+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как найти пусковую и рабочую обмотку у однофазного двигателя | Энергофиксик

Казалось бы, что может быть проще, посмотреть на маркировку, схему и определить, а что делать если ни того ни другого нет, как найти пусковую и рабочую обмотки? В этой статье я расскажу и покажу на примере, как происходит определение назначения обмоток, если нет при этом никаких маркировочных определителей.

Визуальный осмотр

В качестве примера я рассмотрю двигатель АЕР 16УХЛ4 220В 180Вт, оставшийся от старой советской стиральной машинки, ушедшей на металлолом.

Произведя визуальный осмотр я не нашел на нем никакой бирки с информацией кроме названия. Но поковырявшись в интернете и найдя описание, я понял, что передо мной двигатель с пусковой обмоткой с релейным пуском.

Из самого двигателя выходят четыре провода, два из них грязно-голубого цвета, а два красно-розового. Логично предположить, что это выводы пусковой и рабочей обмоток.

Но вот какие относятся к пусковой, а какие к рабочей, совершенно непонятно, ведь бирок никаких нет.

Но это вовсе не проблема, сейчас я расскажу как в такой ситуации разобраться с обмотками.

Сечение проводников

Первое на что следует обратить внимание, это на толщину проводов выходящих с электродвигателя. Пара концов, которые будут тоньше, относятся к пусковой обмотке, а та, которая будет толще, к рабочей.

В моем случае провода имеют одинаковое сечение, поэтому определить «на глаз» никак не получится.

Но если в конкретно вашем случае видна разница в толщине жил не стоит верить только диаметру, необходимо обязательно измерять сопротивление обмоток.

Зная этот факт, переходим к определению сопротивления обмоток

Измеряем сопротивление обмоток

Для этого берем мультиметр, выбираем функцию прозвонки (либо измерение сопротивления)

Затем берем концы прибора и два любых вывода с двигателя и производим измерение

В случае того, если прибор показал единицу, то следует взять другой конец и повторить измерение.

Как мы видим при таком расположении щупов сопротивление равно 16,5 Ом, запоминаем (записываем) эти данные. Теперь цепляем щупы мультиметра на два оставшихся вывода и так же производим замер сопротивления.

У нас получилось 34,4Ом. Так же записываем и сравниваем с предыдущими замерами.

А как известно рабочая обмотка всегда имеет меньшее сопротивление, по сравнению с пусковой. Зная это мы теперь точно можем утверждать что: первая обмотка (с красно-розовыми проводами) рабочая, а вторая обмотка (с голубой изоляцией) пусковая.

Для того чтобы не искать в дальнейшем где какая обмотка маркируем их. Для этих целей я обычно использую виниловую трубку.

Согласно современному ГОСТу вывода обмоток маркируются следующим образом:

1. U1 – U2 – рабочая обмотка.

2. B1- B2 – пусковая обмотка.

В нашем случае с двигателя выходило 4 провода, но попадаются двигатели, у которых производитель вывел только три.

В таком варианте поступаем следующим образом:

Замеры сопротивления производятся аналогично вышеописанным способом. Маркируем наши провода буквами A, B, C.

Замеряем сопротивление между концами «A — B», потом между «B – C» и между выводами «A – C»

Теперь записываем (запоминаем) наши получившиеся значения

Из всего выше представленного делаем выводы:

А – В — рабочая обмотка

В – С — пусковая обмотка

А – С – последовательно соединенные пусковая и рабочая обмотки с суммарным сопротивлением.

Заключение

Таким образом, вы сможете легко и просто определить, где пусковая, а где рабочая обмотка в конкретно вашем двигателе у которого вообще может отсутствовать маркировка. Если статья оказалась вам полезна, то оцените ее лайком. Спасибо за ваше внимание!

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные электрические двигатели – электромеханический преобразователь энергии небольшой мощности. Конструктивно однофазный двигатель похож на трехфазный, однако статорная обмотка такого двигателя является двухфазной (основная и пусковая обмотки).
Основная (рабочая) обмотка создает магнитное поле при работе электродвигателя. Однако при подключении только рабочей обмотки к питающей сети результирующее магнитное поле будет равно нулю.

Пусковая (вспомогательная) обмотка предназначена для создания необходимого пускового момента. По способу создания пускового момента однофазные электродвигатели можно разделить на двигатели с рабочим конденсатором (конденсатор постоянно подключен к пусковой обмотке) и двигатели с пусковым конденсатором (конденсатор подключается к вспомогательной обмотке на время пуска).

По своему конструктивному исполнению основная и пусковая обмотки имеют ряд отличий. В первую очередь это сечение токопроводящих проводников. Сечение проводов рабочей обмотки больше ввиду длительного пребывания обмотки под нагрузкой. Именно это условие и используется при определении пусковой и рабочей обмоток электродвигателя. Рабочая обмотка имеет бОльшее сечение проводника, а следовательно и меньшее активное сопротивление.

Клеммная коробка однофазного электродвигателя имеет 3 или 4 вывода. Для определения пусковой и рабочей обмоток необходимо произвести измерение активного сопротивления проводников. Иногда обмотки можно различить визуально, зная что рабочая имеет бОльшее сечение.
Рабочая обмотка подключается к сети переменного тока. Один из выводов пусковой – к выводу рабочей обмотки, второй – через конденсатор к другому концу рабочей обмотки. Направление вращения двигателя определяется подключением пусковой обмотки и не зависит от полярности питающего напряжения.

Для электродвигателей с 3 выводами также необходимо произвести измерения активных сопротивлений. Довольно часто встречается комбинация сопротивлений 10 Ом, 25 Ом и 15 Ом. При этом один из выводов основной обмотки будет иметь наименьшее сопротивление (10 Ом), а второй при измерениях с двумя другими выводами покажет 10 Ом и 15 Ом. Третий вывод будет выводом пусковой обмотки. Направление вращения такого двигателя можно изменить лишь изменением схемы соединения обмоток, для чего необходимо произвести разборку электродвигателя.


Всего комментариев: 0


Чем отличаются рабочая и пусковая обмотки?

Знать устройство пусковой и рабочей обмоток надо обязательно. Это можно сравнить с таблицей умножения.

Схемы обмоток.

Начнем с того, что однофазные двигатели имеют две разновидности обмоток, пусковую и рабочую. Эти обмотки отличаются и по сечению провода, и по количеству витков.

Рабочая обмотка всегда имеет сечение провода большее, а следовательно, ее сопротивление будет меньше. На фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным, и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше, и есть рабочая.

Однофазные компрессоры с пусковой обмоткой.

А теперь несколько примеров, с которыми вы можете столкнуться в жизни. Если у двигателя 4 вывода, то, найдя концы обмоток и произведя замеры, вы легко разберетесь в этих четырех проводах. Сопротивление меньше – рабочая обмотка, сопротивление больше – пусковая обмотка.

Подключается все просто, на толстые провода подается 220 В. И один кончик пусковой обмотки –  на один из рабочих. На какой из них, разницы нет: направление вращения от этого не зависит, как и от того, что вы вставите вилку в розетку. Вращение будет изменяться, от подключения пусковой обмотки, меняя ее концы.

Если двигатель имеет 3 вывода, замеры будут выглядеть следующим образом: 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15  ом и 10 ом. Это и будет один из сетевых проводов. Кончик, который показывает 10 ом, тоже сетевой, третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения вы уже не измените. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом , 20 ом. Это тоже одна из разновидностей обмоток. Такие шли на некоторых моделях стиральных машин. В этих двигателях рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая. Подключение пусковой также осуществляется через конденсатор.

Как определить рабочую и пусковую обмотки

Как определить рабочую и пусковую обмотки однофазного электродвигателя

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД — конденсаторный двигатель
  • 25 — мощность 25 (Вт)
  • У4 — климатическое исполнение

Вот его внешний вид.

Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) — провода красного цвета
  • пусковая (В1-В2) — провода синего цвета

В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя .

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

Зная основы электротехники. можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.

В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.

2. Измерение омического сопротивления обмоток

Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.

Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:

Снимаем изоляцию с проводов.

Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.

Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).

Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).

Делаем вывод: первая обмотка — пусковая, вторая — рабочая.

Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).

По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.

Одеваю бирки на провода. Вот что получилось.

Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно. Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так.

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.

В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Как быть в таком случае?

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.

Вот, что у меня получилось:

Отсюда делаем следующий вывод:

  • (1-2) — пусковая обмотка
  • (2-3) — рабочая обмотка
  • (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его реверс можно осуществить путем переключения фазы питающего напряжения .

P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание.

Добрый вечер, Дмитрий! Я сам работаю электриком в ЭТЛ. У меня вопрос по поводу испытаний кабельной линии из сшитого полиетилена. Вы сталкивались с этим, какое подавали напряжение, какие были токи утечки, сколько по времени проходит испытание одной фазы? Заранее спасибо. если можно отправьте свой ответ мне на
почту.

Артем, здравствуйте. Об испытании кабелей из сшитого полиэтилена я писал в комментариях в этой статье .

здравствуйте Дмитрий. а не могли бы вы подробно написать статью о масляных выключателях, (соленоид, контактор включения, катушку отключения, его испытания, замеры характеристик) и также испытания силовых трансформатор и его замеры. очень нужно, есть нюансы в голове.

SLV, я планировал написать эти статьи, особенно про разные типы приводов (ПЭ-11, ПС-10, ПЭ-21 и др.), про высоковольтные масляные и вакуумные выключатели, установленные, как в камерах КСО, так и на каретках, но боюсь, что многим посетителям сайта это будет не интересно. Вот постоянно и откладываю…

Здравствуйте, Дмитрий!
Вы все очень замечательно объясняете, огромное спасибо! Не могли бы Вы прояснить, что означает в автоматических выключателях, к примеру 6кА или 35кА, если они рассчитаны на один ток срабатывания? И почему у них такая разница в цене?

Борис, значения 4,5 (кА), 6 (кА), 10 (кА) и т.д. означают электродинамическую стойкость аппарата защиты при коротком замыкании в сети, т.е. показывают насколько автомат устойчив к короткому замыканию. Для дома (квартиры) вполне хватит 4,5 (кА), т.к. линии от ТП до жилого дома и от ВРУ до квартир достаточно длинные, они обладают большим активным сопротивлением, что приводит к снижению токов короткого замыкания до значений 0,5-1,5 (кА), а чаще и того меньше.

я весь интернет перерыл, нифига не могу разобрать, книги на работе читал, не могу понять и все.кстати немогли бы вы сказать что все таки значит тангенс диэлектрических потерь масла, вот все про него говорят на работе а никто и толком точно незнает.)

И ещё одно.Раньше многие подключали 3-х фазные двигатели к однофазной цепи, но время ушло.Многие сейчас покупают готовые однофазные.У меня была таблица соотношения мощности двигателя к мощности конденсаторов.А тут один знакомый попросил подключить в гараже движок трехфазник.Таблицу я не нашел,пришлось подбирать.
Так вот, нет ли у вас такой таблицы.Они были в старых учебниках по электротехнике.Если есть, прошу опубликовать или отправить на мой E-mail.
C уважением, Николай.

Николай, читайте здесь. Там есть расчет емкости рабочего и пускового конденсаторов в зависимости от мощности двигателя.

Добрый день! Подскажите пожалуйста по проблемке. Однофазный двигатель с конденсаторным стартом. Время от времени двигатель не пускается-гудит. Батарея конденсаторов собрана из трёх МБГП-2 конденсаторов по 2мкФ 630В. Кондёры на тестере показывают полную ёмкость. Чем грозит увеличение ёмкости конденсаторов? и чем грозит уменьшение вольтажа их же с 630В до 450В?Спасибо! сопротивление обмоток 50 Ом пусковая 20 Ом рабочая марку двигателя сейчас не помню.

Вадим, если двигатель гудит, то значит отсутствует вращающий момент. Это может произойти по следующим причинам: либо вышли из строя конденсаторы (отсутствие или малая емкость), либо возникает межвитковое в одной из обмоток двигателя. Лучше начать с простого и заменить старые конденсаторы на новые. Емкость увеличивать не нужно, ну если только совсем немного в ту или иную сторону, а вот вместо 630 (В) можно смело использовать 450 (В).

Добрый день. Конденсаторы показывают номинальную ёмкость. найти другие у нас оказалось проблемой. либо большая либо меньшая ёмкость, либо габарит не подходящий. либо ценник не реальный и сроки поставки. как я понял если я увеличу с шести до почти семи мкФ то особых проблем не будет?двигатель по условию работает по секунд пятнадцать.проблема с пуском носит не систематический характер. как вычислить межвитковое? на трёх фазных асинхронных знаю, прибор есть.спасибо.

Здравствуйте,знатоки.Что,если непредсказуемо меняется направление вращения двигателя.Но,если я использую обмотку с меньшим сечением как рабочую,то тогда все отлично работает,и при перемене контактов,правильно меняет направление вращения,и работает около часа без перегрева.Движок обычный старый СССР.Одна обмотка 14 Ом, вторая 56 Ом.

Доброго времени суток,сегодня взялся запустить вытяжку бытовую над плитой, блок управления скоростью двигателя уже давно приказал долго жить….со светом нет проблем, а вот с эл.двигателя идут четыре провода, как же с ними быть. кого куда подключать? Пвсевдосенсорные кнопки выдернул, поставил фиксируемые, вытяжка KRONA GALA с тремя скоростями вращения вентилятора….Помогите с подключением.

А как вы определили что пусковая обмотка должна иметь большее сопротивление чем рабочая? исходя из чего? обьясните пожалуйста

Здравствуйте,у меня двигатель 2ДАК71-40-1.0-у2 имеется четыре провода(черный,красный,серый,белый)все они прозваниваются между собой,подскажите пожалуйста как подкючить?

http://zametkielectrika.ru

Как определить рабочую и пусковую обмотки у однофазного двигателя — Каталог статей — Каталог статей

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные  двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

как определить на однофазном двигателе, сопротивление и подключение

Для определения типа обмотки однофазного двигателя достаточно взглянуть на маркировку на шильдике и схему. Но бывают ситуации, когда любые маркировочные определения отсутствуют, что, в свою очередь, существенно усложняет задачу. К тому же вид обмотки электродвигателя, который уже ремонтировали, лучше определять самостоятельно, во избежание неприятных неожиданностей.

Что такое пусковая обмотка

Несмотря на свое название, однофазные двигатели имеют двухфазную обмотку: основную и вспомогательную, именно последняя делит электрические моторы небольшой мощности на виды. Так, встречаются бифилярные и конденсаторные электродвигатели, и если первые имеют пусковую обмотку, то вторые обладают пусковым конденсатором. И если у второго вида второстепенная обмотка все время находится в рабочем состоянии, то у первого она отключается от сети сразу после того, как мотор наберет нужный разгон. Таким образом, вспомогательная катушка включается на короткий промежуток времени.

Характеристики рабочей обмотки

Основной или рабочей обмоткой является та, которая работает постоянно, создавая магнитное поле. Как следствие, она обладает большим сечением проводника и меньшим активным сопротивлением из-за постоянной нагрузки. Однако, несмотря на всю ее значимость, она не может работать без пускового механизма, которым и является вспомогательная катушка.

Как отличить на однофазном двигателе

Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.

По цветовой маркировке

К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.

Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок.

Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.

По толщине проводов

Толщина проводов, которые выходят из электромашины небольшой мощности, поможет отличить пусковую катушку от рабочей. Поскольку вспомогательная работает непродолжительное время и не испытывает серьезной нагрузки, то провода, относящиеся к ней, будут более тонкими.

Однако не всегда можно определить толщину сечения проводов невооруженным глазом, иногда разница между ними совсем незаметна человеку.

Но даже если она бросается в глаза, опираться только на это не стоит. Поэтому многие всегда измеряют сопротивление проводов.

При помощи мультиметра

Мультиметр – специальный прибор, позволяющий измерить сопротивление проводов, а также их целостность. Для этого необходимо следовать следующему алгоритму:

  1. Возьмите мультиметр и выберите нужную функцию.

  1. Снимите изоляцию с проводов двигателя, и соедините два любые из них со щупами прибора. Так происходит замер силы сопротивления между двумя проводами мотора.

  1. Если на экране прибора не появилось никаких числовых значений, то необходимо заменить один из проводов, и после этого повторить процедуру. Полученные показания будут относиться к выводам одного мотка.
  2. Подключите щупы измерительного прибора к оставшимся жилам и зафиксируйте показания.
  3. Сравните полученные результаты. Электропровода с более сильным сопротивлением будут относиться к пусковой катушке, а с более слабым – к рабочей.

После того, как замеры будут определены и станет понятно, какие электропровода к какой катушке относятся, рекомендовано промаркировать их любым удобным способом. Это позволит в дальнейшем пропускать процедуру измерения сопротивления при подключении двигателя.

Отличить, где находиться пусковая, а где рабочая обмотка однофазного мотора, можно несколькими способами. Однако наиболее действенным из них является измерение сопротивления электропроводов, отходящих из электромотора малой мощности, с помощью мультиметра.

Как прозвонить компрессор кондиционера и др. холодильной техники

 

В данной статье мы рассмотрим поиск неисправностей электрической части компрессоров. Очень часто при ремонте кондиционера грешат на компрессор, но в итоге дело может оказаться вовсе не в нём. Так как же правильно продиагностировать компрессор?

Как узнать сопротивление обмоток рассказано в этой статье.

 

Прозвонка компрессоров кондиционеров

 

Самый распространённый тип компрессоров в кондиционерах  — однофазные компрессоры с пусковой обмоткой.

Чтобы получить доступ к контактам компрессора необходимо разобрать кондиционер так, чтобы был доступ к компрессору. Обычно контакты защищены крышкой, которая закручена винтом, найти её вы можете по проводам, которые подходят к компрессору. После снятия крышки вы увидите три контактных вывода на которые надеты клеммы с проводами.

 

Необходимо снять провода и мультиметром измерить сопротивление между выводами. Ставим переключатель прибора на функцию измерения сопротивления (обозначается буквой Ω). Если мультиметр показывает бесконечно большое сопротивление между выводом С и остальными, то это означает обрыв, в случае встроенной защиты нужно убедиться что компрессор не перегрет и не сработала защита, в противном случае, и если защита внешняя-компрессор неисправен. Если сопротивление стремится к нулю это означает короткое замыкание и компрессор также неисправен.

 

Точное значение сопротивлений зависит от мощности компресссора, точности вашего прибора и может колебаться в пределах, примерно, 1-20 Ом. 

Как видно из схемы, сопротивление между выводами М и S должно равняться сумме сопротивлений между клеммами S и С и между М и C.

Как правило, рабочая обмотка (M-C) более мощная, поэтому её сопротивление меньше чем у пусковой (S-C).

В каждом компрессоре существует тепловая защита, но она может быть встроенная как на схеме,  или находиться под крышкой, рядом с выводами компрессора.

Если она не встроенная, так называемая «таблетка», то её можно прозвонить отдельно и заменить в случае неисправности (она должна быть замкнута в нормальном состоянии, размыкается при достижении определённой температуры 90-120 °С ).

Сразу оговорюсь, что таким способом мы не сможем определить короткозамкнутые витки, для этого существуют другие приборы (но и они недостаточно стабильно определяют короткозамкнутые витки).

 

Измерение сопротивления изоляции мегомметром.

Обычным тестером проверить пробой изоляции не получится-он измеряет сопротивление используя низкое напряжение 3—9 В. Мегомметр позволяет измерять сопротивление более высоким напряжением 200-1000 В. Но всё равно предварительно необходимо «прозвонить» обмотки мультиметром, так как нельзя измерять сопротивление мегомметром при коротком замыкании обмотки на корпус.

На приборе можно выбрать напряжение которым будет измеряться сопротивление и время в течение которого будут тестироваться обмотки.

Измерять сопротивление необходимо между одним из трёх выводов на компрессоре и, например, медной трубкой выходящей из компрессора напряжением 250-500 В. Сопротивление должно находиться в пределах 7-10 МОм. Если нет, то также компрессор под замену.

Перед измерением внимательно изучите инструкцию к вашему прибору, используется высокое напряжение, поэтому при неправильном использовании можно получить удар электрическим током или вывести прибор из строя.

 

Прозвонка компрессора холодильника

 

В бытовых холодильниках применяются маломощные компрессоры, в которых пусковая обмотка подключается на несколько секунд через пусковое реле с помощью позистора или электромагнитного реле.

Схема с электромагнитным реле:

В этом случае, ток проходит последовательно через катушку реле и рабочую обмотку компрессора. Пусковой ток всегда больше рабочего, используя этот принцип, реле рассчитано так, что пусковой ток замыкает контакты реле и подключает пусковую обмотку компрессора, который запускается. При этом ток, текущий по рабочей обмотке и обмотке реле снижается, контакты размыкаются, отключая стартовую обмотку.  

В составе реле также установлено термореле, которое отключает питание компрессора при его перегреве.

Схема с позистором:

 

На схеме позистор обозначен значком температуры t0  , а термореле цифрой 6.

Принцип действия такой: при комнатной температуре позистор имеет низкое сопротивление и напрямую подаёт напряжение на пусковую обмотку S. Через него протекает ток, который разогревает его, при нагревании внутреннее сопротивление позистора увеличивается, фактически отключая пусковую обмотку через несколько секунд после запуска компрессора. Остывает позистор только после отключения питания с компрессора и при последующем цикле включения снова подключает пусковую обмотку.

 

Проверка пуско-защитных реле холодильника

 

Выглядят пуско-защитные реле так:

Электромагнитное реле

Реле с позистором

Круглая чёрная «таблетка» с клеммами — это термореле, которое при нормальной температуре замкнуто, а размыкается только при сильном нагревании. Проверяется омметром — сопротивление должно стремиться к нулю, или в режиме «прозвонки» — должен быть звуковой сигнал при прикладывании щупов к клеммам.

То же самое относится и к позистору — в нормальном состоянии он замкнут. Находится он обычно внутри реле, между клеммами S и R компрессора. (На приведённом рисунке — это клеммы на белом основании). 

 

Трёхфазные компрессоры и компрессоры инверторных кондиционеров.

У трёхфазных компрессоров и у инверторов сопротивление между обмотками должно быть одинаковое, так как у них нет пусковой обмотки, а в остальном методика выявления неисправностей такая же, как и для однофазного компрессора.

Что такое асинхронный двигатель с расщепленной фазой? — его Приложения

Электродвигатель с разделенной фазой также известен как электродвигатель для запуска с сопротивлением. Он имеет ротор с одной клеткой, а его статор имеет две обмотки, известные как основная обмотка и пусковая обмотка. Обе обмотки смещены в пространстве на 90 градусов. Основная обмотка имеет очень низкое сопротивление и высокое индуктивное сопротивление, тогда как пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление. Схема подключения двигателя показана ниже.

Резистор включен последовательно со вспомогательной обмоткой. Ток в двух обмотках неодинаков, в результате вращающееся поле неоднородно. Следовательно, пусковой крутящий момент небольшой, порядка 1,5–2-кратного пускового крутящего момента. При запуске двигателя обе обмотки включаются параллельно.

Как только двигатель достигает скорости примерно от 70 до 80% от синхронной скорости, пусковая обмотка автоматически отключается от сети питания.Если мощность двигателей составляет около 100 Вт или более, центробежный переключатель используется для отключения пусковой обмотки, а для двигателей с меньшей мощностью используется реле для отключения обмотки.

Реле подключено последовательно с основной обмоткой. При запуске в цепи протекает сильный ток, и контакт реле замыкается. Таким образом, пусковая обмотка находится в цепи, и по мере того, как двигатель достигает заданной скорости, ток в реле начинает уменьшаться.Таким образом, реле размыкает и отключает вспомогательную обмотку от источника питания, в результате чего двигатель работает только от основной обмотки.

Векторная диаграмма асинхронного двигателя с расщепленной фазой показана ниже.

Ток в основной обмотке (I M ) отстает от напряжения питания V почти на угол 90 градусов. Ток во вспомогательной обмотке I A примерно совпадает по фазе с линейным напряжением. Таким образом, существует разница во времени между токами двух обмоток.Разность фаз во времени ϕ составляет не 90 градусов, а порядка 30 градусов. Этой разности фаз достаточно для создания вращающегося магнитного поля.

Ниже показана характеристика крутящего момента и скорости двигателя с расщепленной фазой .

Здесь n 0 — точка, в которой срабатывает центробежный переключатель. Пусковой крутящий момент двигателя с резистивным пуском примерно в 1,5 раза больше крутящего момента при полной нагрузке. Максимальный крутящий момент примерно в 2,5 раза больше крутящего момента при полной нагрузке примерно при 75% синхронной скорости.Пусковой ток двигателя примерно в 7-8 раз превышает значение полной нагрузки.

Направление электродвигателя с резистивным пуском можно изменить на обратное, поменяв местами линейное соединение основной или пусковой обмотки. Реверс двигателя возможен только в состоянии покоя.

Применение асинхронного двигателя с расщепленной фазой

Двигатели этого типа дешевы и подходят для легко запускаемых нагрузок, когда частота запуска ограничена.Этот тип двигателя не используется для приводов, которым требуется более 1 кВт из-за низкого пускового момента. Ниже перечислены различные приложения: —

  • Используется в стиральных машинах и вентиляторах кондиционеров.
  • Двигатели используются в миксерах-шлифовальных машинах, полировальных машинах.
  • Воздуходувки, центробежные насосы
  • Станок токарно-сверлильный.

Пуск однофазного двигателя — нарушение напряжения

Основы пуска однофазного двигателя: Однофазный двигатель, подключенный к однофазной сети, не будет вращаться, поскольку обмотки не создают вращающееся магнитное поле.В течение одного полупериода сигнала переменного тока крутящий момент будет создаваться в одном направлении, а затем в противоположном направлении в течение следующего полупериода, тем самым нейтрализуя крутящий момент ротора. Однако двигатель можно повернуть вручную, и он продолжит вращаться в том направлении, в котором был повернут. Это ненадежный способ запуска двигателя. Для запуска двигателя необходимо создать вращающееся магнитное поле . Есть несколько различных способов реализовать подключение однофазного двигателя, которое приводит к вращающемуся магнитному полю.Их:

* Конденсаторный пуск Мотор

* Навсегда Двигатель с разделенным конденсатором

* Конденсаторный пусковой конденсаторный двигатель

* Двигатель с разделенной фазой

Конденсаторный пусковой двигатель Двигатели

с конденсаторным пуском — это однофазные асинхронные двигатели с двумя обмотками: основная обмотка и пусковая обмотка, в которых пусковая обмотка имеет последовательно соединенный конденсатор . Ток, проходящий через пусковую обмотку (с конденсатором), будет иметь разность фазового угла 90 градусов (в идеале) по сравнению с током, протекающим через основную обмотку.Из-за этой разности фаз создается результирующее вращающееся магнитное поле статора, которое вращает ротор. Схема однофазного двигателя с конденсаторным пуском показана ниже.

Конденсаторный пусковой двигатель

После запуска двигателя и достижения желаемой скорости центробежный переключатель, установленный на роторе, размыкает переключатель, тем самым отключая конденсатор от цепи. Такое расположение позволяет использовать конденсатор с кратковременным номиналом и, следовательно, снизить стоимость двигателя.

Конденсаторный пуск двигателя — Диаграмма вектора

Двигатели с конденсаторным пуском используются для жестких пусковых нагрузок, таких как компрессоры, конвейеры, насосы и некоторые машины инструменты.

Двигатели с постоянным разделенным конденсатором

Постоянный разделительный конденсатор (PSC) Двигатели имеют две обмотки, называемые основной и вспомогательной обмотками. Конденсатор постоянно включен последовательно со вспомогательной обмоткой. Основная и вспомогательная обмотки электрически установлены под углом 90 градусов.Кроме того, из-за наличия конденсатора ток, протекающий через вспомогательную обмотку, будет опережать ток в основной обмотке (ток в конденсаторе опережает напряжение). Благодаря этому в статоре создается чистое вращающееся магнитное поле, которое заставляет ротор вращаться.

Паспортная табличка двигателя с постоянным разделенным конденсатором показана выше. В этом случае производитель рекомендует конденсатор емкостью 15 мкФ с номинальным напряжением 370 В переменного тока.

Двигатели с постоянным разделенным конденсатором (PSC) Двигатели с постоянными разделенными конденсаторами (PSC) -Фазовая диаграмма

Выбор конденсатора — это компромисс между стоимостью, пусковым моментом и рабочими характеристиками.Двигатели PSC тихие и обладают высоким КПД. Двигатели PSC используются в вентиляторах, нагнетателях в системах отопления и кондиционирования воздуха.

PSC Показан двигатель с подключенным конденсатором

Конденсатор пусковой конденсатор Рабочий двигатель

Сбалансированная двухфазная работа двигателя при пуске и на другой скорости может быть достигнута путем параллельного подключения двух конденсаторов при пуске, в результате чего конденсатор запускает двигатель с конденсатором . При запуске оба конденсатора будут включены в цепь, и как только скорость достигнет примерно 80%, пусковой конденсатор откроется, и в цепи будет только рабочий конденсатор. Пусковой конденсатор представляет собой большой электролитический конденсатор, а рабочий конденсатор обычно из маслонаполненной бумаги / полимера с низкими потерями и меньшей стоимости. Большой пусковой конденсатор дает двигателю больший пусковой крутящий момент, а рабочий конденсатор используется для улучшения рабочих характеристик.

Конденсаторные двигатели с двумя номиналами работают тихо, плавно и имеют более высокий КПД.

конденсатор пусковой конденсатор запуск двигателя

Электродвигатель с разделенной фазой

Асинхронный двигатель с расщепленной фазой имеет две обмотки — основную и пусковую.В пусковой обмотке используются провода меньшего размера (более тонкие), которые имеют более высокое сопротивление и меньшее количество витков (меньшая индуктивность и меньшее соотношение X / R), чем основная обмотка. Это приводит к тому, что ток пусковой обмотки будет больше совпадать по фазе с приложенным напряжением по сравнению с основной обмоткой. Эта разность фаз, которая не является идеальной 90 градусами, а больше около 30 градусов или меньше, достаточна для создания небольшого вращающегося магнитного поля и запуска двигателя. Крутящий момент для таких двигателей будет низким из-за неидеальной разности фаз между токами обмоток.

Асинхронный двигатель с расщепленной фазой

После запуска двигателя установленный на роторе центробежный выключатель отключает пусковую обмотку, и двигатель продолжает работать с основной обмоткой. Пусковой ток такого двигателя обычно выше, чем у конденсаторного пускового двигателя, в то время как рабочие характеристики такие же хорошие, как у других типов однофазных пускателей двигателя.

Схема мотор-вектор с расщепленной фазой

Асинхронные двигатели с расщепленной фазой используются для запуска легко запускаемых нагрузок, таких как вентиляторы, пилы и т. Д.

Дополнительная информация : Калькулятор двигателя, Калькулятор пускового тока двигателя

ДВИГАТЕЛИ: СОПРОТИВЛЕНИЕ-ЗАПУСК ИНДУКЦИОННО-РАБОЧИЕ И КОНДЕНСАТОРНО-ПУСКОВЫЕ ДВИГАТЕЛИ ИНДУКЦИОННОГО ЗАПУСКА

СОПРОТИВЛЕНИЕ-ЗАПУСК ИНДУКЦИОННЫХ ДВИГАТЕЛЕЙ И ПУСК И КОНДЕНСАТОРА ИНДУКЦИОННО-ЗАПУСКНЫЕ ДВИГАТЕЛИ

Асинхронные двигатели с резистивным пуском и индукционные двигатели с конденсаторным пуском очень похожи по конструкции. Обмотка статора обоих двигателей содержит как пусковую обмотку , так и рабочую обмотку .Пусковая обмотка сделана из провода меньшего диаметра и расположена выше в материале металлического сердечника, чем ходовая обмотка, как показано на Рисунке 11–3. Поскольку пусковая обмотка сделана из проволоки меньшего размера, чем обмотка, она будет иметь более высокое сопротивление, чем обмотка. Размещение ходовой обмотки глубже в материале металлического сердечника приводит к тому, что она демонстрирует большую индуктивность, чем пусковая обмотка. Электрически обмотка похожа на схему, показанную на Рисунке 11–4. Статор построен в этом

способ создания фазового сдвига между током, протекающим через пусковую обмотку, и током, протекающим через пусковую обмотку.И индукционные двигатели с резистивным пуском и конденсаторным пуском начинают вращение, создавая вращающееся магнитное поле в обмотке статора. Напомним, что вращающееся магнитное поле не может быть создано с помощью одной фазы.

Асинхронный пусковой двигатель с сопротивлением пуска

Вращающееся магнитное поле асинхронного двигателя с резистивным пуском создается противофазными токами в рабочей и пусковой обмотках. Поскольку рабочая обмотка кажется более индуктивной и менее резистивной, чем пусковая обмотка, ток в рабочей обмотке будет близок к 90 градусам, сдвинутым по фазе с приложенным напряжением.Пусковая обмотка кажется более резистивной и менее индуктивной, чем рабочая обмотка, в результате чего ток пусковой обмотки будет менее противофазным с приложенным напряжением, как показано на Рисунке 11–5. Разность фазового угла между током в рабочей обмотке и током в пусковой обмотке асинхронного двигателя с резистивным пуском обычно составляет от 35 до 40 градусов. Этой разницы фазовых углов достаточно для создания слабого вращающегося поля и, как следствие, слабого крутящего момента для запуска двигателя. Когда двигатель достигает примерно 75% своей номинальной скорости, пусковая обмотка отключается от цепи, и двигатель продолжает работать с рабочей обмоткой.В негерметичных двигателях пусковая обмотка обычно отключается с помощью центробежного выключателя. Центробежный выключатель показан на Рисунке 11–6. Контакты центробежного выключателя включены последовательно с пусковой обмоткой, так как

показано на Рисунке 11–7. Когда двигатель находится в состоянии покоя или не работает, контакты центробежного переключателя замыкаются и обеспечивают замыкание пусковой обмотки. Когда двигатель запускается и достигает примерно 75% своей номинальной скорости, противовес на центробежном переключателе перемещается наружу из-за центробежной силы, вызывая размыкание контактов и отключение пусковой обмотки от источника питания.Двигатель продолжает работать на ходовой обмотке.

Когда пусковая обмотка отключена от цепи, в статоре больше не создается вращающееся магнитное поле. Этот тип двигателя продолжает работать из-за тока, наведенного в обмотках короткозамкнутого ротора. Роторы с беличьей клеткой названы так потому, что они содержат стержни внутри ротора, которые напоминали бы беличью клетку, если бы были удалены пластинки, как показано на Рисунке 11-8.

Клетка для белок — это устройство, которое часто помещают в клетку с маленькими домашними животными, такими как хомяки, чтобы они могли тренироваться, бегая внутри клетки для белок.На разрезанном пополам роторе с короткозамкнутым ротором четко видны стержни и вал двигателя, как показано на Рисунке 11–9. Стержни вращающейся обмотки ротора с короткозамкнутым ротором прорезают линии магнитного потока, вызывая индуцированное напряжение в роторе. Поскольку стержни ротора закорочены вместе на каждом конце, ток, протекающий через стержни ротора, создает магнитное поле в роторе. В роторе возникают переменные магнитные поля, заставляющие двигатель продолжать работу, как показано на Рисунке 11–10. Это тот же принцип, который позволяет трехфазному двигателю продолжать работу, если одна фаза потеряна и двигатель подключен к однофазной сети.Основное отличие состоит в том, что двигатель с расщепленной фазой предназначен для работы в этих условиях, а трехфазный двигатель — нет. Асинхронные двигатели с резистивным пуском и конденсаторным пуском имеют прочную конструкцию и прослужат годы при минимальном техническом обслуживании. Однако их рабочие характеристики не так желательны, как у других типов однофазных двигателей. Благодаря своему принципу действия они имеют низкий коэффициент мощности. Когда двигатель работает без нагрузки, они потребляют почти столько же тока, сколько при работе двигателя с полной нагрузкой.Обычно, если двигатель потребляет ток полной нагрузки 8 ампер, ток холостого хода может составлять от 6,5 до 7 ампер.

Конденсаторные асинхронные двигатели

Асинхронные двигатели с конденсаторным пуском очень похожи на асинхронные двигатели с резистивным пуском. Конструкция обмотки статора в основном такая же. Основное отличие состоит в том, что конденсатор включен последовательно с пусковой обмоткой, как показано на Рисунке 11–11. Индуктивные нагрузки заставляют ток отставать от приложенного напряжения.Конденсаторы, однако, заставляют ток опережать приложенное напряжение. Если пусковой конденсатор рассчитан правильно, ток пусковой обмотки будет опережать приложенное напряжение на величину, которая приведет к сдвигу фазы на 90 градусов между током пусковой обмотки и током пусковой обмотки, что приведет к увеличению величины пускового момента. , как показано на Рисунке 11–12. Если емкость пускового конденсатора слишком велика, это приведет к смещению тока пусковой обмотки более чем на 90 градусов по фазе с током рабочей обмотки, и пусковой крутящий момент будет уменьшен.При замене пускового конденсатора на этот тип

двигателя, следует соблюдать рекомендованные производителем значения микрофарад. Допускается использование конденсатора с более высоким номинальным напряжением, но никогда не устанавливайте конденсатор с более низким номинальным напряжением. Асинхронный двигатель с конденсаторным пуском показан на Рисунке 11–13. Типичный пусковой конденсатор показан на Рисунке 11–14.

Входящие поисковые запросы:

Связанные сообщения:

Поиск пусковых и рабочих обмоток

Обмотки однофазного двигателя

Пора пересмотреть принцип «что есть что», когда речь идет об обмотках однофазного двигателя.Часто вы найдете двигатель, у которого нет схемы подключения, только 3 провода, сидящие в соединительной коробке. Теперь вам нужно найти пусковую и пусковую обмотки, чтобы подключить этот двигатель.

Давайте проверим

Напоминаем перед началом тестирования:

Проведите полную проверку двигателя, прежде чем даже подумаете о подключении этого двигателя. Другими словами, выполните механические проверки, проверьте сопротивление изоляции и т. Д. Только если этот двигатель находится в хорошем состоянии, перейдите к поиску соответствующих обмоток и подключите его к источнику питания.

Тогда проверим обмотки. Для приведенной выше диаграммы я только что выбрал случайные цвета для проводов, которые вы найдете в клеммной коробке, но процедура тестирования одинакова независимо от цвета.

Для нашей диаграммы:

Проверить сопротивление между коричневым и желтым. Допустим, у вас сопротивление 5 Ом

Проверка сопротивления между коричневым и синим. На этот раз вы получите 8 Ом

Проверить сопротивление между желтым и синим. Вы получаете показание 3 Ом

Понимание чтений

Здесь мы торопимся и делаем ошибки.Мы знаем, что пусковая обмотка имеет самое высокое сопротивление, а ходовая — самое низкое. Не обманывайтесь здесь значениями 8 и 5 Ом!

Ваша пусковая обмотка — 5 Ом, а рабочая — 3 Ом. значение 8 Ом было тем, что вы проверили на обеих обмотках!

Подводя итог (без каламбура), сумма хода и пусковой обмотки — это то, откуда берется 8 Ом.

Это означает, что желтый цвет является общим между ними, и это то, к чему вы подключите нейтраль.Коричневый цвет — это начало, и он пойдет с одной стороны вашего конденсатора. Другая сторона конденсатора и синего цвета идет к вашему активному (живому). Работа сделана и готова к запуску.

И последнее, но не менее важное — не забывайте оставаться в безопасности! Избегайте соблазна сократить путь, оно того не стоит.

Пс. не забудьте заглянуть в мастерскую 🙂

Архив стартовой обмотки — HVAC School

Взгляните на характеристики этого спирального компрессора Copeland, полученного из мобильного приложения Copeland (кстати, это невероятное приложение).

Это однофазный компрессор, поэтому указанные значения силы тока основаны на показаниях силы тока от провода, подключенного к общей клемме.

LRA — это сила тока заблокированного ротора, которая представляет собой ожидаемую измеримую пусковую силу тока, а RLA — это номинальный ток нагрузки, то есть ток, который он будет потреблять при нормальной работе с номинальной нагрузкой. Вы можете задаться вопросом, почему здесь два разных рейтинга RLA … этот технический совет не об этом, но если вы получите приложение и щелкните i с кружком вокруг него, вы сможете узнать.

Дело в том, что нас всегда учат измерять общую силу тока с однофазными двигателями, но знаете ли вы почему?

Однофазный двигатель, подобный показанному выше, имеет три клеммы (общий, пуск и работа), но только две фактические обмотки (пуск и работа). Общая клемма — это просто «общая» точка между обеими обмотками, поэтому, когда мы измеряем силу тока на общей клемме, мы видим общий ток обеих обмоток.

В профессиональной школе мы изучаем закон Ома, который нас учит

ВОЛЬТ = АМПЕР X ОМ

Однако, когда мы пытаемся применить это в полевых условиях, мы довольно быстро осознаем некоторые вещи, которые мешают применить эту аккуратную маленькую формулу

А именно —

  • Напряжение (и, следовательно, сила тока) не фиксируется в переменном токе, поэтому мы измеряем среднеквадратичные значения, а не ФАКТИЧЕСКИЕ пиковые значения
  • Общее сопротивление (импеданс) в индуктивной (магнитной) нагрузке не является фиксированным и представляет собой комбинацию статического сопротивления обмоток и индуктивного реактивного сопротивления, которое создается при расширении и сжатии магнитных полей, а также при возникновении обратной ЭДС при работе двигателей. вращение.
  • Даже в простой цепи лампочки постоянного тока мы не можем просто измерить сопротивление лампы с помощью метра и применить закон Ом, потому что сопротивление нити накала увеличивается по мере ее нагрева (попробуйте как-нибудь).

Итак, чтобы подвести итог….

ВЫ НЕ СМОЖЕТЕ ТОЧНО ПРИМЕНИТЬ ЗАКОН OHMS В ОБЛАСТИ HVAC / R

Когда мы измеряем сопротивление обмоток от клеммы к клемме, это в основном бессмысленно, потому что показания в любом случае часто очень низкие… иногда настолько низкие, что ваш счетчик становится неточным.

Обратите внимание на низкое сопротивление этого же компрессора.

Реальное сопротивление двигателя проявляется только тогда, когда на него подается переменный ток и магнитные поля начинают взаимодействовать, это общее сопротивление при включении называется импедансом.

Мы знаем, что стартовая обмотка имеет более высокое значение статического сопротивления, чем ходовая обмотка, и что когда мы добавляем пуск к общему и бег к общему вместе, он будет равен пробегу к пуску (что является довольно очевидным утверждением, поскольку общее — это просто центральная точка) и что, если тепловая перегрузка открыта, мы будем измерять OL между CR и CS, но считываем комбинированное значение RS.

Все это правда, и это причины для отказа от счетчика, но это все еще ничего не говорит нам о названии этой статьи, и вам, вероятно, интересно, к чему я, черт возьми, веду.

Я убеждаюсь, что мы все на одной волне, прежде чем я брошу на вас пусковую бомбу…

Но еще нужно договориться.

Рабочая обмотка подключается «через линию», другими словами, одна ветвь мощности с разделенной фазой подключена к общему проводу, а другая — к рабочему.Ток, который проходит через эту обмотку, полностью зависит от общего импеданса этой обмотки, который имеет несколько факторов, включая статическое сопротивление обмотки, индуктивное реактивное сопротивление обмоток и обратную ЭДС, которая возникает при запуске двигателя.

Другими словами… сила тока начинается с высокой, потому что сопротивление в рабочей обмотке начинается с низкого, а сила тока падает, когда двигатель набирает скорость, потому что увеличивается полное сопротивление.

Помните, закон об омах учит нас, когда сопротивление растет, а сила тока падает, если напряжение остается неизменным.

Пусковая обмотка подключена через рабочий конденсатор и, возможно, через какое-то другое пусковое устройство, а не подключена «поперек линии», как рабочая обмотка. Это означает, что ток, протекающий через пусковую обмотку, ограничен ОБОИМ полным сопротивлением обмотки И емкостью рабочего конденсатора и любого другого пускового механизма.

Вот изображение с осциллографа того же самого компрессора, упомянутого выше, с напряжением 197 В, надлежащим рабочим конденсатором и без комплекта жесткого запуска…

Посмотрите внимательно.

Обратите внимание, что синяя линия — это ТОК НАМОТКИ, а красная линия — ТОК НАЗАД НАМОТКИ.

Обратите внимание, что ВСЕ истинный пусковой ток возникает на рабочей обмотке, и ток пусковой обмотки не повышается, пока ток рабочей обмотки не начнет снижаться?

Это потому, что если пусковая обмотка не имеет пускового конденсатора какой-либо формы, она не может потреблять ток выше, чем позволяет рабочий конденсатор. По сути, рабочий конденсатор становится ограничителем тока или потолка, который допускает только определенное количество сохраненного тока за цикл и не более того.

Попробуйте когда-нибудь.

Измерьте рабочую силу тока на пусковой обмотке с помощью конденсатора немного большего размера, немного меньшего размера, а затем совсем без него. Вы увидите более высокие усилители, более низкие усилители и затем (очевидно) отсутствие усилителей.

Попробуйте измерить броски тока на пусковом проводе компрессора без резкого запуска и посмотрите, что у вас получится.

Тогда попробуйте с трудом начать.

Заметили какие-нибудь изменения в усилителях пусковой обмотки? Вы видите момент, когда обратная ЭДС сняла жесткий пуск с цепи? Была ли ОБЩАЯ сила тока на самом деле ниже при жестком пуске, или время пуска уменьшилось, и больше тока было перенесено на пусковую обмотку?

— Брайан

Quia — Блок 17.Двигатели

A B
Двухфазный двигатель имеет обмотку ____ и ____. пуск, работа
Какие три способа включения и выключения пусковой обмотки можно использовать для двигателя с расщепленной фазой? реле потенциала, реле тока, центробежный переключатель
Магнитное реле тока размыкает и замыкает свои контакты в зависимости от ____. ток в рабочей обмотке
Двигатель с постоянным разделенным конденсатором (PSC), который работает и набирает обороты, будет иметь ________ под напряжением. пусковая обмотка
Двигатель с расщепленной фазой, имеющий реле тока и пусковой конденсатор, называется двигателем ____. Конденсаторный пуск, индукционная работа (CSIR)
У пусковых обмоток больше или меньше витков, чем у рабочих обмоток? подробнее
Когда обычный двигатель с расщепленной фазой достигает примерно 75% своей рабочей скорости, пусковая обмотка обесточивается на ____. центробежный выключатель
Конденсаторы, включенные последовательно с пусковой обмоткой, обеспечивают большую ____. пусковой момент
Двигатель с экранированными полюсами имеет мало ____. пусковой момент
Трехфазные двигатели только какие обмотки? ход обмоток
Магнитное реле тока размыкает и замыкает свои контакты на основании ____. ток в обмотке хода
Скорость двигателя определяется ____. количество полюсов двигателя
Пусковое устройство с положительным температурным коэффициентом относится к типу ____. термистор
Имеется ли в двигателе с постоянным разделенным конденсатором только рабочий конденсатор, только пусковой конденсатор или оба конденсатора рабочего и пускового? только рабочий конденсатор
Чем больше нагрузка на работающий двигатель, тем больше величина ____. скольжение
Номинальное значение в микрофарад пускового конденсатора всегда на _____ больше, чем у рабочего конденсатора. выше
Контакты пускового реле токового типа нормально разомкнуты или замкнуты? открыт

Пусковая обмотка удалена во время работы Патенты и заявки на патенты (класс 318/785)

Номер патента: 7777992

Реферат: Схема пуска двигателя для асинхронного двигателя, в частности однофазного асинхронного двигателя переменного тока, с основной обмоткой (4) и вспомогательной обмоткой (5), на которые подается ток, особенно переменного тока, через соединения источника тока. (24, 25), и с устройством переключения пуска (15), служащим для прерывания тока, протекающего через вспомогательную обмотку (5) после запуска двигателя, устройство переключения пуска (15) подключено к устройству управления. (20) через соединитель (18), управляющее устройство (20) подключается между токоведущими соединениями (24, 25) и с переключателем защиты обмотки (28), который нормально замкнут и размыкается при возникновении вина.Изобретение отличается тем, что устройство управления (20) соединено с выключателем защиты обмотки (28) по меньшей мере через один дополнительный разъем (22, 17), предпочтительно по меньшей мере через один дополнительный разъем (22, 17) и вспомогательную обмотку. (5).

Тип: Грант

Подано: 6 ноября 2007 г.

Дата патента: 17 августа 2010 г.

Цессионарий: Danfoss Compressors GmbH

Изобретателей: Клаус Шмидт, Ганс Петер Кристенсен

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *