+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Работы под наведенным напряжением | Вопросы и ответы по правилам безопасной эксплуатации электроустановок

Страница 25 из 36

Раздел 15, Глава 3
РАБОТЫ НА ТОКОВЕДУЩИХ ЧАСТЯХ ЭЛЕКТРОУСТАНОВОК И ВЛ ЭЛЕКТРОПЕРЕДАЧИ ПОД НАВЕДЕННЫМ НАПРЯЖЕНИЕМ

Вопрос 1
п.16.3.1 Кто допускается к работам на токоведущих частях электроустановок под наведенным напряжением?
1(*) Работники, прошедшие специальное обучение методам безопасного выполнения таких работ.
2(*) Работники, прошедшие проверку знаний.
3(*) Работники, имеющие запись в удостоверении о предоставлении права проведения таких работ.

Вопрос 2
п.16.3.1. Члены бригады, выполняющие работы под наведенным напряжением, должны иметь группу по электробезопасности…
1(*) 3 .

Вопрос 3
пп.16.3.1,16.3.2. Укажите требования к организации работ под наведенным напряжением.
1(*) Работники, обслуживающие электроустановки и ВЛ, должны знать перечень линий электропередачи и линейного оборудования, которые после отключения находятся под наведенным напряжением.


2(*) К работам должны допускаться члены бригады с группой по электробезопасности 3, прошедшие обучение и проверку знаний и имеющие отметку в удостоверении о предоставлении права выполнять такие работы.
3 Водители машин и механизмов должны иметь группу по электробезопасности 3.

Вопрос 4
п.16.3.3. Как определяются зоны сильного действия ВЛ из числа находящихся под наведенным напряжением?
1 Путем расчетов и измерений при рабочем токе перед началом работ на ВЛ.
2(*) Путем расчетов и измерений при наибольшем токе ВЛ.
3(*) При отключении и заземлении ВЛ по концам и на месте работ.

Вопрос 5
п.16.3.3. Когда следует повторно проводить определение зон сильного действия наведенного напряжения на ВЛ?
1 Через каждые 3 года.
2(*) При изменении схемы или режима электросети.
3 Пред началом работы на данной ВЛ.

Вопрос 6
п.16.3.4. Где должна быть заземлена ВЛ для выполнения работ в зоне слабого действия наведенного напряжения?

1 На месте работ.
2(*) В РУ электростанций и подстанций.

Вопрос 7
п.16.3.5. Для выполнения работ в зоне сильного действия наведенного напряжения ВЛ должна быть заземлена:
1(*) На месте работ.
2 В РУ электростанций и подстанций.

Вопрос 8
пп.16.3.4,16.3.5. В каких случаях ВЛ под наведенным напряжением заземляется в РУ электростанций и подстанций?
1(*) При выполнении работ на ВЛ в зоне слабого действия наведенного напряжения.
2(*) На участке совместного прохождения ВЛ вблизи РУ электростанций (подстанций), но не далее 2 км от них — заземление в конечных РУ.
3(*) На участке одиночного прохождения, примыкающего к РУ электростанций и подстанций — заземление в РУ, примыкающем к участку работ.

Вопрос 9
п.16.3.6. Какие дополнительные меры безопасности, препятствующие ошибочному или самопроизвольному включению коммутационных аппаратов, надо принять при работах на ВЛ под наведенным напряжением сильного действия, заземленных только на месте работ?
1(*) Разобрать схему выключателя с двух сторон.
2(*) На линейном разъединителе включить заземляющие ножи в сторону выключателя.
3(*) При наличии обходной системы шин ее заземлить.

Вопрос 10
п.16.3.7. Когда используется одиночный стержневой заземлитель при работах под наведенным напряжением?
1(*) При выполнении работ в зоне слабого действия наведенного напряжения.
2 В случае выполнения работ в зоне сильного действия наведенного напряжения.

Вопрос 11
п.16.3.7. Укажите методы заземления токоведущих частей электроустановки, находящейся под наведенным напряжением.
1(*) Заземления устанавливаются на каждом рабочем месте с присоединением к контуру заземления опоры или к заземляющему устройству подстанции.
2 Заземления устанавливаются на каждом рабочем месте с присоединением к стержневому заземлителю.
3(*) Заземление устанавливается на каждом рабочем месте с присоединением к групповому заземлителю.

Вопрос 12
п.16.3.8. Что запрещается делать с момента заземления провода при наведенном напряжении?
1(*) Касаться с земли заземляющих проводников, монтажных канатов, машин и механизмов без средств защиты.
2(*) Заходить в кабину механизма и выходить из нее.

Вопрос 13
п.16.3.9. При выполнении работ на участке совместного прохождения ВЛ при наведенном напряжении сильного действия базовое заземление следует устанавливать не далее … км от рабочего места.

1(*) 1 .

Вопрос 14
п.16.3.9. Где допускается установка базового заземления при работах на опоре участка одиночного прохождения ВЛ в зоне сильного действия наведенного напряжения?
1 На опоре, на которой проводятся работы.
2(*) В любом месте участка одиночного прохождения ВЛ.

Вопрос 15
п.16.3.9. Укажите дополнительные организационные мероприятия при установке базового заземления.
1(*) Базовое заземление устанавливается по отдельному наряду.
2 Задание на установку базового заземления выдаётся оперативным работник.
3(*) Задание на установку и снятие базового заземления выдается оперативным работником, который выдаёт разрешение на подготовку рабочих мест.

Вопрос 16

п. 16.3.10. Каковы правила установки базового заземления?
1(*) Установка и снятие базового заземления выполняются с заземлением всех фаз на контур заземления опоры или на групповой заземлитель.
2(*) Допускается в зависимости от местных условий без заземления ВЛ в РУ электростанций (подстанций) с записью в оперативном журнале.
3(*) Допускается с временным заземлением в РУ в зависимости от местных условий.
4(*) Установку и снятие заземления должны выполнять два члена бригады с группами по электробезопасности 3 и 4 под надзором руководителя работ.
5(*) В строке «Отдельные указания» наряда записываются уровни наведенных напряжений до установки базового заземления и после подготовки рабочих мест.
6(*) Базовое заземление устанавливается до начала подготовительных работ и снимается после полного окончания работ.

Вопрос 17
п.16.3.11. В случае совместного прохождения ВЛ в зоне сильного действия наведенного напряжения допускается одновременная работа нескольких бригад на участке длиной до . .. км.
1(*) 2 .

Вопрос 18
п.16.3.11. В зоне сильного действия наведенного напряжения бригадам необходимо работать на участке длиной 5 км. Каковы условия выполнения этих работ?
1(*) Разделить ВЛ на электрически не связанные между собой участки.
2(*) Установить на каждом электрически не связанном с другими участке базовое заземление.

Вопрос 19
п.16.3.12. Где нужно установить базовое заземление при работах на ВЛ, проходящих на территории разных предприятий?
1(*) На каждом участке работ.
2 На крайних участках работ.

Вопрос 20
п.16.3.13. Укажите последовательность указанных работ при монтаже проводов на ВЛ под наведенным напряжением.

1(*) Монтаж такелажной схемы на земле.
2(*) Заземление такелажной схемы на общий заземлитель.
3(*) Заземление провода.

Вопрос 21
п.16.3.14. Как должны проводиться работы, связанные с прикосновением к опущенному до земли проводу, на ВЛ под наведенным напряжением?
1(*) С использованием электрозащитных средств.
2(*) С металлической площадки, соединенной с проводом для выравнивания потенциалов.
3 Без применения электрозащитных средств и металлической площадки при условии заземления провода в непосредственной близости от каждого места прикосновения.
4(*) Входить на металлическую площадку и сходить с неё в диэлектрической обуви.

Вопрос 22
п.16.3.15. Перед разрезанием провода ВЛ, находящейся под наведенным напряжением, его следует заземлить с двух сторон разреза:

1(*) На контур заземления опоры.
2 На два индивидуальных заземлителя.
3(*) На общий групповой заземлитель.

Вопрос 23
п.16.3.16. На какое расстояние запрещается приближаться к заземлителю без диэлектрической обуви? Менее … м.
1(*) 3 .

Вопрос 24
п.16.3.17. Монтаж и замена провода под наведенным напряжением и все работы, связанные с прикосновением к роводу, машинам, механизмам, следует выполнять при условии…
1(*) Заземления их на месте работ.
2(*) Использования средств электрозащиты.
3 Заземления в РУ станций и подстанций.

Вопрос 25
п.16.3.18. Подъем и опускание провода на ВЛ под наведенным напряжением должны проводиться…

1(*) С заземлением провода на каждой опоре, где осуществляется монтаж, при условии, что длина участка не более 2 км.
2 С заземлением провода на каждой опоре, где ведется монтаж, на участке длиной не более 3 км.

Вопрос 26
п.16.3.19. Укажите требования к перекладке проводов из раскаточных роликов в зажимы и обратно на ВЛ под наведенным напряжением.
1 Перекладка должна проводиться в направлении, обратном направлению раскатки.
2(*) Провод должен перекладываться после его заземления на месте работ или на соседней опоре.

Вопрос 27
п.16.3.20. До начала работ по соединению проводов в петлях анкерных опор ВЛ 110 кВ и выше петли следует закрепить:
1(*) За провода.
2(*) За натяжные изолирующие подвески.
3 Настоящие Правила это не регламентируют.

Вопрос 28
п.16.3.21. Когда можно начинать соединять провода в петлях анкерных опор?
1(*) После полного прекращения работ в смежных анкерных пролетах.
2(*) После снятия всех заземлений в смежных анкерных пролетах.
3 Линия должна быть заземлена на смежных опорах.
4(*) Линия должна быть заземлена на анкерной опоре, где проводятся работы, с заземлением концов соединяемых проводов на контур заземления опоры.

Вопрос 29
п.16.3.22. Каковы дополнительные меры безопасности (кроме включения заземляющих ножей в сторону линии) при работах на оборудовании электростанций и подстанций, находящемся под наведенным напряжением?
1(*) Установка на спуски проводов со стороны ВЛ по одному переносному заземлению.
2(*) Включение заземляющих ножей на обходном разъединителе в сторону ВЛ, если на нем не проводятся работы.

Вопрос 30
п.16.3.22. При каком условии на подстанциях следует устанавливать и снимать переносное заземление в сторону линии при наведенном напряжении?

1(*) При включении заземляющих ножей на обходной системе шин.
2(*) При включении заземляющих ножей на линейном разъединителе.
3 При включении заземляющих ножей на разъединителе в сторону выключателя.

Вопрос 31
п.16.3.23. Каковы требования к работам, выполняемым с телескопических вышек и гидроподъемников в электроустановках под наведенным напряжением?
1(*) Рабочую площадку механизма следует соединить с заземленным на месте работ проводом-перемычкой из гибкого медного провода при помощи специальной штанги.
2(*) Механизм должен быть заземлен на общий с проводом заземлитель.
3 Сечение перемычки и заземляющего проводника должно быть не менее 50 кв.мм.

Вопрос 32
п.16.3.23. Медный проводник с какой площадью сечения следует применять для заземления телескопической вышки при работах под наведенным напряжением? Не менее … кв.мм?

1(*) 25 .

Наведенное напряжение, что это такое, как защитится

Наведенное напряжение — невидимый враг, который в электрических сетях с высоким U может привести к сильным ожогам, нарушению работы внутренних органов и даже смерти.

В бытовой сети такие риски отсутствуют из-за низкого потенциала, но игнорировать опасность все равно не стоит.

Ниже рассмотрим, что такое наведенное напряжение, и как от него защититься. Укажем причины появления такого фактора на ВЛ (высоковольтной линии), в проводке, квартире и электрических установках.

Знание этих особенностей позволит защититься от негативных воздействий и лучше понимать природу электрического тока в целом.

Что это такое?

Под термином «наведенное напряжение» скрывается потенциал, который возникает в зоне электромагнитного влияния действующих электроустановок или проводников электротока.

Такая наводка может возникать в зоне высоковольтных линий, электрических установок высокого U и даже бытовой сети. Явление наведенного напряжения состоит из 2-х составляющих, которые рассмотрим подробнее.

Электростатика

Создание потенциала объясняется распространением электрического поля от источника электричества, находящегося в непосредственной близости.

Наибольшее воздействие характерно для двух проводов, которые расположены рядом и находятся параллельно друг относительно друга. При этом один находится под U, а второй нет.

Величина наведенного напряжения зависит от следующих аспектов:

  1. Размер разности потенциалов.
  2. Расстояние от источника питания с напряжением до другого элемента.

Для лучшего понимания систему можно сравнить с одним или несколькими конденсаторами. Формально наводка формируется по всей длине проводника.

Во избежание накопления заряда необходимо заземлить отключенный проводник. В таком случае наведенное напряжение пойдет в землю, а работа будет безопасна для человека.

Для расчета статического напряжения необходимо перемножить два элемента:

  1. Коэффициент емкостного воздействия. Его размер можно получить в справочнике, а сам параметр зависит от расстояния до источника U и типа проводника.
  2. Рабочее напряжение.

Чем больше U и чем ближе находится проводник, тем выше наведенный параметр.

Для расчета максимального наведенного напряжения применяется формула:

Электромагнитная составляющая

Существует еще один тип наводки — ЭМ наведенное напряжение. Его суть состоит в распространении магнитного поля на определенной территории во все стороны от проводника.

Чем сильнее ЭМ поле, тем выше наведенное U в отключенном проводнике.

Наведенная ЭДС в отключенной линии электропередача будет равна:

При заземлении проводника в месте соединения с землей потенциал будет равен нулю, но по мере удаления от этого места он увеличится. Это означает, что максимальный параметр разницы потенциалов будет на наиболее удаленных концах линии (ВЛ или КЛ).

Напряжение в точке х относительно земли будет равно:

В чем опасность?

Наведенное напряжение имеет не меньшую опасность, чем обычный потенциал. Если при КЗ проводника работает релейная защита и отсекает аварийный участок, в случае с наведенным U все сложнее. Здесь защитные устройства не сработают, поэтому человек может оказаться под длительным воздействием негативных факторов.

При КЗ на рабочей линии, которая находится возле отключенного участка, на обесточенной ВЛ наведенное напряжение увеличивается в несколько раз. В результате ремонтный персонал оказывается под действием наведенного U, что может привести к ожогам и даже остановке сердца. Величина параметра может достигать 10-20 тысяч Вольт.

В ПУЭ прописано, что U выше 25 В уже опасно для здоровья человека. Вот почему важно внимательно подходить к этому обстоятельству и принимать меры, обеспечивающие дополнительную защиту. Как защититься от проводки, будет рассмотрено ниже в статье.

Читайте также:

Причины появления

При рассмотрении вопроса, связанного с наводкой, важно понимать причины его появления. Для лучшего понимания рассмотрим несколько ситуаций — для квартиры, электрической проводки, электроустановок и ВЛ.

В квартире

Наводка в обычной сети 220 В появляется при обрыве 0-го проводника на ВЛ или до входа в квартиру (дом). Если проверить напряжение с помощью индикатора, лампочка будет светиться в любом из отверстий.

На самом деле, U присутствует только на одном из проводов (фазном), а второй принимает наведенный потенциал. Появляется такое явление, как две фазы в розетке.

После восстановления линии или возврата нуля ситуация нормализуется.

При выполнении ремонтных работ в квартире необходимо отключить входной автомат или достать предохранители, чтобы исключить попадание под напряжение.

В электропроводке

Одним из признаков наведенного напряжения является свечение экономки при отключенном свете. При этом напряжение может достигать 40-60 В.

Такая ситуация возникает при параллельной прокладке линий, питающих розетки и осветительные устройства в квартире.

Для устранения проблемы необходимо пересмотреть маршруты проводки и убедиться в правильности выполнения заземления или зануления.

Но существует еще одна причина. При создании проводки используются 2-х или 3-х жильные провода. Как правило, кабельная продукция укладывается в короба, откуда проводники направляются к своим потребителям.

Если выключатель разделяет не фазный, а нулевой провод, появляется наведенное U. Оно имеет небольшую величину, как отмечалось выше, но ее достаточно для зажигания диодного освещения.

Для решения проблемы необходимо поменять фазу и ноль местами. Сделать это не всегда удается, ведь один из проводов с коробки идет напрямую к источнику света и не проходит через выключатель.

В электроустановках

Выключатели, силовые трансформаторы, трансформаторы тока и напряжения, а также другие электроустановки неизбежно связаны с линией электропередач. Вот почему они часто попадают под наведенное напряжение и чаще всего это происходит при обрыве 0-го проводника.

Во многих электроустановках применяются изолированные кабели, внутри которых находятся плотно уложенные проводники.

Несмотря на небольшую длину участков, может появляться сильная наводка с большими рисками для персонала. Вот почему при выполнении таких работ важно принимать защитные меры, использовать СИЗ и следовать требованиям ПУЭ.

На линии электропередач

Выше мы отмечали, что электростатическая составляющая наводки имеет идентичный потенциал по всей длине проводника. Для расчета нужного значения коэффициент емкостной связи умножается на рабочее влияющее напряжение.

Для обеспечения защиты работников достаточно одного заземления в любой точке.

Отметим, что статическое U может возникнуть не только при наличии рядом ЭМ полей, но и других факторов — молнии или полярного сияния.

Читайте также:

В случае с электромагнитной составляющей, ситуация обстоит по-иному. Этот параметр зависит от расстояния до ВЛ под напряжением, величины рабочего тока, длины линии и сопротивления заземления.

Для расчета наведенного U необходимо перемножить три элемента:

  • коэффициент индуктивной связи;
  • длина участка параллельно расположенной линии;
  • сила тока ВЛ под напряжением.

В отличие от электростатической составляющей, заземления в одной точке недостаточно. Это связано с тем, что потенциал в заземленной точке будет нулевым, но при удалении от этого участка он увеличивается. Чем дальше провод от места заземления, тем выше наводка.

Вот почему при одновременной работе в разных местах персонал может оказаться под действием опасного U. Чтобы избежать проблем, необходимо установить заземление непосредственно в месте работы.

Как защититься, меры безопасности

Из сказанного видно, что наведенное напряжение несет большие риски, что требует ответственности реализации мероприятий по защите людей от попадания в опасную зону.

Организационные меры безопасности:

  1. Работники, выполняющие работы в области наводки, должны иметь 3-ю группу по электробезопасности, а руководитель работ — 4-ю.
  2. Наличие опыта работ по ремонту и обслуживанию силовых линий, а также элементов молниезащиты.
  3. Организация параметра безопасности возле рабочего места, выполнение мероприятий, указанных в заявке и наряде-допуске.
  4. Нулевой провод в измеряемой группе считается таковым, что находится под U.
  5. Начало и завершение работ оформляется в письменном виде. Как правило, заполняется журнал допуска с подписью работников, заполняется наряд-допуск.

Измерения и работы нельзя проводить в условиях сильного тумана или ветра, осадков или плохой видимости. Если в процессе измерений работник выявляет поврежденный элемент ВЛ или КЛ, работы останавливаются до устранения неполадки.

При работе на линиях с наводкой необходимо учесть следующие нюансы:

  1. Заземление должно находиться в зоне видимости рабочего места.
  2. При наличии только статического напряжения достаточно одного заземления, но для надежности лучше установить заземлитель в двух местах. Если одно из устройств выйдет из строя, второе подстрахует.
  3. В случае с электромагнитной проводкой принимаются более серьезные меры безопасности. В этом случае заземление ставится непосредственно на рабочем месте. В этом случае наведенный потенциал в месте выполнения работ будет равен нулю.

Заземление — надежный способ защититься от наведенного напряжения. Но даже в этом случае отключенная линия будет находиться под негативным воздействием.

Для работы можно выбрать один из вариантов:

  1. Отключение электроустановок, которые находятся параллельно к рабочей линии. В таком случае ремонтные работы должны выполняться как можно быстрее, чтобы исключить простой потребителей без электричества или длительное снижение надежности сети.
  2. Разделение ремонтируемой линии на несколько участков, которые не имеют электрической связи. Здесь работает принцип, который упоминался выше. Речь идет о том, что величина наводки напрямую зависит от длины участка.
  3. Работы под напряжением или с его отключением, но с применением специальных средств персональной защиты. В таком случае действия работника несколько скованы, но зато удается избежать отключения или снижения надежности сети.

Для обеспечения личной безопасности применяются следующие изделия:

  1. Сигнализаторы напряжения — показывают факт наличия U или наводки.
  2. Применение защитной одежды и ковриков на диэлектрической основе во избежание прохождения тока через организм человека.
  3. Использование указателей напряжения, а также электроизолирующих штанг для проверки уровня наведенного U.
  4. Работа в ботах и изолирующих перчатках.

При использовании измерительных устройств и СИЗ необходимо ориентироваться на класс U, для которого они предусмотрены.

Читайте также:

Итоги

Опасность наведенного напряжения нельзя недооценивать. При отсутствии необходимой защиты и нахождении отключенной линии в зоне влияния проводника под напряжением наводка может оказаться опасной для жизни.

Осознание возможных рисков, установка заземлений, следованием правилам ПУЭ и применение СИЗ позволяет свести опасность к минимуму.

Эти правила обязательны к выполнению в электроустановках, на КЛ и ВЛ, а также должны приниматься во внимание при выполнении работы в бытовой сети 220 В.

Работы на ВЛ под наведенным напряжением; на одной отключенной цепи многоцепной ВЛ

Работы на ВЛ под наведенным напряжением; на одной отключенной цепи многоцепной ВЛ

4.15.43. Персонал, обслуживающий ВЛ, должен иметь перечень линий, которые после отключения находятся под наведенным напряжением, ознакомлен с этим перечнем, значениями наводимого напряжения. Наличие наведенного напряжения на ВЛ должно быть записано в строке «Отдельные указания» наряда.

4.15.44. В случаях наличия на отключенных ВЛ и ВЛС наведенного напряжения перед соединением или разрывом электрически связанных участков (проводов, тросов) необходимо выровнять потенциалы этих участков. Уравнивание потенциалов осуществляется путем соединения проводником этих участков или установкой заземлений по обе стороны разрыва (предполагаемого разрыва) с присоединением к одному заземлителю (заземляющему устройству).

4.15.45. На ВЛ под наведенным напряжением работы с земли, связанные с прикосновением к проводу, опущенному с опоры вплоть до земли, должны выполняться с использованием электрозащитных средств (диэлектрические перчатки, штанги) или с металлической площадки, соединенной для выравнивания потенциалов проводником с этим проводом. Работы с земли без применения электрозащитных средств и металлической площадки допускаются при условии заземления провода в непосредственной близости к каждому месту прикосновения.

4.15.46. Применяемые при монтаже проводов на ВЛ под наведенным напряжением стальные тяговые канаты сначала необходимо закреплять на тяговом механизме и для выравнивания потенциалов заземлять на тот же заземлитель, что и провод. Только после этого разрешается прикреплять канат к проводу. Разъединять провод и тяговый канат можно только после выравнивания их потенциалов, т. е. после соединения каждого из них с общим заземлителем.

4.15.47. При монтажных работах на ВЛ под наведенным напряжением (подъем, визирование, натяжка, перекладка проводов из раскаточных роликов в зажимы) провод должен быть заземлен на анкерной опоре, от которой ведется раскатка, на конечной анкерной опоре, через которую проводится натяжка, и на каждой промежуточной опоре, на которую поднимается провод.

4.15.48. По окончании работы на промежуточной опоре заземление с провода на этой опоре может быть снято. В случае возобновления работы на промежуточной опоре, связанной с прикосновением к проводу, провод должен быть вновь заземлен на той же опоре.

4.15.49. На ВЛ под наведенным напряжением перекладку проводов из раскаточных роликов в поддерживающие зажимы следует проводить в направлении, обратном направлению раскатки. До начала перекладки необходимо, оставив заземленными провода на анкерной опоре, в сторону которой будет проводиться перекладка, снять заземление с проводов на анкерной опоре, от которой начинается перекладка.

4.15.50. При монтаже проводов на ВЛ под наведенным напряжением заземления с них можно снимать только после перекладки провода в поддерживающие зажимы и окончания работ на данной опоре.

4.15.51. Во время перекладки проводов в зажимы смежный анкерный пролет, в котором перекладка уже закончена, следует рассматривать как находящийся под наведенным напряжением. Выполнять на нем работы, связанные с прикосновением к проводам, разрешается только после заземления их на рабочем месте.

4.15.52. Из числа ВЛ под наведенным напряжением организациям необходимо определить измерениями линии, при отключении и заземлении которых по концам (в РУ) на заземленных проводах остается потенциал наведенного напряжения выше 25 В при наибольшем рабочем токе действующей ВЛ.

Все виды работ на этих ВЛ, связанные с прикосновением к проводу без применения основных электрозащитных средств, должны выполняться по технологическим картам или ППР, в которых должно быть указано размещение заземлений исходя из требований обеспечения на рабочих местах потенциала наведенного напряжения не выше 25 В.

4.15.53. Если на отключенной ВЛ (цепи), находящейся под наведенным напряжением, не удается снизить это напряжение до 25 В, необходимо работать с заземлением проводов только на одной опоре или на двух смежных. При этом заземлять ВЛ (цепь) в РУ не допускается. Допускается работа бригады только с опор, на которых установлены заземления, или на проводе в пролете между ними.

4.15.54. При необходимости работы в двух и более пролетах (участках) ВЛ (цепь) должна быть разделена на электрически не связанные участки посредством разъединения петель на анкерных опорах. На каждом из таких участков у мест установки заземлений может работать лишь одна бригада.

4.15.55. На отключенной цепи многоцепной ВЛ с расположением цепей одна над другой можно работать только при условии, что эта цепь подвешена ниже цепей, находящихся под напряжением. Не допускается заменять и регулировать провода отключенной цепи.

4.15.56. При работе на одной отключенной цепи многоцепной ВЛ с горизонтальным расположением цепей на стойках должны быть вывешены красные флажки со стороны цепей, оставшихся под напряжением. Флажки вывешивают на высоте 2–3 м от земли производитель работ с членом бригады, имеющим группу III.

4.15.57. Подниматься на опору со стороны цепи, находящейся под напряжением, и переходить на участки траверс, поддерживающих эту цепь, не допускается. Если опора имеет степ-болты, подниматься по ним разрешается независимо от того, под какой цепью они расположены. При расположении степ-болтов со стороны цепей, оставшихся под напряжением, подниматься на опору следует под наблюдением находящегося на земле производителя работ или члена бригады, имеющего группу III.

4.15.58. При работе с опор на проводах отключенной цепи многоцепной ВЛ, остальные цепи которой находятся под напряжением, заземление необходимо устанавливать на каждой опоре, на которой ведутся работы.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

(PDF) О безопасности работ на объектах, находящихся под наведённым напряжением

2

Определение наведённого напряжения

Прежде всего, определим понятие «наведённое напряжение»,

которое отсутствует как в прежних, так и действующих Правилах [1].

Наведённое напряжение – напряжение, возникающее на отключённых,

заземлённых и незаземлённых токоведущих, открытых проводящих и

сторонних проводящих частях в результате влияния магнитного и (или)

электрического полей данной или (и) соседней электроустановки.

Очевидное с электротехнической точки зрения это определение

требует существенных пояснений применительно к конкретным

токоведущим, открытым проводящим и сторонним проводящим частям

электроустановок. Следует отметить, что использованные в предыдущем

предложении термины определены Правилами устройства

электроустановок [6] и конкретизируются далее.

В действующих Правилах [1] существует понятие «ВЛ под

наведённым напряжением», которое определяется как (п. 4.4): «ВЛ, КВЛ1,

ВЛС2, воздушные участки КВЛ, которые проходят на всей длине или на

отдельных участках вблизи действующих ВЛ или контактной сети

электрифицированной железной дороги переменного тока, на

отключённых проводах (тросах) которых при заземлении линии по концам

(в РУ) на отдельных её участках сохраняется напряжение более 25 В при

наибольшем рабочем токе влияющих ВЛ (при пересчёте на наибольших

рабочий ток влияющих ВЛ)». Отметим пять принципиальных недостатков

процитированного определения.

1. Определение относится только к ВЛ (КВЛ, ВЛС и не учитывает

такие отключённые токоведущие части как монтируемые провода и тросы,

которые в РУ не заземляются; высокочастотные заградители; отключённую

ошиновку ОРУ на подстанции больших размеров (см. п. 4.9 [1]) и пр.

2. Наведённое напряжение может возникнуть не только на

токоведущих (см. п. 2.6 [1]), но и на заземлённых открытых проводящих

1 Линии для передачи электроэнергии, состоящие из участков в воздушном и

кабельном исполнении, соединенных между собой.

2 Воздушные линии связи.

О мерах безопасности при работах на ВЛ под наведенным напряжением | ВЛ

Тураев В. А., Базанов В. П.

В статье [1] подтверждается точка зрения, изложенная нами в [2] по поводу опасности наведенных напряжений при КЗ на землю на влияющих ВЛ; высказывается необходимость определения наибольших напряжений при КЗ на землю в сети влияющих линий, их снижения до определенных значений с помощью заземлителей по концам и в выбранных точках ВЛ; предлагаются способы защиты от ограниченного этими приемами наведенного напряжения на месте работ.
Кроме того, авторы статьи подвергают критике способ заземления ВЛ под наведенным напряжением, рекомендованный [3] (п. 4.3.11), который полностью переходит в новое издание правил ТБ [4] (и. 4.15.52 — 4.15.54), за исключением того, что максимальный потенциал наведенного напряжения принимается в [4] не 42 В, а 25 В.
Критика, как нам кажется, справедлива в части того, что Правила безопасности при эксплуатации электроустановок не указывают требования к заземлители) на месте работ, на который заземляется линия (при ее заземлении только в одной точке).
Со своей стороны, мы неоднократно [5, 2] обращали внимание на то, что заземление ВЛ в одной точке должно производиться с учетом падения напряжения на заземлителе от емкостной составляющей тока, стекающего через заземлитель, указывали на недопустимость заземления ВЛ в одной точке на штырь длиной 0,5 м (что допускается п. 3.6.8 [4]), так как напряжение на штыре от стенания емкостного тока может быть смертельно опасным.
Считаем, что выводы рассматриваемой статьи весьма интересны и могут быть использованы при работах на ВЛ 330 кВ и выше, однако их распространение на все ВЛ и ВЛС, находящиеся под наведенным напряжением, в настоящее время достаточно сложно.

Размещение заземлений по участкам ВЛ и эпюры наведенных ЭДС:
ΔU- падение напряжения на заземлителях Rb и Rc от отекания суммарного емкостного тока с участков наведения; Rb, Rc — сопротивление заземлителя в точке b и с соответственно

В связи с изложенным мы подтверждаем ранее высказанное мнение, что заземление ВЛ под наведенным напряжением в одной точке (на месте производства работ) является достаточно эффективным и простым средством защиты от электромагнитной составляющей (в том числе и при КЗ).
Защита персонала от электростатической составляющей наведенного напряжения должна при этом осуществляться заземлением ВЛ на заземлитель с малым значением сопротивления (система трос — опоры на ВЛ 110 кВ, заземлитель металлической или железобетонной опоры на ВЛ 220 кВ и выше, контур заземления ТП, ЛР на ВЛ 6-10 кВ, специальный заземлитель).
Предварительным расчетом необходимо оценить значение емкостного тока, стекающего с заземлителя, для чего можно воспользоваться формулами рассматриваемой статьи или данными, приведенными в [4], и определить необходимое (безопасное) значение сопротивления заземления на месте производства работ.
Причем, учитывая снижение по новым правилам ТБ допустимого напряжения на заземлителе с 42 В до 25 В, можно в качестве отправных моментов для практической работы использовать пересчитанные данные, изложенные в [5], касающиеся двухцепных ВЛ 110 и 220 кВ, а именно, что безопасно заземлять на один заземлитель с R < 30 Ом ВЛ 110 кВ длиной 60 км и ВЛ 220 кВ длиной 30 км.
В качестве одной из контрольных мер безопасности при производстве работ должно быть проведение измерения падения напряжения на заземлителе на месте работ и его нормирование значением не свыше 25 В. Такие мероприятия достаточно просто осуществить персоналу линейной бригады при подготовке рабочего места [6].
Метод заземления ВЛ в одной точке на месте производства работ в принципе может быть распространен не только на ВЛ под наведенным напряжением, но и на другие ВЛ. При этом исключается вынос потенциала с контура подстанции на отключенную для производства работ ВЛ через установленное заземление при коротких замыканиях на подстанции или в присоединенной сети 110, 220 кВ. Такая ситуация возникает довольно часто (при относительно высокой повреждаемости фарфоровых опорных изоляторов разъединителей 110 и 220 кВ и при срабатываниях короткозамыкателей).
Для соблюдения требований ТБ от ошибочной подачи напряжения на выведенное в ремонт присоединение ВЛ (и, как сказано ранее, от выноса потенциала с контура подстанции на провода ВЛ) заземление на подстанции необходимо при этом устанавливать до отключенного линейного разъединителя со стороны подстанции.
Заземление в одной точке на ВЛ (а не по концам ВЛ и на месте работ) менее эффективно лишь в случае “гальванического” воздействия при падении провода пересекающейся ВЛ. Однако следует отметить, что подобные воздействия являются опасными для любых схем заземления ВЛ и, вероятно, не рассматриваются для принятых схем заземления ВЛ как расчетные факторы в силу их весьма малой вероятности при соблюдении требований ПУЭ и ПТЭ.
Следует заметить, что для целого ряда участков линий, на которых очень сложно снизить наведенные напряжения, пользуясь принятой схемой заземления (заземление по концам и на месте работ) рис. 5 [5], решить проблему можно весьма простым способом, исключив воздействие наведенной электромагнитной ЭДС на заземлитель на месте производства работ. Для этого (см. рисунок) достаточно установить заземлитель на границах участков наведения в точках b и с, не заземляя ВЛ в точках а и d. На участке bс (участок без наведения) можно устанавливать любое число заземлителей и выполнять работу несколькими бригадами без разрезания ВЛ, как требуют правила [4] п. 4.15.54.
Для снижения АС/ от емкостной (электростатической) составляющей тока, стекающего с заземлителя, целесообразно в точках b и с выполнять заземления с малым сопротивлением растеканию тока. При этом, так как участок bс не находится в зоне наведения, на нем допустима работа нескольких бригад, каждая из которых устанавливает свой комплект заземлителей. Это также приводи; к снижению потенциалов на проводах от действия емкостной составляющей с участков наведения ab и cd.
Считаем необходимым уточнить требования [4] (п. 3.6.8 и 4.15.53) с учетом изложенного материала в [1] и сделанных нами замечаний.

Список литературы

  1. Левченко И. И., Засыпкин А. С., Рябуха Е. В. О мерах безопасности при работах на воздушных линиях под наведенным напряжением. — Электрические станции, 2001, № 5.
  2. Тураев В. А., Базанов В. П. О наведенных напряжениях на воздушных линиях при однофазных коротких замыканиях. — Электрические станции, 1998, № 3.
  3. Правша техники безопасности при эксплуатации электроустановок. 2-е изд. М., 1986.
  4. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. ПОТ РМ- 16-2001, РД 153-34.0-03.150-00. М„ 2001.
  5. Тураев В. А. О наведенных напряжениях на воздушных линиях. — Электрические станции, 1995, № 8.
  6. Методические указания по измерению наведенных напряжений на отключенных ВЛ, находящихся вблизи действующих ВЛ напряжением 35 кВ и выше и контактной сети электрифицированной железной дороги переменного тока. М.: ОРГРЭС, 1993.

Что такое наведенное напряжение и чем оно опасно?

Возникновение наводки на воздушных линиях электропередачи и в электроустановках, которые связаны с ними могут представлять опасность. Именно поэтому, вам детально необходимо разобраться с тем, что представляет собою наведенное напряжение.

Также подобное явление может возникать в бытовых условиях в сети 220 Вольт. Именно поэтому, вам обязательно необходимо понимать природу возникновения и меры защиты от наведенного напряжения.

Блок: 1/4 | Кол-во символов: 431
Источник: https://vse-elektrichestvo.ru/elektromontazh/zazemlenie/navedennoe-napryazhenie.html

Как оно возникает

Рассмотрим вполне рядовую ситуацию. Существует некая линия электропередач, на которой в данный момент отсутствует потенциал. Это может быть не введенная в эксплуатацию линия, либо действующий объект, на котором выполняются ремонтные работы. На любом из участков этого проводника может располагаться другая линия, либо электроустановка, через которую протекает электрический ток. Если проводники расположены параллельно, возникает эффект трансформатора: влияющая линия (находящаяся под напряжением), оказывает индуктивное воздействие на отключенную. Благодаря этому, через пассивный проводник начинает протекать электрический ток, и возникает разность потенциалов, которая может иметь значение, аналогичное напряжению в источнике.

Если обесточить любую из ЛЭМ на иллюстрации, то под влиянием соседних проводников (находящихся под напряжением), на отключенных проводах возникнет наведенное напряжение.

Если на пассивной линии начать работы, не предприняв особых мер безопасности, можно получить поражение электротоком, вплоть до летального исхода.

Блок: 2/9 | Кол-во символов: 1065
Источник: https://ProFazu.ru/elektrosnabzhenie/bezopasnost-elektrosnabzhenie/navedennoe-napryazhenie.html

Природа явления

Возникновение побочного или наведенного напряжения в проводнике происходит по такому же принципу, как и напряжение во вторичной обмотке трансформатора. Суть явления в следующем:

  1. при движении электротока вокруг проводника возникает магнитное поле;
  2. изменение силы тока и его направления вызывает изменение магнитного поля;
  3. меняющееся магнитное поле разделяет разноименные заряды, что приводит к появлению разности потенциалов, то есть к напряжению.

Если не вдаваться в физические тонкости, напряжение наводки — это возникновение разности потенциалов в металлическом проводнике, который не подключен к источнику электротока, под действием электрического тока в расположенном рядом с ним другом проводнике. Чем ближе находятся проводники друг к другу и чем выше разность потенциалов в подключенном к сети проводнике, тем большее напряжение на изолированном проводнике.

Воздействие наведенного электротока имеет две составляющие: электромагнитную и электростатическую. Первая не составляет угрозы для жизни человека, но может сказываться на работоспособности некоторых приборов и устройств. Вторая более опасна для человека, при напряжении более 25 V принимают дополнительные меры безопасности.

Блок: 2/4 | Кол-во символов: 1219
Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/mehanizm-vozniknoveniya-navedennogo-napryazheniya-i-mery-zaschity-ot-nego.html

Определение наведенного напряжения

Со статикой определились, формально можно вычислить значение ЭДС для каждого участка работы. Однако при наличии нормального заземления (по краям и в точке работ), опасность практически нулевая.

А вот с электромагнитным наведением придется потрудиться. Если участок относительно небольшой, можно просто замерять разницу потенциалов на концах пассивного проводника.

Важно: Измерения проводятся с соблюдением всех мер защиты, как на реально работающей электроустановке.

Разумеется, все измерения проводятся при наличии нормальной токовой загрузки влияющей линии. То есть при условиях, когда наведенное напряжение достигает максимального значения.

Методика измерения следующая:

Общий принцип сводится к замеру разницы потенциалов между реальной «землей» и предполагаемой точкой нулевого потенциала, то есть временным заземлением обесточенного проводника. Расстояние от «земли» до точки нулевого потенциала должно быть не менее 15–20 м.

К измерительному зонду присоединяется гибкий медный провод, сечение которого позволяет выполнять работы с таким напряжением. Второй конец проводника соединяется с измерительным прибором. Вторая клемма прибора соединяется с реальной «землей».

Измерение проводится минимум двумя работниками. Один находится у прибора, а второй набрасывает зонд на измеряемый проводник.

Точки замера определяются перед началом операции, значение методично фиксируется первым оператором на графике.

При переходе на иной участок, схема измерения разбирается, демонтируется временное заземление. Оборудование переносится на новое место, где монтируется снова, с учетом зоны проведения измерений.

Важно: Наведенное напряжение измеряется не для статистики. Графики с результатами сдаются в отдел обеспечения безопасности работ на электроустановках. На основании этих данных планируются мероприятия по защите персонала при проведении ремонтных работ или укладке новых линий электропередач.

Решения принимаются в случае, когда на проводниках и стальной обвязке (растяжки, бандажи, и прочее) остается напряжение выше 42 вольт.

Меры безопасности при определении наведенного напряжения

  1. Персонал должен иметь группу электробезопасности не менее III, а руководитель работ не менее IV.
  2. Желателен опыт работы по монтажу и обслуживанию линий молниезащиты и силовых линий.
  3. Вокруг зоны проведения измерений организуется периметр безопасности.
  4. В целях безопасности, нулевой кабель в измеряемой группе, принято считать находящимся под напряжением.
  5. Начало и окончание работ оформляются документально.
  6. Запрещается проводить измерения в условиях осадков, сильного тумана, недостаточной видимости, сильном ветре.
  7. Если на измеряемом участке обнаруживается повреждения опоры, изолятора или высоковольтного кабеля, работы прекращаются до устранения проблемы.

Блок: 5/9 | Кол-во символов: 2783
Источник: https://ProFazu.ru/elektrosnabzhenie/bezopasnost-elektrosnabzhenie/navedennoe-napryazhenie.html

Факторы опасности и меры защиты

Считается, что разность потенциалов от наводки более опасна, чем обычная. Штатные защитные устройства не рассчитаны на противодействие от нее. При работе на высоковольтных ЛЭП на отключенной линии может возникнуть разность потенциалов в несколько киловольт. Выполнение работ с вышек или работа кранов вблизи ЛЭП выполняется по допуску и с применением дополнительных защитных мер, так как на металлической части оборудования и техники может возникнуть разность потенциалов. Это грозит поражением людей электротоком и поломкой техники.

Необходимые меры безопасности прописаны в правилах техники безопасности при выполнении соответствующих работ. Самым простым и эффективным является устройство заземления отключенной линии. Для надежности заземляющий контур имеет две линии, дублирующие друг друга. При случайном обрыве одной заземление будет осуществляться по другой. Протяженные линии разбивают на отдельные участки, которые заземляются по отдельности.

Следует помнить о технике безопасности и средствах индивидуальной защиты и при проведении измерительных работ. Схема измерений собирается заранее, а потом подключается к проводникам под действующим напряжением или предполагаемом наведенном.

Требования по ТБ:

  1. на руки одеваются диэлектрические перчатки;
  2. на ноги — резиновые боты, прошедшие проверку и имеющие соответствующую бирку;
  3. одежда должна быть сухой, все работы не должны выполняться под дождем.

Все соединительные провода должны иметь исправную изоляцию, рассчитанную на разность потенциалов не менее 1 kV. При необходимости изменения пределов шкалы измерительного прибора отсоединяют всю измерительную схему от воздушной линии.

Блок: 3/4 | Кол-во символов: 1686
Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/mehanizm-vozniknoveniya-navedennogo-napryazheniya-i-mery-zaschity-ot-nego.html

Причины возникновения

Наведенное напряжение в большинстве случаев будет возникать на выведенной в ремонт и обесточенной воздушной линии электропередач. Также возникновение может произойти в том случае если рядом с высоковольтной линией будет располагаться электромагнитное поле. Таким образом, ВЛ, которая приходит параллельно отключенной линии наводит сторонний потенциал, который в дальнейшем будет предоставлять опасность для ремонтной бригады.

На данный момент значение наведенного напряжения в проводе может меняться в зависимости от протяженности участка, на котором ВЛ будут идти параллельно. Также на изменение значения будет влиять отдаленность фазных проводов, метеорологических условий. Потенциал, который будет наведен на ВЛ может объединять в себе два вида воздействия – электромагнитную и электростатическую составляющую:

  • Электромагнитная часть будет появляться под действием магнитного поля, которая возникает от протекания тока по работающей рядом ВЛ. Отличительной особенностью считается то, что при заземлении, даже в нескольких местах линии она не будет изменять свою величину. Единственное, что можно будет изменить с помощью заземления, так это то, что это расположение точки нулевого потенциала.
  • Электростатическая часть в отличии электромагнитной устраняется путем заземления линии в ее концах и вместе ведения работ. Чтобы снизить величину наведенного напряжения необходимо установить хотя бы в одной точке ВЛ.

Узнайте, также про переносное заземление и его принцип работы.

Теперь необходимо более детально разобраться про наведенное напряжение и природу его возникновения. Чтобы понять, как оно появляется изучите фото, которое расположено ниже:

Если будет иметься проводник, который на картинке обозначен, как А-А. Если по нему будет протекать переменный ток, тогда будет создаваться электромагнитное поле интенсивность, которого будет уменьшаться по мере отдаления от проводника. Также могут изменяться пульсации электромагнитного поля с изменением направления и величины тока. Если в поле попадет любой другой в нем может индуцироваться наведенное напряжение. Ниже на картинке будут показаны проводники с подключенными измерительными приборами для определенной величины напряжения:

На данный момент многие не знают, какое значение будет опасным для персонала? Если на отключенной ВЛ будет присутствовать напряжение и его значение не будет превышать 25 В. Все ремонтные мероприятия будут проводиться с применением обычных средств защиты. Если величина будет превышена, тогда необходимо будет пользоваться специальными средствами защиты и выполнять разнообразные технические мероприятия. На данный момент такими мерами безопасности могут быть разземление вначале и конце линии, разрез провода.

Блок: 2/4 | Кол-во символов: 2723
Источник: https://vse-elektrichestvo.ru/elektromontazh/zazemlenie/navedennoe-napryazhenie.html

Наводка в бытовой сети

В квартире, частном доме или офисном помещении тоже можно встретить явление наводки напряжения. Обычно провода с питанием 220 V имеют две жилы: фазу и ноль. При обрыве нулевого провода в нем появляется небольшая разность потенциалов. Если в розетке с обрывом «ноля» искать фазу индикатором напряжения, то измерительный прибор покажет ее сразу на двух контактах, а на самом деле фаза только на одном контакте, на другом — напряжение наводки.

Такая ситуация может ввести в заблуждение при выполнении электроремонтных работ в квартире. При устранении обрыва нулевого провода все приходит в норму — фаза одна и там, где ей полагается быть.

Еще одно проявление наведенного напряжения — это легкое свечение светодиодных ламп в выключенном состоянии. Светодиоды чувствительны к небольшому по величине напряжению. При наводке возникает разница потенциалов всего в несколько вольт, но этого достаточно для испускания небольшого по интенсивности светового потока светодиодами, видимого лишь в темноте.

Дополнительных мер защиты в быту от действия наводки не требуется, так как разница потенциалов в несколько вольт не составляет угрозы для здоровья человека. Обычные автоматические выключатели и устройства защитного отключения вполне справляются с потенциальной угрозой от электрического тока. Достаточно помнить о возможности неправильного определения фазного провода при обрыве нулевого.

Блок: 4/4 | Кол-во символов: 1415
Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/mehanizm-vozniknoveniya-navedennogo-napryazheniya-i-mery-zaschity-ot-nego.html

Наводка в квартире

На данный момент многие специалисты утверждают, что наведенное напряжение также может возникать в квартире и в доме в сети 220 Вольт. «Наводка» в большинстве случаев будет проявляться в кабеле приложенным рядом с проводом, по которому будет протекать ток. Например, когда при включенном выключателе на диодных лампочках еле заметное свечение. Произойти подобная ситуация в большинстве случаев может из-за того, что рядом с проводом будет проложен проводник с фазной жилой.

В результате воздействия электромагнитного поля и будет возникать небольшая наводка. Ее величины будет вполне достаточно для того, чтобы осветить небольшие светодиоды. Иногда наводка также может возникать и в розетке. Возникает она в том случае, если происходит, обрыв нулевого провода. Чтобы более детально ознакомиться с примером влияния наводки, вам необходимо посмотреть видео.

Теперь вы точно знаете, что такое наведенное напряжение и чем оно опасно для жизни человека. Надеемся, что эта информация была полезной и интересной.

для чего нужно повторное заземление ВЛИ?

Блок: 4/4 | Кол-во символов: 1066
Источник: https://vse-elektrichestvo.ru/elektromontazh/zazemlenie/navedennoe-napryazhenie.html

Наведение напряжения на домашних линиях электропроводки

Разумеется, речь не идет о значениях в сотни или тысячи вольт. Однако 40–60 вольт можно получить, а это уже опасно для жизни. Наверное, многие наблюдали блеклое свечение экономных ламп при выключенном освещении. Это признак наличия наведенного напряжения. Как правило, такие ситуации возникают при параллельной укладке линий питания розеточной сети и освещения.

При проведении работ опасаться нечего: вы все равно отключаете от вводного напряжения всю домашнюю сеть. А для локализации проблем вроде светящихся экономок, следует пересмотреть маршруты укладки проводов, и проверить рабочее заземление и зануление.

Блок: 8/9 | Кол-во символов: 668
Источник: https://ProFazu.ru/elektrosnabzhenie/bezopasnost-elektrosnabzhenie/navedennoe-napryazhenie.html

Кол-во блоков: 11 | Общее кол-во символов: 13056
Количество использованных доноров: 3
Информация по каждому донору:
  1. https://ProFazu.ru/elektrosnabzhenie/bezopasnost-elektrosnabzhenie/navedennoe-napryazhenie.html: использовано 3 блоков из 9, кол-во символов 4516 (35%)
  2. https://vse-elektrichestvo.ru/elektromontazh/zazemlenie/navedennoe-napryazhenie.html: использовано 3 блоков из 4, кол-во символов 4220 (32%)
  3. https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/mehanizm-vozniknoveniya-navedennogo-napryazheniya-i-mery-zaschity-ot-nego.html: использовано 3 блоков из 4, кол-во символов 4320 (33%)

Работы на токоведущих частях электроустановок и воздушных линий электропередач под наведенным напряжением*

____________

* Требования этого раздела относятся к работам на проводах,

тросах и линейном оборудовании электростанций (подстанций).

6.1.53. К работам на токоведущих частях электроустановок под наведенным напряжением могут быть допущены лица, прошедшие специальное обучение методам безопасного выполнения таких работ, с проверкой знаний и записью в удостоверении о предоставлении права на их проведение.

Члены бригады (за исключением водителей машин и механизмов) должны иметь группу по электробезопасности не ниже III.

6.1.54. Работники, обслуживающие электроустановки и ВЛ, должны знать перечень ВЛ и линейного оборудования электростанций и подстанций, находящихся под наведенным напряжением после их отключения.

6.1.55. Из числа ВЛ, под наведенным напряжением, следует определять измерениями или расчетами линии, при отключении и заземлении которых по концам (в РУ) и на месте выполнения работ на заземлителе остается потенциал наведенного напряжения выше 42 В при наибольшем рабочем токе действующих ВЛ. В дальнейшем измерения или расчеты следует производить при смене режима, схемы сети.

6.1.56. При работах в зоне слабого действия наведенного напряжения линия должна быть заземлена в РУ электростанций и подстанций.

6.1.57. Работы в зоне сильного действия наведенного напряжения следует выполнять без заземления ВЛ в РУ электростанций и подстанций. Исключение составляют работы, выполняемые:

— на участке совместимого следования ВЛ вблизи РУ электростанций (подстанций), но не далее 2 км от них — в этих случаях ВЛ заземляется на конечных РУ;

— на участке одиночного следования, примыкающем к РУ электростанций (подстанций) — в этих случаях линию следует заземлять на примыкающем к участку работ РУ.

6.1.58. При выполнении работ на ВЛ в зоне сильного действия наведенного напряжения, когда эта линия не заземлена в РУ электростанции и подстанции, должны быть приняты дополнительные меры препятствующие ошибочному или самопроизвольному включению коммутационных аппаратов. Для этого дополнительно к требованиям пункта 4.2.4 настоящих Правил схема выключателя должна быть разобрана разъединителями с обеих сторон, а на линейном разъединителе должны быть включены заземляющие ножи в сторону выключателя. При наличии обходной системы шин она также должна быть заземлена.

6.1.59. Токоведущие части электроустановки, находящиеся под наведенным напряжением, должны быть заземлены на каждом рабочем месте с присоединением заземляющих проводников к контуру заземления опоры или к заземляющему устройству электростанции или подстанции. Разрешается использовать групповой заземлитель. Применение одиночного стержневого заземлителя допускается только при работах в зоне слабого действия наведенного напряжения.

6.1.60. С момента заземления провода заземлитель, заземляющие проводники, опоры и их элементы, монтажные канаты, машины и механизмы следует считать, находящимися под напряжением, и прикасаться к ним стоя на земле без применения электрозащитных средств (диэлектрических перчаток, обуви), а также входить в кабину механизма и выходить из нее — запрещается.

6.1.61. Работы в зоне сильного действия наведенного напряжения, выполняемые без заземления ВЛ в РУ электростанции и подстанции, должны производиться с установкой базового заземлителя на участке производства работ. При работе на участке совместимого следования ВЛ базовый заземлитель необходимо устанавливать не далее 1 км от рабочего места, а на участках одиночного прохождения линии — его можно размещать произвольно в пределах этого участка. Не допускается установка базового заземлителя на опоре, где выполняются работы.

6.1.62. Установка и снятие базового заземления выполняется с заземлением проводов всех фаз на контур заземления опоры, а в случае отсутствия такого контуру — на групповой заземлитель. В зависимости от местных условий допускается устанавливать и снимать базовое заземление без заземления ВЛ в РУ электростанции (подстанции) с записью в оперативном журнале или временным заземлением ВЛ в этих РУ. Установку и снятие базового заземления должен выполнять руководитель работ с двумя членами бригады с группами IV и III.

В строке «Отдельные указания» наряда необходимо указать расчетные уровни наведенного напряжения до установки базового заземления и после подготовки рабочего места.

Базовое заземление устанавливается перед началом подготовительных работ и снимается после полного окончания работ и снятия рабочих заземлений.

6.1.63. Работы в зоне сильного действия наведенного напряжения, при совместном следовании ВЛ, следует выполнять на одной опоре или двух смежных и пролете между ними. При совместном следовании ВЛ в зоне сильного действия наведенного напряжения допускается одновременное проведение работ несколькими бригадами, чтобы длина участка работ не превышала 2 км, при условии выполнения требований пункта 6.1.61 настоящих Правил. При необходимости превышения указанной длины участка работ, ВЛ должна быть разделена на электрически не связанные между собой участки с установкам на каждом из них базового заземления.

При выполнении таких работ на участке одиночного следования линии, а также всех видов работ в зоне слабого действия наведенного напряжения длина участка производства работ, не ограничивается.

Совмещение работ в зоне сильного действия наведенного напряжения на участках совместимого и одиночного следования допускается только при разделении линии на электрически несвязанные участки.

6.1.64. При прохождении ВЛ на участке одиночного следования на территории разных предприятий на каждом участке работ должен устанавливаться отдельный базовый заземлитель.

6.1.65. До начала работ под наведенным напряжением должны быть выровнены потенциалы провода, опор и их элементов, монтажных канатов, машин и механизмов путем заземления их на общий заземлитель. В этом случае провод следует заземлять в последнюю очередь — после сборки такелажной схемы на уровне земли и ее заземления. Разбирать такелажную схему необходимо в обратной последовательности.

6.1.66. Работы, связанные с прикосновением к опущенному до земли проводу, должны проводиться с использованием электрозащитных средств или с металлической площадки, соединенной с проводом для выравнивания потенциалов. Запрещается входить на площадку или сходить с нее, а также подавать металлические предметы, стоя на земле без диэлектрической обуви.

6.1.67. Перед разрезанием провода, его необходимо заземлить с обеих сторон от места разрыва на контур заземления опоры или, при выполнении таких работ в пролете — на общий групповой заземлитель, на который должны заземлены также монтажные канаты, машины и механизмы.

6.1.68. Для защиты от напряжения шага после заземления провода на месте работ при приближении к заземлителю на расстояние менее 3 м необходимо применять диэлектрическую обувь.

6.1.69. При монтаже и замене проводов находящихся под наведенным напряжением, все работы, связанные с прикосновением к проводу, машинам и механизмам, должны выполняться с заземлением их на месте работ и применением электрозащитных средств. Перед раскаткой заземлять провод непосредственно у барабана не требуется.

6.1.70. Подъем и опускание провода должны проводиться с заземлением его на каждой опоре, где производится работа, так, чтобы длина участка не превышала 2 км. Натяжку и визирование провода следует выполнять с заземлением его на анкерной опоре, через которую производится натяжка.

6.1.71. Перекладка провода из раскаточных роликов в зажимы должна выполняться после заземления его на месте работ или на соседней опоре. Для провода, лежащего на металлических роликах или в поддерживающих зажимах, достаточно заземлить их на контур заземления опоры, а при наличии естественного контакта между ними установка дополнительного заземления на месте работ не требуется. Смежный анкерный пролет, в котором перекладка провода уже закончена, следует считать находящимся под напряжением.

6.1.72. До работ по соединению проводов в петлях анкерных опор ВЛ 110 кВ и выше их следует закреплять за провода или за натяжные изолирующие подвески (но не ближе, чем за четвертый изолятор от траверсы), а на ВЛ 35 кВ и ниже — только за провода.

6.1.73. К соединению проводов в пролетах анкерных опор можно приступать только после полного окончания работ в смежных анкерных пролетах и снятия всех заземлений. Линия должна быть заземлена в одном месте — на анкерной опоре, где осуществляются работы, с заземлением концов соединяемых проводов на контур заземления опоры. До установки заземлений следует соблюдать повышенную осторожность и не допускать приближения к незаземленным проводам из-за наличия на них наведенного электростатического потенциала.

6.1.74. Работы на оборудовании электростанций и подстанций, находящемся под наведенным напряжением, необходимо выполнять с установкой на спуски проводов со стороны ВЛ по одному переносному заземлению или с включением заземляющих ножей на обходном разъединителе, если на нем не производятся работы. Установку и снятие переносных заземлений необходимо выполнять при условии включенных заземляющих ножей в сторону линии.

6.1.75. При работах в электроустановках под наведенным напряжением с применением телескопических вышек и гидроподъемников рабочая площадка должна быть соединена с заземленным на месте работ проводом — перемычкой из гибкого медного провода при помощи специальной штанги, а сам механизм заземлен на общий с проводом заземлитель. Сечение перемычки и заземляющего проводника должно быть не менее 25 мм2. Механизмы должны быть оснащены инвентарными заземлителями, на рабочих площадках должны быть обозначены места для присоединения перемычек, тщательно очищенных от краски, ржавчины и загрязнений.

Голос опыта: понимание наведенного напряжения — предотвращение инцидентов

Электроэнергетикам потребовалось много лет, чтобы разобраться в индуцированном напряжении. Когда я начал работать в 1960-х годах, мне объяснили, что напряжение, остающееся на обесточенных линиях, представляет собой статическое напряжение, которое необходимо сбросить, иначе оно может быть смертельным. Теперь, когда я говорю с группами о временном системном заземлении для защиты сотрудников, я иногда все еще слышу термин «статическое напряжение», используемый для описания того, что на самом деле является наведенным напряжением от соседней линии, находящейся под напряжением.Даже сегодня не все в отрасли полностью понимают наведенное напряжение.

Итак, что такое наведенное напряжение? Вот некоторые вещи, которые должны понимать специалисты по безопасности и эксплуатации. Электромагнитное поле вокруг проводника под напряжением создает емкостную и магнитную связь со всеми близлежащими объектами в пределах электромагнитного поля. Уровень напряжения проводника под напряжением и физическая длина обесточенного проводника, который подвергается воздействию проводника (источника) под напряжением, будут определять величину напряжения на обесточенном проводнике или оборудовании.Обесточенный проводник или часть оборудования будут оставаться под напряжением, пока источник остается под напряжением, а обесточенное оборудование остается незаземленным. Правильно установленные временные системные площадки безопасности можно использовать для создания уравновешенной рабочей зоны для сотрудников.

Наведенное напряжение на обесточенном оборудовании не статично, и его нельзя сбросить. Установленные защитные заземления системы просто обеспечивают проводящее соединение индуцированного напряжения с землей. После удаления заземления индуцированное напряжение мгновенно возвращается к точно такой же величине напряжения.Это напряжение 60 циклов в секунду в установившемся состоянии, потому что нет другого пути, по которому может течь электричество, кроме изолированного проводника или оборудования под напряжением. Если заземление применяется к обесточенным проводникам, напряжение немедленно упадет почти до нуля, но теперь физика изменилась, и в заземлении системы устанавливается ток. Сила тока, протекающего в заземляющих устройствах, определяется величиной наведенного напряжения на обесточенном оборудовании до установки заземления, а также сопротивлением заземляющего устройства и земли.Кроме того, чем больше наборов заземлений применяется к обесточенной линии, тем меньше ток протекает в каждом наборе заземлений.

Существенные изменения
За последние 10 лет произошло множество травм и смертельных случаев, связанных с неспособностью контролировать наведенное напряжение. В 2014 году в правила OSHA 29 CFR 1910.269 была внесена пара значительных изменений в попытке решить проблемы наведенного напряжения.

Во-первых, давайте взглянем на пункт 1910.269 (m), «Выключение линий и оборудования для защиты сотрудников.«Правило всегда гласило, что работодатель должен обеспечить установку заземления системы. В частности, параграф 1910.269 (m) (3) (vii) гласит следующее: «Работодатель должен обеспечить установку защитных оснований в соответствии с требованиями параграфа (n) этого раздела».

До тех пор, пока не будут заземлены обесточенные линии и оборудование, параграф 1910.269 (n) требует, чтобы сотрудники придерживались минимального подхода и считали, что обесточенные линии и оборудование должны быть под напряжением. Согласно 1910.269 (n) (3), должна быть установлена ​​эквипотенциальная зона.В абзаце указано следующее: «Эквипотенциальная зона. В таких местах должны быть размещены временные защитные площадки и организованы таким образом, чтобы работодатель мог продемонстрировать, что они предотвратят воздействие на каждого работника опасной разницы в электрическом потенциале ».

В попытке контролировать опасную энергию и наведенное напряжение, значительное изменение в 1910.269 (q), «Воздушные линии и работа без экипажа на линии», осталось практически незамеченным, когда новое правило 1910.269 было опубликовано в 2014 году, и на него не было обращено никакого внимания. к нему во время первых вебинаров о новом правиле.Объяснение изменения можно найти в 1910.269 (q) (2) (iv). До обновления 2014 года, если бригады работали или устанавливали проводники параллельно линиям под напряжением, заземления системы требовались на расстоянии не менее 2 миль друг от друга. Таким образом, при работе на заземленных линиях сотрудники никогда не будут находиться более чем в миле от набора временных защитных сооружений. Как выясняется, 1 миля от ряда защитных сооружений системы на полосе отвода 345 кВ или 500 кВ может быть слишком далеко, что может подвергнуть сотрудников опасной разнице потенциалов, если они коснутся обесточенных линий или оборудование.

Обновленный 1910.269 (q) (2) (iv) теперь гласит следующее: «Перед тем, как сотрудники установят линии, параллельные существующим линиям под напряжением, работодатель должен определить приблизительное напряжение, которое будет индуцировано в новых линиях, или работа должна исходить из предположения, что индуцированное напряжение опасно. Если работодатель не может продемонстрировать, что линии, которые устанавливают работники, не подвержены наведению опасного напряжения, или если линии не рассматриваются как находящиеся под напряжением, в таких местах должны быть размещены временные защитные заземления и организованы таким образом, чтобы работодатель мог демонстрация предотвратит воздействие на каждого сотрудника опасной разницы в электрическом потенциале.

Примечание 1 к параграфу 1910.269 (q) (2) (iv) гласит: «Если работодатель не принимает мер предосторожности для защиты сотрудников от опасностей, связанных с непроизвольной реакцией от поражения электрическим током, существует опасность, если индуцированное напряжение достаточно для передачи ток 1 миллиампер через резистор на 500 Ом. Если работодатель защищает сотрудников от травм из-за непроизвольной реакции на поражение электрическим током, существует опасность, если результирующий ток будет более 6 миллиампер ».

Вы могли заметить, что текст 1910 г.269 ​​(n) (3) был скопирован и добавлен к 1910.269 (q) (2) (iv) в попытке обеспечить защиту сотрудников от опасных перепадов потенциала. Методы определения местоположения заземления на проводниках могут потребовать заземления чаще, чем на расстоянии 2 миль, чтобы уменьшить риски разницы потенциалов. После подключения проводов дополнительные защитные заземления системы снизят индуцированное напряжение и будут соответствовать нормативам.

После разговоров со многими рабочими об индуцированном напряжении возникло мнение, что после установки заземления вся линия обесточивается.Наука говорит нам, что защитное заземление системы — единственное место на заземленной линии, где напряжение относительно земли равно нулю. В случае наведенного напряжения, чем дальше вы находитесь от временного заземления, тем больше вероятность разницы потенциалов между заземленными проводниками и другими поверхностями — отсюда и изменение правил. Обратите внимание, что когда сотрудники работают в заземленной корзине крана или JLG в заземленной цепи на полосе отвода или на подстанции, в промежутке между автобусом и платформой будет возникать разность потенциалов.Эти токопроводящие платформы должны быть соединены с заземленными проводниками, чтобы устранить этот разрыв и защитить рабочих в корзине от разницы потенциалов.

Кроме того, даже когда оборудование заземлено, а шина или проводники заземлены, могут существовать циркулирующие токи заземления, связанные с наведенным напряжением и путем к земле. Заземляющее оборудование в другом месте, даже на большой подстанции, может создать опасные условия на территории.

Заключение
Мы должны помнить, что электричество не идет только по пути наименьшего сопротивления, как мне говорили много лет назад.Вместо этого электричество пойдет по всем проводящим путям. Закон Кирхгофа о делении тока в параллельных цепях помогает нам понять, что величина тока, протекающего по пути, определяется импедансом и сопротивлением пути. Требуется всего около 50 вольт переменного тока, чтобы проникнуть через кожу человека, и от 30 до 50 миллиампер, чтобы быть смертельным для человека. У человека в электрической цепи всего лишь резистор сопротивлением 1000 Ом. Все сотрудники должны быть знакомы с законом параллельных сопротивлений и законом Ома.

Об авторе: Дэнни Рейнс, CUSP, консультант по безопасности, распределение и передача, ушел на пенсию из Georgia Power после 40 лет службы и открыл Raines Utility Safety Solutions LLC, обеспечивающий обучение соблюдению, оценку рисков и программы наблюдения за безопасностью. Он также является аффилированным инструктором в Технологическом исследовательском центре Джорджии OSHA Outreach в Атланте.

Это обратное или индуцированное напряжение?

Вы собираетесь проверить отсутствие напряжения и прошли процедуру блокировки / маркировки.Вы носите соответствующие средства индивидуальной защиты. У вас есть подходящий тестер напряжения, и вы знаете, как им пользоваться. Прикоснувшись щупами к цепи, вы получите напряжение там, где его не должно быть! Что происходит?

1. Возможно, вы выбрали не то оборудование. Уж точно не ты! Это настолько большая проблема, что NFPA 70E включил новую статью об этом в редакцию 2009 года в статье 130.7 (E), Методы оповещения. Он гласит: «(4) Двойное оборудование.Если работа, выполняемая на оборудовании, которое обесточено и находится в электрически безопасном состоянии, существует в рабочей зоне с другим находящимся под напряжением оборудованием, аналогичным по размеру, форме и конструкции, один из методов изменения в 130.7 (E) (1), (2) или (3) должны использоваться для предотвращения доступа сотрудника к похожему оборудованию ».

2. Неужели он выключен? Если выключатель или предохранитель, питающий нашу цепь, не имеет четкой маркировки, или если сработал автоматический выключатель в литом корпусе, происходят шокирующие вещи! Я несколько раз бывал от «сработавшего» автоматического выключателя в литом корпусе только для того, чтобы обнаруживать, что контакты не полностью размыкаются.Они не будут проводить ток, но они точно несут напряжение! Всегда устанавливайте сработавший выключатель в положение полного выключения перед тем, как приступить к работе с ним.

3. Могут присутствовать индуцированные или «фантомные» напряжения. Многие думают, что индуцированные напряжения возникают только на высоковольтных подстанциях вне помещения. Хотя это самая большая опасность из-за наведенных напряжений, низковольтные цепи, проложенные в кабельных лотках, могут также индуцировать напряжение в обесточенных кабелях, которые находятся в том же кабельном лотке (см. Рисунок 1). Применение статического заземления к этой цепи без проблем рассеяло бы напряжение, поскольку индуцированное напряжение не имеет способности к току короткого замыкания.

Рис. 1. Сценарий низковольтного наведенного напряжения

4. Может быть откормлен. Управляющие силовые трансформаторы (CPT), сигнальные лампы и «посторонние» цепи (исходящие от другой панели или области) могут быть виноваты. Применение статического заземления к цепи с обратным питанием может вызвать искрение, что небезопасно.

Напряжение обратной связи

Часто обратные напряжения и индуцированные напряжения могут быть очень похожими.Индуцированные напряжения обычно намного ниже номинального напряжения схемы, но обратные токи могут быть в том же диапазоне напряжений, что и индуцированные напряжения. Поскольку заземление обратной связи небезопасно, что мы можем сделать?

Обратные напряжения — это напряжения, которые часто возникают из другой цепи или части оборудования, но «подаются» через световые индикаторы, управляющие силовые трансформаторы или даже резисторы в оборудовании. Эти напряжения обычно меньше номинального напряжения цепи и могут быть примерно такими же, как индуцированные напряжения.

Может быть трудно отличить обратное или индуцированное напряжение. Если индуцированное напряжение подключено к земле, источник генерации (тока) отсутствует, и напряжение будет рассеиваться. Обратное напряжение, даже если оно ниже номинального, имеет источник, питающее его, и при подключении к земле возникает дуга.

Приборы для испытаний с низким сопротивлением и высоким сопротивлением

Решение состоит в том, чтобы использовать комбинацию инструментов тестирования, чтобы определить, является ли это резервным или индуцированным, а затем проверить первоначальные результаты.

Качественные тестеры напряжения обычно имеют высокий входной импеданс. Я понял ценность этого, когда тестировал чиллер на 9000 тонн, у которого периодически возникала проблема. Я подключил испытательный зонд к одной стороне катушки, и когда я коснулся земли другим зондом, катушка замкнулась, отключив чиллер. Это был не момент для карьерного роста.

Входной импеданс измерителя, который я использовал, составлял всего несколько тысяч Ом. Когда я подключил катушку под напряжением к земле, через измеритель протекло достаточно тока для работы катушки.Измеритель с высоким входным импедансом не пропустит через измеритель достаточный ток, чтобы катушка заработала. Я взял свой недорогой мультиметр с низким входным сопротивлением домой и купил устройство хорошего качества с высоким входным сопротивлением.

Итак, после первого измерения напряжения с помощью стандартного вольтметра с высоким входным импедансом, используйте измеритель с опцией низкого импеданса, такой как Fluke 117 или 289. Эти измерители предлагают функции как с высоким входным сопротивлением, так и с низким входным сопротивлением. Если напряжение индуцируется, низкоомный вход должен рассеивать напряжение после того, как он подключен к земле.

Используя низковольтный бесконтактный тестер, произведите измерения вдоль тестируемой цепи, пока еще подключен низкоомный тестер напряжения. На рисунке 2 показаны конечные показания; нет напряжения, показываемого бесконтактным тестером, и никакого напряжения, показываемого тестером с низким входным сопротивлением.

Рисунок 2. Индикация наведенного напряжения

Рисунок 3. Индикация обратного напряжения

Если тестер напряжения с низким входным импедансом измеряет напряжение, как на рисунке 3, даже если оно может составлять всего несколько вольт, а бесконтактный тестер показывает наличие напряжения, напряжение в цепи, вероятно, является обратным током, и его необходимо определить. прежде чем продолжить.Заземление этой цепи приведет к дуговой сварке!

Измеритель двойного импеданса идеально подходит для этого теста — лучше, чем носить с собой два отдельных измерителя или делать небезопасное измерение.

Резюме

Если вы обнаружите цепь, которая показывает напряжение, хотя его не должно быть, будьте осторожны, что делать дальше. Создание дуги небезопасно и может привести к увольнению или даже хуже. Быть безопасным. Определите, индуцируется ли напряжение расположенными поблизости кабелями под напряжением или оно создается из неизвестного источника.

Об авторе:
Джим Уайт — директор по обучению в Shermco Industries в Ирвинге, штат Техас, и технический специалист уровня IV NETA. Джим представляет NETA в комитетах NFPA 70E и B, а также в Рабочей группе по опасностям дугового разряда и является председателем семинара по электробезопасности IEEE 2008 года.

Насколько опасны наведенные токи в передающих опорах и столбах?

Электрическое поле

Землевладельцы и застройщики должны знать о потенциальной опасности неприятных и пугающих ударов (вызванных наведенным напряжением), которые могут возникнуть при контакте с большим проводящим объектом (например,транспортное средство, здание или даже ограждение), расположенные на полосе отчуждения или вне ее.

Насколько опасны наведенные токи в опорах и опорах ЛЭП? (на фото: Хайдарабад: Линии электропередач, в основном высокого напряжения, проходят в опасной зоне возле домов в колониях; кредит: deccanchronicle.com)

Эти разряды известны как « неприятностей » или « поражений », поскольку они не причинят физического вреда кто-то, но будет замечен некоторыми людьми и вызовет шокирующую реакцию.

Эти токи прикосновения возникают, когда заземленный человек касается незаземленного объекта, находясь в электрическом поле (электронное поле) .Электропроводящие объекты, помещенные в электрическое поле, притягивают заряд, и человек, прикоснувшись к этому объекту, может испытать раздражающий или поразительный шок, когда тело человека обеспечивает путь к земле для прохождения тока.

Существует множество факторов, влияющих на вероятность неприятных потрясений и степень их заметности. К ним относятся:

  • Напряжение сети
  • Проводник до дорожного просвета
  • Размер транспортного средства или объекта
  • Расположение на или вне полосы отвода
  • Атмосферные условия
  • Личная физиология

Электрические поля исходят от любые проводник или провод, несущий напряжение .Чем выше линейное напряжение, тем выше напряженность электрического поля. Чем ближе проводник к земле, тем выше напряженность поля под ним, как правило, и повышенная вероятность сотрясений .

Более крупные объекты, такие как здание или большое транспортное средство, обладают способностью к большему заряду, и поэтому удар может быть более заметным. Известно, что металлические предметы на заднем дворе, такие как качели , переносные грили и газонокосилки , вызывают аналогичные удары.

Незаземленные металлические проволочные заграждения также могут получать заряд, достаточный для причинения неприятных ударов. Во время строительства здания рабочие также подвергались ударам при установке незаземленных водосточных желобов и водосточных труб на сооружениях, построенных близко к краю полосы отвода. Домовладельцы также могут испытывать удары при чистке желобов, если желоба не заземлены должным образом.

Люди или животные могут получить электрический ток , прикоснувшись к металлическому объекту , расположенному рядом с линией электропередачи.

Удар подобен шоку, полученному от прикосновения к телевизору после прогулки по ковру. Величина и сила заряда будут связаны с массой незаземленного металлического объекта и его ориентацией по отношению к линии передачи.

Наведенный ток можно предотвратить или скорректировать , заземлив металлические предметы рядом с линией передачи .

Цепи заземления можно устанавливать на тракторы. Металлические ограждения можно соединить с простым заземляющим стержнем с изолированным проводом и зажимом для проводов.Электрические заборы с надлежащим заземлением должны продолжать нормально функционировать даже при наличии наведенного напряжения. Заправка автомобилей непосредственно под высоковольтной линией электропередачи не является хорошей практикой. Искра от разряженной металлической конструкции с наведенным на землю напряжением может воспламенить топливо.

Риск такого возгорания выше для автомобилей с бензиновым двигателем, чем для автомобилей с дизельным двигателем.


Электроиндукция — Конструкции

Как правило, строительство зданий и складских помещений не допускается в коридоре инженерных сетей, и это не вызывает особого беспокойства.Тем не менее, более низкая напряженность электрического поля также может существовать за пределами коридора, и следует учитывать здания за пределами коридора.

Для конструкций, находящихся за пределами полосы отвода, легко уменьшить вероятность испуга или раздражения , прикрепив заземляющий провод к металлической крыше .

Эта защита также обеспечивает определенную степень молниезащиты конструкции. Здания, полностью сделанные из металла, обычно не вызывают беспокойства, потому что они часто по своей природе хорошо заземлены, но могут существовать исключения для конструкций на деревянном фундаменте или из высокопрочного материала.Опять же, при необходимости заземлить такие объекты обычно несложно.

Цинковые водостоки

Точно так же водосточные желоба в большом доме довольно близко к линии электропередачи предположительно могут вызвать ощутимый удар человека, стоящего на алюминиевой лестнице.

Количественный анализ наихудшего случая любого конкретного случая может быть трудным, но можно определить, является ли снижение вероятности ощутимых потрясений разумной мерой предосторожности.

Это простая процедура, чтобы прикрепить провод к водосточной трубе и заземлить его на металлическую водопроводную трубу или приводной стержень заземления для смягчения ударных воздействий .


Электроиндукция — Заборы

Передаточные башни рядом с велосипедной дорожкой и металлическими ограждениями на открытом пространстве Ван-Биббер-Крик, округ Джефферсон, Колорадо (фото предоставлено Стюартом Макдональдом) проходят более или менее параллельно и близко к линии передачи. Качество изоляции деревянных столбов является определяющим параметром. Перпендикулярные ограждения будут иметь значительно меньший наведенный ток и напряжение.

Под воздействием погодных условий даже деревянные столбы не являются идеальными изоляторами . Отсутствие изоляции снизит наведенное напряжение на изгороди и ограничит величину искрового разряда.

Тем не менее, некоторые ограждения могут быть достаточно изолированы столбами, чтобы вызвать раздражение контактных токов при прикосновении к ограждению. Этот тип ограждения должен быть расположен близко к линии и задолго до того, как он будет создавать раздражающие токи. Длинные заборы часто заземляют при контакте с растущей растительностью. При таком заземлении влияние электрического поля будет уменьшено, хотя влияние магнитного поля останется неизменным.

Возможность раздражения из-за индукции электрического поля может быть устранена путем надежного заземления ограждения в одной точке, например, с помощью металлической стойки ограждения.

Для « электрического ограждения » это достигается с помощью специального фильтра, предназначенного для отвода только индуцированного заряда. Однако забор, который заземлен в одной или нескольких точках и иным образом изолирован на достаточном расстоянии, может предоставить некоторую возможность для заметных эффектов индукции магнитного поля.

Снижение потенциала этих эффектов требует электрического разрушения ограждения на более мелкие заземленные участки.

Ссылки:
  • Руководство по развитию вблизи воздушных линий электропередачи в Британской Колумбии — BC Hydro
  • Воздействие линий электропередачи на окружающую среду — Комиссия по коммунальным услугам штата Висконсин

Что такое индукционный закон Фарадея?

Закон индукции Фарадея описывает, как электрический ток создает магнитное поле и, наоборот, как изменяющееся магнитное поле генерирует электрический ток в проводнике.Английский физик Майкл Фарадей получил признание за открытие магнитной индукции в 1830 году; однако, по данным Техасского университета, американский физик Джозеф Генри, независимо друг от друга, сделал то же открытие примерно в то же время.

Значение открытия Фарадея невозможно переоценить. Магнитная индукция позволяет создавать электродвигатели, генераторы и трансформаторы, которые составляют основу современных технологий. Понимая и используя индукцию, мы получаем электрическую сеть и многие вещи, которые мы к ней подключаем.

Позже закон Фарадея был включен в более полные уравнения Максвелла, по словам Майкла Дабсона, профессора физики из Университета Колорадо в Боулдере. Уравнения Максвелла были разработаны шотландским физиком Джеймсом Клерком Максвеллом, чтобы объяснить взаимосвязь между электричеством и магнетизмом, по сути объединив их в единую электромагнитную силу и описав электромагнитные волны, из которых состоят радиоволны, видимый свет и рентгеновские лучи.

Электричество

Согласно Рочестерскому технологическому институту, электрический заряд является фундаментальным свойством материи.Хотя трудно описать, что это на самом деле, мы хорошо знакомы с тем, как он ведет себя и взаимодействует с другими зарядами и полями. По словам Серифа Урана, профессора физики в Питтсбургском государственном университете, электрическое поле от локализованного точечного заряда относительно просто. Он описывает его как излучающий одинаково во всех направлениях, как свет от голой лампочки, и уменьшающийся в силе как обратный квадрат расстояния (1/ r 2 ) в соответствии с законом Кулона.Когда вы отодвигаетесь вдвое дальше, напряженность поля уменьшается до одной четвертой, а когда вы удаляетесь в три раза дальше, она уменьшается до одной девятой.

Протоны имеют положительный заряд, а электроны — отрицательный. Однако протоны в основном иммобилизованы внутри атомных ядер, поэтому перенос заряда из одного места в другое выполняют электроны. Электроны в проводящем материале, таком как металл, в значительной степени могут свободно перемещаться от одного атома к другому по своим зонам проводимости, которые являются высшими электронными орбитами.Достаточная электродвижущая сила (ЭДС) или напряжение вызывает дисбаланс заряда, который может заставить электроны перемещаться по проводнику из области с более отрицательным зарядом в область с более положительным зарядом. Это движение мы называем электрическим током.

Магнетизм

Чтобы понять закон индукции Фарадея, важно иметь базовые представления о магнитных полях. По сравнению с электрическим полем магнитное поле более сложное. По данным Государственного университета Сан-Хосе, хотя положительные и отрицательные электрические заряды могут существовать отдельно, магнитные полюса всегда приходят парами — один северный, а другой — южный.Как правило, магниты всех размеров — от субатомных частиц до магнитов промышленных размеров до планет и звезд — являются диполями, то есть каждый из них имеет два полюса. Мы называем эти полюса северным и южным по направлению, в котором указывают стрелки компаса. Интересно, что поскольку противоположные полюса притягиваются и, как полюса, отталкиваются, северный магнитный полюс Земли на самом деле является южным магнитным полюсом, потому что он притягивает северные полюса стрелок компаса.

Магнитное поле часто изображают в виде линий магнитного потока.В случае стержневого магнита силовые линии выходят из северного полюса и изгибаются, чтобы снова войти в южный полюс. В этой модели количество силовых линий, проходящих через заданную поверхность в пространстве, представляет собой плотность потока или напряженность поля. Однако следует отметить, что это всего лишь модель. Магнитное поле гладкое и непрерывное и на самом деле не состоит из дискретных линий.

Силовые линии магнитного поля от стержневого магнита. (Изображение предоставлено snapgalleria Shutterstock)

Магнитное поле Земли создает огромный магнитный поток, но он рассеивается в огромном объеме космоса.Следовательно, только небольшое количество потока проходит через данную область, что приводит к относительно слабому полю. Для сравнения, магнитный поток от магнита-холодильника крошечный по сравнению с магнитным потоком Земли, но его сила поля во много раз сильнее на близком расстоянии, где его силовые линии гораздо более плотно упакованы. Однако по мере удаления поле быстро становится намного слабее.

Индукция

Если пропустить через провод электрический ток, вокруг него возникнет магнитное поле.Направление этого магнитного поля можно определить по правилу правой руки. По данным физического факультета Университета штата Нью-Йорк Буффало, если вы вытянете большой палец и согнете пальцы правой руки, ваш большой палец будет указывать в положительном направлении тока, а пальцы согнуты в северном направлении магнитного поля. .

Правило левой и правой руки для магнитного поля, вызванного током в прямом проводе. (Изображение предоставлено Фуадом А. Саадом Shutterstock)

Если вы согнете провод в петлю, силовые линии магнитного поля согнутся вместе с ним, образуя тороид или форму пончика.В этом случае ваш большой палец указывает в северном направлении магнитного поля, выходящего из центра петли, а ваши пальцы будут указывать в положительном направлении тока в петле.

В круговой петле с током (а) правило правой руки определяет направление магнитного поля внутри и вне петли. (б) Более подробное отображение поля, которое похоже на поле стержневого магнита. (Изображение предоставлено OpenStax)

Если мы пропустим ток через проволочную петлю в магнитном поле, взаимодействие этих магнитных полей будет оказывать скручивающую силу или крутящий момент в петле, заставляя ее вращаться, согласно данным Рочестерского института. Технология.Однако он будет вращаться только до тех пор, пока магнитные поля не выровняются. Если мы хотим, чтобы петля продолжала вращаться, мы должны изменить направление тока, что изменит направление магнитного поля петли. Затем петля повернется на 180 градусов, пока ее поле не выровняется в другом направлении. Это основа электродвигателя.

И наоборот, если мы вращаем проволочную петлю в магнитном поле, поле будет индуцировать электрический ток в проводе. Направление тока меняется каждые пол-оборота, создавая переменный ток.Это основа электрогенератора. Здесь следует отметить, что это не движение провода, а скорее размыкание и замыкание петли по отношению к направлению поля, которое индуцирует ток. Когда петля обращена лицом к полю, через петлю проходит максимальное количество магнитного потока. Однако, когда петля повернута ребром к полю, силовые линии не проходят через петлю. Именно это изменение величины магнитного потока, проходящего через контур, вызывает ток.

Другой эксперимент, который мы можем провести, — сформировать из провода петлю и подключить концы к чувствительному измерителю тока или гальванометру.Если затем протолкнуть стержневой магнит через петлю, стрелка гальванометра переместится, указывая на индуцированный ток. Однако, как только мы останавливаем движение магнита, ток возвращается к нулю. Поле от магнита будет индуцировать ток только тогда, когда он увеличивается или уменьшается. Если мы вытащим магнит обратно, он снова вызовет ток в проводе, но на этот раз он будет в противоположном направлении.

Магнит в проволочной петле, подключенной к гальванометру. (Изображение предоставлено Фуадом А.Saad Shutterstock)

Если бы мы включили в цепь лампочку, она рассеивала бы электрическую энергию в виде света и тепла, и мы бы почувствовали сопротивление движению магнита, когда мы перемещали его внутрь и из контура. . Чтобы переместить магнит, мы должны выполнять работу, эквивалентную энергии, используемой лампочкой.

В еще одном эксперименте мы могли бы построить две проволочные петли, соединить концы одной с батареей с помощью переключателя и подключить концы другой петли к гальванометру.Если мы разместим две петли близко друг к другу, лицом к лицу, и включим питание первой петли, гальванометр, подключенный ко второй петле, покажет индуцированный ток, а затем быстро вернется к нулю.

Здесь происходит то, что ток в первом контуре создает магнитное поле, которое, в свою очередь, индуцирует ток во втором контуре, но только на мгновение, когда магнитное поле изменяется. Когда вы выключите переключатель, счетчик на мгновение отклонится в противоположном направлении.Это еще один признак того, что ток индуцирует изменение интенсивности магнитного поля, а не его сила или движение.

Это объясняется тем, что магнитное поле заставляет электроны в проводнике двигаться. Это движение называется электрическим током. В конце концов, однако, электроны достигают точки, в которой они находятся в равновесии с полем, и в этой точке они перестают двигаться. Затем, когда поле снимается или выключается, электроны возвращаются в свое исходное положение, создавая ток в противоположном направлении.

В отличие от гравитационного или электрического поля, магнитное дипольное поле представляет собой более сложную трехмерную структуру, сила и направление которой различаются в зависимости от места измерения, поэтому для ее полного описания требуется расчет. Однако мы можем описать упрощенный случай однородного магнитного поля — например, очень маленький участок очень большого поля — как Φ B = BA , где Φ B — абсолютное значение магнитного потока. , B, — это напряженность поля, а A — это определенная область, через которую проходит поле.И наоборот, в этом случае напряженность магнитного поля — это поток на единицу площади, или B = Φ B / A .

Закон Фарадея

Теперь, когда у нас есть базовое представление о магнитном поле, мы готовы определить закон индукции Фарадея. Он утверждает, что индуцированное напряжение в цепи пропорционально скорости изменения во времени магнитного потока, проходящего через эту цепь. Другими словами, чем быстрее изменяется магнитное поле, тем больше будет напряжение в цепи.Направление изменения магнитного поля определяет направление тока.

Увеличить напряжение можно за счет увеличения количества витков в цепи. Индуцированное напряжение в катушке с двумя петлями будет вдвое больше, чем с одной петлей, а с тремя петлями — втрое. Вот почему настоящие двигатели и генераторы обычно имеют большое количество катушек.

Теоретически моторы и генераторы одинаковы. Если вы включите двигатель, он будет вырабатывать электричество, а подача напряжения на генератор заставит его вращаться.Однако большинство реальных двигателей и генераторов оптимизированы только для одной функции.

Трансформаторы

Еще одним важным приложением закона индукции Фарадея является трансформатор, изобретенный Николой Тесла. В этом устройстве переменный ток, который меняет направление много раз в секунду, проходит через катушку, намотанную вокруг магнитного сердечника. Это создает изменяющееся магнитное поле в сердечнике, которое, в свою очередь, индуцирует ток во второй катушке, намотанной вокруг другой части того же магнитного сердечника.

Схема трансформатора (Изображение предоставлено photoiconix Shutterstock)

Отношение числа витков в катушках определяет соотношение напряжения между входным и выходным током. Например, если мы возьмем трансформатор со 100 витками на входе и 50 витками на выходе, и введем переменный ток 220 вольт, выход будет 110 вольт. Согласно Hyperphysics, трансформатор не может увеличивать мощность, которая является произведением напряжения и тока, поэтому, если напряжение повышается, ток пропорционально понижается, и наоборот.В нашем примере вход 220 вольт при 10 ампер или 2200 ватт даст на выходе 110 вольт при 20 амперах, опять же 2200 ватт. На практике трансформаторы никогда не бывают идеально эффективными, но, по данным Техасского университета, потери мощности хорошо спроектированного трансформатора обычно составляют всего несколько процентов.

Трансформаторы делают возможной электрическую сеть, от которой мы зависим для нашего промышленного и технологического общества. Линии передачи по пересеченной местности работают под напряжением в сотни тысяч вольт, чтобы передавать больше энергии в пределах допустимого для проводов тока.Это напряжение многократно понижается с помощью трансформаторов на распределительных подстанциях, пока оно не достигнет вашего дома, где оно, наконец, понижается до 220 и 110 вольт, которые могут запустить вашу электрическую плиту и компьютер.

Дополнительные ресурсы

Магнитный поток, индукция и закон Фарадея

Индуцированные ЭДС и магнитный поток

Закон индукции Фарадея гласит, что электродвижущая сила индуцируется изменением магнитного потока.

Цели обучения

Объясните взаимосвязь между магнитным полем и электродвижущей силой

Ключевые выводы

Ключевые моменты
  • Это изменение потока магнитного поля, которое приводит к возникновению электродвижущей силы (или напряжения).
  • Магнитный поток (часто обозначаемый Φ или Φ B ), проходящий через поверхность, является составляющей магнитного поля, проходящего через эту поверхность.
  • В самом общем виде магнитный поток определяется как [латекс] \ Phi _ {\ text {B}} = \ iint _ {\ text {A}} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex].Это интеграл (сумма) всего магнитного поля, проходящего через бесконечно малые элементы площади dA.
Ключевые термины
  • векторная площадь : вектор, величина которого соответствует рассматриваемой области, а направление перпендикулярно площади поверхности.
  • гальванометр : аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током.

Индуцированная ЭДС

Аппарат, использованный Фарадеем для демонстрации того, что магнитные поля могут создавать токи, показан на следующем рисунке. Когда переключатель замкнут, магнитное поле создается в катушке в верхней части железного кольца и передается (или направляется) на катушку в нижней части кольца. Гальванометр используется для обнаружения любого тока, наведенного в отдельной катушке внизу.

Аппарат Фарадея : Это аппарат Фарадея для демонстрации того, что магнитное поле может производить ток.Изменение поля, создаваемого верхней катушкой, вызывает ЭДС и, следовательно, ток в нижней катушке. Когда переключатель разомкнут и замкнут, гальванометр регистрирует токи в противоположных направлениях. Когда переключатель остается замкнутым или разомкнутым, через гальванометр не течет ток.

Было обнаружено, что каждый раз, когда переключатель замыкается, гальванометр обнаруживает ток в одном направлении в катушке внизу. Каждый раз при размыкании переключателя гальванометр обнаруживает ток в противоположном направлении.Интересно, что если переключатель остается замкнутым или разомкнутым в течение некоторого времени, через гальванометр нет тока. Замыкание и размыкание переключателя индуцирует ток. Это изменение магнитного поля, которое создает ток. Более важным, чем текущий ток, является вызывающая его электродвижущая сила (ЭДС). Ток является результатом ЭДС, индуцированной изменяющимся магнитным полем, независимо от того, есть ли путь для протекания тока.

Магнитный поток

Магнитный поток (часто обозначаемый Φ или Φ B ), проходящий через поверхность, является составляющей магнитного поля, проходящего через эту поверхность.Магнитный поток через некоторую поверхность пропорционален количеству силовых линий, проходящих через эту поверхность. Магнитный поток, проходящий через поверхность с векторной площадью А, равен

.

[латекс] \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ mathbf {\ text {A}} = \ text {BA} \ cos \ theta [/ latex],

, где B — величина магнитного поля (в Тесла, Тл), A — площадь поверхности, а θ — угол между силовыми линиями магнитного поля и нормалью (перпендикулярно) к A.

Для переменного магнитного поля мы сначала рассмотрим магнитный поток [латекс] \ text {d} \ Phi _ \ text {B} [/ latex] через бесконечно малый элемент площади dA, где мы можем считать поле постоянным:

Изменяющееся магнитное поле : Каждая точка на поверхности связана с направлением, называемым нормалью к поверхности; магнитный поток, проходящий через точку, тогда является составляющей магнитного поля вдоль этого нормального направления.

[латекс] \ text {d} \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex]

Общая поверхность A затем может быть разбита на бесконечно малые элементы, и тогда полный магнитный поток через поверхность равен интегралу поверхности

[латекс] \ Phi_ \ text {B} = \ iint_ \ text {A} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex].

Закон индукции Фарадея и закон Ленца

Закон индукции Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, равна [латексу] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [ / латекс], когда поток изменяется на Δ за время Δt.

Цели обучения

Выразите закон индукции Фарадея в форме уравнения

Ключевые выводы

Ключевые моменты
  • Минус в законе Фарадея означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока Δ, известному как закон Ленца.
  • Закон индукции Фарадея является основным принципом работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.
  • Закон Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, зависит от изменения магнитного потока Δ, времени Δt и числа витков катушек.
Ключевые термины
  • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея.Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
  • соленоид : Катушка с проволокой, которая действует как магнит, когда через нее протекает электрический ток.
  • поток : Скорость передачи энергии (или другой физической величины) через заданную поверхность, в частности электрического или магнитного потока.

Закон индукции Фарадея

Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.

Эксперименты Фарадея показали, что ЭДС, вызванная изменением магнитного потока, зависит только от нескольких факторов. Во-первых, ЭДС прямо пропорциональна изменению потока Δ. Во-вторых, ЭДС является наибольшей, когда изменение во времени Δt наименьшее, то есть ЭДС обратно пропорциональна Δt. Наконец, если катушка имеет N витков, будет произведена ЭДС, которая в N раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна N.Уравнение для ЭДС, вызванной изменением магнитного потока, равно

[латекс] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].

Это соотношение известно как закон индукции Фарадея. Единицы измерения ЭДС, как обычно, — вольты.

Закон Ленца

Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока Δ, известному как закон Ленца. Направление (обозначенное знаком минус) ЭМП настолько важно, что оно названо законом Ленца в честь русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, независимо исследовал аспекты индукции.Фарадей знал о направлении, но Ленц указал его, поэтому ему приписывают это открытие.

Закон Ленца : (a) Когда стержневой магнит вставляется в катушку, сила магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном направлению стержневого магнита, чтобы противодействовать увеличению. Это один из аспектов закона Ленца: индукция препятствует любому изменению потока. (b) и (c) — две другие ситуации. Убедитесь сами, что показанное направление индуцированной катушки B действительно противостоит изменению магнитного потока и что показанное направление тока согласуется с правилом правой руки.

Энергосбережение

Закон Ленца является проявлением сохранения энергии. Индуцированная ЭДС создает ток, который противодействует изменению потока, потому что изменение потока означает изменение энергии. Энергия может входить или уходить, но не мгновенно. Закон Ленца — это следствие. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. Фактически, если бы индуцированная ЭДС была в том же направлении, что и изменение потока, была бы положительная обратная связь, которая не давала бы нам бесплатную энергию из любого видимого источника — закон сохранения энергии был бы нарушен.

Motional EMF

Движение в магнитном поле, которое является стационарным относительно Земли, вызывает ЭДС движения (электродвижущую силу).

Цели обучения

Определить процесс, вызывающий двигательную электродвижущую силу

Ключевые выводы

Ключевые моменты
  • Закон индукции Фарадея можно использовать для расчета ЭДС движения, когда изменение магнитного потока вызвано движущимся элементом в системе.
  • То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является частью причины, по которой электрические и магнитные силы теперь рассматриваются как разные проявления одной и той же силы.
  • Любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции.
Ключевые термины
  • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
  • магнитный поток : мера силы магнитного поля в заданной области.
  • индукция : Генерация электрического тока переменным магнитным полем.

Как было замечено в предыдущих атомах, любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции. Например, магнит, перемещенный к катушке, индуцирует ЭДС, а катушка, перемещенная к магниту, создает аналогичную ЭДС. В этом Атоме мы концентрируемся на движении в магнитном поле, которое является стационарным относительно Земли, производя то, что в общих чертах называется ЭДС движения.

Motional EMF

Рассмотрим ситуацию, показанную на. Стержень перемещается со скоростью v по паре проводящих рельсов, разделенных расстоянием в однородном магнитном поле B. Рельсы неподвижны относительно B и соединены с неподвижным резистором R ( резистором может быть что угодно от лампочки до вольтметра). Учтите площадь, ограниченную подвижным стержнем, направляющими и резистором. B перпендикулярно этой области, и площадь увеличивается по мере движения стержня. Таким образом, магнитный поток между рельсами, стержнем и резистором увеличивается.Когда поток изменяется, ЭДС индуцируется согласно закону индукции Фарадея.

ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца дает направление индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы.Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.

Чтобы найти величину ЭДС, индуцированной вдоль движущегося стержня, мы используем закон индукции Фарадея без знака:

[латекс] \ text {EMF} = \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].

В этом уравнении N = 1 и поток Φ = BAcosθ. Имеем θ = 0º и cosθ = 1, так как B перпендикулярно A. Теперь Δ = Δ (BA) = BΔA, поскольку B однородна. Отметим, что площадь, заметаемая стержнем, равна ΔA = ℓx.Ввод этих величин в выражение для ЭДС дает:

[латекс] \ text {EMF} = \ frac {\ text {B} \ Delta \ text {A}} {\ Delta \ text {t}} = \ text {B} \ frac {\ text {l} \ Дельта \ text {x}} {\ Delta \ text {t}} = \ text {Blv} [/ latex].

Чтобы найти направление индуцированного поля, направление тока и полярность наведенной ЭДС, мы применяем закон Ленца, как объяснено в Законе индукции Фарадея: Закон Ленца. Как видно на рис. 1 (b), уровень освещенности увеличивается, так как увеличивается закрытая площадь.Таким образом, индуцированное поле должно противостоять существующему и быть вне страницы. (Правило правой руки требует, чтобы я вращался против часовой стрелки, что, в свою очередь, означает, что верхняя часть стержня положительна, как показано.)

Сравнение электрического поля и магнитного поля

Между электрической и магнитной силой существует множество связей. То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является частью причины, по которой электрические и магнитные силы теперь рассматриваются как различных проявлений одной и той же силы (впервые замечено Альбертом Эйнштейном) .Это классическое объединение электрических и магнитных сил в так называемую электромагнитную силу является источником вдохновения для современных усилий по объединению других основных сил.

Обратная ЭДС, вихревые токи и магнитное демпфирование

Обратная ЭДС, вихревые токи и магнитное затухание — все это происходит из-за наведенной ЭДС и может быть объяснено законом индукции Фарадея.

Цели обучения

Объясните взаимосвязь между двигательной электродвижущей силой, вихревыми токами и магнитным демпфированием

Ключевые выводы

Ключевые моменты
  • Входной ЭДС, которая питает двигатель, может противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.
  • Если ЭДС движения может вызвать токовую петлю в проводнике, ток называется вихревым током.
  • Вихревые токи могут вызывать значительное сопротивление, называемое магнитным демпфированием, при движении.
Ключевые термины
  • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
  • Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).

Задняя ЭДС

Двигатели и генераторы очень похожи. (Прочтите наши атомы в разделах «Электрические генераторы» и «Электродвигатели».) Генераторы преобразуют механическую энергию в электрическую, а двигатели преобразуют электрическую энергию в механическую. Кроме того, двигатели и генераторы имеют одинаковую конструкцию. Когда катушка двигателя поворачивается, магнитный поток изменяется, и возникает электродвижущая сила (ЭДС), соответствующая закону индукции Фарадея. Таким образом, двигатель действует как генератор всякий раз, когда его катушка вращается.Это произойдет независимо от того, поворачивается ли вал под действием внешнего источника, например ременной передачи, или под действием самого двигателя. То есть, когда двигатель выполняет работу и его вал вращается, возникает ЭДС. Закон Ленца говорит нам, что наведенная ЭДС противодействует любому изменению, так что входной ЭДС, питающей двигатель, будет противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.

Вихретоковый

Как обсуждалось в разделе «ЭДС движения», ЭДС движения индуцируется, когда проводник движется в магнитном поле или когда магнитное поле движется относительно проводника.Если подвижная ЭДС может вызвать токовую петлю в проводнике, мы называем этот ток вихревым. Вихревые токи могут вызывать значительное сопротивление, называемое магнитным затуханием, при движении.

Рассмотрим устройство, показанное на рисунке, которое раскачивает маятник между полюсами сильного магнита. Если боб металлический, то при входе в поле и выходе из него он испытывает значительное сопротивление, что быстро гасит движение. Однако, если боб представляет собой металлическую пластину с прорезями, как показано на (b), эффект от магнита будет гораздо меньше.Заметного воздействия на боб из изолятора не наблюдается.

Устройство для исследования вихревых токов и магнитного затухания : Обычное демонстрационное устройство по физике для исследования вихревых токов и магнитного затухания. (а) Движение металлического маятника, раскачивающегося между полюсами магнита, быстро затухает под действием вихревых токов. (b) Есть небольшое влияние на движение металлического боба с прорезями, что означает, что вихревые токи становятся менее эффективными. (c) На непроводящем бобе также отсутствует магнитное затухание, поскольку вихревые токи чрезвычайно малы.

показывает, что происходит с металлической пластиной, когда она входит в магнитное поле и выходит из него. В обоих случаях он испытывает силу, противодействующую его движению. Когда он входит слева, поток увеличивается, и поэтому возникает вихревой ток (закон Фарадея) в направлении против часовой стрелки (закон Ленца), как показано. Только правая сторона токовой петли находится в поле, так что слева на нее действует беспрепятственная сила (правило правой руки). Когда металлическая пластина полностью находится внутри поля, вихревой ток отсутствует, если поле однородно, поскольку поток остается постоянным в этой области.Но когда пластина покидает поле справа, поток уменьшается, вызывая вихревой ток по часовой стрелке, который, опять же, испытывает силу слева, еще больше замедляя движение. Аналогичный анализ того, что происходит, когда пластина поворачивается справа налево, показывает, что ее движение также затухает при входе в поле и выходе из него.

Проводящая пластина, проходящая между полюсами магнита : более подробный взгляд на проводящую пластину, проходящую между полюсами магнита.Когда он входит в поле и выходит из него, изменение потока создает вихревой ток. Магнитная сила на токовой петле препятствует движению. Когда пластина полностью находится внутри однородного поля, нет ни тока, ни магнитного сопротивления.

Когда металлическая пластина с прорезями входит в поле, как показано на, ЭДС индуцируется изменением магнитного потока, но это менее эффективно, поскольку прорези ограничивают размер токовых петель. Более того, в соседних контурах есть токи в противоположных направлениях, и их эффекты отменяются.Когда используется изолирующий материал, вихревые токи чрезвычайно малы, поэтому магнитное затухание на изоляторах незначительно. Если необходимо избежать вихревых токов в проводниках, они могут быть выполнены с прорезями или состоять из тонких слоев проводящего материала, разделенных изоляционными листами.

Вихревые токи, индуцированные в металлической пластине с прорезями : Вихревые токи, индуцируемые в металлической пластине с прорезями, входящие в магнитное поле, образуют небольшие петли, и силы на них имеют тенденцию нейтрализоваться, тем самым делая магнитное сопротивление почти нулевым.

Изменение магнитного потока создает электрическое поле

Закон индукции Фарадея гласит, что изменение магнитного поля создает электрическое поле: [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex].

Цели обучения

Опишите взаимосвязь между изменяющимся магнитным полем и электрическим полем

Ключевые выводы

Ключевые моменты
  • Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу.
  • Альтернативная дифференциальная форма закона индукции Фарадея выражается в уравнении [latex] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} { \ partial \ text {t}} [/ latex].
  • Закон индукции Фарадея — одно из четырех уравнений Максвелла, управляющих всеми электромагнитными явлениями.
Ключевые термины
  • векторная область : вектор, величина которого соответствует рассматриваемой области и направление которого перпендикулярно плоскости.
  • Уравнения Максвелла : Набор уравнений, описывающих, как электрические и магнитные поля генерируются и изменяются друг другом, а также зарядами и токами.
  • Теорема Стокса : утверждение об интегрировании дифференциальных форм на многообразиях, которое одновременно упрощает и обобщает несколько теорем векторного исчисления.

Мы изучили закон индукции Фарадея в предыдущих атомах. Мы узнали взаимосвязь между наведенной электродвижущей силой (ЭДС) и магнитным потоком.Вкратце, закон гласит, что изменение магнитного поля [латекс] (\ frac {\ text {d} \ Phi_ \ text {B}} {\ text {dt}}) [/ latex] создает электрическое поле [латекс] (\ varepsilon) [/ latex], закон индукции Фарадея выражается как [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex], где [латекс] \ varepsilon [/ latex] — это индуцированная ЭДС, а [latex] \ Phi_ \ text {B} [/ latex] — магнитный поток. («N» опущено из нашего предыдущего выражения. Количество витков катушки может быть включено в магнитный поток, поэтому коэффициент не является обязательным.) Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС). В этом Атоме мы узнаем об альтернативном математическом выражении закона.

Эксперимент Фарадея : Эксперимент Фарадея, показывающий индукцию между витками проволоки: жидкая батарея (справа) обеспечивает ток, который течет через небольшую катушку (A), создавая магнитное поле. Когда катушки неподвижны, ток не индуцируется.Но когда малая катушка перемещается внутрь или из большой катушки (B), магнитный поток через большую катушку изменяется, вызывая ток, который регистрируется гальванометром (G).

Дифференциальная форма закона Фарадея

Магнитный поток [латекс] \ Phi_ \ text {B} = \ int_ \ text {S} \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}} [/ латекс], где [латекс] \ vec {\ text {A}} [/ latex] — это векторная площадь над замкнутой поверхностью S. Устройство, которое может поддерживать разность потенциалов, несмотря на протекание тока, является источником электродвижущей силы. .(EMF) Математически определение [латекс] \ varepsilon = \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} [/ latex], где интеграл вычисляется по замкнутому циклу C.

Закон Фарадея теперь можно переписать [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = — \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}}) [/ latex]. Используя теорему Стокса в векторном исчислении, левая часть равна [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = \ int_ \ text {S} (\ nabla \ times \ vec {\ text {E}}) \ cdot \ text {d} \ vec {\ text {A}} [/ latex].Также обратите внимание, что в правой части [latex] \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ текст {A}}) = \ int \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} \ cdot \ text {d} \ vec {\ text {A}} [ /латекс]. Таким образом, мы получаем альтернативную форму закона индукции Фарадея: [latex] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} [/ latex]. Это также называют дифференциальной формой закона Фарадея. Это одно из четырех уравнений Максвелла, управляющих всеми электромагнитными явлениями.

Электрогенераторы

Электрические генераторы преобразуют механическую энергию в электрическую; они индуцируют ЭДС, вращая катушку в магнитном поле.

Цели обучения

Объясните, как в электрогенераторах индуцируется электродвижущая сила.

Ключевые выводы

Ключевые моменты
  • Электрический генератор вращает катушку в магнитном поле, индуцируя ЭДС, задаваемую как функцию времени величиной ε = NABw sinωt.
  • Генераторы поставляют почти всю мощность для электрических сетей, которые обеспечивают большую часть мировой электроэнергии.
  • Двигатель становится генератором, когда его вал вращается.
Ключевые термины
  • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
  • турбина : Любая из различных вращающихся машин, которые используют кинетическую энергию непрерывного потока жидкости (жидкости или газа) для вращения вала.

Электрические генераторы — это устройства, преобразующие механическую энергию в электрическую.Они индуцируют электродвижущую силу (ЭДС), вращая катушку в магнитном поле. Это устройство, преобразующее механическую энергию в электрическую. Генератор заставляет электрический заряд (обычно переносимый электронами) проходить через внешнюю электрическую цепь. Возможные источники механической энергии включают в себя поршневой или турбинный паровой двигатель, воду, падающую через турбину или водяное колесо, двигатель внутреннего сгорания, ветряную турбину, ручной кривошип, сжатый воздух или любой другой источник механической энергии.Генераторы поставляют почти всю мощность для электрических сетей, которые обеспечивают большую часть мировой электроэнергии.

Паровой турбогенератор : современный паротурбинный генератор.

Базовая настройка

Рассмотрим установку, показанную на. Заряды в проводах петли испытывают магнитную силу, потому что они движутся в магнитном поле. Заряды в вертикальных проводах испытывают силы, параллельные проводу, вызывая токи. Однако те, кто находится в верхнем и нижнем сегментах, ощущают силу, перпендикулярную проводу; эта сила не вызывает тока.Таким образом, мы можем найти наведенную ЭДС, рассматривая только боковые провода. ЭДС движения задается равной ЭДС = Bℓv, где скорость v перпендикулярна магнитному полю B (см. Наш Атом в «ЭДС движения»). Здесь скорость находится под углом θ к B, так что ее составляющая, перпендикулярная B, равна vsinθ.

Схема электрического генератора : Генератор с одной прямоугольной катушкой, вращающейся с постоянной угловой скоростью в однородном магнитном поле, создает ЭДС, синусоидально изменяющуюся во времени.Обратите внимание, что генератор похож на двигатель, за исключением того, что вал вращается для выработки тока, а не наоборот.

Таким образом, в этом случае ЭДС, индуцированная с каждой стороны, равна ЭДС = Bℓvsinθ, и они направлены в одном направлении. Общая ЭДС [латекс] \ varepsilon [/ latex] вокруг петли тогда:

[латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ theta} [/ latex].

Это выражение допустимо, но оно не дает ЭДС как функцию времени. Чтобы найти зависимость ЭДС от времени, предположим, что катушка вращается с постоянной угловой скоростью ω.Угол θ связан с угловой скоростью соотношением θ = ωt, так что:

[латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ omega \ text {t}} [/ latex].

Итак, линейная скорость v связана с угловой скоростью соотношением v = rω. Здесь r = w / 2, так что v = (w / 2) ω, и:

[латекс] \ varepsilon = 2 \ text {Bl} \ frac {\ text {w}} {2} \ omega \ sin {\ omega \ text {t}} = (\ text {lw}) \ text {B } \ omega \ sin {\ omega \ text {t}} [/ латекс].

Учитывая, что площадь петли A = ℓw, и учитывая N петель, мы находим, что:

[латекс] \ varepsilon = \ text {NABw} ~ \ sin {\ omega \ text {t}} [/ latex] — это ЭДС, индуцированная в катушке генератора N витков и площади A, вращающейся с постоянной угловой скоростью в однородное магнитное поле B.

Генераторы, показанные в этом Atom, очень похожи на двигатели, показанные ранее. Это не случайно. Фактически, двигатель становится генератором, когда его вал вращается.

Электродвигатели

Электродвигатель — это устройство, преобразующее электрическую энергию в механическую.

Цели обучения

Объясните, как сила создается в электродвигателях

Ключевые выводы

Ключевые моменты
  • Большинство электродвигателей используют взаимодействие магнитных полей и токопроводящих проводников для создания силы.
  • Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца.
  • В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться.
Ключевые термины
  • Сила Лоренца : Сила, действующая на заряженную частицу в электромагнитном поле.
  • крутящий момент : вращательное или скручивающее действие силы; (Единица СИ ньютон-метр или Нм; британская единица измерения фут-фунт или фут-фунт)

Основные принципы работы двигателя такие же, как и у генератора, за исключением того, что двигатель преобразует электрическую энергию в механическую энергию (движение).(Сначала прочтите наш атом об электрических генераторах.) Большинство электродвигателей используют взаимодействие магнитных полей и проводников с током для создания силы. Электродвигатели используются в самых разных сферах, таких как промышленные вентиляторы, нагнетатели и насосы, станки, бытовые приборы, электроинструменты и дисководы.

Lorentz Force

Если вы поместите движущуюся заряженную частицу в магнитное поле, на нее будет действовать сила, называемая силой Лоренца:

[латекс] \ text {F} = \ text {q} \ times \ text {v} \ times \ text {B} [/ latex]

Правило правой руки : Правило правой руки, показывающее направление силы Лоренца

, где v — скорость движущегося заряда, q — заряд, а B — магнитное поле.Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца. Для неподвижного прямолинейного токоведущего провода сила Лоренца составляет:

.

[латекс] \ text {F} = \ text {I} \ times \ text {L} \ times \ text {B} [/ latex]

где F — сила (в ньютонах, Н), I — ток в проводе (в амперах, А), L — длина провода, находящегося в магнитном поле (в м). , B — напряженность магнитного поля (в теслах, Тл).Направление силы Лоренца перпендикулярно как направлению потока тока, так и магнитного поля, и его можно найти с помощью правила правой руки, показанного на рисунке. Используя правую руку, направьте большой палец в направлении тока, и укажите указательным пальцем в направлении магнитного поля. Ваш третий палец теперь будет указывать в направлении силы.

Torque : Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях.Это означает, что катушка будет вращаться.

Механика двигателя

И двигатели, и генераторы можно объяснить с помощью катушки, вращающейся в магнитном поле. В генераторе катушка подключена к внешней цепи, которая затем включается. Это приводит к изменению потока, который индуцирует электромагнитное поле. В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться.Любая катушка, по которой проходит ток, может ощущать силу в магнитном поле. Эта сила является силой Лоренца, действующей на движущиеся заряды в проводнике. Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях. Это означает, что катушка будет вращаться.

Индуктивность

Индуктивность — это свойство устройства, которое показывает, насколько эффективно оно индуцирует ЭДС в другом устройстве или на самом себе.

Цели обучения

Описание свойств катушки индуктивности с указанием взаимной индуктивности и самоиндукции

Ключевые выводы

Ключевые моменты
  • Взаимная индуктивность — это влияние двух устройств на создание ЭДС друг в друге.Изменение тока ΔI 1 / Δt в одном вызывает ЭДС ЭДС2 в секунду: ЭДС 2 = -M ΔI 1 / Δt, где M определяется как взаимная индуктивность между двумя устройствами.
  • Самоиндуктивность — это эффект, который устройство вызывает саму по себе ЭДС.
  • Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором, и ЭДС, индуцированная в нем изменением тока через него, равна ЭДС = −L ΔI / Δt.
Ключевые термины
  • Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
  • трансформатор : статическое устройство, которое передает электрическую энергию от одной цепи к другой с помощью магнитной связи. Их основное назначение — передача энергии между различными уровнями напряжения, что позволяет выбирать наиболее подходящее напряжение для выработки, передачи и распределения электроэнергии по отдельности.

Индукция — это процесс, при котором ЭДС индуцируется изменением магнитного потока. Трансформаторы, например, спроектированы так, чтобы быть особенно эффективными для создания желаемого напряжения и тока с очень небольшими потерями энергии в другие формы (см. Наш Atom в разделе «Трансформаторы.«) Есть ли полезная физическая величина, связанная с тем, насколько« эффективно »данное устройство? Ответ — да, и эта физическая величина называется индуктивностью.

Взаимная индуктивность

Взаимная индуктивность — это влияние закона индукции Фарадея для одного устройства на другое, например, первичная катушка, при передаче энергии вторичной обмотке в трансформаторе. Посмотрите, где простые катушки наводят друг на друга ЭДС.

Взаимная индуктивность катушек : Эти катушки могут наводить ЭДС друг в друге, как неэффективный трансформатор.Их взаимная индуктивность M указывает на эффективность связи между ними. Здесь видно, что изменение тока в катушке 1 вызывает ЭДС в катушке 2. (Обратите внимание, что «E2 индуцированная» представляет наведенную ЭДС в катушке 2.)

Во многих случаях, когда геометрия устройств является фиксированной, магнитный поток изменяется за счет изменения тока. Поэтому мы концентрируемся на скорости изменения тока, ΔI / Δt, как на причине индукции. Изменение тока I 1 в одном устройстве, катушка 1, индуцирует ЭДС 2 в другом.Мы выражаем это в форме уравнения как

[латекс] \ text {EMF} _2 = — \ text {M} \ frac {\ Delta \ text {I} _1} {\ Delta \ text {t}} [/ latex],

, где M определяется как взаимная индуктивность между двумя устройствами. Знак минус является выражением закона Ленца. Чем больше взаимная индуктивность M, тем эффективнее связь.

Природа здесь симметрична. Если мы изменим ток I2 в катушке 2, мы индуцируем ЭДС 1 в катушке 1, которая равна

[латекс] \ text {EMF} _1 = — \ text {M} \ frac {\ Delta \ text {I} _2} {\ Delta \ text {t}} [/ latex],

, где M то же, что и для обратного процесса.Трансформаторы работают в обратном направлении с такой же эффективностью или взаимной индуктивностью M.

Собственная индуктивность

Самоиндуктивность, действие закона индукции Фарадея устройства на самого себя, также существует. Когда, например, увеличивается ток через катушку, магнитное поле и магнитный поток также увеличиваются, вызывая противоэдс, как того требует закон Ленца. И наоборот, если ток уменьшается, индуцируется ЭДС, которая препятствует уменьшению. Большинство устройств имеют фиксированную геометрию, поэтому изменение магнитного потока полностью связано с изменением тока ΔI через устройство.Индуцированная ЭДС связана с физической геометрией устройства и скоростью изменения тока. Выдается

[латекс] \ text {EMF} = — \ text {L} \ frac {\ Delta \ text {I}} {\ Delta \ text {t}} [/ latex],

где L — самоиндукция устройства. Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором. Опять же, знак минус является выражением закона Ленца, указывающего на то, что ЭДС препятствует изменению тока.

Количественная интерпретация ЭДС движения

A ЭДС движения — это электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B.

Цели обучения

Сформулируйте две точки зрения, которые применяются для расчета электродвижущей силы

Ключевые выводы

Ключевые моменты
  • Движущаяся и наведенная ЭДС — это одно и то же явление, только наблюдаемое в разных системах отсчета. Эквивалентность этих двух явлений подтолкнула Эйнштейна к работе над специальной теорией относительности.
  • ЭДС, возникающая из-за относительного движения петли и магнита, задается как [latex] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Eq.1), где L — длина объекта, движущегося со скоростью v относительно магнита.
  • ЭДС можно рассчитать с двух разных точек зрения: 1) с точки зрения магнитной силы, действующей на движущиеся электроны в магнитном поле, и 2) с точки зрения скорости изменения магнитного потока. Оба дают одинаковый результат.
Ключевые термины
  • специальная теория относительности : теория, которая (игнорируя эффекты гравитации) согласовывает принцип относительности с наблюдением, что скорость света постоянна во всех системах отсчета.
  • магнитное поле : Состояние в пространстве вокруг магнита или электрического тока, в котором существует обнаруживаемая магнитная сила и где присутствуют два магнитных полюса.
  • рамка отсчета : система координат или набор осей, в пределах которых можно измерить положение, ориентацию и другие свойства объектов в ней.

Электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B, называется ЭДС движения. Вы могли заметить, что ЭДС движения очень похожа на ЭДС, вызванную изменением магнитного поля.В этом атоме мы видим, что это действительно одно и то же явление, показанное в разных системах отсчета.

Motional EMF

В случае, когда проводящая петля перемещается в магнит, показанный на (а), магнитная сила, действующая на движущийся заряд в петле, определяется выражением [латекс] evB [/ латекс] (сила Лоренца, e: заряд электрона).

Петля проводника, движущаяся в магнит : (а) ЭДС движения. Токовая петля переходит в неподвижный магнит. Направление магнитного поля внутрь экрана.(б) Индуцированная ЭДС. Токовая петля неподвижна, а магнит движется.

Из-за силы электроны будут продолжать накапливаться с одной стороны (нижний конец на рисунке), пока на стержне не установится достаточное электрическое поле, противодействующее движению электронов, которое составляет [латекс] \ text {eE} [/ латекс]. Приравнивая две силы, получаем [латекс] \ text {E} = \ text {vB} [/ latex].

Следовательно, двигательная ЭДС на длине L стороны петли определяется как [latex] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Eq .1), где L — длина объекта, движущегося со скоростью v относительно магнита.

Индуцированная ЭДС

Поскольку скорость изменения магнитного потока, проходящего через петлю, равна [latex] \ text {B} \ frac {\ text {dA}} {\ text {dt}} [/ latex] (A: площадь петли что магнитное поле проходит), индуцированная ЭДС [латекс] \ varepsilon _ {\ text {индуцированный}} = \ text {BLv} [/ latex] (уравнение 2).

Эквивалентность движущей и индуцированной ЭДС

Из уравнения. 1 и уравнение. 2 мы можем подтвердить, что двигательная и индуцированная ЭДС дают одинаковый результат.Фактически, эквивалентность двух явлений побудила Альберта Эйнштейна исследовать специальную теорию относительности. В своей основополагающей статье по специальной теории относительности, опубликованной в 1905 году, Эйнштейн начинает с упоминания эквивалентности двух явлений:

«…… например, взаимное электродинамическое действие магнита и проводника. Наблюдаемое явление здесь зависит только от относительного движения проводника и магнита, в то время как обычный взгляд проводит резкое различие между двумя случаями, когда одно или другое из этих тел находится в движении.Ведь если магнит находится в движении, а проводник находится в покое, в окрестности магнита возникает электрическое поле с определенной энергией , производящее ток в местах, где части проводника находятся расположенный. Но если магнит неподвижен, а проводник движется, электрическое поле поблизости от магнита не возникает. В проводнике, однако, мы находим электродвижущую силу, которой сама по себе не соответствует энергия, но которая вызывает — при условии равенства относительного движения в двух рассмотренных случаях — электрические токи того же пути и силы, что и создаваемые электрическими силами в первом случае.«

Механические работы и электроэнергия

Механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию; энергия сохраняется в процессе.

Цели обучения

Применить закон сохранения энергии для описания производственной двигательной электродвижущей силы с механической работой

Ключевые выводы

Ключевые моменты
  • ЭДС движения, создаваемая движущимся проводником в однородном поле, задается следующим образом [latex] \ varepsilon = \ text {Blv} [/ latex].
  • Чтобы стержень двигался с постоянной скоростью v, мы должны постоянно прикладывать внешнюю силу F ext к стержню во время его движения.
  • Закон Ленца гарантирует, что движение стержня противоположно, и, следовательно, закон сохранения энергии не нарушается.
Ключевые термины
  • ЭДС движения : ЭДС (электродвижущая сила), индуцированная движением относительно магнитного поля.
  • Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).

Мы узнали о двигательной ЭДС ранее (см. Наш Атом в «Двигательной ЭДС»). Для простой схемы, показанной ниже, ЭДС движения [латекс] (\ varepsilon) [/ латекс], создаваемая движущимся проводником (в однородном поле), задается следующим образом:

[латекс] \ varepsilon = \ text {Blv} [/ латекс]

, где B — магнитное поле, l — длина проводящего стержня, а v — (постоянная) скорость его движения. ( B , l и v все перпендикулярны друг другу, как показано на изображении ниже.)

ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца дает направление индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы. Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.

Сохранение энергии

В этом атоме мы рассмотрим систему с точки зрения энергии . Поскольку стержень движется и пропускает ток и , он ощущает силу Лоренца

.

[латекс] \ text {F} _ \ text {L} = \ text {iBL} [/ latex].

Чтобы стержень двигался с постоянной скоростью v , мы должны постоянно прикладывать внешнюю силу F ext (равную величине F L и противоположную по направлению) к стержню вдоль его движения. .Поскольку стержень движется при v , мощность P , передаваемая внешней силой, будет:

[латекс] \ text {P} = \ text {F} _ {\ text {ext}} \ text {v} = (\ text {iBL}) \ times \ text {v} = \ text {i} \ варепсилон [/ латекс].

На последнем этапе мы использовали первое уравнение, о котором мы говорили. Обратите внимание, что это в точности мощность, рассеиваемая в контуре (= ток [латекс] \ умноженное на [/ латекс] напряжение). Таким образом, мы заключаем, что механическая работа, совершаемая внешней силой, чтобы стержень двигался с постоянной скоростью, преобразуется в тепловую энергию в контуре.В более общем смысле, механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию. Энергия сохраняется в процессе.

Закон Ленца

Из «Закона индукции Фарадея и закона Ленца» мы узнали, что закон Ленца является проявлением сохранения энергии. Как мы видим в примере с этим атомом, закон Ленца гарантирует, что движение стержня противодействует из-за склонности природы противодействовать изменению магнитного поля. Если бы наведенная ЭДС была в том же направлении, что и изменение потока, возникла бы положительная обратная связь, заставляющая стержень улетать от малейшего возмущения.

Энергия в магнитном поле

Магнитное поле накапливает энергию. Плотность энергии задается как [латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} [/ latex].

Цели обучения

Выразите плотность энергии магнитного поля в форме уравнения

Ключевые выводы

Ключевые моменты
  • Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала в магнитном поле.2 [/ латекс].
Ключевые термины
  • проницаемость : количественная мера степени намагничивания материала в присутствии приложенного магнитного поля (измеряется в ньютонах на квадратный ампер в единицах СИ).
  • индуктор : пассивное устройство, которое вводит индуктивность в электрическую цепь.
  • ферромагнетик : Материалы, обладающие постоянными магнитными свойствами.

Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала в магнитном поле.Для недисперсионных материалов эта же энергия высвобождается при разрушении магнитного поля. Следовательно, эту энергию можно смоделировать как «хранящуюся» в магнитном поле.

Магнитное поле, создаваемое соленоидом : Магнитное поле, создаваемое соленоидом (вид в разрезе), описанное с использованием силовых линий. Энергия «хранится» в магнитном поле.

Энергия, запасенная в магнитном поле

Для линейных недисперсионных материалов (таких, что B = μ H, где μ, называемая проницаемостью, не зависит от частоты), плотность энергии составляет:

[латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} = \ frac {\ mu \ mathbf {\ text {H}} \ cdot \ mathbf {\ text {H}}} {2} [/ latex].

Плотность энергии — это количество энергии, хранящейся в данной системе или области пространства на единицу объема. Если поблизости нет магнитных материалов, μ можно заменить на μ 0 . Однако приведенное выше уравнение нельзя использовать для нелинейных материалов; необходимо использовать более общее выражение (приведенное ниже).

В общем, дополнительная работа на единицу объема δW , необходимая для того, чтобы вызвать небольшое изменение магнитного поля δ B, составляет:

[латекс] \ delta \ text {W} = \ mathbf {\ text {H}} \ cdot \ delta \ mathbf {\ text {B}} [/ latex].

Когда связь между H и B известна, это уравнение используется для определения работы, необходимой для достижения заданного магнитного состояния. Для гистерезисных материалов, таких как ферромагнетики и сверхпроводники, необходимая работа также зависит от того, как создается магнитное поле. Однако для линейных недисперсионных материалов общее уравнение приводит непосредственно к более простому уравнению плотности энергии, приведенному выше.

Энергия, запасенная в поле соленоида

Энергия, запасаемая индуктором, равна количеству работы, необходимой для установления тока через индуктор и, следовательно, магнитного поля.2 [/ латекс].

Трансформаторы

Трансформаторы преобразуют напряжения из одного значения в другое; его функция определяется уравнением трансформатора.

Цели обучения

Примените уравнение трансформатора для сравнения вторичного и первичного напряжений

Ключевые выводы

Ключевые моменты
  • Трансформаторы часто используются в нескольких точках систем распределения электроэнергии, а также во многих бытовых адаптерах питания.
  • Уравнение трансформатора
  • утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их катушках: [латекс] \ frac {\ text {V} _ \ text {s}} {\ text { V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ text {N} _ \ text {p}} [/ latex].
  • Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Это приводит нас к другому полезному вопросу: [latex] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ текст {p}} {\ text {N} _ \ text {s}} [/ latex]. Если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.
Ключевые термины
  • магнитный поток : мера силы магнитного поля в заданной области.
  • Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).

Трансформаторы изменяют напряжение с одного значения на другое. Например, такие устройства, как сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшая бытовая техника, имеют трансформатор (встроенный в их съемный блок), который преобразует 120 В в напряжение, соответствующее устройству.Трансформаторы также используются в нескольких точках в системах распределения электроэнергии, как показано на рисунке. Мощность передается на большие расстояния при высоком напряжении, поскольку для данного количества мощности требуется меньший ток (это означает меньшие потери в линии). Поскольку высокое напряжение представляет большую опасность, трансформаторы используются для получения более низкого напряжения в месте нахождения пользователя.

Настройка трансформатора : Трансформаторы изменяют напряжение в нескольких точках в системе распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях более 200 кВ, иногда даже 700 кВ, для ограничения потерь энергии.Местное распределение электроэнергии по районам или промышленным предприятиям проходит через подстанцию ​​и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.

Тип трансформатора, рассматриваемого здесь, основан на законе индукции Фарадея и очень похож по конструкции на устройство, которое Фарадей использовал для демонстрации того, что магнитные поля могут создавать токи (показано на рисунке). Две катушки называются первичной и вторичной катушками.При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная обмотка создает преобразованное выходное напряжение. Мало того, что железный сердечник улавливает магнитное поле, создаваемое первичной катушкой, его намагниченность увеличивает напряженность поля. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется во вторичную обмотку, вызывая ее выходное переменное напряжение.

Простой трансформатор : Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник, ламинированный для минимизации вихревых токов.Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и увеличивается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке вызывает ток во вторичной. На рисунке показан простой трансформатор с двумя катушками, намотанными с обеих сторон многослойного ферромагнитного сердечника. Набор катушек на левой стороне сердечника обозначен как первичный, и его номер указан как N p. Напряжение на первичной обмотке равно V p. Набор катушек на правой стороне сердечника обозначен как вторичный, и его номер представлен как N s.Напряжение на вторичной обмотке равно В с. Символ трансформатора также показан под диаграммой. Он состоит из двух катушек индуктивности, разделенных двумя равными параллельными линиями, представляющими сердечник.

Уравнение трансформатора

Для простого трансформатора, показанного на, выходное напряжение V s почти полностью зависит от входного напряжения V p и соотношения количества витков в первичной и вторичной катушках. Закон индукции Фарадея для вторичной обмотки дает ее индуцированное выходное напряжение V с как:

[латекс] \ text {V} _ \ text {s} = — \ text {N} _ \ text {s} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex],

, где N s — количество витков вторичной катушки, а Δ / Δt — скорость изменения магнитного потока.Обратите внимание, что выходное напряжение равно индуцированной ЭДС (В с = ЭДС с ), при условии, что сопротивление катушки невелико. Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому / Δt одинаково с обеих сторон. Входное первичное напряжение V p также связано с изменением магнитного потока соотношением:

[латекс] \ text {V} _ \ text {p} = — \ text {N} _ \ text {p} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].

Соотношение этих двух последних уравнений дает полезное соотношение:

[латекс] \ frac {\ text {V} _ \ text {s}} {\ text {V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ текст {N} _ \ text {p}} [/ latex].

Это известно как уравнение трансформатора , которое просто устанавливает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества контуров в их катушках. Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их катушках. Некоторые трансформаторы даже обеспечивают переменный выход, позволяя выполнять подключение в разных точках вторичной обмотки.Повышающий трансформатор — это трансформатор, который увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение.

Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Приравнивание входной и выходной мощности,

[латекс] \ text {P} _ \ text {p} = \ text {I} _ \ text {p} \ text {V} _ \ text {p} = \ text {I} _ \ text {s} \ text {V} _ \ text {s} = \ text {P} _ \ text {s} [/ latex].

Комбинируя эти результаты с уравнением трансформатора, находим:

[латекс] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ text {p}} {\ текст {N} _ \ text {s}} [/ latex].

Значит, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.

Электромагнитная индукция — тригонометрия и генерация однофазного переменного тока для электриков

Электромагнитная индукция — это когда напряжение создается путем пропускания проводника через магнитное поле.

Рисунок 45. Магнитные полюса и индукция

Величину напряжения можно изменять тремя факторами:

  1. Размер магнитного поля.Чем больше линий магнитного потока, тем больше линий магнитного потока необходимо для разрезания проводника. Сила потока прямо пропорциональна наведенному напряжению.
  2. Активная длина проводника. Активная длина означает часть проводника, которая фактически проходит через поле. Активная длина прямо пропорциональна индуцированному напряжению.
  3. Скорость, с которой проводник проходит через поле. Чем быстрее проводник проходит через поле, тем больше индуцируемое напряжение.Скорость прямо пропорциональна наведенному напряжению.

Эти зависимости от напряжения можно разбить по следующей формуле: e = βlv.

Где:

e = пиковое напряжение, индуцированное в катушке индуктивности (вольт)

B = напряженность поля между полюсами (тесла)

l = активная длина проводника (метры)

v = скорость проводника через поле (м / сек)

Вот пример.

Проводник с активной длиной 4 метра проходит через поле 5 тесла со скоростью 15 метров в секунду.Определите пиковое напряжение, индуцированное на этом проводе.

(4 м) (5 Тл) (15 м / сек) = 300 В пиковое значение

Это безумие! Кто это открыл?

Открытие электромагнитной индукции приписывается Майклу Фарадею, который обнаружил, что когда он пропускает магнитное поле через проводник, течет ток.

Пока существует движение между полем и проводником, может индуцироваться напряжение. Это может означать, что проводник проходит через поле или поле проходит через проводник.

Далее: Генератор

Индуцированный потенциал и эффект генератора — Индуцированный потенциал и трансформаторы — Eduqas — Редакция GCSE Physics (Single Science) — Eduqas

Для протекания электрического тока в цепи требуется разность потенциалов или напряжение.

Создание разности потенциалов

Разность потенциалов может индуцироваться (создаваться) в проводнике при движении между проводником и магнитным полем. Это может происходить двумя разными способами:

  • катушка провода перемещается в магнитном поле
  • магнит перемещается в катушку провода

Это называется электромагнитной индукцией и часто называется эффектом генератора.

Индуцированное напряжение создает индуцированный ток, если проводник включен в полную цепь. Как и все токи, индуцированный ток создает вокруг себя магнитное поле. Обратите внимание, что это магнитное поле противодействует первоначальному изменению. Например, если магнит перемещается в катушку с проволокой, индуцированное магнитное поле имеет тенденцию отталкивать магнит обратно из катушки. Этот эффект возникает независимо от того, перемещается ли магнит в катушку или катушка перемещается вокруг магнита.

Факторы, влияющие на наведенный потенциал

Направление наведенной разности потенциалов или наведенного тока зависит от направления движения.Ток меняется на противоположный, когда:

  • магнит перемещается из катушки
  • другой полюс магнита перемещается в катушку

Изображения иллюстрируют, как это работает.

1. Стержневой магнит находится снаружи катушки с проволокой, подключенной к амперметру, показывающему отсутствие тока

2. Магнит перемещается в катушку с проволокой, и амперметр регистрирует положительный ток.

3. Магнит неподвижен внутри катушки провод. Нет тока

4.Магнит выходит из катушки с проволокой, и амперметр регистрирует отрицательный ток.

Индуцированная разность потенциалов или индуцированный ток увеличиваются, если:

  • увеличивается скорость движения
  • увеличивается напряженность магнитного поля
  • Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *