+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как рассчитать индуктивность катушек с замкнутыми сердечниками?

Всем доброго времени суток. В прошлых статьях (часть 1, часть 2, часть 3) я рассказал о расчёте индуктивности индуктивных элементов без сердечников. Однако их применение ограниченно, вследствие, больших габаритных размеров. Поэтому для увеличения индуктивности и уменьшения размеров и улучшения других показателей индуктивные элементы устанавливают на сердечники из материалов с различными магнитными свойствами.

Особенности расчёта индуктивных элементов с сердечниками

В отличие от индуктивных элементов без сердечников, при расчёте которых учитывался магнитный поток пронизывающий только проводник с током, магнитный поток индуктивных элементов с сердечниками практически полностью замыкается на сердечники. Поэтому при расчёте индуктивности таких элементов необходимо учитывать размеры сердечника и материал, из которого он изготовлен, то есть его магнитную проницаемость.

Обобщённую формулу для расчёта индуктивных элементов с сердечниками можно выразит с помощью следующего выражения

где ω – количество витков катушки,

RM – сопротивление магнитной цепи,

μа – абсолютная магнитная проницаемость вещества, из которого изготовлен сердечник,

SM – площадь поперечного сечения сердечника,

lM – длина средней магнитной силовой линии,

Таким образом, зная размеры сердечника можно достаточно просто вычислить индуктивность. Однако в связи с такой простотой выражения и разбросом магнитной проницаемости материала сердечника, погрешность в расчёте индуктивности составит 25 %.

Для сердечников, имеющих сложную конструктивную конфигурацию, вводится понятие эффективных (эквивалентных) размеров, которые учитывают особенности формы сердечников: эффективный путь магнитной линии

le и эффективная площадь поперечного сечения Se сердечника. Тогда индуктивность катушки с сердечником будет вычисляться по формуле

где ω – количество витков катушки,

μ0 – магнитная постоянная, μ0 = 4π*10-7,

μr – относительная магнитная проницаемость вещества,

Se – эффективная площадь поперечного сечения сердечника,

le – эффективный путь магнитной линии сердечника.

Таким образом, расчёт индуктивности индуктивных элементов с сердечниками сводится к нахождению эффективных размеров сердечника. Для упрощения нахождения данных размеров сердечника ввели вспомогательные величины, называемые постоянные сердечников:

С1 – первая постоянная сердечника, которая равна сумме отношений длины однородных по сечению участков сердечника к поперечного сечения сердечника, измеряется в мм-1;

С2 – вторая постоянная сердечника, которая равна сумме отношений длин однородных по сечению участков сердечника к квадрату своего сечения, измеряется в мм-3;

где N – количество разнородных участков сердечника,

lN – длина N – го участка сердечника,

SN – площадь N – го участка сердечника.

Тогда величины Se и le определятся из следующих выражений

Кроме индуктивности с помощью постоянных С1 и С­2 определяют эффективный объём Ve, который требуется для определения параметоров силовых индуктивных элементов – трансформаторов и дросселей. Если же есть необходимость рассчитать только индуктивность L, то используют только постоянную С1 по следующему выражению

где ω – количество витков катушки,

μ0 – магнитная постоянная, μ0 = 4π*10-7,

μr – относительная магнитная проницаемость вещества,

С1 – первая постоянная сердечника, которая равна сумме отношений длины однородных по сечению участков сердечника к поперечного сечения сердечника.

Несмотря на довольно сложные формулировки и формулы, вычисление индуктивности по ним достаточно простое.

Выпускается достаточно много типов сердечников, которые обладают различными конструктивными особенностями и свойствами, рассмотрим некоторые из них.

Расчёт катушки с тороидальным сердечником

Тороидальные (кольцевые) сердечники, благодаря своей простоте изготовления находят широкое применение в различных импульсных трансформаторах, фильтрах и дросселях и обеспечивают небольшую потребляемую мощность при минимальных потерях.



Тороидальный сердечник.

Для расчёта индуктивности достаточно знать три конструктивных параметра такого магнитопровода: D1 – внешний диаметр, D2 – внутренний диаметр, h – высота сердечника.

Расчёт эффективных параметров сердечника, как сказано выше, основан на двух величинах С1 и С2, которые составляют

Тороидальный сердечникТороидальный сердечник

где he – эффективная высота сердечника,

D1 – внешний диаметр сердечника,

D2 – внутренний диаметр сердечника.

Расчёт эффективной высоты he сердечника зависит от конструктивных особенностей.



Расчёт эквивалентной высоты тороидального сердечника: прямоугольное сечение (вверху) и трапецеидальное сечение (снизу).

Рассмотрим несколько случаев:

а) прямоугольное поперечное сечение с острыми кромками

эквивалентная высота тороидального сердечникаэквивалентная высота тороидального сердечника

б) прямоугольное поперечное сечение со скруглёнными кромками и радиусом скругления r

s

эквивалентная высота тороидального сердечникаэквивалентная высота тороидального сердечника

в) трапецеидальное поперечное сечение с острыми кромками

эквивалентная высота тороидального сердечникаэквивалентная высота тороидального сердечника

г) трапецеидальное поперечное сечение со скруглёнными кромками

эквивалентная высота тороидального сердечникаэквивалентная высота тороидального сердечника

Пример. В качестве примера рассчитаем индуктивность тороидальной катушки, имеющий ω = 50 витков, намотанных на равномерно на магнитопровод со следующими размерами D1 = 20 мм, D2 = 10 мм, h = 7 мм, сечение магнитопровода прямоугольное со скруглёнными кромками, радиус скругления rs = 0,5 мм, относительная магнитная проницаемость материала сердечника μr = 1000.

Так как рассчитываем только индуктивность, то в расчёте коэффициента С2 нет необходимости

эквивалентная высота тороидального сердечникаэквивалентная высота тороидального сердечника

Расчёт катушки с П–образным сердечником прямоугольного сечения

В отличие от тороидальных сердечников, П – образные сердечники выполняются разборными и состоят из двух частей. Существует две модификации таких сердечников: состоящие из двух П – образных частей и из П – образной и прямоугольной замыкающей пластины.

Такие сердечники применяются в импульсных трансформаторах и трансформаторах строчной развертки и, обладая большой магнитной проницаемостью, обеспечивают малую потребляемую мощность.



П-образный сердечник с прямоугольным сечением: из двух П-образных частей (слева) и П-образной части с замыкающей прямоугольной пластиной (справа).

Для расчёта параметров сердечника рассмотрим сечение замкнутого П-образного сердечника



Сечение П-образного прямоугольного сердечника.
Данный сердечник состоит из нескольких участков l1, l2, l3, l4, l5 имеющих различное сечение S1, S2, S3, S4, S5,. Тогда коэффициенты С1 и С2 составятСечение П-образного прямоугольного сердечникаСечение П-образного прямоугольного сердечника

Неизвестные величины можно найти следующим образом

Сечение П-образного прямоугольного сердечникаСечение П-образного прямоугольного сердечника

Пример. Необходимо рассчитать индуктивность обмотки трансформатора, выполненного на П-образном сердечнике фирмы Epcos типа UU93/152/16, выполненного из двух П-образных половинок, материал сердечника N87 μr = 1950, количество витков ω = 150.

 


Сердечник Epcos U93/76/16.

Таким образом, расчётные параметры сердечника составят

 Сердечник Epcos U93/76/16 Сердечник Epcos U93/76/16

Таким образом коэффициент С1 и индуктивность L составят

 Сердечник Epcos U93/76/16 Сердечник Epcos U93/76/16

Расчёт катушки с П-образным сердечником круглого сечения

Кроме П-образных катушек с прямоугольным сечение, широко применяются П-образные катушки с круговым сечением. Они также состоят из двух П-образных частей


П-образный сердечник с круговым сечением.

Для расчёта рассмотрим сечение замкнутого сердечника состоящего из двух пловинок.


Сечение П-образного сердечника с круговым сечением.

Аналогично сердечнику с прямоугольным сечением выделим пять участков длины сердечника с различным сечением и расчёт соответственно тоже. Площадь круговых участков считается по известной формуле для площади круга, влиянием технологических пазов и отверстий можно пренебречь

Сечение П-образного сердечника с круговым сечениемСечение П-образного сердечника с круговым сечением

Пример. В качестве примера рассчитаем индуктивность катушки, выполненной на сердечнике. Сердечник из двух частей типа SDMR 40 UY20 (μr = 2500), количество витков ω = 60.


Сердечник типа SDMR 40 UY20.

Параметры сердечника для расчёта составят

Сердечник типа SDMR 40 UY20Сердечник типа SDMR 40 UY20

Таким образом коэффициент С1 и индуктивность L составят

Сердечник типа SDMR 40 UY20Сердечник типа SDMR 40 UY20

На сегодня всё. Продолжение смотри в следующей статье.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

Coil32 — Однослойная катушка

Расчет индуктивности однослойной катушки

Однослойная катушка индуктивности представляет собой провод, свернутый в спираль. Для придания жесткости, провод обычно наматывают на цилиндрический каркас. Поэтому в Coil32 в качестве исходных параметров приняты размеры каркаса и диаметр провода, т.к. их легче измерить практически. В расчетных формулах, однако, используются геометрические параметры самой спирали. Во избежании путаницы на этой страничке справки можно подробнее ознакомиться с этими тонкостями.

Однослойные катушки получили широкое распространение, особенно для конструкций коротковолнового и средневолнового любительских и радиовещательных диапазонов. Основные свойства однослойных катушек — высокая добротность, относительно небольшая собственная емкость, удобство изготовления. Рассмотрим методы расчета такой катушки без промежутка между витками — «виток к витку«…


Модель Лоренца для соленоидаНачнем с того, что в конце XIX века Х.А.Лоренц вывел формулу с применением эллиптических интегралов для расчета соленоида. Отличием модели Лоренца от модели Максвелла являлся тот момент, что витки соленоида представлялись не бесконечно тонким круговым проводом, а бесконечно тонкой спиральной проводящей лентой с шириной равной реальной толщине провода, без промежутка между витками. Формула имеет высокую точность при расчете реальной катушки в случае если последняя имеет большое количества витков и имеет намотку виток к витку. В 1909 г. японский физик Х.Нагаока преобразовал формулу Лоренца и привел ее к виду из которого следовал важный вывод — индуктивность соленоида зависит исключительно от формы и размеров катушки. Формула Нагаока имеет следующий вид:

Формула Нагаока [2]

, где

  • Ls — индуктивность катушки
  • N — число витков катушки
  • r — радиус намотки
  • l — длина намотки
  • kL — коэффициент Нагаока

Важнейшим выводом из анализа этой формулы был тот, что коэффициент Нагаока зависел только от отношения l/D, который был назван форм-фактором катушки. Коэффициент Нагаока вычислялся с применением эллиптических интегралов. Подробнее на этой формуле останавливаться не будем, т.к. Coil32 ее не использует в расчетах. Стоит только отметить, что в случае длинного соленоида формула упрощается до следующего вида:

формула индуктивности соленоида [3]

где S — площадь поперечного сечения катушки. Эта формула имеет только академический интерес и не пригодна для расчетов реальных катушек, т.к. справедлива только для бесконечно длинных соленоидов, которых в природе не существует.


Однослойную катушку можно рассчитать численным методом, используя формулу Максвелла или формулу Нагаока для соленоида. Однако современные эмпирические формулы дают очень высокую точность расчетов и вполне достаточны для практических целей.


Обзор и выбор эмпирических формул начнем с самой известной формулы Г.Вилера. Обычно именно эта формула чаще всего используется в различных программах, онлайн калькуляторах, справочниках и статьях, посвященных расчетам индуктивностей.

В оригинале эта формула выглядит так:

L = a2 N2 / ( 9 a + 10 b )


где N — число витков, а a и b — соответственно радиус и длина намотки катушки. Размерности в дюймах. Адаптировав эту формулу для метрической системы (вернее сказать для СГС) и поменяв радиус на диаметр, получаем следующее:

Формула Вилера для однослойной катушки [4]

, где

  • L — индуктивность катушки [мкГн];
  • N — число витков катушки;
  • D — диаметр намотки [см];
  • l — длина намотки [см];

Это самый известный у нас вариант этой формулы. Раньше на сайте С.-Петербуржского университета телекоммуникаций — sut.ru был довольно информативный ресурс — dvo.sut.ru, на котором можно было найти много информации о катушках индуктивности, включая и эту формулу. Теперь это ресурс к сожалению удален. Но удалось обнаружить клон этого ресурса на qrz.ru, на который перекочевала даже старая ошибка (0,5ё1.0) в формуле 2.37. Там можно найти и формулу Нагаока (формула 2.28) и выражение коэффициента Нагаока через формулу Вилера (формула 2.29).

Формула была предложена Вилером в далеком 1928 году, когда еще о компьютерах только мечтали и была очень полезна в то время, т.к. позволяла «в столбик» на бумажке рассчитать практическую катушку. Формула «укоренилась» в массовом сознании радиолюбителей. Однако мало кто знает, что она, как любая эмпирическая формула, имеет ограничения. Эта формула дает погрешность до 1% при l/D > 0,4, т.е если катушка не слишком короткая. Для коротких катушек эта формула не пригодна.


Последовало несколько попыток устранить этот недостаток. В 1985 г. Р.Лундин опубликовал две свои эмпирические формулы, одна — для «длинных», другая — для «коротких» катушек, позволяющие рассчитать коэффициент Нагаока с точностью не менее чем 3ppM (±0.0003%), что несомненно выше точности изготовления или измерения индуктивности катушки. Вот калькулятор, основанный на этих формулах.
В 1982 г., спустя 54 года, с наступлением эры компьютеров, Вилер опубликовал свою «длинную» формулу, которая рассчитывала однослойную катушку с погрешностью не более ±0.1%, как длинную, так и короткую. В дальнейшем эта формула была усовершенствована Р.Розенбаумом, а в последствии Р.Вивером (Robert Weaver — анализ и вывод формулы у него на сайте).

Формула Б.Вивера для однослойной катушки [5]

где:

  • Dk — диаметр намотки
  • N — число витков
  • k = l/Dk — форм-фактор катушки, отношение длины намотки к ее диаметру

В результате мы имеем формулу, позволяющую рассчитать однослойную катушку с точностью не менее 18.5 ppM (в сравнении с формулой Нагаока), что хуже чем по формулам Лундина, но во-первых вполне достаточно для практических расчетов, во-вторых мы имеем одну более простую формулу вместо двух, рассчитывающую однослойную катушку независимо от ее форм-фактора.

Формула [5] и используется в онлайн-калькуляторе однослойной катушки, старых версиях Coil32, а также во всех версиях программы для Linux и в J2ME приложении для мобильных телефонов.

В основной версии Coil32 для Windows, а также начиная с версии 3.0 для Android, применена более сложная методика расчета однослойной катушки, учитывающая спиральную форму витков и произвольный шаг намотки.


В 1907 году Э.Роза, сравнивая расчеты по методу Максвелла и по методу Лоренца, вывел таблицу поправок, существенно увеличивающих точность расчета по методу Лоренца, особенно если катушка имеет небольшое число витков. Эти поправки стали именоваться «поправки на круглость провода» — Round Wire Corrections. В дальнейшем эти поправки использовались для увеличения точности расчета коэффициента Нагаока и эмпирических формул Лундина и Вивера. В 2008 г. Р.Вивер создал эмпирический алгоритм, позволяющий численным методом рассчитать «поправки на круглость провода» не прибегая к помощи таблиц. Этот алгоритм применяется в Coil32 начиная с версии 8.0, в онлайн-калькуляторе, а также в версиях Coil32 для Андроид и J2ME, для увеличения точности расчета индуктивности однослойных катушек.


Кроме индуктивности, как основного параметра однослойной катушки, программа Coil32 вычисляет и другие параметры:

Этих данных вполне достаточно для создания реалистичной модели катушки в программах схемотехнического моделирования. Например, в популярных RFSim99 или LTSpice IV. В RFSim99 необходимо поставить галочку в чекбоксе «Вкл. физ. модель» и ввести частоту собственного резонанса и добротность. Тип добротности необходимо выбрать третий — Q(f)=Q(F). В LTSpice необходимо задать Rser — это наше сопротивление потерь (r) и Cpar — это собственная емкость катушки Cs.

Кроме того можно рассчитать дополнительные результаты для параллельного колебательного контура на рабочей частоте. Характеристическое сопротивление такого контура равно реактивному сопротивлению катушки на рабочей частоте.

Назад…      Вперед…

coil32.ru

как найти число витков в катушке, формула

Катушка индуктивности является спиральным или винтовым проводником, который преобразовывает энергию электрополя в магнитное поле. Каково более полное определение этого элемента электроцепи, как сделать расчёт катушки индуктивности и что влияет на ее индуктивность? Об этом далее.

Описание устройства

Катушка индуктивности бывает винтовой, спиральной или винтоспиральной, имеющей свернутый изолированный проводник, который обладает значительным показателем индукции при малой емкости с активным сопротивлением. Как следствие, ток протекает через источник тока со значительной инерционностью.

Главный компонент электроцепи

Обратите внимание! Применяется, чтобы подавлять помехи, сглаживать биения, накапливать энергию, ограничивать переменный ток или резонансный/частотно-избирательный контур цепи.

Стоит указать, что ее применение разнообразно. Называется она дросселем, вариометром, соленоидом и токоограничивающим реактором. При этом основные технические характеристики варьируются. Могут отличаться силой тока, сопротивлением потерь, добротностью, емкостью и температурным добротным коэффициентом.

Полное определение из физики

Факторы, влияющие на индукцию

Влияет на индукцию число проводниковых витков, площадь поперечного сечения, длина и материалы. Благодаря увеличению витков повышается индукция и наоборот. Что касается сечения, чем больше источник, тем больше показатель. Также чем больше магнитный вид проницаемости, тем больше индуктивный показатель.

Факторы, влияющие на преобразование энергии в магнитное поле

Расчет

Вычислить число витков, зная конструкцию, можно по формуле нахождения энергии и ее магнитного поля W = LI2/2, где L является индукцией, I — силой тока. Витки находятся из формулы L/d, где d является проводным диаметром. Стоит указать, что есть специальный калькулятор, в который нужно только подставить необходимые параметры. При этом можно определить, однослойный или многослойный проводник.

Схематическое расположение витков в катушке

С сердечником

Стоит отметить, что со стержнем, намоткой, обмоткой индукция вычисляется через замкнутый магнитный поток индуктивных элементов, в то время как без него  учитывается поток, который пронизывает только проводник с токовой энергией. Расчитывая индуктивность подобных элементов, необходимо учесть размеры и материал центральной части. Обобщенно можно представить формулу схематично. При этом требуется взять в расчет источник с сопротивлением магнитной цепи, абсолютной магнитной проницаемостью вещества, площадью поперечного сердечникового сечения и длиной средней силовой линии. Зная это, можно посчитать индукцию. Стоит учитывать погрешность. Она будет равна 25%.

Расчет индуктивности катушки с сердечником

Без сердечника

Стоит указать, что без ферритового, геометрического и цилиндрического сердечника с мощным каркасом источник имеет небольшую индукцию, а с ним она повышается. Это связано с тем, что имеется материальная магнитная проницаемость. Форма бывает разная. Есть броневой, стержневой и тороидальный материал.

Обратите внимание! Рассчитать можно, используя метод эллиптических максвелловских интегралов и специальную онлайн программу.

Расчет индуктивности без сердечника

Катушка — незаменимый компонент любой электросети, который имеет вид скрученного или обвивающего элемента с проводником. Влияет на ее индукцию число проводных витков, площадь сечения, длина и материал сердечника. Отыскать количество витков и посчитать индуктивность с сердечником и без него несложно, главное — руководствоваться приведенными выше рекомендациями.

rusenergetics.ru

Расчёт катушки индуктивности под динамик

Данный расчет является примером для определения данных катушки индуктивности на воздушном сердечнике, нагруженной динамиком. В этом примере выбрана катушка без сердечника во избежание искажений, обусловленных перемагничиванием сердечника.

На рисунке показана оптимальная катушка индуктивности в смысле отношения индуктивности катушки и ее активному сопротивлению. Конструкция получается, когда внутренний диаметр цилиндрического слоя обмотки вдвое больше его высоты, а внешний диаметр в четыре раза больше высоты и в два раза больше внутреннего диаметра.

высота 1 см; внутренний диаметр 2 см; внешний диаметр 4 см.

Пример расчета

Современные программы по расчету пассивных фильтров для акустики, дают значение катушек индуктивности в мГн, здесь нужно перевести в мкГн, т.е. умножить на 1000.

Определим данные катушки с индуктивностью 1,25 мГн (или 1250 мкГн) разделительного фильтра, нагруженного динамиком сопротивлением 4 Ом. Активное сопротивление рассчитываемой катушки должно составлять 5% сопротивления динамика. Это соотношение можно считать вполне приемлемым. Активное сопротивление катушки: R = 0,05 х 4 = 0,2 Ом.

  1. откуда: L/R = 1250 / 0,2 = 6250 мкГн/Ом;
  2. далее имеем: h = √ ((L/R) / 8,6) = √ (6250 / 8,6) = 26,96 мм;
  3. длинна жилы: l = 187,3 х √ (L х h) = 187,3 х √ (1250 х 26,96) = 34383 мм = 34,3 м;
  4. количество витков: ω = 19,88 √(L / h) = 19,88 х √ (1250 / 26,96) = 135,36 витков;
  5. диаметр жилы: d =0,84h / √ω = 0,84 х 26,96 / √ 135,36 = 1,95 мм;
  6. масса намотки: m = (h3 х 10-3) / 21,4 = (26,963 х 10-3) / 21,4 = (19595,65 х 0,001) / 21,4= 0,9 кг.

Полученные значения должны быть округлены (в первую очередь диаметр жилы) до ближайшего стандартизированного. Окончательные значения индуктивности подгоняют путем отматывания нескольких витков обмотки, намотанной с некоторым превышением числа витков сравнительно с рассчитанным.

Итак имеем данные, которые понадобятся для расчета будущей катушки:

  1. высота намотки h = 26,96 мм;
  2. значит внутренний диаметр a = 53,92 мм;
  3. соответственно внешний: b = 107,84 мм;
  4. длинна жилы: 34,3 м;
  5. количество витков: 135;
  6. диаметр жилы, соответствует стандартизированному: 1,95 мм (по меди).

Статья специально подготовлена для сайта ldsound.ru

ldsound.ru

Расчет индуктивности катушек: формула :: SYL.ru

У каждого из нас бывали проблемы с предметами в школе. У кого-то были проблемы с химией, у кого-то — с физикой. Но даже если с этими предметами у вас всё всегда было хорошо, вы наверняка не помните всех тем, что вам давали в школе. Одной из таких тем является электромагнетизм в целом и расчёт индуктивности катушек в частности.

Для начала окунёмся немного в историю такого явления, как магнетизм.

История

Магнетизм начинает свою историю ещё с Древнего Китая и Древней Греции. Открытый в Китае магнитный железняк использовался тогда в качестве стрелки компаса, указывающей на север. Есть упоминания, что китайский император использовал его во время битвы.

Однако вплоть до 1820 года магнетизм рассматривался лишь как явление. Всё его практическое применение было заключено в указании стрелки компаса на север. Однако в 1820 году Эрстед провёл свой опыт с магнитной стрелкой, показывающий влияние электрического поля на магнит. Этот опыт послужил толчком для некоторых учёных, взявшихся за это всерьёз, чтобы разработать теорию магнитного поля.

Спустя всего 11 лет, в 1831 году, Фарадей открыл закон электромагнитной индукции и ввёл в обиход физиков понятие «магнитное поле». Именно этот закон послужил основой для создания катушек индуктивности, о которых сегодня и пойдёт речь.

А прежде чем приступить к рассмотрению самого устройства этих катушек, освежим в голове понятие магнитного поля.

расчет индуктивности катушек

Магнитное поле

Это словосочетание знакомо нам со школьной скамьи. Но многие уже забыли о том, что оно означает. Хотя каждый из нас помнит, что магнитное поле способно воздействовать на предметы, притягивая или отталкивая их. Но, помимо этого, у него есть и другие особенности: например, магнитное поле может воздействовать на электрически заряженные объекты, а это значит, что электричество и магнетизм тесно связаны между собой, и одно явление может плавно перетекать в другое. Учёные поняли это достаточно давно и поэтому стали называть все эти процессы вместе одним словом — «электромагнитные явления». На самом деле электромагнетизм — довольно интересная и ещё не до конца изученная область физики. Она очень обширна, и те знания, что мы можем здесь изложить вам, — это очень малая часть того, что известно человечеству о магнетизме сегодня.

А сейчас перейдём непосредственно к предмету нашей статьи. Следующий раздел будет посвящён рассмотрению непосредственно устройства катушки индуктивности.

расчет индуктивности катушки без сердечника

Что такое катушка индуктивности?

Мы сталкиваемся с этими предметами постоянно, но вряд ли придаём им какое-то особое значение. Это для нас обыденность. На самом деле катушки индуктивности встречаются сегодня практически в каждом приборе, но наиболее яркий пример их использования — трансформаторы. Если вы думаете, что трансформаторы бывают только на энергетических подстанциях, то вы сильно ошибаетесь: ваше зарядное устройство от ноутбука или смартфона — тоже своего рода трансформатор, только меньшего размера, чем те, что используются на электростанциях и распределительных подстанциях.

Любая катушка индуктивности состоит из сердечника и обмотки. Сердечник представляет собой стержень из диэлектрического или ферромагнитного материала, на который наматывается обмотка. Последняя делается чаще всего из медной проволоки. Количество витков обмотки напрямую связано с величиной магнитной индукции полученной катушки.

Теперь, прежде чем рассмотреть расчет индуктивности катушек и формулы, необходимые для него, поговорим о том, какие параметры и свойства мы будем вычислять.

расчет индуктивности катушки с сердечником

Какие параметры есть у катушки?

Катушка обладает несколькими физическими характеристиками, отражающими её качество и пригодность для той или иной работы. Одной из них является индуктивность. Она численно равна отношению потока магнитного поля, создаваемого катушкой, к величине этого тока. Индуктивность измеряется в Генри (Гн) и в большинстве случаев принимает значения от единиц микрогенри до десятков Генри.

Индуктивность является, пожалуй, самым важным параметром катушки. Поэтому неудивительно, что большинство людей даже не думают о том, что существуют другие величины, способные описывать поведение катушки и отражать её пригодность для того или иного применения.

При выборе катушки индуктивности профессионалы также обращают внимание на сопротивление потерь. Как можно понять из этого словосочетания, оно отражает величину потерь электроэнергии, происходящих вследствие паразитных эффектов, таких как, например, нагревание проводов, происходящее по закону Джоуля-Ленца. Нетрудно понять, что чем ниже это значение для катушки, тем она лучше.

Ещё один параметр, который необходимо учитывать, — добротность контура. Она тесно связана с предыдущим параметром и представляет собой отношение реактивного сопротивления к активному (сопротивлению потерь). Соответственно, чем выше добротность — тем лучше. Её повышение достигается за счёт выбора оптимального диаметра провода, материала и диаметра сердечника, числа обмоток.

Сейчас рассмотрим подробнее самый важный и наиболее волнующий нас параметр — индуктивность катушки.

расчет многослойной катушки индуктивности

Немного больше про индуктивность

Мы уже разобрали это понятие, и теперь осталось поговорить о нём немного подробнее. Зачем? Нам ведь предстоит расчет индуктивности катушек, а значит, необходимо понимать, что это такое и зачем нам её рассчитывать.

Катушка индуктивности предназначена для создания магнитного поля, а значит, имеет параметры, которые описывают его силу. Таким параметром является магнитный поток. Но разные катушки имеют разные потери при прохождении через них тока и, соответственно, разный КПД. В зависимости от диаметра проводов и количества витков катушка может давать разное по величине магнитное поле. Значит, необходимо ввести такую величину, которая бы отражала зависимость между величиной магнитного потока и силой тока, пропускаемой через катушку. Таким параметром и является индуктивность.

расчет витков катушки индуктивности

Зачем нужен расчёт индуктивности?

Катушек разных видов в мире достаточно много. Они отличаются между собой свойствами, а значит, и применениями. Одни используются в трансформаторах, другие, соленоиды, выполняют роль электромагнитов большой силы. Кроме этих, применений у катушек индуктивности найдётся предостаточно. И для всех них необходимы разные типы катушек. Они отличаются по своим свойствам. Но большую часть этих свойств можно объединить с помощью понятия индуктивности.

Мы уже близко подошли к объяснению того, что включает в себя формула расчета индуктивности катушки. Но стоит оговориться, что речь пойдёт не о «формуле», а о «формулах», так как все катушки можно разделить на несколько больших групп, для каждой из которых своя отдельная формула.

программа расчета индуктивности катушки

Виды катушек

По функциональности различают контурные катушки, находящие применение в радиофизике, катушки связи, используемые в трансформаторах, и вариометры, то есть катушки, показатели которых можно варьировать изменением взаимного расположения катушек.

Также существует такой вид катушек, как дроссели. Внутри этого класса также есть деление на обычные и сдвоенные. Они имеют высокое сопротивление переменному току и очень низкое — постоянному, благодаря чему могут служить хорошим фильтром, пропускающим постоянный ток и задерживающим переменный. Сдвоенные дроссели отличаются большей эффективностью при больших токах и частотах по сравнению с обычными.

Формулы расчёта

Пришла пора нам перейти к основной теме статьи. Начнём мы с того, что расскажем о том, как произвести расчет индуктивности катушки без сердечника. Это самый простой вид расчёта. Но тут тоже есть свои тонкости. Возьмём, для простоты, катушку, обмотка которой лежит одним слоем. Для неё справедлив расчет однослойной катушки индуктивности:

L=D2*n2/(45D+100l).

Здесь L — индуктивность, D — диаметр катушки в сантиметрах, n — число витков, l — длина намотки в сантиметрах. Однослойная катушка предполагает то, что толщина намотки будет не больше одного слоя, а значит, для неё справедлив расчет плоской катушки индуктивности. В целом большинство формул для расчётов индуктивностей очень похожи: существенные различия только в коэффициентах при переменных в числителе и знаменателе. Самым простым тут является расчет индуктивности катушки без сердечника.

Представляет интерес также формула расчета индуктивности катушки с большим числом витков:

L=0,08*D2*n2/(3*D+9*b+10*c).

Здесь b — ширина провода, c — его высота. Такая формула эффективна для того, чтобы произвести расчет многослойной катушки индуктивности. Применяется она на практике чуть менее часто, чем та, о которой пойдёт речь ниже.

Самым актуальным, пожалуй, будет расчет индуктивности катушки с сердечником. Есть специальная формула, которая показывает, что эта индуктивность определяется материалом, из которого сделан сердечник, а точнее — его магнитной проницаемостью. Выглядит эта формула так:

L=m*m0*n2*S/l,
где m — магнитная проницаемость материала сердечника, m0 — магнитная постоянная (она равна 12,56·10-7 Гн/м), S — площадь поперечного сечения катушки, l — длина намотки.

Расчет витков катушки индуктивности производится очень просто: это число намотанных на сердечник слоёв проводника.

Мы разобрались с формулами, а теперь немного о том, где же конкретно эти формулы и расчёты могут нам пригодиться.

расчет однослойной катушки индуктивности

Практическое применение

Эти формулы имеют очень широкое применение ввиду повсеместного распространения катушек индуктивности. Как мы уже выяснили, бывают разные виды катушек, каждый из которых соответствует своему применению. В связи с этим становится необходимым как-то разделять их по характеристикам, ведь для каждой отрасли необходима своя определённая индуктивность и добротность.

В основном расчет индуктивности катушек применяется на производстве и в электротехнике. Каждый радиолюбитель должен знать, как производить расчет индуктивности, иначе как ему определить, какая катушка из огромного множества подойдёт для его цели, а какая — нет.

расчет плоской катушки индуктивности

Вам интересно?

Сегодня очень много учёных, интересующихся магнетизмом и магнитными явлениями. Они изучают как магнитную, так и электрическую стороны веществ, пытаясь выявить закономерности и синтезировать мощные магниты с определёнными нужными свойствами: например, с высокой температурой плавления или сверхпроводимостью. Все эти материалы могут быть использованы в огромном количестве отраслей.

Приведём пример с аэрокосмической отраслью: перспективными для дальних межзвёздных перелётов являются ракеты с ионными двигателями, которые создают тягу посредством выброса ионизированного газа из сопла. Сила толчка в таком двигателе зависит от температуры газа и скорости его движения. Соответственно, чтобы придать газу максимальную силу для разгона, нам требуется очень сильный магнит, разгоняющий заряженные частицы и к тому же имеющий очень высокую температуру плавления для того, чтобы не расплавиться при выходе газов из сопла.

Заключение

Знание никогда не бывает лишним и всегда где-нибудь, да пригодится. Теперь, если вам попадётся программа расчета индуктивности катушки, вы без труда сможете сказать, почему там именно такие формулы и какие переменные в них что означают. Эта статья предназначена лишь для вашего ознакомления, и если вы хотите знать больше, стоит почитать специализированную литературу (благо за много лет изучения магнитных явлений её накопилось очень много).

www.syl.ru

Как рассчитать индуктивность катушек на разомкнутых сердечниках?

Всем доброго времени суток! В прошлой статье я рассказал о катушках индуктивности на сердечниках с малым магнитным зазором (длина зазора δ меньше любого линейного размера сердечника). Кроме сердечников с малым зазором существует сердечники, имеющие воздушный зазор сопоставимый с линейными размерами самого сердечника. Такие сердечники называются разомкнутыми. Данная статья описывает расчёт и параметры стержневых сердечников, являющихся разомкнутыми.

Факторы, влияющие на индуктивность катушки на разомкнутом сердечнике

В сердечниках с малым воздушным зазором магнитное поле практически всё сосредоточенно в сердечнике, и в воздушном зазоре рассеивание магнитного поля незначительно. Другая картина возникает, если магнитное поле возникает в сердечнике, имеющем воздушный зазор lз сопоставимый с длиной магнитной силовой линии в сердечнике lc.


Магнитное поле в разомкнутом сердечнике.

Таким образом, магнитные сопротивления сердечника и воздушного зазора становятся соизмеримыми, что приводит к усложнению расчётных выражений для индуктивности катушек на таких сердечниках. В этом случае расчёт параметров ведут с учётом того, что в разомкнутых сердечниках на торцах сосредотачиваются противоположно ориентированные магнитные частицы, то есть частицы с положительным доменом смещаются в направлении внешнего поля, а отрицательные навстречу ему. В результате возникает размагничивающее поле, противоположное основному. Данное поле характеризуется размагничивающим фактором N или коэффициентом размагничивания. Данный фактор зависит от формы и размеров самого сердечника. Влияние размагничивающего фактора на магнитное поле сердечника описывается следующим выражением

Путь магнитной линии в разомкнутом сердечникеПуть магнитной линии в разомкнутом сердечнике

где Н – напряженность магнитного поля в сердечнике,

Н0 – напряженность внешнего магнитного поля, то есть поля создаваемого катушкой, намотанной на разомкнутый сердечник,

НР – размагничивающее поле сердечника,

N – размагничивающий фактор,

J – вектор намагничивания сердечника.

Точное значение размагничивающего фактора, возможно, рассчитать только для однородно намагниченных тел, например, эллипсоидов вращения, шаров, дисков. Для учёта размагничивающего фактора на магнитные свойства сердечника ввели понятие эффективной магнитной проницаемости сердечника μе, которая зависит от магнитной проницаемости вещества сердечника μr и размагничивающим фактором N. Значение эффективной магнитной проницаемости сердечника для однородно намагниченных тел определяется следующим выражением

Путь магнитной линии в разомкнутом сердечникеПуть магнитной линии в разомкнутом сердечнике

Однако в практике, используются неоднородно намагниченные тела – цилиндры, призмы, поэтому для расчёта эффективной магнитной проницаемости таких сердечников применяются эмпирически выведенные выражения.

Вследствие того, что значение размагничивающего фактора в неоднородно намагничиваемых телах различно по длине, то необходимо учитывать и расположение катушки индуктивности относительно сердечника и длину данной катушки относительно длины сердечника.

Таким образом, индуктивность катушки, выполненной на разомкнутом сердечнике можно определить по следующему выражению

Путь магнитной линии в разомкнутом сердечникеПуть магнитной линии в разомкнутом сердечнике

где L0 – индуктивность катушки без сердечника, расчет смотреть (Часть 1, Часть 2, Часть 3),

μе – эквивалентная магнитная проницаемость разомкнутого сердечника,

k– коэффициент зависящий от отношения длины катушки к длине сердечника,

pl – коэффициент зависящий от расположения катушки относительно середины длины сердечника.

Рассмотри более подробно зависимость индуктивности от различных факторов.

Расчёт размагничивающего фактора

Как я уже говорил, размагничивающий фактор N зависит от размеров сердечника


Катушка индуктивности с разомкнутым сердечником

Для его определения введём коэффициент λ, зависящий от отношения длины сердечника lc к его диаметру dc

Катушка индуктивности с разомкнутым сердечникомКатушка индуктивности с разомкнутым сердечником

Тогда в интервале 2 ≤ λ ≤ 50 с точностью 10 % размагничивающий фактор данного сердечника можно определить по следующему выражению

Катушка индуктивности с разомкнутым сердечникомКатушка индуктивности с разомкнутым сердечником

где λ – отношение длины сердечника к диаметру сердечника

Тогда эффективная магнитная проницаемость разомкнутого сердечника можно рассчитать по следующей формуле

Катушка индуктивности с разомкнутым сердечникомКатушка индуктивности с разомкнутым сердечником

где μr – относительная магнитная проницаемость вещества сердечника,

lc – длина сердечника,

dc – диаметр сердечника.

Как влияет форма сердечника на магнитную проницаемость?

Эмпирическая формула вычисления эквивалентной магнитной проницаемости сердечников предполагает, что сечение сердечника представляет собой круг, но существует большое количество сердечников с не круглым сечением (прямоугольные, трубчатые).


Вычисление эквивалентных диаметров сердечника.

Для упрощения расчётов все сердечники необходимо приводить к эквивалентному круговому сечению согласно следующим выражениям:

для прямоугольного сечения

Вычисление эквивалентных диаметров сердечникаВычисление эквивалентных диаметров сердечника

где с – ширина сердечника,

h – высота сердечника.

для трубчатого сечения

Вычисление эквивалентных диаметров сердечникаВычисление эквивалентных диаметров сердечника

где dнар – наружный диаметр сердечника,

dвн – внутренний диаметр сердечника.

Влияние расположение катушки индуктивности относительно сердечника

Довольно часто стержневые сердечники используют для точной настройки индуктивности или подстройки в небольших пределах, также длинные стержневые сердечники используют в магнитных антеннах радиоприёмников на средне- и длинноволновом диапазоне. Их объединяет то, что катушка индуктивности зачастую расположена не на средине сердечника. Ниже представлена катушка индуктивности на разомкнутом сердечнике, используемая в качестве магнитной антенны


Расположение катушки индуктивности на сердечнике в магнитной антенне.

Как я уже говорил, размагничивающий фактор не равномерно распределён по длине разомкнутого сердечника. Его значение увеличивается от середины сердечника к его краям, а магнитная проницаемость, а соответственно уменьшается от центра сердечника к его краям. Чтобы не усложнять выражение для размагничивающего фактора введем корректирующий коэффициент pl, зависящий от расположения катушки на сердечнике

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

где х – расстояние от середины сердечника до середины катушки,

l – длина сердечника,

β – коэффициент, зависящий от расположения катушки на сердечнике.

Влияние размеров катушки относительно размеров сердечника

Как я писал выше, размагничивающий фактор неравномерен по длине сердечника, то необходимо учитывать любое различие в относительных размерах катушки индуктивности и сердечника.

Ещё одним существенным фактором при расчёте индуктивности является различие в длине катушки и длине сердечнике. Данное различие можно описать коэффициентом k, зависящем от отношения длины сердечника к длине катушки

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

где а – длина катушки индуктивности,

l – длина сердечника,

γ – коэффициент, зависящий от отношения длины катушки к длине сердечника.

Пример расчёта индуктивности катушки на разомкнутом сердечнике

В качестве примера рассчитаем катушку индуктивности на разомкнутом сердечнике круглого сечения со следующими параметрами: диаметр сердечника dc = 6 мм, длина сердечника lc = 30 мм, катушка состоит из 30 витков провода диаметром dp = 1 мм, намотанных плотно виток к витку в один ряд, магнитная проницаемость материала сердечника μr = 600.

1.Рассчитаем индуктивность катушки без сердечника. Так как катушка намотана в один ряд, то для упрощения вычислений мы будем рассчитывать её как соленоид. Длина катушки составит lk = 30*1 = 30 мм, а диаметр катушки dk = dcp = 30,5 мм.

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

2.Вычислим эффективную магнитную проницаемость сердечника

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

3.Рассчитаем поправочные коэффициенты на длину катушки и на расположении на сердечнике. Так как длина катушки совпадает с длинной сердечника и смещение катушки относительно сердечника отсутствует, то поправочные коэффициенты будут равны 1, тогда индуктивность данной катушки составит

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

В качестве второго примера рассчитаем индуктивность магнитной антенны выполненной на сердечнике из феррита марки 600НН, размерами lc = 160 мм, dс = 8 мм, количество витков провода w = 60, диаметр провода dр = 0,15 мм. Катушка смещена на 30 мм относительно середины сердечника.

1.Рассчитаем индуктивность катушки без сердечника. Так как катушка намотана в один ряд, то для упрощения вычислений мы будем рассчитывать её как соленоид. Длина катушки составит lk = 60*0,15 = 9 мм, а диаметр катушки dk = dcp = 8,075 мм.

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

2.Вычислим эффективную магнитную проницаемость сердечника

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

3.Рассчитаем поправочные коэффициенты на длину катушки и на расположении на сердечнике. Коэффициент, учитывающий расположение катушки на сердечнике составит

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

Коэффициент, учитывающий отношение длины катушки по отношению к длине сердечника составит

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

4.Рассчитаем индуктивность катушки индуктивности на разомкнутом сердечнике

 Расположение катушки индуктивности на сердечнике в магнитной антенн Расположение катушки индуктивности на сердечнике в магнитной антенн

Данная статья заканчивает цикл расчётов индуктивности катушек с различными конструктивными параметрами.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о