительных сетях также используются «шины», которые разделяют распределение по нескольким направлениям вместе с автоматическими выключателями, чтобы отдельные разводки были отделены друг от друга.

Инженеры часто учитывают КПД трансформаторов, используя простое уравнение КПД:

\ eta = \ frac {P_O} {P_I}

f или выходная мощность P O и входная мощность P I .Основываясь на конструкции трансформатора, эти системы не теряют энергию из-за трения или сопротивления воздуха, поскольку в трансформаторах не используются движущиеся части.

Ток намагничивания, величина тока, необходимая для намагничивания сердечника трансформатора, обычно очень мала по сравнению с током, который индуцирует первичная часть трансформатора. Эти факторы означают, что трансформаторы обычно очень эффективны с КПД 95% и выше для большинства современных конструкций.

Если вы подали источник переменного напряжения на первичную обмотку трансформатора, магнитный поток, индуцированный в магнитном сердечнике, будет продолжать индуцировать переменное напряжение во вторичной обмотке в той же фазе, что и напряжение источника.Однако магнитный поток в сердечнике остается на 90 ° ниже фазового угла напряжения источника. Это означает, что ток первичной обмотки, ток намагничивания, также отстает от источника переменного напряжения.

Уравнение трансформатора для взаимной индуктивности

В дополнение к полю, магнитному потоку и напряжению, трансформаторы иллюстрируют электромагнитные явления взаимной индуктивности, которые дают большую мощность первичным обмоткам трансформатора при подключении к источнику питания.

Это происходит как реакция первичной обмотки на увеличение нагрузки, то есть что-то, что потребляет мощность на вторичных обмотках. Если вы добавили нагрузку на вторичные обмотки с помощью такого метода, как увеличение сопротивления проводов, первичные обмотки отреагировали бы потреблением большего тока от источника питания, чтобы компенсировать это уменьшение. Взаимная индуктивность - это нагрузка на вторичную обмотку, которую можно использовать для расчета увеличения тока через первичные обмотки.

Если бы вы написали отдельное уравнение напряжения как для первичной, так и для вторичной обмоток, вы могли бы описать это явление взаимной индуктивности. Для первичной обмотки

V_P = I_PR_1 + L_1 \ frac {\ Delta I_P} {\ Delta t} -M \ frac {\ Delta I_S} {\ Delta t}

для тока через первичную обмотку I P , сопротивление нагрузки первичной обмотки R 1 , взаимная индуктивность M , индуктивность первичной обмотки L I , вторичная обмотка I S и изменить во времени Δt .Отрицательный знак перед взаимной индуктивностью M показывает, что ток источника немедленно испытывает падение напряжения из-за нагрузки на вторичную обмотку, но в ответ первичная обмотка увеличивает свое напряжение.

Это уравнение следует правилам написания уравнений, описывающих, как ток и напряжение различаются между элементами схемы. Для замкнутого электрического контура вы можете записать сумму напряжений на каждом компоненте равной нулю, чтобы показать, как напряжение падает на каждом элементе в цепи.

Для первичных обмоток вы пишете это уравнение, чтобы учесть напряжение на самих первичных обмотках ( I P R 1 ), напряжение из-за индуцированного тока магнитного поля. поле L 1 ΔI P / Δt и напряжение за счет влияния взаимной индуктивности вторичных обмоток M ΔI S / Δt.

Аналогичным образом вы можете написать уравнение, описывающее падение напряжения на вторичных обмотках как

M \ frac {\ Delta I_P} {\ Delta t} = I_SR_2 + L_2 \ frac {\ Delta I_S} {\ Delta t}

Это уравнение включает ток вторичной обмотки I S , индуктивность вторичной обмотки L 2 и сопротивление нагрузки вторичной обмотки R 2 .Сопротивление и индуктивность обозначены индексами 1 или 2 вместо P или S соответственно, поскольку резисторы и индуктивности часто нумеруются, а не обозначаются буквами. Наконец, вы можете рассчитать взаимную индуктивность катушек индуктивности напрямую как

M = \ sqrt {L_1L_2}

Формула трансформатора - КПД, коэффициент трансформации, повышение и понижение

Трансформатор преобразует электрическую энергию из одной цепи в другую. Для этого используется электромагнитная индукция. Он известен как преобразователь напряжения, потому что он может преобразовывать высокое напряжение в низкое и наоборот.Трансформатор в исправном состоянии состоит из двух обмоток - основной и вторичной. Повышающие и понижающие трансформаторы - это два типа предлагаемых трансформаторов.

Формула трансформатора

Трансформатор - это электрическое устройство, которое позволяет нам поддерживать мощность при повышении или понижении напряжения в электрической цепи переменного тока. В случае идеального трансформатора мощность, поступающая в оборудование, равна мощности, получаемой на выходе. У реальной техники небольшой процент потерь.Основываясь на явлениях электромагнитной индукции, это устройство, которое преобразует переменную электрическую энергию одного уровня напряжения в переменную электрическую энергию другого уровня напряжения.

[Изображение будет загружено в ближайшее время]

Мощность электрической цепи рассчитывается путем умножения напряжения на силу тока. Значение мощности первичной обмотки такое же, как и мощность вторичной обмотки, как в случае трансформатора.

[(входное напряжение на первичной катушке) × (входной ток на первичной катушке)] = [(выходное напряжение на вторичной катушке) × (выходной ток на вторичной катушке)]

Уравнение трансформатора может быть записано как,

V p xI p = V s x I s

Если мы знаем входное напряжение и количество витков на первичной и вторичной обмотках, мы можем рассчитать выходное напряжение трансформатора.

\ [\ frac {Вход \, Напряжение \, на \, \, Первичная \, Катушка} {Выход \, Напряжение \, на \, \, Вторичный \, Катушка} \] = \ [\ frac { Количество \, из \, витков \, из \, Провода \, на \, \, Первичной \, Катушки} {Количество \, из \, витков \, из \, Провода \, на \, \, Вторичной \ , Coil} \]

Уравнение трансформатора можно записать как,

\ [\ frac {V_ {p}} {V_ {s}} \] = \ [\ frac {N_ {p}} {N_ {s} } \]

Где

В p = Первичное напряжение,

В с = Вторичное напряжение,

N p = количество витков в первичной обмотке

N с = количество витков в вторичная обмотка

I с = Входной ток вторичной обмотки.

I p = Входной ток первичной обмотки.

[Изображение будет загружено в ближайшее время]

Формула КПД трансформатора

КПД трансформатора обозначается буквой «η» и определяется как отношение выходной мощности в ваттах (или кВт) к входной мощности в ваттах (или кВт) (также известный как коммерческий КПД).

Формула КПД трансформатора выглядит просто следующим образом:

КПД = \ [\ frac {Выход \, мощность} {Выход \, мощность + потери} \] x 100%

Формула коэффициента трансформации трансформатора

Количество число оборотов первичной обмотки, деленное на число витков вторичной обмотки, и есть отношение витков трансформатора.Коэффициент трансформации трансформатора влияет на предполагаемое функционирование трансформатора, а также на необходимое напряжение на вторичной обмотке. Когда вторичное напряжение ниже, чем первичное, требуется понижающий трансформатор - количество витков на вторичной обмотке должно быть меньше, чем в первичной, и наоборот для повышающих трансформаторов, когда коэффициент трансформации трансформатора понижает напряжение, он увеличивает ток и наоборот, так что напряжение и коэффициент тока идеального трансформатора напрямую связаны с количеством витков на вторичной обмотке.

Формула коэффициента трансформации для напряжения выглядит следующим образом:

K = \ [\ frac {V_ {1}} {V_ {2}} \]

Где,

В 1 = первичное напряжение

В 2 = Вторичное напряжение

Формула коэффициента трансформации для тока следующая:

K = \ [\ frac {I_ {1}} {I_ {2}} \]

Где,

I 1 = Первичный ток

I 2 = Вторичный ток

Формула повышающего трансформатора

Повышающий трансформатор - это тип трансформатора, который преобразует низкое напряжение (LV) и большой ток со стороны первичной обмотки в высокое напряжение (HV) и низкий ток на вторичной стороне.

[Изображение будет загружено в ближайшее время]

Витки первичной обмотки меньше витков вторичной обмотки повышающего трансформатора, который преобразует низкое первичное напряжение в высокое вторичное напряжение.

Формула повышающего трансформатора выглядит следующим образом:

V S = \ [\ frac {N_ {S}} {N_ {P}} \] x V P

Где,

V p = Первичное напряжение,

В с = Вторичное напряжение,

Н p = количество витков в первичной обмотке

N с = количество витков во вторичной обмотке

Формула понижающего трансформатора

A понижающий трансформатор преобразует высокое первичное напряжение в низкое вторичное напряжение.Первичная обмотка катушки понижающего трансформатора имеет больше витков, чем вторичная обмотка.

[Изображение будет загружено в ближайшее время]

Формула понижающего трансформатора выглядит следующим образом:

V S = \ [\ frac {N_ {S}} {N_ {P}} \] x V P

Где,

В p = Первичное напряжение,

В с = Вторичное напряжение,

N p = количество витков в первичной обмотке

N с = Количество витков во вторичной

Решенные примеры

Пр.1. Количество первичных и вторичных обмоток - 90 и 120 соответственно. Вторичное напряжение равно 310 В, которое определяет первичное напряжение.

Решение:

Дано:

N p = 90,

N s = 120

V s = 310V

Используя формулу расчета трансформатора, мы получаем

\ [\ frac {V_ {p}} {V_ {s}} \] = \ [\ frac {N_ {p}} {N_ {s}} \]

V P = \ [\ frac {N_ {S}} {N_ {P}} \] x V S

V P = \ [\ frac {90} {120} \] x 310

V p = 232.5 В

Пример 2. Количество первичных и вторичных обмоток - 110 и 240 соответственно. Первичное напряжение равно 300 В, что определяет вторичное напряжение.

Решение:

Дано:

N p = 110,

N s = 240

V p = 300V

Формула трансформатора задается,

\ [\ frac {V_ {p}} {V_ {s}} \] = \ [\ frac {N_ {p}} {N_ {s}} \]

V S = \ [\ frac {N_ {S}} {N_ {P}} \] x V P

V S = \ [\ frac {240} {110} \] x 300

V s = 654.5 В

Калькулятор коэффициента трансформации трансформатора

Основная функция силового трансформатора - повышать или понижать напряжение в соответствии с требованиями. Величина трансформации напряжения в трансформаторе зависит от его коэффициента трансформации. Выходное напряжение любого трансформатора теоретически можно рассчитать, исходя из его коэффициента трансформации. Используйте следующий калькулятор коэффициента трансформации трансформатора для расчета коэффициента трансформации.


Онлайн-калькулятор коэффициента поворота

Расчет с использованием SelectVoltageTurnsCurrent

Что такое передаточное число?

Каждая катушка трансформатора содержит определенное количество витков проводника. Коэффициент витков определяется как отношение числа витков проводника в первичной обмотке к числу витков проводника во вторичной обмотке. Пусть N p будет числом витков проводника в первичной обмотке, а N s - числом витков проводника во вторичной обмотке, тогда отношение витков трансформатора может быть задано следующим уравнением:

Передаточное число в идеальном трансформаторе

Предполагается, что идеальный трансформатор имеет нулевое сопротивление обмотки, нулевой поток утечки и нулевые потери.В качестве идеального трансформатора рассмотрите идеальный трансформатор с числом витков Np в первичной обмотке и числом Ns во вторичной обмотке. Пусть Vp будет напряжением, приложенным к первичной обмотке с частотой «f», Vp будет напряжением, измеренным на вторичной обмотке. Пусть φ - поток, соединяющий обе катушки.

Напряжение, индуцируемое за один оборот первичный дается

V p / N p = k. φ м .f

Где k - постоянная величина, а φ м - максимальный поток. Из приведенного выше уравнения

φ м = V p / N p . к.ф

Поскольку тот же поток связывает первичный и вторичная,

В с / N с = k. φ м .f и φ м = V с / N s . k.f

Следовательно, V p / N p . k.f = V с / N с . k.f

Следовательно, V p / N p = V s / N s V с = N p / N с

Связь между коэффициентом оборотов и текущей

Для идеального трансформатора входная мощность всегда равна выходному напряжению.

Следовательно, V p . Я р . cosϕ = V с . Я с . cosϕ

Следовательно, V p / V s = I s / I p

Где I p и I s первичный и вторичный ток соответственно.

Следовательно, для идеального трансформатора выходной ток изменяется обратно пропорционально напряжению.В повышающем трансформаторе первичное напряжение может быть увеличено в зависимости от отношения витков, но ток нагрузки такой же нагрузки при повышенном напряжении будет уменьшаться обратно пропорционально соотношению витков.

Уравнение трансформатора - Высшее - Трансформаторы - Edexcel - GCSE Physics (Single Science) Revision - Edexcel

Соотношение разностей потенциалов на катушках трансформатора соответствует отношению количества витков на катушках.

Это уравнение можно использовать для расчета выходной мощности конкретного трансформатора или для определения того, как спроектировать трансформатор так, чтобы он изменял конкретное напряжение:

\ [\ frac {primary ~ Voltage} {вторичное ~ напряжение } = \ frac {количество ~ витков ~ на ~ ~ ~ первичной катушке} {количество ~ ~ ~ витков ~ на ~ ~ ~ ~ вторичной катушке} \]

\ [\ left [\ frac {V_p} {V_s} = \ frac {N_p} {N_s} \ right] \]

Это когда:

  • V p - разность потенциалов в первичной (входной) катушке в вольтах (V)
  • V s - разность потенциалов вторичной (выходной) катушки в вольтах (В)
  • N ​​ p - количество витков на первичной катушке
  • N s - количество витков на вторичной катушке

В повышающем трансформаторе В с > В p .В понижающем трансформаторе В с < В с .

Пример

Сетевой трансформатор (230 В) имеет 11 500 витков на первичной обмотке и 600 витков на вторичной обмотке. Рассчитайте напряжение, полученное от вторичной обмотки.

\ [\ left [\ frac {V_p} {V_s} = \ frac {N_p} {N_s} \ right] \]

Переупорядочите, чтобы найти V s :

\ [V_s = V_p \ times \ frac {N_s} {N_p} \]

\ [V_s = 230 \ times \ frac {600} {11,500} \]

напряжение вторичной обмотки, \ (V_s = 12 ~ V \)

Трансформатор в примере выше - понижающий трансформатор.Это потому что на вторичной обмотке меньше витков, и на вторичной обмотке меньше напряжения.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *