+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

в чем измеряется в физике, как вычислить, формула для определения

Что такое механическая работа

В результате воздействия силы определенной интенсивности тело меняет свое положение в пространстве. В качестве примеров можно рассмотреть поднятие человеком груза на высоту, подкидывание вверх предмета, толкание впереди себя нагруженной тележки и т.п. В перечисленных случаях человек силой своих мышечных сокращений способствует возникновению движения тела. С другой стороны, мяч, падающий сверху вниз, движется под действием обычной силы тяжести. Таким образом, не само тело производит работу, а сила, которая на него действует.

Определение

Механическая работа — скалярная величина, характеризующая силу, действующую на тело и перемещающую его на определенное расстояние. Она прямо пропорциональна величине этой силы и пути, которое тело совершает под этим воздействием.

Исходя из определения понятно, что для вычисления работы (A) необходимо знать модуль действующей силы (F) и расстояние (S), на которое тело перемещается.

Умножив эти две величины, можно судить о работе, для измерения которой введена единица — Джоуль.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

\(A=F\times S\)

Направление действующей силы может быть не только параллельно поверхности, по которой ему предстоит двигаться. На рисунке показаны примеры воздействия под углом:

 

В таком случае формула для вычисления работы выглядит следующим образом:

\(A=F\times r\times\cos\alpha\)

Примечание

Поэтому математическое выражение работы, вычисляемой по приведенной выше формуле, может быть как положительным, так и отрицательным (в зависимости от величины альфа). В случае, если α=90о, искомая работа будет равна нулю.

В чем измеряется в физике, единицы

Для количественного выражения величины механической работы в физике введена специальная единица — Джоуль. При этом считается, что один Джоуль (Международная система единиц) равняется той работе, которую совершает сила величиной 1 Ньютон, перемещая при этом тело на 1 метр.

Примечание

Значение работы может равняться нулю даже в случае воздействия силы. Происходит это тогда, когда перемещение отсутствует. Таким образом, чтобы присутствовала работа, необходимо два условия: наличия воздействия силы и расстояния, на которое тело переместилось.

 

С другой стороны, для примера, допустим в состоянии невесомости, космонавт толкает от себя предмет, который двигается от него. В этой ситуации работы также нет, поскольку космонавт не прикладывает к предмету силы (условия космоса). Такой вид движения является инерцией.

Для измерения работы используется также килоджоуль (кДж), который равен 1000 Дж.

Как найти, основные формулы и примеры вычислений

Кроме формул, приведенных выше, для нахождения механической работы применяются следующие способы математических расчетов:

  1. Через известное значение кинетической энергии: A=Ek2-Ek1, где Ek2 и Ek1 — значения начальной и конечной кинетической энергии тела. При этом скорости движения тел значения не имеют.
  2. Через значения потенциальной энергии: A=-(Ep2-Ep1), где Ep2 и Ep1 — значения начальной и конечной потенциальной энергии тела. 
  3. При совершении работы силой упругости пружины: A=(kx
    1
    2)\(\div\)2-(kx22)\(\div\)2; (k — коэффициент упругости, х1 и х2 — координаты тела до и после совершения работы силой упругости, т.е. величина растяжения пружины).
  4. При совершении работы силой Кулона (при передвижении электрического заряда): A=(q1\(\times\)q2)\(\div4\pi\xi \)or1-(q1\(\times\)q2)\(\div4\pi\xi \)or2 (r1 и r2 — радиусы нахождения заряда в начале и конце движения, q1 и q2 — величины этих зарядов). Если расстояние между зарядами увеличивается, силы отталкивания «работают положительно», если уменьшается — «отрицательно».
  5. Для определения работы, совершаемой силами гравитации: A=\(ϒ\times\)(m1\(\times\)m2\(\div\)r2)-\(ϒ\times\)(m1\(\times\)m2\(\div\)r1). В данном случае расчет производится с привлечением гравитационной постоянной величины ϒ.  Механическая работа сил гравитации определяется исходя из радиус-векторов в начальной и конечной точках движения.

Особенности практического применения механической работы

Если две силы, различные по своей величине, совершают аналогичную работу, то время, затраченное на передвижение тела, будет различным. Величина этой разницы зависит от мощности силы.

Определение

Мощность — физическая величина, от которой зависит скорость совершаемой работы.

Для обозначения мощности используется буква N. Это понятие вводится для возможности сравнения потенциальных характеристик сил (приборов, оборудования). Мощность равна работе, соотнесенной к временному промежутку, в течение которого она была произведена.

Смысл понятия заключается в представлении о том, какую работу может совершить сила за единицу времени.

\(N=A\div t\\\)

Где N — мощность, A — работа, t — промежуток времени. 

Для общего обозначения мощности в СИ применяется Ватт. Ватт равняется мощности силы, которая за 1 секунду совершает работу величиной 1 Джоуль.

В размерности существуют единицы: киловатт (кВт), мегаватт (МВт). Кроме того, 1 Вт равняется одному вольт-амперу.

Вопрос 9

      Механическая работа и мощность. Единицы измерения работы и мощности.

Краткий ответ

   Механическая работа – это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы  и вектором перемещения (или скорости).

   A = Fs cos α

   Обозначения:

A — Механическая работа

F — Сила, действующая на тело

S — Перемещение, которое тело совершает под действием силы

a — Угол между направлением действия силы и вектором перемещения

   Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю.

   В системе СИ работа измеряется в джоулях (Дж).

   [1 Дж=1 Н·м]

   Работа силы, совершаемая в единицу времени, называется 

мощностью.

   Мощность N – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:

N=A/t

   В Международной системе (СИ) единица мощности называется ватт (Вт)

   Внесистемная единица мощности 1 л.с.=735 Вт

Развернутый ответ

   Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

   Если на тело действует сила и тело под действием этой силы перемещается, то говорят, что сила совершает работу.

   Механическая работа – это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы  и вектором перемещения (или скорости).

A = Fs cos α

   Обозначения:

A — Механическая работа

F — Сила, действующая на тело

S — Перемещение, которое тело совершает под действием силы

a — Угол между направлением действия силы и вектором перемещения

   В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.

   [1

Дж=1 Н·м]

   Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю.

   1) Если направление силы совпадает с направлением движения тела, т.е.α = 0, cos α = 1  то

A=F·S

   2) Если сила направлена перпендикулярно к направлению движения тела, т.е. α = 90º, cos α = 0  то

A = 0

   Следовательно, если тело перемещается в направлении, перпендикулярном к направлению действия силы, то сила не производит работы.

   3) Если угол между направлением силы и направлением движения тупой, т.е. α > 90º, cos α < 0  то

A=-F·S·cosa

4) Если перемещение происходит в сторону, противоположную направлению вектора силы, т.е. α = 180 º, cos α = -1  то

A=-F·S

   Например, работа силы сопротивления отрицательна.

   Графически работа определяется по площади криволинейной фигуры под графиком Fs(x)

   Работа силы, совершаемая в единицу времени, называется мощностью.

   Мощность N – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:

N=A/t

   В Международной системе (СИ) единица мощности называется ватт (Вт). Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.

   Внесистемная единица мощности 1 л.с.=735 Вт

Связь между мощностью и скоростью при равномерном движении:

   N=A/t  так как   A=FScosα      тогда   N=(FScosα)/t, но S/t = v   следовательно

   N=Fvcos α 

   В технике используются единицы работы и мощности:

   1 Вт·с = 1 Дж;     1Вт·ч = 3,6·103 Дж;      1кВт·ч = 3,6·106 Дж

Работа величина она измеряется в.

В чем измеряется работа тока

Лошадь тянет телегу с некоторой силой, обозначим её F тяги. Дедушка, сидящий на телеге, давит на неё с некоторой силой. Обозначим её F давл. Телега движется вдоль направления силы тяги лошади (вправо), а в направлении силы давления дедушки (вниз) телега не перемещается. Поэтому в физике говорят, что F тяги совершает работу над телегой, а F давл не совершает работу над телегой.

Итак, работа силы над телом или механическая работа – физическая величина, модуль которой равен произведению силы на путь, пройденный телом вдоль направления действия этой сил ы:

В честь английского учёного Д.Джоуля единица механической работы получила название 1 джоуль (согласно формуле, 1 Дж = 1 Н·м).

Если на рассматриваемое тело действует некоторая сила, значит, на него действует некоторое тело. Поэтому работа силы над телом и работа тела над телом – полные синонимы. Однако, работа первого тела над вторым и работа второго тела над первым – частичные синонимы, поскольку модули этих работ всегда равны, а их знаки всегда противоположны. Именно поэтому в формуле присутствует знак «±». Обсудим знаки работы более подробно.

Числовые значения силы и пути – всегда неотрицательные величины. В отличие от них механическая работа может иметь как положительный, так и отрицательный знаки. Если направление силы совпадает с направлением движения тела, то работу силы считают положительной. Если направление силы противоположно направлению движения тела, работу силы считают отрицательной (берём «–» из «±» формулы). Если направление движения тела перпендикулярно направлению действия силы, то такая сила работу не совершает, то есть A = 0.

Рассмотрите три иллюстрации по трём аспектам механической работы.

Совершение силой работы может выглядеть по-разному с точек зрения различных наблюдателей. Рассмотрим пример: девочка едет в лифте вверх. Совершает ли она механическую работу? Девочка может совершать работу только над теми телами, на которые действует силой. Такое тело лишь одно – кабина лифта, так как девочка давит на её пол своим весом. Теперь надо выяснить, проходит ли кабина некоторый путь. Рассмотрим два варианта: с неподвижным и движущимся наблюдателем.

Пусть сначала мальчик-наблюдатель сидит на земле. По отношению к нему кабина лифта движется вверх и проходит некоторый путь. Вес девочки направлен в противоположную сторону – вниз, следовательно, девочка совершает над кабиной отрицательную механическую работу: A дев A дев = 0.

1.5. МЕХАНИЧЕСКАЯ РАБОТА И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Понятие энергии. Механическая энергия. Работа — количественная мера изменения энергии. Работа равнодействующей сил. Работа сил в механике. Понятие мощности. Кинетическая энергия как мера механического движения. Связь изменения ки нетической энергии с работой внутренних и внешних сил. Кинетическая энергия системы в различных системах отсчета. Теорема Кенига.

Энергия это универсальная мера различных форм движения и взаимодействия. Механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергии , имеющихся в компонентах механической системы . Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Работа силы это количественная характеристика процесса обмена энергией между взаимодействующими телами.

Пусть частица под действием силы совершает перемещение по некоторой траектории 1-2 (рис. 5.1). В общем случае сила в процессе

движения частицы может изменяться как по модулю, так и по направлению. Рассмотрим, как показано на рис.5.1, элементарное перемещение , в пределах которого силу можно считать постоянной.

Действие силы на перемещении характеризуют величиной, равной скалярному произведению , которую называют элементарной работой силы на перемещении . Ее можно представить и в другом виде:

,

где — угол между векторами и — элементарный путь, проекция вектора на векторобозначена (рис. 5.1).

Итак, элементарная работа силы на перемещении

.

Величина — алгебраическая: в зависимости от угла между векторами силы и или от знака проекции вектора силы на вектор перемещения она может быть как положительной, так и отрицательной и, в частности, равной нулю, если т.е. . Единицей измерения работы в вивтеме СИ служит Джоуль, сокращенное обозначение Дж.

Суммируя (интегрируя) выражение (5.1) по всем элементарным участкам пути от точки 1 до точки 2, найдем работу силы на данном перемещении:

видно, что элементарная работа A численно равна площади заштрихованной полоски, а работа А на пути от точки 1 до точки 2 — площади фигуры, ограниченной кривой, ординатами 1 и 2 и осью s. При этом площадь фигуры над осью s берется со знаком плюс (она соответствует положительной работе), а площадь фигуры под осью s — со знаком минус (она соответствует отрицательной работе).

Рассмотрим примеры на вычисление работы. Работа упругой силы где — радиус-вектор частицы А относительно точки О (рис. 5. 3).

Переместим частицу A, на которую действует эта сила, по произвольному пути из точки 1 в точку 2. Найдем сначала элементарную работу силы на элементарном перемещении :

.

Скалярное произведение где проекция вектора перемещения на вектор . Эта проекция равна приращению модуля вектора Поэтому и

Теперь вычислим работу данной силы на всем пути, т. е. проинтегрируем последнее выражение от точки 1 до точки 2:

Вычислим работу гравитационной (или аналогичной ей математически силы кулоновской) силы. Пусть в начале вектора (рис. 5.3) находится неподвижная точечная масса (точечный заряд). Определим работу гравитационной (кулоновской) силы при перемещении частицы А из точки 1 в точку 2 по произвольному пути. Сила, действующая на частицу А, может быть представлена так:

где параметр для гравитационного взаимодействия равен , а для кулоновского взаимодействия его значение равно . Вычислим сначала элементарную работу этой силы на перемещении

Как и в предыдущем случае, скалярное произведение поэтому

.

Работа же этой силы на всем пути от точки 1 до точки 2

Рассмотрим теперь работу однородной силы тяжести . Запишем эту силу в виде где орт вертикальной оси z с положительным направлением обозначен (рис.5.4). Элементарная работа силы тяжести на перемещении

Скалярное произведение гдепроекция на орт равная — приращению координаты z. Поэтому выражение для работы приобретает вид

Работа же данной силы на всем пути от точки 1 до точки 2

Рассмотренные силы интересны в том отношении, что их работа, как видно из формул (5.3) — (5.5), не зависит от формы пути между точками 1 и 2, а зависит только от положения этих точек. Эта весьма важная особенность данных сил присуща, однако, не всем силам. Например, сила трения этим свойством не обладает: работа этой силы зависит не только от положения начальной и конечной точек, но и от формы пути между ними.

До сих пор речь шла о работе одной силы. Если же на частицу в процессе движения действуют несколько сил, результирующая которых то нетрудно показать, что работа результирующей силы на некотором перемещении равна алгебраической сумме работ, совершаемых каждой из сил в отдельности на том же перемещении. Действительно,

Введем в рассмотрение новую величину — мощность. Она используется для характеристики скорости, с которой совершается работа. Мощность , по определению, — это работа, совершаемая силой за единицу времени . Если за промежуток времени сила совершает работу , то мощность, развиваемая этой силой в данный момент времени, есть Учитывая, что , получим

Единица мощности в системе СИ — Ватт, сокращенное обозначение Вт.

Таким образом, мощность, развиваемая силой , равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения данной силы. Как и работа, мощность — величина алгебраическая.

Зная мощность силы , можно найти и работу, которую совершает эта сила за промежуток времени t. В самом деле, представив подынтегральное выражение в (5.2) в виде получим

Следует также обратить внимание на одно весьма существенное обстоятельство. Когда говорят о работе (или мощности), то необходимо в каждом конкретном случае четко указывать или представлять себе, работа какой именно силы (или сил) имеется в виду. В ином случае, как правило, неизбежны недоразумения.

Рассмотрим понятие кинетической энергии частицы . Пусть частица массы т движется под действием некоторой силы (в общем случае эта сила может быть результирующей нескольких сил). Найдем элементарную работу, которую совершает эта сила на элементарном перемещении . Имея в виду, что и , запишем

.

Скалярное произведение где проекция вектора на направление вектора . Эта проекция равна — приращению модуля вектора скорости. Поэтому и элементарная работа

Отсюда видно, что работа результирующей силы идет на приращение некоторой величины стоящей в скобках, которую называют кинетической энергией частицы.

а при конечном перемещении из точки 1 в точку 2

(5. 10 )

т. е. приращение кинетической энергии частицы на некотором перемещении равно алгебраической сумме работ всех сил , действующих на частицу на том же перемещении. Если то т. е. кинетическая энергия частицы увеличивается; если же то то есть кинетическая энергия уменьшается.

Уравнение (5.9) можно представить и в другой форме, поделив обе части его на соответствующий промежуток времени dt:

(5. 11 )

Это значит, что производная кинетической энергии частицы по времени равна мощности N результирующей силы, действующей на частицу.

Теперь введем понятие кинетической энергии системы . Рассмотрим в некоторой системе отсчета произвольную систему частиц. Пусть частица системы имеет в данный момент кинетическую энергию . Приращение кинетической энергии каждой частицы равно, согласно (5.9), работе всех сил, действующих на эту частицу: Найдем элементарную работу, которую совершают все силы, действующие на все частицы системы:

где — суммарная кинетическая энергия системы. Заметим, что кинетическая энергия системы — величина аддитивная : она равна сумме кинетических энергий отдельных частей системы независимо от того, взаимодействуют они между собой или нет.

Итак, приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы . При элементарном перемещении всех частиц

а при конечном перемещении

т. е. производная кинетической энергии системы по времени равна суммарной мощности всех сил, действующих на все частицы системы ,

Теорема Кенига: кинетическую энергию K системы частиц можно представить как сумму двух слагаемых: а) кинетической энергии mV c 2 /2 воображаемой материальной точки, масса которой равна массе всей системы, а скорость совпадает со скоростью центра масс; б) кинетической энергии K отн системы частиц, вычисленной в системе центра масс.

Вы знаете, что такое работа? Вне всякого сомнения. Что такое работа, знает каждый человек, при условии, что он рожден и живет на планете Земля. А что такое механическая работа?

Это понятие тоже известно большинству людей на планете, хотя некоторые отдельные личности и имеют довольно смутное представление об этом процессе. Но речь сейчас не о них. Еще меньшее число людей имеют представление, что такое механическая работа с точки зрения физики. В физике механическая работа — это не труд человека ради пропитания, это физическая величина, которая может быть совершенно никак не связана ни с человеком, ни с другим каким-нибудь живым существом. Как так? Сейчас разберемся.

Механическая работа в физике

Приведем два примера. В первом примере воды реки, столкнувшись с пропастью, шумно падают вниз в виде водопада. Второй пример — это человек, который держит на вытянутых руках тяжелый предмет, например, удерживает надломившуюся крышу над крыльцом дачного домика от падения, пока его жена и дети судорожно ищут, чем ее подпереть. В каком случае совершается механическая работа?

Определение механической работы

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A — работа,
F — сила,
s — пройденный путь.

Так что, несмотря на весь героизм уставшего держателя крыши, проделанная им работа равна нулю, а вот вода, падая под действием силы тяжести с высокого утеса, совершает самую, что ни на есть, механическую работу. То есть, если мы будем толкать тяжелый шкаф безуспешно, то проделанная нами работа с точки зрения физики будет равна нулю, несмотря на то, что мы прикладываем много сил. А вот если мы сдвинем шкаф на некоторое расстояние, то тогда мы проделаем работу, равную произведению приложенной силы на расстояние, на которое мы передвинули тело.

Единица работы — 1 Дж. Это работа, совершенная силой в 1 ньютон, по передвижению тела на расстояние в 1 м. Если направление приложенной силы совпадает с направлением движения тела, то данная сила совершает положительную работу. Пример — это когда мы толкаем какое-либо тело, и оно двигается. А в случае, когда сила приложена в противоположную движению тела сторону, например, сила трения , то данная сила совершает отрицательную работу. Если же приложенная сила никак не влияет на движение тела, то сила, совершаемая этой работой, равна нулю.

Механическая работа. Единицы работы.

В обыденной жизни под понятием «работа» мы понимаем всё.

В физике понятие работа несколько иное. Это определенная физическая величина, а значит, ее можно измерить. В физике изучается прежде всего механическая работа .

Рассмотрим примеры механической работы.

Поезд движется под действием силы тяги электровоза, при этом совершается механическая работа. При выстреле из ружья сила давления пороховых газов совершает работу — перемещает пулю вдоль ствола, скорость пули при этом увеличивается.

Из этих примеров видно, что механическая работа совершается, когда тело движется под действием силы. Механическая работа совершается и в том случае, когда сила, действуя на тело (например, сила трения), уменьшает скорость его движения.

Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции), в этом случае механическая работа также не совершается.

Итак, механическая работа совершается, только когда на тело действует сила, и оно движется .

Нетрудно понять, что чем большая сила действует на тело и чем длиннее путь, который проходит тело под действием этой силы, тем большая совершается работа.

Механическая работа прямо пропорциональна приложенной силе и прямо пропорциональна пройденному пути .

Поэтому, условились измерять механическую работу произведением силы на путь, пройденный по этому направлению этой силы:

работа = сила × путь

где А — работа, F — сила и s — пройденный путь.

За единицу работы принимается работа, совершаемая силой в 1Н, на пути, равном 1 м.

Единица работы — джоуль (Дж ) названа в честь английского ученого Джоуля. Таким образом,

1 Дж = 1Н · м.

Используется также килоджоули (кДж ) .

1 кДж = 1000 Дж.

Формула А = Fs применима в том случае, когда сила F постоянна и совпадает с направлением движения тела.

Если направление силы совпадает с направлением движения тела, то данная сила совершает положительную работу.

Если же движение тела происходит в направлении, противоположном направлению приложенной силы, например, силы трения скольжения, то данная сила совершает отрицательную работу.

Если направление силы, действующей на тело, перпендикулярно направлению движения, то эта сила работы не совершает, работа равна нулю:

В дальнейшем, говоря о механической работе, мы будем кратко называть ее одним словом — работа.

Пример . Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м 3 .

Дано :

ρ = 2500 кг/м 3

Решение :

где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.

Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг.

F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н.

A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.

Ответ : А =245 кДж.

Рычаги.Мощность.Энергия

На совершение одной и той же работы различным двигателям требуется разное время. Например, подъемный кран на стройке за несколько минут поднимает на верхний этаж здания сотни кирпичей. Если бы эти кирпичи перетаскивал рабочий, то ему для этого потребовалось бы несколько часов. Другой пример. Гектар земли лошадь может вспахать за 10-12 ч, трактор же с многолемешным плугом (лемех — часть плуга, подрезающая пласт земли снизу и передающая его на отвал; многолемешный — много лемехов), эту работу выполнит на 40-50 мин.

Ясно, что подъемный кран ту же работу совершает быстрее, чем рабочий, а трактор — быстрее чем лошадь. Быстроту выполнения работы характеризуют особой величиной, называемой мощностью.

Мощность равна отношению работы ко времени, за которое она была совершена.

Чтобы вычислить мощность, надо работу разделить на время, в течение которого совершена эта работа. мощность = работа/время.

где N — мощность, A — работа, t — время выполненной работы.

Мощность — величина постоянная, когда за каждую секунду совершается одинаковая работа, в других случаях отношение A/t определяет среднюю мощность:

N ср = A/t . За единицу мощности приняли такую мощность, при которой в 1 с совершается работа в Дж.

Эта единица называется ваттом (Вт ) в честь еще одного английского ученого Уатта.

1 ватт = 1 джоуль/ 1 секунда , или 1 Вт = 1 Дж/с.

Ватт (джоуль в секунду) — Вт (1 Дж/с).

В технике широко используется более крупные единицы мощности — киловатт (кВт ), мегаватт (МВт ) .

1 МВт = 1 000 000 Вт

1 кВт = 1000 Вт

1 мВт = 0,001 Вт

1 Вт = 0,000001 МВт

1 Вт = 0,001 кВт

1 Вт = 1000 мВт

Пример . Найти мощность потока воды, протекающей через плотину, если высота падения воды 25 м, а расход ее — 120 м3 в минуту.

Дано :

ρ = 1000 кг/м3

Решение :

Масса падающей воды: m = ρV ,

m = 1000 кг/м3 · 120 м3 = 120 000 кг (12 · 104 кг).

Сила тяжести, действующая на воду:

F = 9.8 м/с2 · 120 000 кг ≈ 1 200 000 Н (12 · 105 Н)

Работа, совершаемая потоком в минуту:

А — 1 200 000 Н · 25 м = 30 000 000 Дж (3 · 107 Дж).

Мощность потока: N = A/t,

N = 30 000 000 Дж / 60 с = 500 000 Вт = 0,5 МВт.

Ответ : N = 0.5 МВт.

Различные двигатели имеют мощности от сотых и десятых долей киловатта (двигатель электрической бритвы, швейной машины) до сотен тысяч киловатт (водяные и паровые турбины).

Таблица 5.

Мощность некоторых двигателей, кВт.

На каждом двигателе имеется табличка (паспорт двигателя), на которой указаны некоторые данные о двигателе, в том числе и его мощность.

Мощность человека при нормальный условиях работы в среднем равна 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и еще бóльшую.

Из формулы N = A/t следует, что

Чтобы вычислить работу, необходимо мощность умножить на время, в течение которого совершалась эта работа.

Пример. Двигатель комнатного вентилятора имеет мощность 35 Вт. Какую работу он совершает за 10 мин?

Запишем условие задачи и решим ее.

Дано :

Решение :

A = 35 Вт * 600с = 21 000 Вт* с = 21 000 Дж = 21 кДж.

Ответ A = 21 кДж.

Простые механизмы.

С незапамятных времен человек использует для совершения механической работы различные приспособления.

Каждому известно, что тяжелый предмет (камень, шкаф, станок), который невозможно сдвинуть руками, можно сдвинуть с помощью достаточно длинной палки — рычага.

На данный момент считается, что с помощью рычагов три тысячи лет назад при строительстве пирамид в Древнем Египте передвигали и поднимали на большую высоту тяжелые каменные плиты.

Во многих случаях, вместо того, чтобы поднимать тяжелый груз на некоторую высоту, его можно вкатывать или втаскивать на ту же высоту по наклонной плоскости или поднимать с помощью блоков.

Приспособления, служащие для преобразования силы, называются механизмами .

К простым механизмам относятся: рычаги и его разновидности — блок, ворот; наклонная плоскость и ее разновидности — клин, винт . В большинстве случаев простые механизмы применяют для того, чтобы получить выигрыш в силе, т. е. увеличить силу, действующую на тело, в несколько раз.

Простые механизмы имеются и в бытовых, и во всех сложных заводских и фабричных машинах, которые режут, скручивают и штампуют большие листы стали или вытягивают тончайшие нити, из которых делаются потом ткани. Эти же механизмы можно обнаружить и в современных сложных автоматах, печатных и счетных машинах.

Рычаг. Равновесие сил на рычаге.

Рассмотрим самый простой и распространенный механизм — рычаг.

Рычаг представляет собой твердое тело, которое может вращаться вокруг неподвижной опоры.

На рисунках показано, как рабочий для поднятия груза в качестве рычага, использует лом. В первом случае рабочий с силой F нажимает на конец лома B , во втором — приподнимает конец B .

Рабочему нужно преодолеть вес груза P — силу, направленную вертикально вниз. Он поворачивает для этого лом вокруг оси, проходящей через единственную неподвижную точку лома — точку его опоры О . Сила F , с которой рабочий действует на рычаг, меньше силы P , таким образом, рабочий получает выигрыш в силе . При помощи рычага можно поднять такой тяжелый груз, который своими силами поднять нельзя.

На рисунке изображен рычаг, ось вращения которого О (точка опоры) расположена между точками приложения сил А и В . На другом рисунке показана схема этого рычага. Обе силы F 1 и F 2, действующие на рычаг, направлены в одну сторону.

Кратчайшее расстояние между точкой опоры и прямой, вдоль которой действует на рычаг сила, называется плечом силы.

Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы.

Длина этого перпендикуляра и будет плечом данной силы. На рисунке показано, что ОА — плечо силы F 1; ОВ — плечо силы F 2 . Силы, действующие на рычаг могут повернуть его вокруг оси в двух направлениях: по ходу или против хода часовой стрелки. Так, сила F 1 вращает рычаг по ходу часовой стрелки, а сила F 2 вращает его против часовой стрелки.

Условие, при котором рычаг находится в равновесии под действием приложенных к нему сил, можно установить на опыте. При этом надо помнить, что результат действия силы, зависит не только от ее числового значения (модуля), но и от того, в какой точке она приложена к телу, или как направлена.

К рычагу (см рис.) по обе стороны от точки опоры подвешиваются различные грузы так, что каждый раз рычаг оставался в равновесии. Действующие на рычаг силы, равны весам этих грузов. Для каждого случая измеряются модули сил и их плечи. Из опыта изображенного на рисунке 154, видно, что сила 2 Н уравновешивает силу 4 Н . При этом, как видно из рисунка, плечо меньшей силы в 2 раза больше плеча большей силой.

На основании таких опытов было установлено условие (правило) равновесия рычага.

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

Это правило можно записать в виде формулы:

F 1/F 2 = l2/ l1 ,

где F 1 и F2 — силы, действующие на рычаг, l 1 и l2 , — плечи этих сил (см. рис.).

Правило равновесия рычага было установлено Архимедом около 287 — 212 гг. до н. э. (но ведь в прошлом параграфе говорилось, что рычаги использовались египтянами? Или тут важную роль играет слово «установлено»?)

Из этого правила следует, что меньшей силой можно уравновесить при помощи рычага бóльшую силу. Пусть одно плечо рычага в 3 раза больше другого (см рис.). Тогда, прикладывая в точке В силу, например, в 400 Н, можно поднять камень весом 1200 Н. Что0бы поднять еще более тяжелый груз, нужно увеличить длину плеча рычага, на которое действует рабочий.

Пример . С помощью рычага рабочий поднимает плиту массой 240 кг (см рис. 149). Какую силу прикладывает он к большему плечу рычага, равному 2,4 м, если меньшее плечо равно 0,6 м?

Запишем условие задачи, и решим ее.

Дано :

Решение :

По правилу равновесия рычага F1/F2 = l2/l1, откуда F1 = F2 l2/l1, где F2 = Р — вес камня. Вес камня asd = gm, F = 9,8 Н · 240 кг ≈ 2400 Н

Тогда, F1 = 2400 Н · 0,6/2,4 = 600 Н.

Ответ : F1 = 600 Н.

В нашем примере рабочий преодолевает силу 2400 Н, прикладывая к рычагу силу 600 Н. Но при этом плечо, на которое действует рабочий, в 4 раза длиннее того, на которое действует вес камня (l 1 : l2 = 2,4 м: 0,6 м = 4).

Применяя правило рычага, можно меньшей силой уравновесить бóльшую силу. При этом плечо меньшей силы должно быть длиннее плеча большей силы.

Момент силы.

Вам уже известно правило равновесия рычага:

F 1 / F2 = l 2 / l1 ,

Пользуясь свойством пропорции (произведение ее крайних членов, равно произведению ее средних членов), запишем его в таком виде:

F 1l 1 = F2 l2 .

В левой части равенства стоит произведение силы F 1 на ее плечо l 1, а в правой — произведение силы F 2 на ее плечо l 2 .

Произведение модуля силы, вращающей тело, на ее плечо называется моментом силы ; он обозначается буквой М. Значит,

Рычаг находится в равновесии под действием двух сил, если момент силы, вращающий его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки.

Это правило, называемое правилом моментов , можно записать в виде формулы:

М1 = М2

Действительно, в рассмотренном нами опыте, (§ 56) действующие силы были равны 2 Н и 4 Н, их плечи соответственно составляли 4 и 2 давления рычага, т. е. моменты этих сил одинаковы при равновесии рычага.

Момент силы, как и всякая физическая величина, может быть измерена. За единицу момента силы принимается момент силы в 1 Н, плечо которой ровно 1 м.

Эта единица называется ньютон-метр (Н · м ).

Момент силы характеризует действие силы, и показывает, что оно зависит одновременно и от модуля силы, и от ее плеча. Действительно, мы уже знаем, например, что действие силы на дверь зависит и от модуля силы, и от того, где приложена сила. Дверь тем легче повернуть, чем дальше от оси вращения приложена действующая на нее сила. Гайку, лучше отвернуть длинным гаечным ключом, чем коротким. Ведро тем легче поднять из колодца, чем длиннее ручка вóрота, и т. д.

Рычаги в технике, быту и природе.

Правило рычага (или правило моментов) лежит в основе действия различного рода инструментов и устройств, применяемых в технике и быту там, где требуется выигрыш в силе или в пути.

Выигрыш в силе мы имеем при работе с ножницами. Ножницы это рычаг (рис), ось вращения которого, происходит через винт, соединяющий обе половины ножниц. Действующей силой F 1 является мускульная сила руки человека, сжимающего ножницы. Противодействующей силой F 2 — сила сопротивления такого материала, который режут ножницами. В зависимости от назначения ножниц их устройство бывает различным. Конторские ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. Ножницы для резки листового металла (рис.) имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянии режущей части и оси вращения в кусачках (рис.), предназначенных для перекусывания проволоки.

Рычаги различного вида имеются у многих машин. Ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пианино — все это примеры рычагов, используемых в данных машинах и инструментах.

Примеры применения рычагов — это рукоятки тисков и верстаков, рычаг сверлильного станка и т. д.

На принципе рычага основано действие и рычажных весов (рис. ). Учебные весы, изображенные на рисунке 48 (с. 42), действуют как равноплечий рычаг . В десятичных весах плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует умножить массу гирь на 10.

Устройство весов для взвешивания грузовых вагонов автомобилей также основано на правиле рычага.

Рычаги встречаются также в разных частях тела животных и человека. Это, например, руки, ноги, челюсти. Много рычагов можно найти в теле насекомых (прочитав книгу про насекомых и строение их тела), птиц, в строении растений.

Применение закона равновесия рычага к блоку.

Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускается веревка, трос или цепь.

Неподвижным блоком называется такой блок, ось которого закреплена, и при подъеме грузов не поднимается и не опускается (рис).

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса (рис): ОА = ОВ = r . Такой блок не дает выигрыша в силе. (F 1 = F 2), но позволяет менять направление действие силы. Подвижный блок — это блок. ось которого поднимается и опускается вместе с грузом (рис.). На рисунке показан соответствующий ему рычаг: О — точка опоры рычага, ОА — плечо силы Р и ОВ — плечо силы F . Так как плечо ОВ в 2 раза больше плеча ОА , то сила F в 2 раза меньше силы Р :

F = P/2 .

Таким образом, подвижный блок дает выигрыш в силе в 2 раза .

Это можно доказать и пользуясь понятием момента силы. При равновесии блока моменты сил F и Р равны друг другу. Но плечо силы F в 2 раза больше плеча силы Р , а, значит, сама сила F в 2 раза меньше силы Р .

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис. ). Неподвижный блок применяется только для удобства. Он не дает выигрыша в силе, но изменяет направление действия силы. Например, позволяет поднимать груз, стоя на земле. Это пригождается многим людям или рабочим. Тем не менее, он даёт выигрыш в силе в 2 раза больше обычного!

Равенство работ при использовании простых механизмов. «Золотое правило» механики.

Рассмотренные нами простые механизмы применяются при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.

Естественно, возникает вопрос: давая выигрыш в силе или пути, не дают ли простые механизмы выигрыша в работе? Ответ на поставленный вопрос можно получить из опыта.

Уравновесив на рычаге две какие-нибудь разные по модулю силы F 1 и F 2 (рис.), приводим рычаг в движение. При этом оказывается, что за одно и то же время точка приложения меньшей силы F 2 проходит больший путь s 2 , а точка приложения большей силы F 1 — меньший путь s 1. Измерив эти пути и модули сил, находим, что пути, пройденные точками приложения сил на рычаге, обратно пропорциональны силам:

s 1 / s 2 = F 2 / F 1.

Таким образом, действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути.

Произведение силы F на путь s есть работа. Наши опыты показывают, что работы, совершаемые силами, приложенными к рычагу, равны друг другу:

F 1 s 1 = F 2 s 2, т. е. А 1 = А 2.

Итак, при использовании рычага выигрыша в работе не получится.

Пользуясь рычагом, мы можем выиграть или в силе, или в расстоянии. Действуя же силой на короткое плечо рычага, мы выигрываем в расстоянии, но во столько же раз проигрываем в силе.

Существует легенда, что Архимед, восхищенный открытием правила рычага, воскликнул: «Дайте мне точку опоры, и я переверну Землю!».

Конечно, Архимед не мог бы справиться с такой задачей, если бы даже ему и дали бы точку опоры (которая должна была бы быть вне Земли) и рычаг нужной длины.

Для подъема земли всего на 1 см длинное плечо рычага должно было бы описать дугу огромной длины. Для перемещения длинного конца рычага по этому пути, например, со скоростью 1 м/с, потребовались бы миллионы лет!

Не дает выигрыша в работе и неподвижный блок, в чем легко убедиться на опыте (см. рис.). Пути, проходимые точками приложения сил F и F , одинаковы, одинаковы и силы, а значит, одинаковы и работы.

Можно измерить и сравнить между собой работы, совершаемые с помощью подвижного блока. Чтобы при помощи подвижного блока поднять груз на высоту h, необходимо конец веревки, к которому прикреплен динамометр, как показывает опыт (рис.), переместить на высоту 2h.

Таким образом, получая выигрыш в силе в 2 раза, проигрывают в 2 раза в пути, следовательно, и подвижный блок, на дает выигрыша в работе.

Многовековая практика показала, что ни один из механизмов не дает выигрыш в работе. Применяют же различные механизмы для того, чтобы в зависимости от условий работы выиграть в силе или в пути.

Уже древним ученым было известно правило, применимое ко всем механизмом: во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии. Это правило назвали «золотым правилом» механики.

Коэффициент полезного действия механизма.

Рассматривая устройство и действие рычага, мы не учитывали трение, а также вес рычага. в этих идеальных условиях работа, совершенная приложенной силой (эту работу мы будем называть полной ), равна полезной работе по подъему грузов или преодоления какого — либо сопротивления.

На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы.

Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей. Так, применяя подвижный блок, приходится дополнительно совершать работу по подъему самого блока, веревки и по определению силы трения в оси блока.

Какой мы механизм мы не взяли, полезная работа, совершенная с его помощью, всегда составляет лишь часть полной работы. Значит, обозначив полезную работу буквой Ап, полную(затраченную) работу буквой Аз, можно записать:

Ап

Отношение полезной работы к полной работе называется коэффициентом полезного действия механизма.

Сокращенно коэффициент полезного действия обозначается КПД.

КПД = Ап / Аз.

КПД обычно выражается в процентах и обозначается греческой буквой η, читается он как «эта»:

η = Ап / Аз · 100%.

Пример : На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложена сила 250 Н. Груз подняли на высоту h2 = 0,08 м, при этом точка приложения движущей силы опустилась на высоту h3 = 0,4 м. Найти КПД рычага.

Запишем условие задачи и решим ее.

Дано :

Решение :

η = Ап / Аз · 100%.

Полная (затраченная) работа Аз = Fh3.

Полезная работа Ап = Рh2

Р = 9,8 · 100 кг ≈ 1000 Н.

Ап = 1000 Н · 0,08 = 80 Дж.

Аз = 250 Н · 0,4 м = 100 Дж.

η = 80 Дж/100 Дж · 100% = 80%.

Ответ : η = 80%.

Но «золотое правило» выполняется и в этом случае. Часть полезной работы — 20% ее-расходуется на преодоление трения в оси рычага и сопротивления воздуха, а также на движение самого рычага.

КПД любого механизма всегда меньше 100%. Конструируя механизмы, люди стремятся увеличить их КПД. Для этого уменьшаются трение в осях механизмов и их вес.

Энергия.

На заводах и фабриках, станки и машины приводятся в движения с помощью электродвигателей, которые расходуют при этом электрическую энергию (отсюда и название).

Сжатая пружина (рис), распрямляясь, совершить работу, поднять на высоту груз, или заставить двигаться тележку.

Поднятый над землей неподвижный груз не совершает работы, но если этот груз упадет, он может совершить работу (например, может забить в землю сваю).

Способностью совершить работу обладает и всякое движущееся тело. Так, скатившийся с наклонной плоскости стальной шарик А (рис), ударившись о деревянный брусок В, передвигает его на некоторое расстояние. При этом совершается работа.

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, говорится, что они обладают энергией.

Энергия — физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергия выражается в системе СИ в тех же единицах, что и работу, т. е. в джоулях .

Чем большую работу может совершить тело, тем большей энергией оно обладает.

При совершении работы энергия тел изменяется. Совершенная работа равна изменению энергии.

Потенциальная и кинетическая энергия.

Потенциальной (от лат. потенция — возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел и частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия зависит от взаимного положения его и Земли. и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Е п, поскольку Е = А , а работа, как мы знаем, равна произведению силы на путь, то

А = Fh ,

где F — сила тяжести.

Значит, и потенциальная энергия Еп равна:

Е = Fh, или Е = gmh,

где g — ускорение свободного падения, m — масса тела, h — высота, на которую поднято тело.

Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию молота копра (рис.) используют в строительстве для совершению работы по забиванию свай.

Открывая дверь с пружиной, совершается работа по растяжению (или сжатию) пружины. За счет приобретенной энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.

Энергию сжатых и раскрученных пружин используют, например, в ручных часах, разнообразных заводных игрушках и пр.

Потенциальной энергией обладает всякое упругое деформированное тело. Потенциальную энергию сжатого газа используют в работе тепловых двигателей, в отбойных молотках, которые широко применяют в горной промышленности, при строительстве дорог, выемке твердого грунта и т. д.

Энергия, которой обладает тело вследствие своего движения, называется кинетической (от греч. кинема — движение) энергией.

Кинетическая энергия тела обозначается буквой Е к.

Движущаяся вода, приводя во вращение турбины гидроэлектростанций, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух — ветер.

От чего зависит кинетическая энергия? Обратимся к опыту (см. рис.). Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он продвигает брусок, т. 2 /2,

где m — масса тела, v — скорость движения тела.

Кинетическую энергию тел используют в технике. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединенную с генератором электрического тока. За счет кинетической энергии воды вырабатывается электрическая энергия.

Энергия движущейся воды имеет большое значение в народном хозяйстве. Эту энергию используют с помощью мощных гидроэлектростанций.

Энергия падающей воды является экологически чистым источником энергии в отличие от энергии топлива.

Все тела в природе относительно условного нулевого значения обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.

Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.

Превращение одного вида механической энергии в другой.

Явление превращения одного вида механической энергии в другой очень удобно наблюдать на приборе, изображенном на рисунке. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере падения потенциальная энергия диска уменьшается, но вместе с тем возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. (Часть энергии расходуется на работу против силы трения, поэтому диск не достигает первоначальной высоты.) Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую, а при движении вверх кинетическая превращается в потенциальную.

Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.

Если поднять над стальной плитой стальной шарик (рис) и выпустить его из рук, он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие как шарика, так и плиты. Кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик, примут свою первоначальную форму. Шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, почти равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а значит, и его кинетическая энергия уменьшаются, потенциальная энергия увеличивается. отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.

Явления природы обычно сопровождается превращением одного вида энергии в другой.

Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

В каких единицах измеряется работа силы. Физический смысл работы и механической энергии

Если на тело действует сила, то эта сила совершает работу по перемещению этого тела. Прежде чем дать определение работе при криволинейном движении мате­риальной точки, рассмотрим частные случаи:

В этом случае механиче­ская работа A равна:

A = F s cos =
,

или A = Fcos × s = F S × s ,

где F S – проекция силы на перемеще­ние. В данном случае F s = const , и геометрический смысл работы A – это площадь прямо­угольника, построенного в координатах F S , , s .

Построим график проекции силы на направление перемещения F S как функции перемещения s. Полное перемещение представим как сумму n малых перемещений
. Для ма­лого i -ого перемещения
работа равна

или площади заштрихованной трапеции на рисунке.

Полная механическая работа по перемещению из точки 1 в точку 2 будет равна:


.

Величина, стоящая под интегралом будет представлять элементарную работу по бесконечно малому перемещению
:

­– элементарная работа.

Разбиваем траекторию движения материальной точки на бесконечно малые перемещения и работу силы по перемещению материальной точки из точки 1 в точку 2 определяем как криволинейный интеграл:

работа при криволинейном движении.

Пример 1: Работа силы тяжести
при криволинейном движении материальной точки.


.

Далее как постоянную величину можно вынести за знак интеграла, а интеграл согласно рисунку будет представлять полное перемещение . .

Если обозначить высоту точки 1 от поверхности Земли через , а высоту точки 2 через , то

Мы видим, что в данном случае работа определяется положением материальной точки в начальный и конечный момент времени и не зависит от формы траектории или пути. Работа силы тяжести по замкнутому пути равна нулю:
.

Силы, работа которых на замкнутом пути равна нулю, называется консервативными .

Пример 2 : Работа силы трения.

Это пример неконсервативной силы. Чтобы показать это достаточно рассмотреть элементарную работу силы трения:

,

т.е. работа силы трения всегда отрицательная величина и на замкнутом пути не может быть равной нулю. Работа, совершаемая в единицу времени, называется мощностью . Если за время
совершается работа
, то мощность равна

механическая мощность .

Взяв
в виде

,

получим для мощности выражение:

.

В СИ единицей работы является джоуль:
= 1 Дж = 1 Н1 м, а единицей мощности является ватт: 1 Вт = 1 Дж/с.

Механическая энергия.

Энергия является общей количественной мерой движения взаимодействия всех видов материи. Энергия не исчезает и не возникает из нечего: она лишь может переходить из одной формы в другую. Понятие энергии связывает воедино все явления в природе. В соответствии с различными формами движения материи рассматривают разные виды энергии – механическую, внутреннюю, электромагнитную, ядерную и др.

Понятия энергии и работы тесно связаны друг с другом. Известно, что работа совершается за счет запаса энергии и, наоборот, совершая работу, можно увеличить запас энергии в каком-либо устройстве. Другими словами работа – это количественная мера изменения энергии:

.

Энергия также как и работа в СИ измеряется в джоулях: [E ]=1 Дж.

Механическая энергия бывает двух видов – кинетическая и потенциальная.

Кинетическая энергия (или энергия движения) определяется массами и скоростями рассматриваемых тел. Рассмотрим материальную точку, движущуюся под действием силы . Работа этой силы увеличивает кинетическую энергию материальной точки
. Вычислим в этом случае малое приращение (дифференциал) кинетической энергии:

При вычислении
использован второй закон Ньютона
, а также
— модуль скорости материальной точки. Тогда
можно представить в виде:

кинетическая энергия движущейся материальной точки .

Умножив и разделив это выражение на
, и учитывая, что
, получим

связь между импульсом и кинетической энергией движущейся материальной точки .

Потенциальная энергия (или энергия положения тел) определяется действием на тело консервативных сил и зависит только от положения тела.

Мы видели, что работу силы тяжести
при криволинейном движении материальной точки
можно представить в виде разности значений функции
, взятых в точке 1 и в точке 2 :

.

Оказывается, что всегда, когда силы консервативны, работу этих сил на пути 1
2 можно представить в виде:

.

Функция , которая зависит только от положения тела – называется потенциальной энергией .

Тогда для элементарной работы получим

работа равна убыли потенциальной энергии .

Иначе можно сказать, что работа совершается за счёт запаса потенциальной энергии.

Величину , равную сумме кинетической и потенциальной энергий частицы, называют полной механической энергией тела:

полная механическая энергия тела .

В заключении заметим, что используя второй закон Ньютона
, дифференциал кинетической энергии
можно представить в виде:

.

Дифференциал потенциальной энергии
, как указывали выше, равен:

.

Таким образом, если сила – консервативная сила и отсутствуют другие внешние силы, то , т.е. в этом случае полная механическая энергия тела сохраняется.

Лошадь тянет телегу с некоторой силой, обозначим её F тяги. Дедушка, сидящий на телеге, давит на неё с некоторой силой. Обозначим её F давл. Телега движется вдоль направления силы тяги лошади (вправо), а в направлении силы давления дедушки (вниз) телега не перемещается. Поэтому в физике говорят, что F тяги совершает работу над телегой, а F давл не совершает работу над телегой.

Итак, работа силы над телом или механическая работа – физическая величина, модуль которой равен произведению силы на путь, пройденный телом вдоль направления действия этой сил ы:

В честь английского учёного Д.Джоуля единица механической работы получила название 1 джоуль (согласно формуле, 1 Дж = 1 Н·м).

Если на рассматриваемое тело действует некоторая сила, значит, на него действует некоторое тело. Поэтому работа силы над телом и работа тела над телом – полные синонимы. Однако, работа первого тела над вторым и работа второго тела над первым – частичные синонимы, поскольку модули этих работ всегда равны, а их знаки всегда противоположны. Именно поэтому в формуле присутствует знак «±». Обсудим знаки работы более подробно.

Числовые значения силы и пути – всегда неотрицательные величины. В отличие от них механическая работа может иметь как положительный, так и отрицательный знаки. Если направление силы совпадает с направлением движения тела, то работу силы считают положительной. Если направление силы противоположно направлению движения тела, работу силы считают отрицательной (берём «–» из «±» формулы). Если направление движения тела перпендикулярно направлению действия силы, то такая сила работу не совершает, то есть A = 0.

Рассмотрите три иллюстрации по трём аспектам механической работы.

Совершение силой работы может выглядеть по-разному с точек зрения различных наблюдателей. Рассмотрим пример: девочка едет в лифте вверх. Совершает ли она механическую работу? Девочка может совершать работу только над теми телами, на которые действует силой. Такое тело лишь одно – кабина лифта, так как девочка давит на её пол своим весом. Теперь надо выяснить, проходит ли кабина некоторый путь. Рассмотрим два варианта: с неподвижным и движущимся наблюдателем.

Пусть сначала мальчик-наблюдатель сидит на земле. По отношению к нему кабина лифта движется вверх и проходит некоторый путь. Вес девочки направлен в противоположную сторону – вниз, следовательно, девочка совершает над кабиной отрицательную механическую работу: A дев A дев = 0.

Прежде чем раскрывать тему «В чём измеряется работа», необходимо сделать небольшое отступление. Всё в этом мире подчиняется законам физики. Каждый процесс или явление можно объяснить на основе тех или иных законов физики. Для каждой измеряемой величины существует единица, в которой её принято измерять. Единицы измерения являются неизменными и имеют единое значение во всём мире.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/risunok-1-768×451..jpg 1024w»>

Система международных единиц

Причиной этого является следующее. В тысяча девятьсот шестидесятом году на одиннадцатой генеральной конференции по мерам и весам была принята система измерений, которая признана во всём мире. Эта система получила наименование Le Système International d’Unités, SI (СИ система интернационал). Эта система стала базовой для определений принятых во всём мире единиц измерения и их соотношения.

Физические термины и терминология

В физике единица измерения работы силы называется Дж (Джоуль), в честь английского учёного физика Джеймса Джоуля, сделавшего большой вклад в развитие раздела термодинамики в физике. Один Джоуль равен работе, совершаемой силой в один Н (Ньютон), при перемещении её приложения на один М (метр) в направлении действия силы. Один Н (Ньютон) равен силе, массой в один кг (килограмм), при ускорении в один м/с2 (метр в секунду) в направлении силы.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/risunok-2-2-210×140.jpg 210w»>

Формула нахождения работы

К сведению. В физике всё взаимосвязано, выполнение любой работы связано с выполнением дополнительных действий. В качестве примера можно взять бытовой вентилятор. При включении вентилятора в сеть лопасти вентилятора начинают вращаться. Вращающиеся лопасти воздействуют на поток воздуха, придавая ему направленное движение. Это является результатом работы. Но для выполнения работы необходимо воздействие других сторонних сил, без которых выполнение действия невозможно. К ним относятся сила электрического тока, мощность, напряжение и многие другие взаимосвязанные значения.

Электрический ток, по своей сути, – это упорядоченное движение электронов в проводнике в единицу времени. В основе электрического тока лежит положительно или отрицательно заряжённые частицы. Они носят название электрических зарядов. Обозначается буквами C, q, Кл (Кулон), названо в честь французского учёного и изобретателя Шарля Кулона. В системе СИ является единицей измерения количества заряженных электронов. 1 Кл равен объёму заряженных частиц, протекающих через поперечное сечение проводника в единицу времени. Под единицей времени подразумевается одна секунда. Формула электрического заряда представлена ниже на рисунке.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/risunok-3-768×486..jpg 848w»>

Формула нахождения электрического заряда

Сила электрического тока обозначается буквой А (ампер). Ампер – это единица в физике, характеризующая измерение работы силы, которая затрачивается для перемещения зарядов по проводнику. По своей сути, электрический ток – это упорядоченное движение электронов в проводнике под воздействием электромагнитного поля. Под проводником подразумевается материал или расплав солей (электролит), имеющий небольшую сопротивляемость прохождению электронов. На силу электрического тока влияют две физические величины: напряжение и сопротивление. Они будут рассмотрены ниже. Сила тока всегда прямо пропорциональна по напряжению и обратно пропорциональна по сопротивлению.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/risunok-4-768×552..jpg 800w»>

Формула нахождения силы тока

Как было сказано выше, электрический ток – это упорядоченное движение электронов в проводнике. Но есть один нюанс: для их движения нужно определённое воздействие. Это воздействие создаётся путём создания разности потенциалов. Электрический заряд может быть положительным или отрицательным. Положительные заряды всегда стремятся к отрицательным зарядам. Это необходимо для равновесия системы. Разница между количеством положительно и отрицательно заряжённых частиц называется электрическим напряжением.

Gif?.gif 600w, https://elquanta.ru/wp-content/uploads/2018/03/risunok-5-768×499.gif 768w»>

Формула нахождения напряжения

Мощность – это количество энергии, затрачиваемое на выполнение работы в один Дж (Джоуль) за промежуток времени в одну секунду. Единицей измерения в физике обозначается как Вт (Ватт), в системе СИ W (Watt). Так как рассматривается мощность электрическая, то здесь она является значением затраченной электрической энергии на выполнение определённого действия в промежуток времени.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/risunok-6-120×74..jpg 750w»>

Формула нахождения электрической мощности

В заключение следует отметить, что единица измерения работы является скалярной величиной, имеет взаимосвязь со всеми разделами физики и может рассматриваться со стороны не только электродинамики или теплотехники, но и других разделов. В статье кратко рассмотрено значение, характеризующее единицу измерения работы силы.

Видео

Вы знаете, что такое работа? Вне всякого сомнения. Что такое работа, знает каждый человек, при условии, что он рожден и живет на планете Земля. А что такое механическая работа?

Это понятие тоже известно большинству людей на планете, хотя некоторые отдельные личности и имеют довольно смутное представление об этом процессе. Но речь сейчас не о них. Еще меньшее число людей имеют представление, что такое механическая работа с точки зрения физики. В физике механическая работа — это не труд человека ради пропитания, это физическая величина, которая может быть совершенно никак не связана ни с человеком, ни с другим каким-нибудь живым существом. Как так? Сейчас разберемся.

Механическая работа в физике

Приведем два примера. В первом примере воды реки, столкнувшись с пропастью, шумно падают вниз в виде водопада. Второй пример — это человек, который держит на вытянутых руках тяжелый предмет, например, удерживает надломившуюся крышу над крыльцом дачного домика от падения, пока его жена и дети судорожно ищут, чем ее подпереть. В каком случае совершается механическая работа?

Определение механической работы

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A — работа,
F — сила,
s — пройденный путь.

Так что, несмотря на весь героизм уставшего держателя крыши, проделанная им работа равна нулю, а вот вода, падая под действием силы тяжести с высокого утеса, совершает самую, что ни на есть, механическую работу. То есть, если мы будем толкать тяжелый шкаф безуспешно, то проделанная нами работа с точки зрения физики будет равна нулю, несмотря на то, что мы прикладываем много сил. А вот если мы сдвинем шкаф на некоторое расстояние, то тогда мы проделаем работу, равную произведению приложенной силы на расстояние, на которое мы передвинули тело.

Единица работы — 1 Дж. Это работа, совершенная силой в 1 ньютон, по передвижению тела на расстояние в 1 м. Если направление приложенной силы совпадает с направлением движения тела, то данная сила совершает положительную работу. Пример — это когда мы толкаем какое-либо тело, и оно двигается. А в случае, когда сила приложена в противоположную движению тела сторону, например, сила трения , то данная сила совершает отрицательную работу. Если же приложенная сила никак не влияет на движение тела, то сила, совершаемая этой работой, равна нулю.

  • III. Задания для самостоятельной работы по изучаемой теме.
  • III. Задания для самостоятельной работы по изучаемой теме.
  • III. Задания для самостоятельной работы по изучаемой теме.
  • Работа всех сил, действующих на частицу, идёт на приращение кинетической энергии частицы:

    A 12 = T 2 — T 1

    В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести. В результате, концентрация молекул газа оказывается зависящей от высоты в соответствии с закономраспределения Больцмана :

    n = n 0 exp(-mgh / kT )

    где n — концентрация молекул на высоте h , n 0 — концентрация молекул на начальном уровне h = 0, m — масса частиц, g — ускорение свободного падения, k — постоянная Больцмана, T — температура.

    В физике консервати́вные си́лы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует следующее определение: консервативные силы — такие силы, работа по любой замкнутой траектории которых равна 0.

    Потенциальная энергия — работа, которую необходимо совершить, чтобы перенести тело из некой точки отсчёта в данную точку в поле консервативных сил.

    Потенциальная энергия отсчитывается от некой точки пространства, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной точки называется нормировкой потенциальной энергии . Понятно также, что корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тел, но не от пути их перемещения. Такие силы называются консервативными.

    К примеру, потенциальная энергия тела вблизи поверхности Земли рассчитывается по формуле , где m — масса тела, g — величина ускорения свободного падения, h — высота, за ноль принимается поверхность Земли.

    степень свободы — минимальное число переменных, описывающих перемещение молекулы в пространстве.

    Теорема:

    Если система молекул находится в равновесии при температуре Т, то Wk движения молекул распределится равномерно по степеням свободы, причем каждая ст. свободы обладает энергией 1\2kT.

    Теплово́е движе́ние — процесс хаотического (беспорядочного) движения частиц, образующих вещество. Чаще всего рассматривается тепловое движение атомов и молекул.

    Закон сохранения механической энергии — механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии диссипативных сил (например, сил трения) механическая энергия не возникает из ничего и не может никуда исчезнуть.

    Силы трения скольжения — силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим . В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.

    Распределение Ма́ксвелла — распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и диффузию. Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

    Закон сохранения энергии — основной закон природы, заключающийся в том, что энергия изолированной (замкнутой) системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в классической механике закон проявляется в ]] закон сохранения энергии называется первым началом термодинамики и говорит

    Вероятность

    Функция статистического распределения (функция распределения в статистической физике) — одно из основополагающих понятий статистической физики. Знание функции распределения полностью определяет вероятностные свойства рассматриваемой системы.

    Механическое состояние любой системы однозначно определяется координатами q i и импульсами p i ее частиц (i=1,2,…, d ; d — число степеней свободы системы). Набор величин и образуют фазовое пространство. Вероятность нахождения системы в элементе фазового пространства (с точкой q , p внутри) дается формулой:

    Функцию называют полной функцией статистического распределения (или просто функцией распределения). Фактически она представляет из себя плотность изображающих точек в фазовом пространстве.

    Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, т. е. её отклонения от математического ожидания. Обозначается D [X ] в русской литературе и (англ. variance ) в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии называется среднеквадрати́чным отклоне́нием, станда́ртным отклоне́нием или стандартным разбросом.

    Пусть — случайная величина, определённая на некотором вероятностном пространстве. Тогда

    где символ M обозначает математическое ожидание.

    В классической механике, гармонический осциллятор — это система, которая при смещении из положения равновесия испытывает действие возвращающей силы F , пропорциональной смещению x (согласно закону Гука):

    где k — положительная константа, описывающая жёсткость системы.

    Если F — единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором . Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

    Если имеется ещё и сила трения (затухание), пропорциональная скорости движения (вязкое трение), то такую систему называют затухающим или диссипативным осциллятором . Если трение не слишком велико, то система совершает почти периодическое движение — синусоидальные колебания с постоянной частотой и экспоненциально убывающей амплитудой. Частота свободных колебаний затухающего осциллятора оказывается несколько ниже, чем у аналогичного осциллятора без трения.

    Если осциллятор предоставлен сам себе, то говорят, что он совершает свободные колебания. Если же присутствует внешняя сила (зависящая от времени), то говорят, что осциллятор испытывает вынужденные колебания.

    Случа́йное собы́тие — подмножество исходов случайного эксперимента ; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности.

    Случайное событие, которое никогда не реализуется в результате случайного эксперимента, называется невозможным и обозначается символом . Случайное событие, которое всегда реализуется в результате случайного эксперимента, называется достоверным и обозначается символом Ω.

    Вероятность (вероятностная мера) — мера достоверности случайного события. Оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента. Согласно определению П. Лапласа мерой вероятности называется дробь, числитель которой есть число всех благоприятных случаев, а знаменатель — число всех возможных случаев.

    В чем измеряется механическая работа? Формулы для работы газа и момента силы. Пример задачи

    Любое перемещение тела в пространстве, которое приводит к изменению его полной энергии, связано с работой. В данной статье рассмотрим, что это за величина, в чем измеряется механическая работа, и как она обозначается, а также решим интересную задачу по этой теме.

    Работа как физическая величина

    Перед тем как ответить на вопрос, в чем измеряется механическая работа, познакомимся с этой величиной. Согласно определению, работа представляет собой скалярное произведение силы на вектор перемещения тела, который эта сила вызвала. Математически можно записать следующее равенство:

    A = (F¯*S¯).

    Круглые скобки указывают на скалярное произведение. Учитывая его свойства, в явном виде эта формула перепишется так:

    A = F*S*cos(α).

    Где α является углом между векторами силы и перемещения.

    Из записанных выражений следует, что работа измеряется в Ньютонах на метр (Н*м). Как известно, эта величина называется джоулем (Дж). То есть в физике работа механическая в единицах работы Джоулях измеряется. Одному Джоулю соответствует такая работа, при которой сила в один Ньютон, действуя параллельно перемещению тела, приводит к изменению его положения в пространстве на один метр.

    Что касается обозначения механической работы в физике, то следует отметить, что для этого чаще всего пользуются буквой A (от нем. ardeit — труд, работа). В англоязычной литературе можно встретить обозначение этой величины латинской буквой W. В русскоязычной литературе эта буква зарезервирована для обозначения мощности.

    Работа и энергия

    Разбирая вопрос, в чем измеряется механическая работа, мы увидели, что ее единицы совпадают с таковыми для энергии. Это совпадение не является случайным. Дело в том, что рассматриваемая физическая величина является одним из способов проявления энергии в природе. Любое перемещение тел в силовых полях или в их отсутствии требует энергетических затрат. Последние идут на изменение кинетической и потенциальной энергии тел. Процесс этого изменения характеризуется выполняемой работой.

    Энергия является фундаментальной характеристикой тел. Она сохраняется в изолированных системах, она может преобразовываться в механическую, химическую, тепловую, электрическую и другие формы. Работа же является лишь механическим проявлением энергетических процессов.

    Работа в газах

    Записанное выше выражение для работы является базовым. Тем не менее, для решения практических задач из разных областей физики эта формула может быть непригодна, поэтому пользуются другими выражениями, полученными на ее основе. Одним из таких случаев является совершаемая газом работа. Ее удобно рассчитывать по следующей формуле:

    A = ∫V(P*dV).

    Здесь P — это давление в газе, V — его объем. Зная, в чем измеряется механическая работа, легко доказать справедливость интегрального выражения, действительно:

    Па*м3 = Н/м23 = Н*м = Дж.

    В общем случае давление — это функция объема, поэтому подынтегральное выражение может принимать произвольный вид. В случае изобарного процесса расширение или сжатие газа происходит при постоянном давлении. В этом случае работа газа равна простому произведению величины P на изменение его объема.

    Работа при вращении тела вокруг оси

    Движение вращения широко распространено в природе и в технике. Характеризуется оно понятиями моментов (силы, импульса и инерции). Чтобы определить работу внешних сил, которые заставили тело или систему вращаться вокруг некоторой оси, необходимо сначала рассчитать момент силы. Вычисляется он так:

    M = F*d.

    Где d — это расстояние от вектора силы до оси вращения, оно называется плечом. Крутящий момент M, который привел к повороту системы на угол θ вокруг некоторой оси, совершает следующую работу:

    A = M*θ.

    Здесь M выражается в Н*м, а угол θ в радианах.

    Задача по физике на механическую работу

    Как было сказано в статье, работа всегда совершается той или иной силой. Рассмотрим следующую интересную задачу.

    Тело находится на плоскости, которая наклонена к горизонту под углом 25o. Соскальзывая вниз, тело приобрело некоторую кинетическую энергию. Необходимо рассчитать эту энергию, а также работу силы тяжести. Масса тела равна 1 кг, пройденный им по плоскости путь равен 2 метра. Сопротивлением трения скольжения можно пренебречь.

    Выше было показано, что работу совершает только та часть силы, которая направлена вдоль перемещения. Нетрудно показать, что в данном случае вдоль перемещения будет действовать следующая часть силы тяжести:

    F = m*g*sin(α).

    Здесь α — угол наклона плоскости. Тогда работа вычисляется так:

    A = m*g*sin(α)*S = 1*9,81*0,4226*2 = 8,29 Дж.

    То есть сила тяжести совершает положительную работу.

    Теперь определим кинетическую энергию тела в конце спуска. Для этого вспомним второй ньютоновский закон и рассчитаем ускорение:

    a = F/m = g*sin(α).

    Поскольку соскальзывание тела является равноускоренным, то мы вправе воспользоваться соответствующей кинематической формулой для определения времени движения:

    S = a*t2/2 =>

    t = √(2*S/a) = √(2*S/(g*sin(α))).

    Скорость тела в конце спуска рассчитывается так:

    v = a*t = g*sin(α)*√(2*S/(g*sin(α))) = √(2*S*g*sin(α)).

    Кинетическая энергия поступательного движения определяется с помощью следующего выражения:

    E = m*v2/2 = m*2*S*g*sin(α)/2 = m*S*g*sin(α).

    Мы получили интересный результат: оказывается, формула для кинетической энергии точно совпадает с выражением для работы силы тяжести, которое было получено ранее. Это свидетельствует о том, что вся механическая работа силы F направлена на увеличение кинетической энергии скользящего тела. В действительности из-за сил трения работа A всегда оказывается больше энергии E.

    В каких единицах измеряется механическая работа. Механическая работа. Что называют работой тока

    Механическая работа. Единицы работы.

    В обыденной жизни под понятием «работа» мы понимаем всё.

    В физике понятие работа несколько иное. Это определенная физическая величина, а значит, ее можно измерить. В физике изучается прежде всего механическая работа .

    Рассмотрим примеры механической работы.

    Поезд движется под действием силы тяги электровоза, при этом совершается механическая работа. При выстреле из ружья сила давления пороховых газов совершает работу — перемещает пулю вдоль ствола, скорость пули при этом увеличивается.

    Из этих примеров видно, что механическая работа совершается, когда тело движется под действием силы. Механическая работа совершается и в том случае, когда сила, действуя на тело (например, сила трения), уменьшает скорость его движения.

    Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции), в этом случае механическая работа также не совершается.

    Итак, механическая работа совершается, только когда на тело действует сила, и оно движется .

    Нетрудно понять, что чем большая сила действует на тело и чем длиннее путь, который проходит тело под действием этой силы, тем большая совершается работа.

    Механическая работа прямо пропорциональна приложенной силе и прямо пропорциональна пройденному пути .

    Поэтому, условились измерять механическую работу произведением силы на путь, пройденный по этому направлению этой силы:

    работа = сила × путь

    где А — работа, F — сила и s — пройденный путь.

    За единицу работы принимается работа, совершаемая силой в 1Н, на пути, равном 1 м.

    Единица работы — джоуль (Дж ) названа в честь английского ученого Джоуля. Таким образом,

    1 Дж = 1Н · м.

    Используется также килоджоули (кДж ) .

    1 кДж = 1000 Дж.

    Формула А = Fs применима в том случае, когда сила F постоянна и совпадает с направлением движения тела.

    Если направление силы совпадает с направлением движения тела, то данная сила совершает положительную работу.

    Если же движение тела происходит в направлении, противоположном направлению приложенной силы, например, силы трения скольжения, то данная сила совершает отрицательную работу.

    Если направление силы, действующей на тело, перпендикулярно направлению движения, то эта сила работы не совершает, работа равна нулю:

    В дальнейшем, говоря о механической работе, мы будем кратко называть ее одним словом — работа.

    Пример . Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м 3 .

    Дано :

    ρ = 2500 кг/м 3

    Решение :

    где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.

    Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг.

    F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н.

    A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.

    Ответ : А =245 кДж.

    Рычаги.Мощность.Энергия

    На совершение одной и той же работы различным двигателям требуется разное время. Например, подъемный кран на стройке за несколько минут поднимает на верхний этаж здания сотни кирпичей. Если бы эти кирпичи перетаскивал рабочий, то ему для этого потребовалось бы несколько часов. Другой пример. Гектар земли лошадь может вспахать за 10-12 ч, трактор же с многолемешным плугом (лемех — часть плуга, подрезающая пласт земли снизу и передающая его на отвал; многолемешный — много лемехов), эту работу выполнит на 40-50 мин.

    Ясно, что подъемный кран ту же работу совершает быстрее, чем рабочий, а трактор — быстрее чем лошадь. Быстроту выполнения работы характеризуют особой величиной, называемой мощностью.

    Мощность равна отношению работы ко времени, за которое она была совершена.

    Чтобы вычислить мощность, надо работу разделить на время, в течение которого совершена эта работа. мощность = работа/время.

    где N — мощность, A — работа, t — время выполненной работы.

    Мощность — величина постоянная, когда за каждую секунду совершается одинаковая работа, в других случаях отношение A/t определяет среднюю мощность:

    N ср = A/t . За единицу мощности приняли такую мощность, при которой в 1 с совершается работа в Дж.

    Эта единица называется ваттом (Вт ) в честь еще одного английского ученого Уатта.

    1 ватт = 1 джоуль/ 1 секунда , или 1 Вт = 1 Дж/с.

    Ватт (джоуль в секунду) — Вт (1 Дж/с).

    В технике широко используется более крупные единицы мощности — киловатт (кВт ), мегаватт (МВт ) .

    1 МВт = 1 000 000 Вт

    1 кВт = 1000 Вт

    1 мВт = 0,001 Вт

    1 Вт = 0,000001 МВт

    1 Вт = 0,001 кВт

    1 Вт = 1000 мВт

    Пример . Найти мощность потока воды, протекающей через плотину, если высота падения воды 25 м, а расход ее — 120 м3 в минуту.

    Дано :

    ρ = 1000 кг/м3

    Решение :

    Масса падающей воды: m = ρV ,

    m = 1000 кг/м3 · 120 м3 = 120 000 кг (12 · 104 кг).

    Сила тяжести, действующая на воду:

    F = 9.8 м/с2 · 120 000 кг ≈ 1 200 000 Н (12 · 105 Н)

    Работа, совершаемая потоком в минуту:

    А — 1 200 000 Н · 25 м = 30 000 000 Дж (3 · 107 Дж).

    Мощность потока: N = A/t,

    N = 30 000 000 Дж / 60 с = 500 000 Вт = 0,5 МВт.

    Ответ : N = 0.5 МВт.

    Различные двигатели имеют мощности от сотых и десятых долей киловатта (двигатель электрической бритвы, швейной машины) до сотен тысяч киловатт (водяные и паровые турбины).

    Таблица 5.

    Мощность некоторых двигателей, кВт.

    На каждом двигателе имеется табличка (паспорт двигателя), на которой указаны некоторые данные о двигателе, в том числе и его мощность.

    Мощность человека при нормальный условиях работы в среднем равна 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и еще бóльшую.

    Из формулы N = A/t следует, что

    Чтобы вычислить работу, необходимо мощность умножить на время, в течение которого совершалась эта работа.

    Пример. Двигатель комнатного вентилятора имеет мощность 35 Вт. Какую работу он совершает за 10 мин?

    Запишем условие задачи и решим ее.

    Дано :

    Решение :

    A = 35 Вт * 600с = 21 000 Вт* с = 21 000 Дж = 21 кДж.

    Ответ A = 21 кДж.

    Простые механизмы.

    С незапамятных времен человек использует для совершения механической работы различные приспособления.

    Каждому известно, что тяжелый предмет (камень, шкаф, станок), который невозможно сдвинуть руками, можно сдвинуть с помощью достаточно длинной палки — рычага.

    На данный момент считается, что с помощью рычагов три тысячи лет назад при строительстве пирамид в Древнем Египте передвигали и поднимали на большую высоту тяжелые каменные плиты.

    Во многих случаях, вместо того, чтобы поднимать тяжелый груз на некоторую высоту, его можно вкатывать или втаскивать на ту же высоту по наклонной плоскости или поднимать с помощью блоков.

    Приспособления, служащие для преобразования силы, называются механизмами .

    К простым механизмам относятся: рычаги и его разновидности — блок, ворот; наклонная плоскость и ее разновидности — клин, винт . В большинстве случаев простые механизмы применяют для того, чтобы получить выигрыш в силе, т. е. увеличить силу, действующую на тело, в несколько раз.

    Простые механизмы имеются и в бытовых, и во всех сложных заводских и фабричных машинах, которые режут, скручивают и штампуют большие листы стали или вытягивают тончайшие нити, из которых делаются потом ткани. Эти же механизмы можно обнаружить и в современных сложных автоматах, печатных и счетных машинах.

    Рычаг. Равновесие сил на рычаге.

    Рассмотрим самый простой и распространенный механизм — рычаг.

    Рычаг представляет собой твердое тело, которое может вращаться вокруг неподвижной опоры.

    На рисунках показано, как рабочий для поднятия груза в качестве рычага, использует лом. В первом случае рабочий с силой F нажимает на конец лома B , во втором — приподнимает конец B .

    Рабочему нужно преодолеть вес груза P — силу, направленную вертикально вниз. Он поворачивает для этого лом вокруг оси, проходящей через единственную неподвижную точку лома — точку его опоры О . Сила F , с которой рабочий действует на рычаг, меньше силы P , таким образом, рабочий получает выигрыш в силе . При помощи рычага можно поднять такой тяжелый груз, который своими силами поднять нельзя.

    На рисунке изображен рычаг, ось вращения которого О (точка опоры) расположена между точками приложения сил А и В . На другом рисунке показана схема этого рычага. Обе силы F 1 и F 2, действующие на рычаг, направлены в одну сторону.

    Кратчайшее расстояние между точкой опоры и прямой, вдоль которой действует на рычаг сила, называется плечом силы.

    Чтобы найти плечо силы, надо из точки опоры опустить перпендикуляр на линию действия силы.

    Длина этого перпендикуляра и будет плечом данной силы. На рисунке показано, что ОА — плечо силы F 1; ОВ — плечо силы F 2 . Силы, действующие на рычаг могут повернуть его вокруг оси в двух направлениях: по ходу или против хода часовой стрелки. Так, сила F 1 вращает рычаг по ходу часовой стрелки, а сила F 2 вращает его против часовой стрелки.

    Условие, при котором рычаг находится в равновесии под действием приложенных к нему сил, можно установить на опыте. При этом надо помнить, что результат действия силы, зависит не только от ее числового значения (модуля), но и от того, в какой точке она приложена к телу, или как направлена.

    К рычагу (см рис.) по обе стороны от точки опоры подвешиваются различные грузы так, что каждый раз рычаг оставался в равновесии. Действующие на рычаг силы, равны весам этих грузов. Для каждого случая измеряются модули сил и их плечи. Из опыта изображенного на рисунке 154, видно, что сила 2 Н уравновешивает силу 4 Н . При этом, как видно из рисунка, плечо меньшей силы в 2 раза больше плеча большей силой.

    На основании таких опытов было установлено условие (правило) равновесия рычага.

    Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

    Это правило можно записать в виде формулы:

    F 1/F 2 = l2/ l1 ,

    где F 1 и F2 — силы, действующие на рычаг, l 1 и l2 , — плечи этих сил (см. рис.).

    Правило равновесия рычага было установлено Архимедом около 287 — 212 гг. до н. э. (но ведь в прошлом параграфе говорилось, что рычаги использовались египтянами? Или тут важную роль играет слово «установлено»?)

    Из этого правила следует, что меньшей силой можно уравновесить при помощи рычага бóльшую силу. Пусть одно плечо рычага в 3 раза больше другого (см рис.). Тогда, прикладывая в точке В силу, например, в 400 Н, можно поднять камень весом 1200 Н. Что0бы поднять еще более тяжелый груз, нужно увеличить длину плеча рычага, на которое действует рабочий.

    Пример . С помощью рычага рабочий поднимает плиту массой 240 кг (см рис. 149). Какую силу прикладывает он к большему плечу рычага, равному 2,4 м, если меньшее плечо равно 0,6 м?

    Запишем условие задачи, и решим ее.

    Дано :

    Решение :

    По правилу равновесия рычага F1/F2 = l2/l1, откуда F1 = F2 l2/l1, где F2 = Р — вес камня. Вес камня asd = gm, F = 9,8 Н · 240 кг ≈ 2400 Н

    Тогда, F1 = 2400 Н · 0,6/2,4 = 600 Н.

    Ответ : F1 = 600 Н.

    В нашем примере рабочий преодолевает силу 2400 Н, прикладывая к рычагу силу 600 Н. Но при этом плечо, на которое действует рабочий, в 4 раза длиннее того, на которое действует вес камня (l 1 : l2 = 2,4 м: 0,6 м = 4).

    Применяя правило рычага, можно меньшей силой уравновесить бóльшую силу. При этом плечо меньшей силы должно быть длиннее плеча большей силы.

    Момент силы.

    Вам уже известно правило равновесия рычага:

    F 1 / F2 = l 2 / l1 ,

    Пользуясь свойством пропорции (произведение ее крайних членов, равно произведению ее средних членов), запишем его в таком виде:

    F 1l 1 = F2 l2 .

    В левой части равенства стоит произведение силы F 1 на ее плечо l 1, а в правой — произведение силы F 2 на ее плечо l 2 .

    Произведение модуля силы, вращающей тело, на ее плечо называется моментом силы ; он обозначается буквой М. Значит,

    Рычаг находится в равновесии под действием двух сил, если момент силы, вращающий его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки.

    Это правило, называемое правилом моментов , можно записать в виде формулы:

    М1 = М2

    Действительно, в рассмотренном нами опыте, (§ 56) действующие силы были равны 2 Н и 4 Н, их плечи соответственно составляли 4 и 2 давления рычага, т. е. моменты этих сил одинаковы при равновесии рычага.

    Момент силы, как и всякая физическая величина, может быть измерена. За единицу момента силы принимается момент силы в 1 Н, плечо которой ровно 1 м.

    Эта единица называется ньютон-метр (Н · м ).

    Момент силы характеризует действие силы, и показывает, что оно зависит одновременно и от модуля силы, и от ее плеча. Действительно, мы уже знаем, например, что действие силы на дверь зависит и от модуля силы, и от того, где приложена сила. Дверь тем легче повернуть, чем дальше от оси вращения приложена действующая на нее сила. Гайку, лучше отвернуть длинным гаечным ключом, чем коротким. Ведро тем легче поднять из колодца, чем длиннее ручка вóрота, и т. д.

    Рычаги в технике, быту и природе.

    Правило рычага (или правило моментов) лежит в основе действия различного рода инструментов и устройств, применяемых в технике и быту там, где требуется выигрыш в силе или в пути.

    Выигрыш в силе мы имеем при работе с ножницами. Ножницы это рычаг (рис), ось вращения которого, происходит через винт, соединяющий обе половины ножниц. Действующей силой F 1 является мускульная сила руки человека, сжимающего ножницы. Противодействующей силой F 2 — сила сопротивления такого материала, который режут ножницами. В зависимости от назначения ножниц их устройство бывает различным. Конторские ножницы, предназначенные для резки бумаги, имеют длинные лезвия и почти такой же длины ручки. Для резки бумаги не требуется большой силы, а длинным лезвием удобнее резать по прямой линии. Ножницы для резки листового металла (рис.) имеют ручки гораздо длиннее лезвий, так как сила сопротивления металла велика и для ее уравновешивания плечо действующей силы приходится значительно увеличивать. Еще больше разница между длиной ручек и расстоянии режущей части и оси вращения в кусачках (рис.), предназначенных для перекусывания проволоки.

    Рычаги различного вида имеются у многих машин. Ручка швейной машины, педали или ручной тормоз велосипеда, педали автомобиля и трактора, клавиши пианино — все это примеры рычагов, используемых в данных машинах и инструментах.

    Примеры применения рычагов — это рукоятки тисков и верстаков, рычаг сверлильного станка и т. д.

    На принципе рычага основано действие и рычажных весов (рис. ). Учебные весы, изображенные на рисунке 48 (с. 42), действуют как равноплечий рычаг . В десятичных весах плечо, к которому подвешена чашка с гирями, в 10 раз длиннее плеча, несущего груз. Это значительно упрощает взвешивание больших грузов. Взвешивая груз на десятичных весах, следует умножить массу гирь на 10.

    Устройство весов для взвешивания грузовых вагонов автомобилей также основано на правиле рычага.

    Рычаги встречаются также в разных частях тела животных и человека. Это, например, руки, ноги, челюсти. Много рычагов можно найти в теле насекомых (прочитав книгу про насекомых и строение их тела), птиц, в строении растений.

    Применение закона равновесия рычага к блоку.

    Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускается веревка, трос или цепь.

    Неподвижным блоком называется такой блок, ось которого закреплена, и при подъеме грузов не поднимается и не опускается (рис).

    Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи сил равны радиусу колеса (рис): ОА = ОВ = r . Такой блок не дает выигрыша в силе. (F 1 = F 2), но позволяет менять направление действие силы. Подвижный блок — это блок. ось которого поднимается и опускается вместе с грузом (рис.). На рисунке показан соответствующий ему рычаг: О — точка опоры рычага, ОА — плечо силы Р и ОВ — плечо силы F . Так как плечо ОВ в 2 раза больше плеча ОА , то сила F в 2 раза меньше силы Р :

    F = P/2 .

    Таким образом, подвижный блок дает выигрыш в силе в 2 раза .

    Это можно доказать и пользуясь понятием момента силы. При равновесии блока моменты сил F и Р равны друг другу. Но плечо силы F в 2 раза больше плеча силы Р , а, значит, сама сила F в 2 раза меньше силы Р .

    Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис.). Неподвижный блок применяется только для удобства. Он не дает выигрыша в силе, но изменяет направление действия силы. Например, позволяет поднимать груз, стоя на земле. Это пригождается многим людям или рабочим. Тем не менее, он даёт выигрыш в силе в 2 раза больше обычного!

    Равенство работ при использовании простых механизмов. «Золотое правило» механики.

    Рассмотренные нами простые механизмы применяются при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.

    Естественно, возникает вопрос: давая выигрыш в силе или пути, не дают ли простые механизмы выигрыша в работе? Ответ на поставленный вопрос можно получить из опыта.

    Уравновесив на рычаге две какие-нибудь разные по модулю силы F 1 и F 2 (рис.), приводим рычаг в движение. При этом оказывается, что за одно и то же время точка приложения меньшей силы F 2 проходит больший путь s 2 , а точка приложения большей силы F 1 — меньший путь s 1. Измерив эти пути и модули сил, находим, что пути, пройденные точками приложения сил на рычаге, обратно пропорциональны силам:

    s 1 / s 2 = F 2 / F 1.

    Таким образом, действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути.

    Произведение силы F на путь s есть работа. Наши опыты показывают, что работы, совершаемые силами, приложенными к рычагу, равны друг другу:

    F 1 s 1 = F 2 s 2, т. е. А 1 = А 2.

    Итак, при использовании рычага выигрыша в работе не получится.

    Пользуясь рычагом, мы можем выиграть или в силе, или в расстоянии. Действуя же силой на короткое плечо рычага, мы выигрываем в расстоянии, но во столько же раз проигрываем в силе.

    Существует легенда, что Архимед, восхищенный открытием правила рычага, воскликнул: «Дайте мне точку опоры, и я переверну Землю!».

    Конечно, Архимед не мог бы справиться с такой задачей, если бы даже ему и дали бы точку опоры (которая должна была бы быть вне Земли) и рычаг нужной длины.

    Для подъема земли всего на 1 см длинное плечо рычага должно было бы описать дугу огромной длины. Для перемещения длинного конца рычага по этому пути, например, со скоростью 1 м/с, потребовались бы миллионы лет!

    Не дает выигрыша в работе и неподвижный блок, в чем легко убедиться на опыте (см. рис.). Пути, проходимые точками приложения сил F и F , одинаковы, одинаковы и силы, а значит, одинаковы и работы.

    Можно измерить и сравнить между собой работы, совершаемые с помощью подвижного блока. Чтобы при помощи подвижного блока поднять груз на высоту h, необходимо конец веревки, к которому прикреплен динамометр, как показывает опыт (рис.), переместить на высоту 2h.

    Таким образом, получая выигрыш в силе в 2 раза, проигрывают в 2 раза в пути, следовательно, и подвижный блок, на дает выигрыша в работе.

    Многовековая практика показала, что ни один из механизмов не дает выигрыш в работе. Применяют же различные механизмы для того, чтобы в зависимости от условий работы выиграть в силе или в пути.

    Уже древним ученым было известно правило, применимое ко всем механизмом: во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии. Это правило назвали «золотым правилом» механики.

    Коэффициент полезного действия механизма.

    Рассматривая устройство и действие рычага, мы не учитывали трение, а также вес рычага. в этих идеальных условиях работа, совершенная приложенной силой (эту работу мы будем называть полной ), равна полезной работе по подъему грузов или преодоления какого — либо сопротивления.

    На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы.

    Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей. Так, применяя подвижный блок, приходится дополнительно совершать работу по подъему самого блока, веревки и по определению силы трения в оси блока.

    Какой мы механизм мы не взяли, полезная работа, совершенная с его помощью, всегда составляет лишь часть полной работы. Значит, обозначив полезную работу буквой Ап, полную(затраченную) работу буквой Аз, можно записать:

    Ап

    Отношение полезной работы к полной работе называется коэффициентом полезного действия механизма.

    Сокращенно коэффициент полезного действия обозначается КПД.

    КПД = Ап / Аз.

    КПД обычно выражается в процентах и обозначается греческой буквой η, читается он как «эта»:

    η = Ап / Аз · 100%.

    Пример : На коротком плече рычага подвешен груз массой 100 кг. Для его подъема к длинному плечу приложена сила 250 Н. Груз подняли на высоту h2 = 0,08 м, при этом точка приложения движущей силы опустилась на высоту h3 = 0,4 м. Найти КПД рычага.

    Запишем условие задачи и решим ее.

    Дано :

    Решение :

    η = Ап / Аз · 100%.

    Полная (затраченная) работа Аз = Fh3.

    Полезная работа Ап = Рh2

    Р = 9,8 · 100 кг ≈ 1000 Н.

    Ап = 1000 Н · 0,08 = 80 Дж.

    Аз = 250 Н · 0,4 м = 100 Дж.

    η = 80 Дж/100 Дж · 100% = 80%.

    Ответ : η = 80%.

    Но «золотое правило» выполняется и в этом случае. Часть полезной работы — 20% ее-расходуется на преодоление трения в оси рычага и сопротивления воздуха, а также на движение самого рычага.

    КПД любого механизма всегда меньше 100%. Конструируя механизмы, люди стремятся увеличить их КПД. Для этого уменьшаются трение в осях механизмов и их вес.

    Энергия.

    На заводах и фабриках, станки и машины приводятся в движения с помощью электродвигателей, которые расходуют при этом электрическую энергию (отсюда и название).

    Сжатая пружина (рис), распрямляясь, совершить работу, поднять на высоту груз, или заставить двигаться тележку.

    Поднятый над землей неподвижный груз не совершает работы, но если этот груз упадет, он может совершить работу (например, может забить в землю сваю).

    Способностью совершить работу обладает и всякое движущееся тело. Так, скатившийся с наклонной плоскости стальной шарик А (рис), ударившись о деревянный брусок В, передвигает его на некоторое расстояние. При этом совершается работа.

    Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, говорится, что они обладают энергией.

    Энергия — физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергия выражается в системе СИ в тех же единицах, что и работу, т. е. в джоулях .

    Чем большую работу может совершить тело, тем большей энергией оно обладает.

    При совершении работы энергия тел изменяется. Совершенная работа равна изменению энергии.

    Потенциальная и кинетическая энергия.

    Потенциальной (от лат. потенция — возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел и частей одного и того же тела.

    Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия зависит от взаимного положения его и Земли. и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Е п, поскольку Е = А , а работа, как мы знаем, равна произведению силы на путь, то

    А = Fh ,

    где F — сила тяжести.

    Значит, и потенциальная энергия Еп равна:

    Е = Fh, или Е = gmh,

    где g — ускорение свободного падения, m — масса тела, h — высота, на которую поднято тело.

    Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.

    Потенциальную энергию молота копра (рис.) используют в строительстве для совершению работы по забиванию свай.

    Открывая дверь с пружиной, совершается работа по растяжению (или сжатию) пружины. За счет приобретенной энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.

    Энергию сжатых и раскрученных пружин используют, например, в ручных часах, разнообразных заводных игрушках и пр.

    Потенциальной энергией обладает всякое упругое деформированное тело. Потенциальную энергию сжатого газа используют в работе тепловых двигателей, в отбойных молотках, которые широко применяют в горной промышленности, при строительстве дорог, выемке твердого грунта и т. д.

    Энергия, которой обладает тело вследствие своего движения, называется кинетической (от греч. кинема — движение) энергией.

    Кинетическая энергия тела обозначается буквой Е к.

    Движущаяся вода, приводя во вращение турбины гидроэлектростанций, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух — ветер.

    От чего зависит кинетическая энергия? Обратимся к опыту (см. рис.). Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он продвигает брусок, т.2 /2,

    где m — масса тела, v — скорость движения тела.

    Кинетическую энергию тел используют в технике. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединенную с генератором электрического тока. За счет кинетической энергии воды вырабатывается электрическая энергия.

    Энергия движущейся воды имеет большое значение в народном хозяйстве. Эту энергию используют с помощью мощных гидроэлектростанций.

    Энергия падающей воды является экологически чистым источником энергии в отличие от энергии топлива.

    Все тела в природе относительно условного нулевого значения обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.

    Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.

    Превращение одного вида механической энергии в другой.

    Явление превращения одного вида механической энергии в другой очень удобно наблюдать на приборе, изображенном на рисунке. Накручивая на ось нить, поднимают диск прибора. Диск, поднятый вверх, обладает некоторой потенциальной энергией. Если его отпустить, то он, вращаясь, начнет падать. По мере падения потенциальная энергия диска уменьшается, но вместе с тем возрастает его кинетическая энергия. В конце падения диск обладает таким запасом кинетической энергии, что может опять подняться почти до прежней высоты. (Часть энергии расходуется на работу против силы трения, поэтому диск не достигает первоначальной высоты.) Поднявшись вверх, диск снова падает, а затем снова поднимается. В этом опыте при движении диска вниз его потенциальная энергия превращается в кинетическую, а при движении вверх кинетическая превращается в потенциальную.

    Превращение энергии из одного вида в другой происходит также при ударе двух каких-нибудь упругих тел, например резинового мяча о пол или стального шарика о стальную плиту.

    Если поднять над стальной плитой стальной шарик (рис) и выпустить его из рук, он будет падать. По мере падения шарика его потенциальная энергия убывает, а кинетическая растет, так как увеличивается скорость движения шарика. При ударе шарика о плиту произойдет сжатие как шарика, так и плиты. Кинетическая энергия, которой шарик обладал, превратится в потенциальную энергию сжатой плиты и сжатого шарика. Затем благодаря действию упругих сил плита и шарик, примут свою первоначальную форму. Шарик отскочит от плиты, а их потенциальная энергия вновь превратится в кинетическую энергию шарика: шарик отскочит вверх со скоростью, почти равной скорости, которой обладал в момент удара о плиту. При подъеме вверх скорость шарика, а значит, и его кинетическая энергия уменьшаются, потенциальная энергия увеличивается. отскочив от плиты, шарик поднимается почти до той же высоты, с которой начал падать. В верхней точке подъема вся его кинетическая энергия вновь превратится в потенциальную.

    Явления природы обычно сопровождается превращением одного вида энергии в другой.

    Энергия может и передаваться от одного тела к другому. Так, например, при стрельбе из лука потенциальная энергия натянутой тетивы переходит в кинетическую энергию летящей стрелы.

    С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев.

    Если сила направлена так же, как перемещение тела, то работа силы


    В этом случае работа силы положительна.

    Если сила направлена противоположно перемещению тела, то работа силы

    В этом случае работа силы отрицательна.

    Если сила f_vec направлена перпендикулярно перемещению s_vec тела, то работа силы равна нулю:

    Работа – скалярная величина. Единицу работы называют джоуль (обозначают: Дж) в честь английского ученого Джеймса Джоуля, сыгравшего важную роль в открытии закона сохранения энергии. Из формулы (1) следует:

    1 Дж = 1 Н * м.

    1. Брусок массой 0,5 кг переместили по столу на 2 м, прикладывая к нему силу упругости, равную 4 Н (рис. 28.1). Коэффициент трения между бруском и столом равен 0,2. Чему равна работа действующей на брусок:
    а) силы тяжести m?
    б) силы нормальной реакции ?
    в) силы упругости ?
    г) силы трения скольжения тр?


    Суммарную работу нескольких сил, действующих на тело, можно найти двумя способами:
    1. Найти работу каждой силы и сложить эти работы с учетом знаков.
    2. Найти равнодействующую всех приложенных к телу сил и вычислить работу равнодействующей.

    Оба способа приводят к одному и тому же результату. Чтобы убедиться в этом, вернитесь к предыдущему заданию и ответьте на вопросы задания 2.

    2. Чему равна:
    а) сумма работ всех действующих на брусок сил?
    б) равнодействующая всех действующих на брусок сил?
    в) работа равнодействующей? В общем случае (когда сила f_vec направлена под произвольным углом к перемещению s_vec) определение работы силы таково.

    Работа A постоянной силы равна произведению модуля силы F на модуль перемещения s и на косинус угла α между направлением силы и направлением перемещения:

    A = Fs cos α (4)

    3. Покажите, что из общего определения работы следуют к выводы, показанные на следующей схеме. Сформулируйте их словесно и запишите в тетрадь.


    4. К находящемуся на столе бруску приложена сила, модуль которой 10 Н. Чему равен угол между этой силой и перемещением бруска, если при перемещении бруска по столу на 60 см эта сила совершила работу: а) 3 Дж; б) –3 Дж; в) –3 Дж; г) –6 Дж? Сделайте пояснительные чертежи.

    2. Работа силы тяжести

    Пусть тело массой m движется вертикально от начальной высоты h н до конечной высоты h к.

    Если тело движется вниз (h н > h к, рис. 28.2, а), направление перемещения совпадает с направлением силы тяжести, поэтому работа силы тяжести положительна. Если же тело движется вверх (h н
    В обоих случаях работа силы тяжести

    A = mg(h н – h к). (5)

    Найдем теперь работу силы тяжести при движении под углом к вертикали.

    5. Небольшой брусок массой m соскользнул вдоль наклонной плоскости длиной s и высотой h (рис. 28.3). Наклонная плоскость составляет угол α с вертикалью.


    а) Чему равен угол между направлением силы тяжести и направлением перемещения бруска? Сделайте пояснительный чертеж.
    б) Выразите работу силы тяжести через m, g, s, α.
    в) Выразите s через h и α.
    г) Выразите работу силы тяжести через m, g, h.
    д) Чему равна работа силы тяжести при движении бруска вдоль всей этой же плоскости вверх?

    Выполнив это задание, вы убедились, что работа силы тяжести выражается формулой (5) и тогда, когда тело движется под углом к вертикали – как вниз, так и вверх.

    Но тогда формула (5) для работы силы тяжести справедлива при движении тела по любой траектории, потому что любую траекторию (рис. 28.4, а) можно представить как совокупность малых «наклонных плоскостей» (рис. 28.4, б).

    Таким образом,
    работа силы тяжести при движении но любой траектории выражается формулой

    A т = mg(h н – h к),

    где h н – начальная высота тела, h к – его конечная высота.
    Работа силы тяжести не зависит от формы траектории.

    Например, работа силы тяжести при перемещении тела из точки A в точку B (рис. 28.5) по траектории 1, 2 или 3 одинакова. Отсюда, в частности, следует, что рибота силы тяжести при перемещении по замкнутой траектории (когда тело возвращается в исходную точку) равна нулю.

    6. Шар массой m, висящий на нити длиной l, отклонили на 90º, держа нить натянутой, и отпустили без толчка.
    а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 28.6)?
    б) Чему равна работа силы упругости нити за то же время?
    в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?


    3. Работа силы упругости

    Когда пружина возвращается в недеформированное состояние, сила упругости совершает всегда положительную работу: ее направление совпадает с направлением перемещения (рис. 28.7).

    Найдем работу силы упругости .
    Модуль этой силы связан с модулем деформации x соотношением (см. § 15)

    Работу такой силы можно найти графически.

    Заметим сначала, что работа постоянной силы численно равна площади прямоугольника под графиком зависимости силы от перемещения (рис. 28.8).

    На рисунке 28.9 изображен график зависимости F(x) для силы упругости. Разобьем мысленно все перемещение тела на столь малые промежутки, чтобы на каждом из них силу можно было считать постоянной.

    Тогда работа на каждом из этих промежутков численно равна площади фигуры под соответствующим участком графика. Вся же работа равна сумме работ на этих участках.

    Следовательно, и в этом случае работа численно равна площади фигуры под графиком зависимости F(x).

    7. Используя рисунок 28.10, докажите, что

    работа силы упругости при возвращении пружины в недеформированное состояние выражается формулой

    A = (kx 2)/2. (7)


    8. Используя график на рисунке 28.11, докажите, что при изменении деформации пружины от x н до x к работа силы упругости выражается формулой

    Из формулы (8) мы видим, что работа силы упругости зависит только от начальной и конечной деформации пружины, Поэтому если тело сначала деформируют, а потом оно возвращается в начальное состояние, то работа силы упругости равна нулю. Напомним, что таким же свойством обладает и работа силы тяжести.

    9. В начальный момент растяжение пружины жесткостью 400 Н/м равно 3 см. Пружину растянули еще на 2 см.
    а) Чему равна конечная деформация пружины?
    б) Чему равна работа силы упругости пружины?

    10. В начальный момент пружина жесткостью 200 Н/м растянута на 2 см, а в конечный момент она сжата на 1 см. Чему равна работа силы упругости пружины?

    4. Работа силы трения

    Пусть тело скользит по неподвижной опоре. Действующая на тело сила трения скольжения направлена всегда противоположно перемещению и, следовательно, работа силы трения скольжения отрицательно при любом направлении перемещения (рис. 28.12).

    Поэтому если сдвинуть брусок вправо, а пегом на такое же расстояние влево, то, хотя он и вернется в начальное положение, суммарная работа силы трения скольжения не будет равна нулю. В этом состоит важнейшее отличие работы силы трения скольжения от работы силы тяжести и силы упругости. Напомним, что работа этих сил при перемещении тела по замкнутой траектории равна нулю.

    11. Брусок массой 1 кг передвигали по столу так, что его траекторией оказался квадрат со стороной 50 см.
    а) Вернулся ли брусок в начальную точку?
    б) Чему равна суммарная работа действовавшей на брусок силы трения? Коэффициент трения между бруском и столом равен 0,3.

    5. Мощность

    Часто важна не только совершаемая работа, но и скорость совершения работы. Она характеризуется мощностью.

    Мощностью P называют отношение совершенной работы A к промежутку времени t, за который эта работа совершена:

    (Иногда мощность в механике обозначают буквой N, а в электродинамике – буквой P. Мы считаем более удобным одинаковое обозначение мощности.)

    Единица мощности – ватт (обозначают: Вт), названная в честь английского изобретателя Джеймса Уатта. Из формулы (9) следует, что

    1 Вт = 1 Дж/c.

    12. Какую мощность развивает человек, равномерно поднимая ведро воды массой 10 кг на высоту 1 м в течение 2 с?

    Часто мощность удобно выражать не через работу и время, а через силу и скорость.

    Рассмотрим случай, когда сила направлена вдоль перемещения. Тогда работа силы A = Fs. Подставляя это выражение в формулу (9) для мощности, получаем:

    P = (Fs)/t = F(s/t) = Fv. (10)

    13. Автомобиль едет по горизонтальной дороге со скоростью 72 км/ч. При этом его двигатель развивает мощность 20 кВт. Чему равна сила сопротивления движению автомобиля?

    Подсказка. Когда автомобиль движется по горизонтальной дороге с постоянной скоростью, сила тяги равна по модулю силе сопротивления движению автомобиля.

    14. Сколько времени потребуется для равномерного подъема бетонного блока массой 4 т на высоту 30 м, если мощность двигателя подъемного крана 20 кВт, а КПД электродвигателя подъемного крана равен 75%?

    Подсказка. КПД электродвигателя равен отношению работы по подъему груза к работе двигателя.

    Дополнительные вопросы и задания

    15. Мяч массой 200 г бросили с балкона высотой 10 и под углом 45º к горизонту. Достигнув в полете максимальной высоты 15 м, мяч упал на землю.
    а) Чему равна работа силы тяжести при подъеме мяча?
    б) Чему равна работа силы тяжести при спуске мяча?
    в) Чему равна работа силы тяжести за все время полета мяча?
    г) Есть ли в условии лишние данные?

    16. Шар массой 0,5 кг подвешен к пружине жесткостью 250 Н/м и находится в равновесии. Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
    а) На какую высоту подняли шар?
    б) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия?
    в) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия?
    г) Чему равна работа равнодействующей всех приложенных к шару сил за время, в течение которого шар движется к положению равновесия?

    17. Санки массой 10 кг съезжают без начальной скорости со снежной горы с углом наклона α = 30º и проезжают некоторое расстояние по горизонтальной поверхности (рис. 28.13). Коэффициент трения между санками и снегом 0,1. Длина основания горы l = 15 м.

    а) Чему равен модуль силы трения при движении санок по горизонтальной поверхности?
    б) Чему равна работа силы трения при движении санок по горизонтальной поверхности на пути 20 м?
    в) Чему равен модуль силы трения при движении санок по горе?
    г) Чему равна работа силы трения при спуске санок?
    д) Чему равна работа силы тяжести при спуске санок?
    е) Чему равна работа равнодействующей сил, действующих на санки, при их спуске с горы?

    18. Автомобиль массой 1 т движется со скоростью 50 км/ч. Двигатель развивает мощность 10 кВт. Расход бензина составляет 8 л на 100 км. Плотность бензина 750 кг/м 3 , а его удельная теплота сгорания 45 МДж/кг. Чему равен КПД двигателя? Есть ли в условии лишние данные?
    Подсказка. КПД теплового двигателя равен отношению совершенной двигателем работы к количеству теплоты, которое выделилось при сгорании топлива.

    Механическая работа это энергетическая характеристика движения физических тел, имеющая скалярный вид. Она равна модулю силы действующей на тело, умноженной на модуль перемещения вызванного этой силой и на косинус угла между ними.

    Формула 1 — Механическая работа.

    F — Сила, действующая на тело.

    s — Перемещение тела.

    cosa — Косинус угла между силой и перемещением.

    Данная формула имеет общий вид. В случае если угол между прикладываемой силой и перемещением равен нулю, то косинус равен 1. Соответственно работа будет равна только произведению силы на перемещение. Проще говоря, если тело движется в направлении приложения силы, то механическая работа равна произведению силы на перемещение.

    Второй частный случай, когда угол между силой, действующей на тело и его перемещением равен 90 градусов. В этом случае косинус 90 градусов равен нулю, соответственно работа будет равна нулю. И действительно, что происходит мы, прикладываем силу в одном направлении, а тело движется перпендикулярно ему. То есть тело движется явно не под действием нашей силы. Таким образом, работа нашей силы по перемещению тела равна нулю.

    Рисунок 1 — Работа сил при перемещении тела.

    В случае если на тело действует больше одной силы, то рассчитывают суммарную силу, действующую на тело. И далее ее подставляют в формулу как единственную силу. Тело под действием силы может перемещаться не только прямолинейно, но и по произвольной траектории. В этом случае работа вычисляется для малого участка перемещения, который можно считать прямолинейным и далее суммируется по всему пути.

    Работа может быть как положительной, так и отрицательной. То есть если перемещение и сила совпадают по направлению, то работа положительна. А если сила приложена в одном направлении, а тело перемещается в другом, то работа будет отрицательна. Примером отрицательной работы может служить работа силы трения. Так как сила трения направлена встречно движению. Представьте себе, тело движется по плоскости. Сила, приложенная к телу, толкает его в определенном направлении. Эта сила совершает положительную работу по перемещению тела. Но при этом сила трения совершает отрицательную работу. Она тормозит перемещение тела и направлена навстречу его движению.

    Рисунок 2 — Сила движения и трения.

    Работа в механике измеряется в Джоулях. Один Джоуль это работа совершаемая силой в один Ньютон при перемещении тела на один метр. Кроме направления движения тела может меняться и величина прилагаемой силы. К примеру, при сжатии пружины, сила прилагаемой к ней будет увеличиваться пропорционально пройденному расстоянию. В этом случае работу вычисляют по формуле.

    Формула 2 — Работа сжатия пружины.

    k — жесткость пружины.

    x — координата перемещения.

    В повседневной жизни часто приходится встречаться с таким понятием как работа. Что это слово означает в физике и как определить работу силы упругости? Ответы на эти вопросы вы узнаете в статье.

    Механическая работа

    Работа — это скалярная алгебраическая величина, которая характеризует связь между силой и перемещением. При совпадении направления этих двух переменных она вычисляется по следующей формуле:

    • F — модуль вектора силы, которая совершает работу;
    • S — модуль вектора перемещения.

    Не всегда сила, которая действует на тело, совершает работу. Например, работа силы тяжести равна нулю, если ее направление перпендикулярно перемещению тела.

    Если вектор силы образует отличный от нуля угол с вектором перемещения, то для определения работы следует воспользоваться другой формулой:

    A=FScosα

    α — угол между векторами силы и перемещения.

    Значит, механическая работа — это произведение проекции силы на направление перемещения и модуля перемещения, или произведение проекции перемещения на направление силы и модуля этой силы.

    Знак механической работы

    В зависимости от направления силы относительно перемещения тела работа A может быть:

    • положительной (0°≤ α
    • отрицательной (90°
    • равной нулю (α=90°).

    Если A>0, то скорость тела увеличивается. Пример — падение яблока с дерева на землю. При A

    Единица измерения работы в СИ (Международной системе единиц) — Джоуль (1Н*1м=Дж). Джоуль — это работа силы, значение которой равно 1 Ньютону, при перемещении тела на 1 метр в направлении действия силы.

    Работа силы упругости

    Работу силы можно определить и графическим способом. Для этого вычисляется площадь криволинейной фигуры под графиком F s (x).

    Так, по графику зависимости силы упругости от удлинения пружины, можно вывести формулу работы силы упругости.

    Она равна:

    A=kx 2 /2

    • k — жесткость;
    • x — абсолютное удлинение.

    Что мы узнали?

    Механическая работа совершается при действии на тело силы, которая приводит к перемещению тела. В зависимости от угла, который возникает между силой и перемещением, работа может быть равна нулю или иметь отрицательный или положительный знак. На примере силы упругости вы узнали о графическом способе определения работы.

    Основные теоретические сведения

    Механическая работа

    Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы . Работой, совершаемой постоянной силой F , называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами силы F и перемещения S :

    Работа является скалярной величиной. Она может быть как положительна (0° ≤ α α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 ньютон на перемещении 1 метр в направлении действия силы.

    Если же сила изменяется с течением времени, то для нахождения работы строят график зависимости силы от перемещения и находят площадь фигуры под графиком – это и есть работа:

    Примером силы, модуль которой зависит от координаты (перемещения), может служить сила упругости пружины, подчиняющаяся закону Гука (F упр = kx ).

    Мощность

    Работа силы, совершаемая в единицу времени, называется мощностью . Мощность P (иногда обозначают буквой N ) – физическая величина, равная отношению работы A к промежутку времени t , в течение которого совершена эта работа:

    По этой формуле рассчитывается средняя мощность , т.е. мощность обобщенно характеризующая процесс. Итак, работу можно выражать и через мощность: A = Pt (если конечно известна мощность и время совершения работы). Единица мощности называется ватт (Вт) или 1 джоуль за 1 секунду. Если движение равномерное, то:

    По этой формуле мы можем рассчитать мгновенную мощность (мощность в данный момент времени), если вместо скорости подставим в формулу значение мгновенной скорости. Как узнать, какую мощность считать? Если в задаче спрашивают мощность в момент времени или в какой-то точке пространства, то считается мгновенная. Если спрашивают про мощность за какой-то промежуток времени или участок пути, то ищите среднюю мощность.

    КПД – коэффициент полезного действия , равен отношению полезной работы к затраченной, либо же полезной мощности к затраченной:

    Какая работа полезная, а какая затраченная определяется из условия конкретной задачи путем логического рассуждения. К примеру, если подъемный кран совершает работу по подъему груза на некоторую высоту, то полезной будет работа по поднятию груза (так как именно ради нее создан кран), а затраченной – работа, совершенная электродвигателем крана.

    Итак, полезная и затраченная мощность не имеют строгого определения, и находятся логическим рассуждением. В каждой задаче мы сами должны определить, что в этой задаче было целью совершения работы (полезная работа или мощность), а что было механизмом или способом совершения всей работы (затраченная мощность или работа).

    В общем случае КПД показывает, как эффективно механизм преобразует один вид энергии в другой. Если мощность со временем изменяется, то работу находят как площадь фигуры под графиком зависимости мощности от времени:

    Кинетическая энергия

    Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела (энергией движения) :

    То есть если автомобиль массой 2000 кг движется со скоростью 10 м/с, то он обладает кинетической энергией равной Е к = 100 кДж и способен совершить работу в 100 кДж. Эта энергия может превратиться в тепловую (при торможении автомобиля нагревается резина колес, дорога и тормозные диски) или может быть потрачена на деформацию автомобиля и тела, с которым автомобиль столкнулся (при аварии). При вычислении кинетической энергии не имеет значения куда движется автомобиль, так как энергия, как и работа, величина скалярная.

    Тело обладает энергией, если способно совершить работу. Например, движущееся тело обладает кинетической энергией, т.е. энергией движения, и способно совершать работу по деформации тел или придания ускорения телам, с которыми произойдёт столкновение.

    Физический смысл кинетической энергии: для того чтобы покоящееся тело массой m стало двигаться со скоростью v необходимо совершить работу равную полученному значению кинетической энергии. Если тело массой m движется со скоростью v , то для его остановки необходимо совершить работу равную его первоначальной кинетической энергии. При торможении кинетическая энергия в основном (кроме случаев соударения, когда энергия идет на деформации) «забирается» силой трения.

    Теорема о кинетической энергии: работа равнодействующей силы равна изменению кинетической энергии тела:

    Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Применять данную теорему удобно в задачах на разгон и торможение тела.

    Потенциальная энергия

    Наряду с кинетической энергией или энергией движения в физике важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

    Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями (так называемые консервативные силы ). Работа таких сил на замкнутой траектории равна нулю. Таким свойством обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

    Потенциальная энергия тела в поле силы тяжести Земли рассчитывается по формуле:

    Физический смысл потенциальной энергии тела: потенциальная энергия равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень (h – расстояние от центра тяжести тела до нулевого уровня). Если тело обладает потенциальной энергией, значит оно способно совершить работу при падении этого тела с высоты h до нулевого уровня. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

    Часто в задачах на энергию приходится находить работу по поднятию (переворачиванию, доставанию из ямы) тела. Во всех этих случаях нужно рассматривать перемещение не самого тела, а только его центра тяжести.

    Потенциальная энергия Ep зависит от выбора нулевого уровня, то есть от выбора начала координат оси OY. В каждой задаче нулевой уровень выбирается из соображения удобства. Физический смысл имеет не сама потенциальная энергия, а ее изменение при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

    Потенциальная энергия растянутой пружины рассчитывается по формуле:

    где: k – жесткость пружины. Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Растяжение или сжатие х надо рассчитывать от недеформированного состояния тела.

    Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией. Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x 1 , тогда при переходе в новое состояние с удлинением x 2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком (так как сила упругости всегда направлена против деформации тела):

    Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

    Работа силы трения зависит от пройденного пути (такой вид сил, чья работа зависит от траектории и пройденного пути называется: диссипативные силы ). Понятие потенциальной энергии для силы трения вводить нельзя.

    Коэффициент полезного действия

    Коэффициент полезного действия (КПД) – характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Он определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой (формула уже приведена выше).

    КПД можно рассчитывать как через работу, так и через мощность. Полезная и затраченная работа (мощность) всегда определяются путем простых логических рассуждений.

    В электрических двигателях КПД – отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника. В тепловых двигателях – отношение полезной механической работы к затрачиваемому количеству теплоты. В электрических трансформаторах – отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.

    В силу своей общности понятие КПД позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т.д.

    Из–за неизбежных потерь энергии на трение, на нагревание окружающих тел и т.п. КПД всегда меньше единицы. Соответственно этому КПД выражается в долях затрачиваемой энергии, то есть в виде правильной дроби или в процентах, и является безразмерной величиной. КПД характеризует как эффективно работает машина или механизм. КПД тепловых электростанций достигает 35–40%, двигателей внутреннего сгорания с наддувом и предварительным охлаждением – 40–50%, динамомашин и генераторов большой мощности – 95%, трансформаторов – 98%.

    Задачу, в которой нужно найти КПД или он известен, надо начать с логического рассуждения – какая работа является полезной, а какая затраченной.

    Закон сохранения механической энергии

    Полной механической энергией называется сумма кинетической энергии (т.е. энергии движения) и потенциальной (т.е. энергии взаимодействия тел силами тяготения и упругости):

    Если механическая энергия не переходит в другие формы, например, во внутреннюю (тепловую) энергию, то сумма кинетической и потенциальной энергии остаётся неизменной. Если же механическая энергия переходит в тепловую, то изменение механической энергии равно работе силы трения или потерям энергии, или количеству выделившегося тепла и так далее, другими словами изменение полной механической энергии равно работе внешних сил:

    Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему (т.е. такую в которой не действует внешних сил, и их работа соответственно равна нолю) и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной:

    Это утверждение выражает закон сохранения энергии (ЗСЭ) в механических процессах . Он является следствием законов Ньютона. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой силами упругости и тяготения. Во всех задачах на закон сохранения энергии всегда будет как минимум два состояния системы тел. Закон гласит, что суммарная энергия первого состояния будет равна суммарной энергии второго состояния.

    Алгоритм решения задач на закон сохранения энергии:

    1. Найти точки начального и конечного положения тела.
    2. Записать какой или какими энергиями обладает тело в данных точках.
    3. Приравнять начальную и конечную энергию тела.
    4. Добавить другие необходимые уравнения из предыдущих тем по физике.
    5. Решить полученное уравнение или систему уравнений математическими методами.

    Важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

    В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими силами действуют силы трения или силы сопротивления среды. Работа силы трения зависит от длины пути.

    Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание). Таким образом энергия в целом (т.е. не только механическая) в любом случае сохраняется.

    При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую. Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

    Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии.

    Разные задачи на работу

    Если в задаче требуется найти механическую работу, то сначала выберите способ её нахождения:

    1. Работу можно найти по формуле: A = FS ∙cosα . Найдите силу, совершающую работу, и величину перемещения тела под действием этой силы в выбранной системе отсчёта. Обратите внимание, что угол должен быть выбран между векторами силы и перемещения.
    2. Работу внешней силы можно найти, как разность механической энергии в конечной и начальной ситуациях. Механическая энергия равна сумме кинетической и потенциальной энергий тела.
    3. Работу по подъёму тела с постоянной скоростью можно найти по формуле: A = mgh , где h – высота, на которую поднимается центр тяжести тела .
    4. Работу можно найти как произведение мощности на время, т.е. по формуле: A = Pt .
    5. Работу можно найти, как площадь фигуры под графиком зависимости силы от перемещения или мощности от времени.

    Закон сохранения энергии и динамика вращательного движения

    Задачи этой темы являются достаточно сложными математически, но при знании подхода решаются по совершенно стандартному алгоритму. Во всех задачах Вам придется рассматривать вращение тела в вертикальной плоскости. Решение будет сводиться к следующей последовательности действий:

    1. Надо определить интересующую Вас точку (ту точку, в которой необходимо определить скорость тела, силу натяжения нити, вес и так далее).
    2. Записать в этой точке второй закон Ньютона, учитывая, что тело вращается, то есть у него есть центростремительное ускорение.
    3. Записать закон сохранения механической энергии так, чтобы в нем присутствовала скорость тела в той самой интересной точке, а также характеристики состояния тела в каком-нибудь состоянии про которое что-то известно.
    4. В зависимости от условия выразить скорость в квадрате из одного уравнения и подставить в другое.
    5. Провести остальные необходимые математические операции для получения окончательного результата.

    При решении задач надо помнить, что:

    • Условие прохождения верхней точки при вращении на нити с минимальной скоростью – сила реакции опоры N в верхней точке равна 0. Такое же условие выполняется при прохождении верхней точки мертвой петли.
    • При вращении на стержне условие прохождения всей окружности: минимальная скорость в верхней точке равна 0.
    • Условие отрыва тела от поверхности сферы – сила реакции опоры в точке отрыва равна нулю.

    Неупругие соударения

    Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда неизвестны действующие силы. Примером такого рода задач является ударное взаимодействие тел.

    Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

    С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц). В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары .

    Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

    При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание). Для описания любых ударов Вам нужно записать и закон сохранения импульса, и закон сохранения механической энергии с учетом выделяющейся теплоты (предварительно крайне желательно сделать рисунок).

    Абсолютно упругий удар

    Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел. Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара. При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии. Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя.

    Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров. Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения. Центральный удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.

    Частным случаем нецентрального упругого удара может служить соударения двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров. В этом случае векторы скоростей шаров после упругого соударения всегда направлены перпендикулярно друг к другу.

    Законы сохранения. Сложные задачи

    Несколько тел

    В некоторых задачах на закон сохранения энергии тросы с помощью которых перемещаются некие объекты могут иметь массу (т.е. не быть невесомыми, как Вы могли уже привыкнуть). В этом случае работу по перемещению таких тросов (а именно их центров тяжести) также нужно учитывать.

    Если два тела, соединённые невесомым стержнем, вращаются в вертикальной плоскости, то:

    1. выбирают нулевой уровень для расчёта потенциальной энергии, например на уровне оси вращения или на уровне самой нижней точки нахождения одного из грузов и обязательно делают чертёж;
    2. записывают закон сохранения механической энергии, в котором в левой части записывают сумму кинетической и потенциальной энергии обоих тел в начальной ситуации, а в правой части записывают сумму кинетической и потенциальной энергии обоих тел в конечной ситуации;
    3. учитывают, что угловые скорости тел одинаковы, тогда линейные скорости тел пропорциональны радиусам вращения;
    4. при необходимости записывают второй закон Ньютона для каждого из тел в отдельности.
    Разрыв снаряда

    В случае разрыва снаряда выделяется энергия взрывчатых веществ. Чтобы найти эту энергию надо от суммы механических энергий осколков после взрыва отнять механическую энергию снаряда до взрыва. Также будем использовать закон сохранения импульса, записанный, в виде теоремы косинусов (векторный метод) или в виде проекций на выбранные оси.

    Столкновения с тяжёлой плитой

    Пусть навстречу тяжёлой плите, которая движется со скоростью v , движется лёгкий шарик массой m со скоростью u н. Так как импульс шарика много меньше импульса плиты, то после удара скорость плиты не изменится, и она будет продолжать движение с той же скоростью и в том же направлении. В результате упругого удара, шарик отлетит от плиты. Здесь важно понять, что не поменяется скорость шарика относительно плиты . В таком случае, для конечной скорости шарика получим:

    Таким образом, скорость шарика после удара увеличивается на удвоенную скорость стены. Аналогичное рассуждение для случая, когда до удара шарик и плита двигались в одном направлении, приводит к результату согласно которому скорость шарика уменьшается на удвоенную скорость стены:

    По физике и математике, среди прочего, необходимо выполнить три важнейших условия:

    1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
    2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
    3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

    Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    МОЩНОСТЬ — это… Что такое МОЩНОСТЬ?

  • Мощность — Размерность L2MT−3 Единицы измерения СИ Вт СГС …   Википедия

  • мощность — составляет • субъект, оценка, соответствие потреблять мощность • использование превосходить мощность • много, Neg, оценка, соответствие существуют мощность • существование / создание, субъект увеличивать мощность • изменение, много увеличить… …   Глагольной сочетаемости непредметных имён

  • МОЩНОСТЬ — электрическая работа электрического тока в единицу времени. В цепи постоянного тока мощность равна произведению напряжения и тока. В цепи переменного тока различают полную мощность, активную мощность, реактивную мощность …   Большой Энциклопедический словарь

  • МОЩНОСТЬ — множества понятие теории множеств, обобщающее на произвольные множества понятие число элементов . Мощность множества характеризует то общее, что присуще всем множествам, количественно эквивалентным данному; при этом два множества называются… …   Большой Энциклопедический словарь

  • мощность — емкость, способность, производительность, нагрузка, объём производства, отдача, пропускная способность; сила, интенсивность, мощь, могущество, энергия; значительность, могучесть, всесильность, всемогущество, дюжесть, внушительность, власть,… …   Словарь синонимов

  • МОЩНОСТЬ — МОЩНОСТЬ, в физике интенсивность совершения РАБОТЫ или же производства или потребления, ЭНЕРГИИ. Является мерой производительности двигателя или какого либо источника питания. Первым ученым, начавшим измерять мощность, был Джеймс ВАТТ. Он… …   Научно-технический энциклопедический словарь

  • МОЩНОСТЬ — МОЩНОСТЬ, мощности, жен. (книжн.). 1. только ед. отвлеч. сущ. к мощный; сила, могущество. Мощность государства. 2. только ед. Толщина пластов и жил добываемых минералов (горн.). Пласт большой мощности. 3. Величина, показывающая, какое количество… …   Толковый словарь Ушакова

  • мощность — силы; мощность Величина, равная скалярному произведению силы на скорость точки её приложения …   Политехнический терминологический толковый словарь

  • Мощность — величина, равная отношению произведенной работы к единице времени. Словарь бизнес терминов. Академик.ру. 2001 …   Словарь бизнес-терминов

  • МОЩНОСТЬ — МОЩНОСТЬ, физическая величина N, измеряемая отношением работы A к промежутку времени t, в течение которого она совершена; если работа совершается равномерно, то N=A/t. Измеряется в ваттах …   Современная энциклопедия

  • Определение и математика работы

    В первых трех разделах «Класса физики» мы использовали законы Ньютона для анализа движения объектов. Информация о силе и массе использовалась для определения ускорения объекта. Информация об ускорении впоследствии использовалась для определения информации о скорости или смещении объекта по прошествии заданного периода времени. Таким образом, законы Ньютона служат полезной моделью для анализа движения и прогнозирования конечного состояния движения объекта.В этом модуле будет использоваться совершенно другая модель для анализа движения объектов. Движение будет рассматриваться с точки зрения работы и энергии. Будет исследовано влияние работы на энергию объекта (или системы объектов); итоговая скорость и / или высота объекта могут быть затем спрогнозированы на основе информации об энергии. Чтобы понять этот подход к анализу движения, основанный на работе и энергии, важно сначала получить твердое понимание нескольких основных терминов.Таким образом, Урок 1 этого раздела будет посвящен определениям и значениям таких терминов, как работа, механическая энергия, потенциальная энергия, кинетическая энергия и мощность.

    Когда на объект действует сила, вызывающая смещение объекта, говорят, что над объектом было выполнено работы . Есть три ключевых ингредиента для работы — сила, смещение и причина. Чтобы сила квалифицировалась как выполнившая работы над объектом, должно быть смещение, и сила должна вызывать смещение .Есть несколько хороших примеров работы, которые можно наблюдать в повседневной жизни: лошадь тащит плуг через поле, отец толкает тележку с продуктами по проходу продуктового магазина, первокурсник поднимает на плечо рюкзак, полный книг, тяжелоатлет, поднимающий штангу над головой, олимпиец, запускающий толкание ядра, и т. д. В каждом описанном здесь случае на объект действует сила, заставляющая этот объект смещаться.

    Прочтите следующие пять утверждений и определите, представляют ли они примеры работы.Затем нажмите кнопку «Посмотреть ответ», чтобы просмотреть ответ.

    Заявление Ответ с объяснением

    Учитель применяет силу к стене и истощается.

    Книга падает со стола и падает на землю.

    Официант переносит поднос с едой над головой за одну руку прямо через комнату с постоянной скоростью. (Осторожно! Это очень сложный вопрос, который будет обсуждаться более подробно позже.)

    Ракета летит в космосе.

    Рабочее уравнение

    Математически работу можно выразить следующим уравнением.

    W = F • d • cos Θ

    , где F — сила, d — смещение, а угол ( тета ) определяется как угол между силой и вектором смещения.Возможно, самый сложный аспект приведенного выше уравнения — это угол «тета». Угол — это не просто любой угол , а, скорее, очень специфический угол. Угловая мера определяется как угол между силой и смещением. Чтобы понять его значение, рассмотрите следующие три сценария.

    • Сценарий А. Сила действует на объект вправо, когда он смещается вправо. В таком случае вектор силы и вектор смещения находятся в одном направлении.Таким образом, угол между F и d равен 0 градусов.

    • Сценарий B: Сила действует влево на объект, смещенный вправо. В таком случае вектор силы и вектор смещения имеют противоположное направление. Таким образом, угол между F и d составляет 180 градусов.

    • Сценарий C: Сила действует вверх на объект, когда он смещается вправо. В таком случае вектор силы и вектор смещения расположены под прямым углом друг к другу.Таким образом, угол между F и d составляет 90 градусов.

    Для работы, силы должны Вызвать Смещения

    Рассмотрим сценарий C более подробно. Сценарий C включает ситуацию, аналогичную ситуации, когда официант несет поднос с едой над головой за одну руку прямо через комнату с постоянной скоростью. Ранее упоминалось, что официант не работает с подносом , поскольку он переносит его через комнату.Сила, прикладываемая официантом к подносу, направлена ​​вверх, а смещение подноса — это горизонтальное смещение. Таким образом, угол между силой и смещением составляет 90 градусов. Если рассчитать работу официанта на подносе, то результат будет 0. Независимо от величины силы и смещения, F * d * косинус 90 градусов равен 0 (поскольку косинус 90 градусов равен 0. ). Вертикальная сила никогда не может вызвать горизонтальное смещение; таким образом, вертикальная сила не действует на горизонтально смещенный объект !!

    Можно точно отметить, что рука официанта на короткое время толкала поднос вперед, чтобы ускорить его от состояния покоя до конечной скорости ходьбы.Но как только достигает скорости , лоток будет продолжать движение по прямой с постоянной скоростью без поступающей силы. И если единственная сила, действующая на лоток во время стадии его движения с постоянной скоростью, направлена ​​вверх, то с лотком не выполняется никаких действий. Опять же, вертикальная сила не действует на горизонтально смещенный объект.

    Уравнение для работы содержит три переменных — каждая переменная связана с одним из трех ключевых слов, упомянутых в определении работы (сила, смещение и причина).Угол тета в уравнении связан с величиной силы, вызывающей смещение. Как упоминалось в предыдущем разделе, когда на объект действует сила под углом к ​​горизонтали, только часть силы способствует (или вызывает) горизонтальное смещение. Давайте рассмотрим силу цепи, тянущей вверх и вправо на Фидо, чтобы тянуть Фидо вправо. Только горизонтальная составляющая силы натяжения в цепи заставляет Фидо смещаться вправо.Горизонтальная составляющая находится путем умножения силы F на косинус угла между F и d. В этом смысле тета-косинус в уравнении работы относится к коэффициенту , вызывающему причину, выбирает часть силы, которая фактически вызывает смещение.

    Значение теты

    При определении меры угла в уравнении работы важно понимать, что угол имеет точное определение — это угол между силой и вектором смещения.Обязательно избегайте бездумного использования в уравнении любого угла поворота . Обычная физическая лаборатория включает приложение силы, чтобы переместить тележку по пандусу к вершине стула или коробки. К тележке прилагается усилие , чтобы сместить ее на вверх по склону с постоянной скоростью. Обычно используются несколько углов наклона; тем не менее, сила всегда применяется параллельно уклону. Перемещение тележки также параллельно уклону. Поскольку F и d находятся в одном направлении, угол theta в уравнении работы равен 0 градусов.Тем не менее, большинство студентов испытали сильное искушение измерить угол наклона и использовать его в уравнении. Не забывайте: угол в уравнении — это не просто , любой угол равен . Он определяется как угол между силой и вектором смещения.

    Значение отрицательной работы

    Иногда на движущийся объект действует сила, препятствующая перемещению.Примеры могут включать в себя автомобиль, заносящий до остановки на проезжей части, или бегущий по бейсболу, который останавливается по грязи на приусадебном участке. В таких случаях сила действует в направлении, противоположном движению объектов, чтобы замедлить его. Сила не вызывает смещения, а скорее препятствует . Эти ситуации включают то, что обычно называют отрицательной работой . отрицательный отрицательной работы относится к числовому значению, которое получается, когда значения F, d и тета подставляются в уравнение работы.Поскольку вектор силы прямо противоположен вектору смещения, тета составляет 180 градусов. Косинус (180 градусов) равен -1, поэтому количество работы, проделанной с объектом, будет отрицательным. Негативная работа станет важной (и более значимой) в Уроке 2, когда мы начнем обсуждать взаимосвязь между работой и энергией.

    Единицы работы

    Каждый раз, когда в физику вводится новая величина, обсуждаются стандартные метрические единицы, связанные с этой величиной.В случае работы (а также энергии) стандартной метрической единицей является Джоуль (сокращенно Дж ). Один Джоуль эквивалентен одному Ньютону силы, вызывающей смещение на один метр. Другими словами,

    Джоуль — это единица работы.
    1 Джоуль = 1 Ньютон * 1 метр
    1 Дж = 1 Н * м

    Фактически, любая единица силы, умноженная на любую единицу смещения, эквивалентна единице работы.Ниже показаны некоторые нестандартные агрегаты для работы. Обратите внимание, что при анализе каждый набор единиц эквивалентен единице силы, умноженной на единицу смещения.

    Нестандартные единицы работы:
    фут • фунт кг • (м / с 2 ) • м кг • (м 2 / с 2 )

    Таким образом, работа выполняется, когда на объект действует сила, вызывающая смещение.Чтобы рассчитать объем работы, необходимо знать три величины. Эти три величины — сила, смещение и угол между силой и смещением.


    Расследовать!

    Работаем каждый день. Работа, которую мы делаем, требует калорий … эээээ, следует сказать Джоулей. Но сколько джоулей (или калорий) было бы израсходовано на различные виды деятельности? Используйте виджет Daily Work , чтобы исследовать объем работы, который необходимо выполнить для бега, ходьбы или езды на велосипеде в течение заданного времени в заданном темпе.

    Нажмите, чтобы продолжить урок по Работе


    Мы хотели бы предложить … Иногда просто прочитать об этом недостаточно. Вы должны с ним взаимодействовать! И это именно то, что вы делаете, когда используете один из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного интерактивного приложения It’s All Uphill. Вы можете найти его в разделе Physics Interactives на нашем сайте.Интерактивное приложение It’s All Uphill Interactive позволяет учащемуся изучить влияние угла наклона на силу и работу, выполняемую при подъеме тележки в гору с постоянной скоростью.

    Работа — Энергетическое образование

    Работа — это передача механической энергии от одного объекта к другому. Поскольку работа — это движение энергии, она измеряется в тех же единицах, что и энергия: джоулях (Дж).Определение работы в контексте физики сильно отличается от того, как оно используется в повседневной жизни человека, и выглядит следующим образом: [1]

    Работа выполняется, когда к объекту на расстоянии прикладывается сила.

    Это означает, что когда к объекту на расстоянии применяется сила, это влияет на общую энергию объекта. Объект будет либо ускоряться, либо замедляться, что приведет к изменению его кинетической энергии (см. Рисунок 1), либо у него будет измененная потенциальная энергия, если, например, он был поднят на определенную высоту под действием силы тяжести. [1]

    Рис. 1. Питчер работает с бейсбольным мячом, чтобы увеличить его кинетическую энергию. Его рука отводится как можно дальше назад, а затем как можно дальше вперед, чтобы максимально увеличить расстояние, на которое была приложена сила. [2]

    Работа также выходит за рамки того, что человек может видеть физически. Это также может повлиять на микроскопические свойства системы, такие как температура. В 1843 году эту идею начали исследовать ученые, [3] , и ее результаты привели к формулировке того, что сейчас известно как термодинамика.Работа с системой может повлиять на ее внутреннюю энергию, как и добавление тепла. Тем не менее, эти два процесса принципиально разные, и их можно изучить на странице тепло и работа.

    Все описанные до сих пор случаи того, как работа может влиять на систему, можно суммировать в одном уравнении: [1]

    [математика] W = \ Delta K + \ Delta U + \ Delta E_ {th} [/ math]

    Это уравнение говорит, что работа ([math] W [/ math]) может изменять ([math] \ Delta [/ math]) кинетическую энергию системы ([math] K [/ math]), потенциальную энергию ([math] U [/ math]), тепловая энергия ([math] E_ {th} [/ math]) или любая их комбинация.

    Фактически выполненную работу можно рассчитать по следующей формуле: [4]

    [математика] W = \ vec {F} \ cdot \ vec {d} [/ math]

    Где

    • [математика] W [/ математика] — работа или изменение механической энергии, измеряемое в джоулях (Дж)
    • [math] F [/ math] — сила, измеряемая в ньютонах (Н)
    • [math] d [/ math] — смещение объекта

    Стрелки над силой и смещением указывают, что они являются векторами. Это означает, что у них есть связанное с ними направление, которое имеет важное значение для того, сколько работы выполняется с объектом.Если оба направления совпадают, как показано на рисунке 1, энергия системы увеличится, что означает, что была проделана положительная работа. Если направления противоположны, например сила трения и сопротивления воздуха движущемуся автомобилю, энергия системы будет уменьшаться, что приведет к выполнению отрицательной работы.

    С точки зрения физики работа никогда не бывает чем-то, что есть у объекта. Это всего лишь то, что один объект делает с другим. Работа изменяет количество механической и внутренней энергии, которой обладают объекты.Когда работа выполняется на системе или объекте , к этому добавляется энергия. Когда работа выполняется на над системой или объектом, она отдает часть своей энергии чему-то другому.

    Бросок мяча означает, что рука прикладывает силу, когда рука движется вперед. Приложив силу к мячу на этом расстоянии, рука выполняет работу с мячом, и мяч получает кинетическую энергию. Это то, что придает ему скорость.

    Математические отношения между полной работой и полной энергией описываются теоремой работы-энергии и сохранения энергии.Простые машины могут изменять количество силы, необходимой для перемещения объекта, но сила должна прилагаться через большее расстояние; они не меняют объем проделанной работы.

    Список литературы

    1. 1.0 1.1 1.2 Р. Д. Найт, «Работа и кинетическая энергия» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, глава 11, разделы 2 и 3, стр. 278-301.
    2. ↑ Wikimedia Commons [Online], доступно: https: // upload.wikimedia.org/wikipedia/commons/2/25/Baseball_pitching_motion_2004.jpg
    3. ↑ Hyperphysics, Механический эквивалент тепла [Online], Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heat.html#c3
    4. ↑ R. Nave. (2015, 21 июня) Работа Онлайн. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/wcon.html

    Измерение работы: определение, цели и методы

    В этой статье мы обсудим: — 1. Значение и определение измерения работы 2. Цели измерения работы 3. Использование 4. Методы.

    Значение и определение измерения работы :

    Измерение работы связано с определением количества времени, необходимого для выполнения единицы работы. Измерение работы очень важно для повышения производительности организации. Это позволяет руководству сравнивать альтернативные методы, а также выполнять начальное укомплектование персоналом.Измерение работы обеспечивает основу для правильного планирования.

    Поскольку он связан с измерением времени, он также называется «Исследование времени». Точный учет времени очень важен для правильного ценообразования. Чтобы найти правильное время изготовления продукта, проводится исследование времени. Чтобы дать конкурентоспособные расценки, очень важна точная оценка затрат на рабочую силу. Это становится основой для управления заработной платой и заработной платой, а также для разработки схем стимулирования.

    Измерение работы было определено Британским институтом стандартов как «Применение методов, предназначенных для определения времени, необходимого квалифицированному рабочему для выполнения определенной работы с определенным уровнем производительности» .Это время называется стандартным или разрешенным. Исследование времени также можно определить как «искусство наблюдения и записи времени, необходимого для выполнения каждого детального элемента промышленной операции» .

    Цели измерения работы :

    1. Сравнить время выполнения альтернативными методами.

    2. Подготовить реалистичный график работ.

    3. Разработать реалистичную и справедливую схему стимулирования.

    4. Анализировать действия по выполнению работы с целью сокращения или устранения ненужных работ.

    5. Чтобы минимизировать человеческие усилия.

    6. Помогать в организации труда, ежедневно сравнивая фактическое время с запланированным.

    Использование рабочего измерения :

    1. Измерение вок используется при планировании работ и составлении графиков.

    2. Измерение вок используется для определения стандартных затрат.

    3. Измерение вок используется в качестве помощи при составлении бюджета.

    4. Используется для балансировки производственных линий для новых продуктов.

    5. Измерение вок используется для определения эффективности машины.

    6. Определить временные стандарты, которые будут использоваться в качестве основы для контроля затрат на рабочую силу.

    7. Установление целей надзора и обеспечение основы для измерения эффективности надзора.

    8. Определить временные стандарты, которые будут использоваться в качестве основы для планов стимулирования заработной платы.

    Методы измерения работы :

    Измерение работы исследует и устраняет неэффективное время. Это не только показывает существование неэффективного времени. Но его можно использовать для установки стандартного времени для выполнения работы, чтобы неэффективное время не увеличивалось позже. Это сразу же обнаружит увеличившееся поясное время. Для целей измерения работы работа может рассматриваться как повторяющаяся работа и неповторяющаяся работа.

    Основные методы измерения работы подразделяются на следующие категории:

    1.Исследование времени

    2. Отбор проб

    3. Система заранее заданного времени движения

    4. Аналитическая оценка

    Статьи по теме

    Измеряйте результаты, а не часы, чтобы повысить эффективность работы

    ОГРАНИЧЕННЫЕ ВСТРЕЧИ Внутренние встречи могут быть огромной тратой времени. Короткая встреча может быть полезна для обсуждения спорного вопроса, но длительные встречи — более 60–90 минут — обычно непродуктивны.Лидеры часто тратят слишком много времени на чтение вводного материала, и участники в конечном итоге перестают обращать на это внимание.

    Очень старайтесь избегать встреч, которые, как вы подозреваете, будут долгими и непродуктивными. По возможности вежливо откажитесь от приглашений коллег на встречу, указав на приближающиеся сроки. Если это не вариант, дайте понять, что вы можете остаться только на первые 60 минут, а затем вам придется выполнять более неотложные обязательства. И не решайтесь сами созывать собрания; Вы можете решить большинство проблем по электронной почте или по телефону.

    Если вы собираетесь созвать или планируете необходимую встречу, убедитесь, что она продуктивна. Создайте повестку дня, которая организует встречу и поддерживает ее динамичность. Раздайте эту повестку дня вместе с любыми предварительными материалами как минимум за день. Назначьте на каждую встречу «адвоката дьявола», задача которого — следить за тем, чтобы обсуждались возможные негативные моменты. В конце встречи убедитесь, что все согласны с дальнейшими шагами, каждый шаг назначен одному участнику и с определенным сроком.

    УМЕНЬШИТЕ ЧТЕНИЕ Вам не нужно читать полный текст всего, с чем вы сталкиваетесь в процессе работы, даже если он исходит непосредственно от начальника. Хотя чтение длинной статьи от корки до корки может заставить вас чувствовать себя продуктивно, это может быть не лучшим вариантом использования вашего времени. Скорее всего, только очень небольшая часть этой статьи жизненно важна для вашей работы. Может быть, вам нужно помнить большие идеи, а не сложные детали.Или, может быть, вам нужно найти только один или два примера, иллюстрирующих конкретный более крупный вопрос. Как только вы начнете читать текст, сделайте так, чтобы искать то, что важно, пропуская разделы, которые менее актуальны.

    Конечно, некоторые материалы требуют от вас полного погружения в детали. Например, если вы читаете статью, непосредственно связанную с новейшим продуктом-блокбастером компании, вероятно, имеет смысл перечитать каждое слово. Но для менее важных задач такой уровень детализации часто не нужен.Если вы не будете осторожны, эти задачи могут занять весь ваш график.

    И избегайте повторного чтения электронной почты. Я очень верю в принцип OHIO: справляйтесь с этим только один раз. Когда вы читаете электронное письмо, решите, отвечать на него или нет, и, если вам нужно ответить, сделайте это прямо сейчас. Я обнаружил, что около 80 процентов всех электронных писем, внутренних или внешних, не требуют ответа. Не позволяйте этим посторонним сообщениям забивать ваш почтовый ящик и тратить ваше время зря.

    Измерение работы | Энциклопедия.com

    Измерение работы — это тщательный анализ задачи, ее размера, метода, используемого при ее выполнении, и ее эффективности. Цель состоит в том, чтобы определить рабочую нагрузку на операцию, необходимое время и количество рабочих, необходимых для эффективного выполнения работы. Измерение трудозатрат помогает определить время, затрачиваемое на выполнение любого процесса, и предлагает последовательную, сопоставимую методологию определения трудовых ресурсов.

    Измерение рабочего времени может быть чрезвычайно эффективным при информировании руководителей о рабочем времени и задержках, связанных с различными способами выполнения работы.Цель метода измерения — достичь полного охвата измеряемой работы.

    Хорошая система измерения работы имеет много преимуществ. Это помогает снизить затраты на рабочую силу, повысить производительность и улучшить контроль, планирование, составление графиков, служебную аттестацию и принятие решений.

    КОМПОНЕНТЫ ИЗМЕРЕНИЯ РАБОТЫ

    Система измерения работы состоит из трех компонентов: предпочтительных методов, значений времени и отчетности. Предпочтительные методы не всегда являются наиболее эффективным или быстрым способом выполнения задачи.Они должны повышать безопасность, качество и производительность. Следует учитывать безопасность сотрудников и продукта. Качество не менее важно; Было доказано, что хорошая производительность и хорошее качество идут рука об руку. Люди, которые обучены правильному методу и следуют этому методу, будут выполнять качественную работу и выполнять ее на приемлемом уровне. Также следует учитывать временные ценности и отчетность. Время, которое должна занять работа, определяется не на основе ускорения движений, которые обычно совершает рабочий, а на основе нормального темпа среднего рабочего с учетом периодов отдыха, перерывов на кофе и усталости.Система отчетности важна для успеха любого метода измерения работы. Руководители и менеджеры должны иметь доступ к своевременной и полной информации о труде. Своевременную информацию можно использовать для управления и переноса рабочего времени в те области, где они необходимы, а также для исправления проблем или, по крайней мере, предотвращения их перерастания в кризис. Персональные компьютеры помогают более эффективно и с меньшими затратами применять измерение труда и обеспечивают немедленную обратную связь с рабочими, руководителями и менеджерами.

    МЕТОДЫ ИЗМЕРЕНИЯ РАБОТЫ

    Программы измерения работы включают использование ряда методов, каждый из которых выбран для выполнения соответствующей части задачи. Целью измерения является сбор реальных данных о реальных событиях. Чтобы получить стандарты времени, данные обычно преобразуются в целевые данные или данные, которые применяются при известных условиях. Все системы измерения работы основаны на одной и той же простой трехэтапной процедуре: анализ, сбор и измерение данных, а также синтез.Они различаются по характеру и степени анализа, по характеру и уровню сбора и измерения данных, а также по характеру процесса синтеза. Однако трехэтапная процедура остается распространенной.

    Перед началом измерения измеряемая задача анализируется и разбивается на удобные части, подходящие для выбранной техники измерения. Цель метода измерения — определить базовое время для каждого действия, элемента или движения. На этапе измерения необходимо собрать описательные или качественные данные о характере задачи, условиях, в которых она выполняется, и других факторах, которые могут иметь отношение к времени, которое требуется для выполнения задачи.При измерении повторяющихся заданий данные собираются в течение нескольких репрезентативных циклов задания для получения среднего или типичного значения. Анализ результатов может быть выполнен с использованием статистических методов для определения количества наблюдений, которые необходимо провести, чтобы обеспечить заданный уровень уверенности в окончательных результатах.

    На этапе синтеза различные части задачи и связанные с ними базовые времена объединяются вместе в правильной последовательности и с правильной частотой, чтобы получить время для всей работы.На этом этапе основное время будет скорректировано, чтобы припуски стали стандартным временем для выполнения задачи.

    Существует четыре метода измерения работы, каждый из которых имеет свои сильные и слабые стороны. Метод исторических данных показывает время, которое фактически потребовалось для выполнения задачи. Такие данные имеют то преимущество, что их легко собирать, понимать и передавать, но они не предоставляют информации для дальнейшего улучшения. Для метода выборки работы выполняется большое количество случайных наблюдений за задачей для определения этапов ее нормального выполнения.Этот метод прост в освоении и использовании, и он дает больше оперативных подробностей, чем исторические данные. Недостаток рабочей выборки состоит в том, что для точного измерения каждого шага требуются тысячи выборок.

    Метод исследования времени использует подходы непрерывного и мгновенного отклика для записи прошедшего времени выполнения задачи. Подход Snapback требует секундомера с кнопкой сброса, которая позволяет наблюдателю считывать и записывать время в конце каждого рабочего элемента, а затем сбрасывать (Snapback) часы на ноль.Несмотря на свою популярность, метод исследования времени является субъективным и в значительной степени опирается на опыт аналитика, занимающегося изучением времени. Компьютеризированный сборщик данных обеспечивает более точное время, чем секундомер. Однако преобразование фактического времени в ожидаемое или нормальное время остается проблемой.

    Метод заданных систем движения / времени основан на предположении, что вся работа состоит из основных движений человека и что время может быть присвоено этим движениям, если они определены и классифицированы систематическим образом.Фильм или видеокассета записывают, что влечет за собой работа и сколько времени она занимает. Этот метод чаще всего используется при изучении установок большого объема, таких как рабочая станция или сборочная линия. Наблюдатель измеряет работу, наблюдая и анализируя ее основные составляющие движения. Этот метод требует значительного обучения и практики для достижения и поддержания точности. Это позволяет назначать всем типам задач значения времени / продолжительности, которые затем могут быть расширены до значений затрат. Результаты нелегко сообщить, но при правильном выполнении этот метод дает очень точное время.

    см. Также Производительность ; Стандартное выполнение работы

    библиография

    Корм, Лоуренс С. (2000). Измерение работы и совершенствование методов. Нью-Йорк: Вили.

    Ганьон, Юджин Дж. (2000, февраль). «Как измерить работу». Управление погрузочно-разгрузочными работами , 71-77.

    Гован, К. Брюс (1999, март). «Какой инструмент измерения работы?» Manufacturing Engineering , 18.

    Грегсон, Кен (1993, июль / август).»Нам все еще нужно измерение работы?» Рабочий кабинет , 18-22.

    Хорнгрен, Чарльз, Датар, Шрикант М., и Фостер, Джордж (2005). Учет затрат: управленческий акцент (12-е изд.). Река Аппер Сэдл, штат Нью-Джерси: Prentice Hall.

    Рад, Парвиз Ф. и Левин, Джинджер (2006). Метрики для управления проектами: формализованные подходы. Вена, Вирджиния: Концепции управления.

    Нашва Джордж

    Энциклопедия бизнеса и финансов, 2-е изд.

    Работа, выполненная силой — Импульс, работа и мощность — Шлюз OCR — Объединенная научная версия GCSE — Шлюз OCR

    Расчет выполненной работы

    Для расчета работы, выполняемой над объектом, когда его перемещает сила, используйте уравнение:

    выполненная работа = сила × расстояние

    Это когда:

    • выполненная работа измеряется в джоулях (Дж)
    • сила измеряется в ньютонах (Н)
    • расстояние, пройденное вдоль линии действия силы, измеряется в метры (м)

    Обратите внимание, что один джоуль работы выполняется, когда сила в один ньютон вызывает перемещение на один метр.Это означает, что проделанная работа также может быть измерена в ньютон-метрах (Нм).

    1 Дж = 1 Нм

    Важно не путать ньютон-метры (единицы выполненной работы) с ньютон-метрами (калиброванные пружинные весы, используемые для измерения веса).

    Пример

    Врач весит 600 Н. Лифт поднимает ее на 40 м на верхний этаж больницы. Посчитайте работу, которую врач проделал у подъемника.

    выполненная работа = сила × расстояние

    выполненная работа = 600 Н × 40 м

    выполненная работа = 24000 Дж (или 24 кДж)

    Вопрос

    В схватке команда по регби толкает другую команду назад 5 м с усилием в 1000 Н.Подсчитайте проделанную работу, переместив другую команду.

    Показать ответ

    выполненная работа = сила × расстояние

    выполненная работа = 1000 Н × 5 м

    выполненная работа = 5000 Дж (или 5 кДж)

    Что такое измерение работ? определение, методы и шаги

    Определение : Измерение работы может быть определено как реализация серии методов, которые предназначены для выяснения содержания работы, конкретной задачи или деятельности, путем установления фактического количества времени, необходимого для квалифицированный работник для выполнения задачи с заданным уровнем производительности.

    Суть измерения трудозатрат заключается в установлении рабочего содержания конкретного рассматриваемого вида деятельности. Помогает в:

    • Оценка эффективности работника
    • Сравнение двух методов
    • Разработка стандартов труда для планирования и контроля операций.

    Расчетное время, необходимое квалифицированному рабочему для выполнения задачи с нормальной скоростью, называется стандартным временем. Стандартное время служит эталоном производительности.

    Методы измерения работы

    • Прямое исследование времени : Прямое исследование времени означает определение времени, необходимого для выполнения единицы работы. В этом методе наблюдение и запись времени необходимы для выполнения каждой единицы операции с целью установления фактического времени, в течение которого работа может быть выполнена.
    • Метод синтеза : Метод измерения работы, в котором задание или действие делятся на различные части, после чего время, затрачиваемое на выполнение каждого элемента задания, записывается и затем объединяется.
    • Аналитическая оценка : Этот метод измерения времени используется для определения значений времени для задач, которые являются длительными и не повторяются по своей природе.
    • Система заданного времени движения (PMTS) : В методе PMTS базовое время устанавливается для основных движений человека. Такие значения времени используются для вычисления времени, необходимого для выполнения задания с фиксированным стандартом. Это новая и улучшенная версия исследования движения.
    • Метод выборки работы или коэффициент задержки : Метод измерения работы, при котором работа нескольких сотрудников выбирается случайным образом, с периодическими интервалами, чтобы установить долю от общего числа операций, относящихся к конкретному виду деятельности.

    Методы измерения работы помогают в составлении реалистичных графиков работы путем надлежащей оценки человеческого труда. Это помогает сравнивать фактическое время, затрачиваемое работником, с отведенным, чтобы следить за рабочими и избегать простоев.

    Шаги, связанные с измерением работы

    1. Разделить задания на элементы
    2. Наблюдайте и записывайте каждый элемент, любой из методов измерения работы.
    3. Установите значения единичного времени, увеличив наблюдаемое время до нормального времени для каждой единицы.Это можно сделать, применив рейтинговый коэффициент.
    4. Оцените надбавку на релаксацию и прибавьте ее к нормальному времени для каждого элемента, чтобы получить содержание работы.
    5. Определите частоту появления каждого элемента в задании, затем умножьте на него содержание работы. После этого общее время, необходимое для достижения рабочего содержания работы.
    6. Добавьте надбавку на непредвиденные обстоятельства, где это необходимо, чтобы получить стандартное время для выполнения работы.

    Измерение трудозатрат помогает оценить затраты на рабочую силу.Кроме того, дает информацию относительно оценки тендеров, оценки графика поставок и фиксации продажной цены.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *