Принцип Действия Двигателя Постоянного Тока: Что Нужно Знать
Мощный двигатель постоянного тока
Тема нашей сегодняшней статьи — принцип действия электродвигателя постоянного тока. Если вы бываете на нашем сайте, то наверняка уже знаете, что эту тему мы решили раскрыть более полно и понемногу разбираем все разновидности электромотором и электрогенераторов.
Постоянный ток известен человечеству вот уже где-то 200 лет, эффективно применять его научились немного позже, а вот сегодня трудно себе представить деятельность человека, где бы энергия не применялась. Приблизительно таким же образом происходила и эволюция электрических двигателей.
Немного истории и теории
Первые электрические двигатели
Бурное развитие электротехники не прекращается с момента зарождения этого направления в физике. Первыми разработками, связанными с электрическими моторами, были работы многих ученых в 20-х годах 19-го столетия. Изобретали всяких мастей пытались соорудить механические машины, способные превращать электрическую энергию в кинетическую.
- Особую значимость имеют исследования М. Фарадея, который в 1821 году, проводя эксперименты по взаимодействию тока и разных проводников, выяснил, что проводник может вращаться внутри магнитного поля, ровно как вокруг проводника может вращаться и магнит.
- Второй этап развития занял более значительный отрезок времени от 1830-х до 1860-х годов. Теперь, кода основные принципы преобразования энергии человеку были известны, он пытался создать наиболее эффективную конструкцию двигателя с вращающимся якорем.
- В 1833 году американский изобретатель и по совместительству кузнец Томас Девенпорт смог построить первый роторный двигатель, работающий на постоянном токе, и сконструировать модель поезда, приводимую им в движение. На свою электрическую машину он получил патент спустя 4 года.
Б.С. Якоби
- В 1834 году Борис Семенович Якоби, русско-немецкий физик и изобретатель, создает первый в мире электродвигатель постоянного тока, в котором смог таки реализовать основной принцип работы таких машин, применяемый и сегодня – с постоянно вращающейся частью.
- В 1838 году, 13 сентября был произведен пуск настоящей лодки по Неве с 12-ю пассажирами на борту – так происходили полевые испытания двигателя Якоби. Лодка двигалась со скоростью 3 км\ч против течения. Привод двигателя был соединен с лопастными колесами по бокам, как на пароходах того времени. Электрический ток подавался к агрегату от батареи содержащей 320 гальванических элементов.
Лодка с лопастными колесами
Результатом проведенных испытаний стала возможность формирования основных принципов дальнейшего развития электромоторов:
- Во-первых, стало ясно, что расширение сферы их применения напрямую зависит от удешевления способов получения электрической энергии – требовался надежный и недорогой генератор, а не дорогостоящие на тот момент гальванические батареи.
- Во-вторых, требовалось создать достаточно компактные двигатели, которые бы, однако, обладали большим коэффициентом полезного действия.
- И в третьих – были очевидны преимущества двигателей с вращающимися неоднополюсными якорями, с постоянным вращающимся моментом.
Работа шунтового генератора
Затем наступает третий этап развития электромоторов, который ознаменован открытием явления самовозбуждения двигателя электрического тока, после чего был сформирован принцип обратимости таких машин, то есть двигатель может быть генератором, и наоборот. Теперь для того чтобы запитать двигатель начали применять недорогие генераторы тока, что в принципе делается и сегодня.
Интересно знать! Любая электрическая сеть подключена к электростанции, вырабатывающей ток. Сама станция, по сути, и есть набор мощнейших генераторов, приводимых в движение разными способами: течение реки, энергия ветра, ядерные реакции и прочее. Исключение составляют, разве что, фотоэлементы в солнечных батареях, но это уже другая, дорогая, пока не нашедшая достаточного распространения история.
Вид современной конструкции электродвигатель приобрел в далеком 1886 году, после чего в него вносились только доработки и усовершенствования.
Основные принципы функционирования
Двигатели постоянного тока и принцип действия: вспоминаем школьные уроки физики
В основу любого электрического двигателя положен принцип магнитного притягивания и отталкивания. В качестве эксперимента можете провести такой простейший опыт.
- Внутрь магнитного поля нужно поместить проводник, по которому нужно пропустить электрический ток.
- Для этого удобнее всего пользоваться магнитом в форме подковы, а в качестве проводника подойдет медная проволока подключенная концами к батарейке.
- В результате опыта вы увидите, что проволоку вытолкнет из области действия постоянного магнита. Почему это происходит?
- Дело в том, что при прохождении тока через проводник, вокруг последнего создается электромагнитное поле, которое вступает во взаимодействие с уже имеющимся, от постоянного магнита. Как результат этого взаимодействия, мы видим механическое движение проводника.
- Если говорить более подробно, то выглядит это так. Когда круговое поле проводника вступает во взаимодействие с постоянным от магнита, то сила магнитного поля с одной стороны возрастает, а с другой уменьшается, из-за чего провод выталкивает из области действия магнита под углом 90 градусов.
Занимательная физика
- Направление, в котором вытолкнет проводник можно установить по правилу левой руки, которое применимо только к электродвигателям. Правило гласит следующее – левую руку нужно поместить в магнитное поле так, чтобы его силовые линии входили в нее с ладони, а 4 пальца были направлены по ходу движения положительных зарядов, тогда отведенный в сторону большой палец покажет направление воздействующей на проводник движущей силы.
Эти простые принципы двигателя постоянного тока применяется и поныне. Однако в современных агрегатах вместо постоянных магнитов применяют электрические, а рамки заменяют сложные системы обмоток.
Строение двигателя
Двигатель постоянного тока и устройство
Давайте теперь более подробно разберем, как устроен двигатель постоянного тока, какие в нем имеются детали и как они взаимодействуют друг с другом.
Продолжение теории
Принцип и устройство двигателя постоянного тока
Сконструировать простейший двигатель постоянного тока вы легко сможете своими руками. Инструкция такова, что достаточно соорудить прямоугольную рамку из проводника, способную вращаться вокруг центральной оси.
- Рамка помещается в магнитное поле, после чего на ее концы подается постоянное напряжение, от той же батарейки.
- Так только по рамке начинает течь ток, она приходит в движение, пока не займет горизонтальное положение, называемое нейтральным или «мертвым», когда воздействие поля на проводник равно нулю.
- По идее, рамка должна остановиться, но этого не произойдет, так как она пройдет «мертвую» точку по инерции, а значит, электродвижущие силы снова начнут возрастать. Но из-за того, что ток теперь течет в обратном направлении относительно магнитного поля, будет наблюдать сильный эффект торможения, что несопоставимо с нормальной работой двигателя.
- Чтобы процесс протекал нормально нужно предусмотреть такую конструкцию подключения рамки к питанию, при которой в момент прохождения тока через нулевую точку будет происходить переключение полюсов, а значит, относительно магнитного поля ток потечет в прежнем направлении.
В качестве такого устройства применяется коллектор, состоящий их изолированных пластин, но давайте поговорим о нем чуть позже.
В виде альтернативы можно изготовить такую рамку, что показана на фото выше. Ее отличие в том, что по двум контурам рамки ток протекает в одном направлении, что позволяет избавиться от коллектора, однако такой электромотор крайне неэффективен, из-за постоянно воздействующих тормозящих сил.
Получив вращение ротора, к нему можно приладить привод и дать сопоставимую мощности двигателя нагрузку, получая тем самым работающую модель.
Строение электромотора постоянного тока
Каково устройство электродвигателя постоянного тока
Итак, переходим к строению двигателей:
- Статор или индуктор – неподвижная часть двигателя, представляющая собой деталь, создающую постоянное электромагнитное поле. Состоит статор из сердечника, выполненного из тонколистовой стали (из пластин определенного профиля набирается деталь нужного размера) и обмотки.
Принцип действия и устройство двигателя постоянного тока: статор
- Обмотка укладывается в пазы сердечника определенным образом, формируя основные и добавочные магнитные полюса, естественно, при включении в сеть.
- Обмотка возбуждения находится на главных полюсах, тогда как на добавочных она служит для улучшения коммутации – увеличивает эффективность мотора, его КПД.
Якорь двигателя постоянного тока
- Ротор двигателя, являющийся тут якорем, тоже имеет похожее строение, но отличает его, прежде всего то, то данный узел двигателя является подвижным. Именно он заменяет вращающуюся рамку из примеров, рассмотренных выше.
- Витки обмотки якоря изолированы друг от друга и соединяются с контактными пластинами коллектора, через которые и подается питание.
- Все части ротора закреплены на металлическом валу, который является центральной осью вращения двигателя. К нему же и подключается привод, передающий крутящий момент на внешние механизмы.
Вид коллектора
- Коллектор (полосатый цилиндр, насаженный на вал) соединен с питающей сетью через щетки, которые выполняются чаще всего из графита. Вообще строение коллектора таково, что контактные пластины также изолированы, что позволяет эффективно менять направление тока в цепи, чтобы избегать торможения двигателя.
- Сами щетки имеют скользящий контакт с пластинами коллектора, и удерживаются в одном положении при помощи щеткодержателей. Поддерживать постоянное напряжение контакта (а ведь мы знаем, что щетки истираются и истончаются) помогают пружины.
Графитовые щетки
- Щетки соединены медными проводами с питающей сетью. Дальше начинается внешняя схема электропитания и управления, о которой мы поговорим немного позже.
Валовый подшипник качения
- Следом за коллектором на валу располагается подшипник качения, обеспечивающий плавное вращение. Сверху он защищен специальным полимерным кольцом, защищающим его от пыли.
Совет! Одной из частых поломок электрических двигателей, является выход из строя подшипника. Если вовремя не заменить этот небольшой элемент конструкции, то запросто можно спалить весь двигатель.
- С обратной стороны обмотки, на том же валу, располагается крыльчатка, поток воздуха от которой эффективно охлаждает двигатель.
- Следом за крыльчаткой обычно крепится привод, отличающийся параметрами, в зависимости от назначения агрегата, в котором двигатель постоянного тока установлен.
В принципе, на этом все. Как видите, конструкция достаточно проста, и что немаловажно, очень эффективна.
Особенности коллекторных двигателей
Перфоратор в разрезе: такие двигатели универсальны и могут работать как от постоянного, так и от переменного тока, но только при соответствующем подключении
Вообще коллекторный двигатель – это действительно хорошее устройство. Такие агрегаты легчайшим образом поддаются регулировке. Повысить, опустить обороты – не проблема. Дать четкий крутящий момент или жесткую механическую характеристику – запросто.
Однако, несмотря на ряд неоспоримых преимуществ, двигатель имеет повышенную сложность сборки, относительно двигателей переменного тока с самовозбуждающимся ротором или других бесколлекторных агрегатов, а также меньшую надежность. И вся загвоздка состоит в этом самом коллекторе.
- Этот узел достаточно дорог, а цена его ремонта иной раз сопоставима с новой деталью, если вообще возможность восстановления имеется.
- Он забивается при работе токопроводящей пылью, что со временем может стать причиной выхода из строя всего двигателя.
- Коллектор искрит, создавая при этом помехи, а при высокой нагрузке так и вовсе может полыхнуть, создавая круговой огонь. В таком случае его закоротит дугой, что несовместимо с жизнью двигателя.
Выше мы уже сказали, что его задача менять направление тока в витках обмотки, а теперь хотим разобрать вопрос подробнее.
Все гениальное просто
- Итак, по сути, данная часть ротора служит выпрямителем тока, то есть переменный ток становится, проходя через него, постоянным, что справедливо для генераторов, или меняет направление тока, если речь идет о двигателях.
- В случае рассмотренного выше примера с вращающейся в магнитном поле рамкой, требовался коллектор, состоящий из двух изолированных полуколец.
- Концы рамки подключаются к разным полукольцам, что не позволяет цепи накоротко замкнуться.
- Как мы помним, коллектор контактирует с щетками, которые установлены таким образом, чтобы они одновременно не контактировали друг с другом и меняли полукольца при прохождении рамкой нулевой точки.
Работа коллектора
Все предельно просто, однако такие двигатели и генераторы не могут быть нормальной мощности в силу конструктива. В результате якорь стали делать с множеством витков, чтобы активные проводники всегда находились максимально близко к полюсам магнита, ведь, вспоминая закон электромагнитной индукции, становится ясно, что именно это положение самое эффективное.
Раз увеличивается количество витков, значит, требуется разбить коллектор на большее число частей, что собственно и является причиной сложности изготовления и дороговизны этого элемента.
Альтернатива коллекторному двигателю
Бесщеточный двигатель постоянного тока
В электронике уже давно царит век полупроводников, что позволяет изготавливать надежные и компактные микросхемы. Так зачем же мы до сих пор пользуемся коллекторными двигателями? А действительно?
- Инженеры тоже не оставили вопрос незамеченным. В результате коллектор сменили силовые ключи, дополнительно в конструкции появились датчики, регистрирующие текущее положение ротора, чтобы система автоматически определяла момент переключения обмотки.
- Как мы помним, нет никакой разницы, двигается ли магнит относительно проводника, либо же это происходит наоборот. Поэтому якорем становится статор, а на роторе располагается постоянный магнит или простейшая обмотка, соединенная с питанием через контактные кольца, который вращать внутри конструкции намного проще.
Контактные кольца в простейшем генераторе переменного тока
- Строение контактных колец чем-то напоминает коллектор, однако они намного надежнее и изготавливать их в условиях производства проще.
В итоге получился новый тип двигателя, а именно бесщеточный двигатель постоянного тока aka BLDC. Устройству доступны те же преимущества, что и коллекторному двигателю, но от надоедливого коллектора мы избавляется.
Однако такие двигатели применяются только в дорогих аппаратах, тогда как простая техника, например соковыжималка или тот же перфоратор будут рентабельнее в производстве, если ставить на них уже классические коллекторные модели двигателей.
Управление двигателем постоянного тока
Принципиальная электрическая схема управления электродвигателями постоянного тока с реверсом
Итак, как вы уже поняли, основной принцип работы двигателя постоянного тока заключается в инвертировании направления тока в якорной цепи, иначе бы возникало торможение, приводящее к стопорению мотора. Таким образом, реализуется вращение мотора в одну сторону, но такой режим не единственный, и двигатель можно заставить вращаться в обратном направлении.
Для этого достаточно поменять направление тока в возбуждающей обмотке, или сменить местами щетки, через которые подается питание на обмотку ротора.
Совет! Если сделать одновременно обе эти манипуляции, то с двигателем ничего не произойдет, и он продолжит вращаться в том же направлении, что и ранее.
Однако это не все моменты, которые требуется регулировать в таком двигателе. Когда вам требуется четко управлять оборотами такого агрегата, или организовать специальный режим управления оборотами, помимо тумблеров и переключателей в схему управления включаются более сложные элементы.
Система управления может быть по-настоящему сложной
- При этом следует учитывать следующие недостатки коллекторных двигателей: низкий момент на малых оборотах вращения двигателя, из-за чего приборам требуется редуктор, что удорожает и усложняет конструкцию; генерация сильных помех; ну и низкая надежность коллектора, про что мы писали выше.
- Также в расчет берется то, что потребление тока и скорость вращения вала зависят и от механической нагрузки на валу.
- Итак, основной параметр, определяющий скорость вращения вала – это подаваемое напряжение на обмотку, поэтому, следуя логике, для управления этим параметром применяются устройства, регулирующие выходное напряжение.
Схемы управления двигателем на базе интегральной микросхемы LM317
- Такими устройствами являются регулируемые стабилизаторы напряжения. На сегодняшний день целесообразнее использовать дешевые компенсационные интегральные стабилизаторы, типа LM Схема управления с таким устройством показана на схеме выше.
Компактный стабилизатор
- Схема довольно примитивная, но, кажется, достаточно простой, а главное эффективной и недорогой. Мы видим, что ограничение выходного напряжения регулируется дополнительным резистором, обозначенным как Rlim, расчет сопротивления которого имеется в спецификации. При этом стоит понимать, что он ухудшает характеристику всей схемы, как стабилизатора.
- Мы видим, что представлено два варианты схемы, какая из них будет показывать себя лучше? Вариант «а» выдает линейную характеристику удобного регулирования, благодаря чему очень популярен.
- Вариант «б», наоборот», характеристику имеет нелинейную. Фактическая разница будет заметна при выходе из строя переменного резистора: в первом случае мы получим максимальную скорость вращения, а во втором – наоборот, минимальную.
Не будем больше углубляться в дебри, так как статья у нас по большей части ознакомительная. Мы разобрали принципы действия двигателей постоянного тока, а это уже что-то. Если вопрос вас заинтересовал, то обязательно просмотрите следующее видео. А на этом мы прощаемся с вами! Всего хорошего!
принцип действия. Двигатель постоянного тока: устройство
Первой из всех изобретенных в 19 веке вращающихся электромашин является двигатель постоянного тока. Принцип действия его известен с середины прошлого столетия, и до настоящего времени двигатели постоянного тока (ДПТ) продолжают верно служить человеку, приводя в движение множество полезных машин и механизмов.
Первые ДПТ
Начиная с 30-х годов 19 века в своем развитии они прошли несколько этапов. Дело в том, что до появления в конце позапрошлого века машинных генераторов переменного тока единственным источником электроэнергии был гальванический элемент. Поэтому все первые электродвигатели могли работать только на постоянном токе.
Каким же был первый двигатель постоянного тока? Принцип действия и устройство двигателей, строившихся в первой половине 19 века, являлся следующим. Явнополюсный индуктор представлял собой набор неподвижных постоянных магнитов или стержневых электромагнитов, не имевших общего замкнутого магнитопровода. Явнополюсный якорь образовывали несколько отдельных стержневых электромагнитов на общей оси, приводимых во вращение силами отталкивания и притяжения к полюсам индуктора. Типичными их представителями являлись двигатели У. Риччи (1833) и Б. Якоби (1834), оснащенные механическими коммутаторами тока в электромагнитах якорях с подвижными контактами в цепи обмотки якоря.
Как работал двигатель Якоби
Каков же был у этой машины принцип действия? Двигатель постоянного тока Якоби и его аналоги обладали пульсирующим электромагнитным моментом. В течение времени сближения разноименных полюсов якоря и индуктора под действием магнитной силы притяжения момент двигателя быстро достигал максимума. Затем, при расположении полюсов якоря напротив полюсов индуктора, механический коммутатор прерывал ток в электромагнитах якоря. Момент падал до нуля. За счет инерции якоря и приводимого в движение механизма полюсы якоря выходили из-под полюсов индуктора, в этот момент в них от коммутатора подавался ток противоположного направления, их полярность также менялась на противоположную, а сила притяжения к ближайшему полюсу индуктора сменялась на силу отталкивания. Таким образом, двигатель Якоби вращался последовательными толчками.
Появляется кольцевой якорь
В стержневых электромагнитах якоря двигателя Якоби ток периодически выключался, создаваемое ими магнитное поле исчезало, а его энергия преобразовывалась в тепловые потери в обмотках. Таким образом, электромеханическое преобразование электроэнергии источника тока якоря (гальванического элемента) в механическую происходило в нем с перерывами. Нужен был двигатель с непрерывной замкнутой обмоткой, ток в которой протекал бы постоянно в течение всего времени его работы.
И такой fuhtufn был создан в 1860 году А. Пачинотти. Чем же отличался от предшественников его двигатель постоянного тока? Принцип действия и устройство двигателя Пачинотти следующие. В качестве якоря он использовал стальное кольцо со спицами, закрепленное на вертикальном валу. При этом якорь не имел явно выраженных полюсов. Он стал неявнополюсным.
Между спицами кольца были намотаны катушки обмотки якоря, концы которых соединялись последовательно на самом якоре, а от точек соединения каждых двух катушек были сделаны отпайки, присоединенные к пластинам коллектора, расположенным вдоль окружности внизу вала двигателя, число которых равнялось числу катушек. Вся обмотка якоря была замкнута сама на себя, а последовательные точки соединения ее катушек присоединялись к соседним пластинам коллектора, по которым скользила пара токоподводящих роликов.
Кольцевой якорь был помещен между полюсами двух неподвижных электромагнитов индуктора-статора, так что силовые линии создаваемого ими магнитного поля возбуждения входили в наружную цилиндрическую поверхность якоря двигателя под северным полюсом возбуждения, проходили по кольцевому якорю, не перемещаясь во внутреннее его отверстие, и выходили наружу под южным полюсом.
Как работал двигатель Пачинотти
Какой же у него был принцип действия? Двигатель постоянного тока Пачинотти работал точно так же, как и современные ДПТ.
В магнитном поле полюса индуктора с данной полярностью всегда находилось определенное число проводников обмотки якоря с током неизменного направления, причем направление тока якоря под разными полюсами индуктора было противоположным. Это достигалось размещением токоподводящих роликов, играющих роль щеток, в пространстве между полюсами индуктора. Поэтому мгновенный ток якоря втекал в обмотку через ролик, пластину коллектора и присоединенную к ней отпайку, которая также находилась в пространстве между полюсами, далее протекал в противоположных направлениях по двум полуобмоткам-ветвям, и наконец вытекал через отпайку, пластину коллектора и ролик в другом межполюсном промежутке. При этом сами катушки якоря под полюсами индуктора менялись, но направление тока в них оставалось неизменным.
По закону Ампера, на каждый проводник катушки якоря с током, находящийся в магнитном поле полюса индуктора, действовала сила, направление которой определяется по известному правилу «левой руки». Относительно оси двигателя эта сила создавала вращающий момент, а сумма моментов от всех таких сил дает суммарный момент ДПТ, который уже при нескольких пластинах коллектора является почти постоянным.
ДПТ с кольцевым якорем и граммовской обмоткой
Как это часто случалось в истории науки и техники, изобретение А. Пачинотти не нашло применения. Оно было на 10 лет забыто, пока в 1870 году его независимо не повторил франко-немецкий изобретатель З. Грамм в аналогичной конструкции генератора постоянного тока. В этих машинах ось вращения уже была горизонтальной, использовались угольные щетки, скользящие по пластинам коллектора почти современной конструкции. К 70-м годам 19 века принцип обратимости электромашин стал уже хорошо известен, а машина Грамма использовалась как генератор и двигатель постоянного тока. Принцип действия его уже описан выше.
Несмотря на то, что изобретение кольцевого якоря было важным шагом в развитии ДПТ, его обмотка (названная граммовской) имела существенный недостаток. В магнитном поле полюсов индуктора находились только те ее проводники (называемые активными), которые лежали под этими полюсами на наружной цилиндрической поверхности якоря. Именно к ним были приложены магнитные силы Ампера, создающие вращающий момент относительно оси двигателя. Те же неактивные проводники, что проходили через отверстие кольцевого якоря, не участвовали в создании момента. Они только бесполезно рассеивали электроэнергию в виде тепловых потерь.
От кольцевого якоря к барабанному
Устранить этот недостаток кольцевого якоря удалось в 1873 году известному немецкому электротехнику Ф. Гефнер-Альтенеку. Как же функционировал его двигатель постоянного тока? Принцип действия, устройство его индуктора-статора такие же, как у двигателя с кольцевой обмоткой. А вот конструкция якоря и его обмотка изменились.
Гефнер-Альтенек обратил внимание, что направление тока якоря, вытекающего из неподвижных щеток, в проводниках граммовской обмотки под соседними полюсами возбуждения всегда противоположно, т.е. их можно включить в состав витков расположенной на наружной цилиндрической поверхности катушки с шириной (шагом), равным полюсному делению (части окружности якоря, приходящейся на один полюс возбуждения).
В этом случае становится ненужным отверстие в кольцевом якоря, и он превращается в сплошной цилиндр (барабан). Такая обмотка и сам якорь получили наименование барабанных. Расход меди в ней при одинаковом числе активных проводников гораздо меньше, чем в граммовской обмотке.
Якорь становится зубчатым
В машинах Грамма и Гефнер-Альтенека поверхность якоря была гладкой, а проводники его обмотки располагались в зазоре между ним и полюсами индуктора. При этом расстояние между вогнутой цилиндрической поверхностью полюса возбуждения и выпуклой поверхностью якоря достигало нескольких миллиметров. Поэтому для создания нужной величины магнитного поля требовалось применять катушки возбуждения с большой магнитодвижущей силой (с большим числом витков). Это существенно увеличивало габариты и вес двигателей. Кроме того, на гладкой поверхности якоря его катушки было трудно крепить. Но как же быть? Ведь для действия на проводник с током силы Ампера он должен находиться в точках пространства с большой величиной магнитного поля (с большой магнитной индукцией).
Оказалось, что это не является необходимым. Американский изобретатель пулемета Х. Максим показал, что если выполнить барабанный якорь зубчатым, а в образовавшиеся между зубцами пазы поместить катушки барабанной обмотки, то зазор между ним и полюсами возбуждения можно уменьшить до долей миллиметра. Это позволило существенно уменьшить размеры катушек возбуждения, но вращающий момент ДПТ нисколько не уменьшился.
Как же функционирует такой двигатель постоянного тока? Принцип действия основан на том обстоятельстве, что при зубчатом якоре магнитная сила приложена не к проводникам в его пазах (магнитное поле в них практически отсутствует), а к самим зубцам. При этом наличие тока в проводнике в пазу имеет решающее значение для возникновения этой силы.
Как избавились от вихревых токов
Еще одно важнейшее усовершенствование внес знаменитый изобретатель Т. Эдиссон. Что же добавил он в двигатель постоянного тока? Принцип действия остался неизменным, а вот материал, из которого сделан его якорь, изменился. Вместо прежнего массивного он стал шихтованным из тонких электрически изолированных друг от друга стальных листов. Это позволило уменьшить величину вихревых токов (токов Фуко) в якоре, что увеличило КПД двигателя.
Принцип действия двигателя постоянного тока
Кратко его можно сформулировать так: при подключении обмотки якоря возбужденного двигателя к источнику питания в ней возникает большой ток, называемый пусковым и превышающий в несколько раз его номинальное значение. Причем под полюсами возбуждения противоположной полярности направление токов в проводниках обмотки якоря так же противоположно, как показано на рисунке ниже. Согласно правилу «левой руки», на эти проводники действуют силы Ампера, направленные против часовой стрелки и увлекающие якорь во вращение. При этом в проводниках обмотки якоря наводится электродвижущая сила (противо-ЭДС), направленная встречно напряжению источника питания. По мере разгона якоря растет и противо-ЭДС в его обмотке. Соответственно, ток якоря уменьшается от пускового до величины, соответствующей рабочей точке на характеристике двигателя.
Чтобы повысить скорость вращения якоря, нужно либо увеличить ток в его обмотке, либо снизить противо-ЭДС в ней. Последнего можно добиться, уменьшив величину магнитного поля возбуждения путем снижения тока в обмотке возбуждения. Данный способ управления скоростью ДПТ получил широкое распространение.
Принцип действия двигателя постоянного тока с независимым возбуждением
С присоединением выводов обмотки возбуждения (ОВ) к отдельному источнику электропитания (независимая ОВ) обычно выполняются мощные ДПТ, чтобы было более удобно регулировать величину тока возбуждения (с целью изменения скорости вращения). По своим свойствам ДПТ с независимой ОВ практически аналогичны ДПТ с ОВ, параллельно подключаемой к обмотке якоря.
Параллельное возбуждение ДПТ
Принцип действия двигателя постоянного тока параллельного возбуждения определяется его механической характеристикой, т.е. зависимостью скорости вращения от нагрузочного момента на его валу. Для такого двигателя изменение скорости при переходе от холостого вращения к номинальному моменту нагрузки составляет от 2 до 10%. Такие механические характеристики называются жесткими.
Таким образом, принцип действия двигателя постоянного тока с параллельным возбуждением обуславливает его применение в приводах с постоянной скоростью вращения при большом диапазоне изменения нагрузки. Однако он широко используется и в регулируемом электроприводе с переменной скоростью вращения. При этом для регулирования его скорости может применяться изменение как тока якоря, так и тока возбуждения.
Последовательное возбуждение ДПТ
Принцип действия двигателя постоянного тока последовательного возбуждения, как и параллельного, определяется его механической характеристикой, которая в этом случае является мягкой, т.к. частота вращения двигателя значительно варьируется при изменениях нагрузки. Где же выгоднее всего применять такой двигатель постоянного тока? Принцип действия жд тягового двигателя, скорость которого должна уменьшаться при преодолении составом подъемов и возвращаться к номинальной при движении по равнине, полностью соответствует характеристикам ДПТ с ОВ, последовательно соединенной с обмоткой якоря. Поэтому значительная часть электровозов во всем мире оснащена такими устройствами.
Принцип действия двигателя постоянного тока с последовательным возбуждением реализуют также тяговые двигатели пульсирующего тока, которые представляют собой, по сути, те же ДПТ с последовательной ОВ, но специально сконструированные для работы с выпрямленным уже на борту электровоза током, имеющим значительные пульсации.
Принцип действия двигателя постоянного тока и область применения
Постоянство электрического тока не позволяет изменяться параметрам, связанным с величиной и направлением. Принцип действия двигателя постоянного тока базируется именно на таких особенностях электрической цепи и конструктивных характеристиках.Конструкция двигателя
Двигатели данного типа активно используются в превращении постоянной токовой энергии в механический тип работоспособности.
Такие электрические устройства получили меньшее распространение по сравнению с конструкциями переменного тока, что обусловлено высокой стоимостью оборудования, более сложным строением и возможными проблемами с запитыванием.Основные конструктивные элементы ДПТ:
- неподвижная часть, представленная статором;
- вращающаяся часть, представленная ротором или якорем.
Устройство двигателей ПТ имеет несколько весьма существенных отличий от конструкций с переменными токовыми величинами:
- стальная станина снабжается катушечной обмоткой возбуждения;
- наличие дополнительных полюсов, улучшающих общие технические характеристики оборудования;
- установка внутреннего якорного элемента, представленного сердечником и коллектором;
- использование для фиксации подшипниковой системы;
- расположение на статоре постоянных магнитов в микродвигателях или электромагнитов с обмоточным возбуждением в виде катушек.
Устройство двигателя постоянного тока
Базовое отличие — наличие коллектора, подсоединяемого к щеткам, что способствует подаче или снятию напряжения с цепи якоря. Особенностью используемого в конструкции щеточно-коллекторного узла, является одновременное выполнение пары функций, включая специфику работы датчика углового роторного положения и переключение тока с контактами скользящего типа.
Электрические двигатели постоянных токовых величин эксплуатируются в форме тяговой конструкции некоторых видов транспорта и устройств исполнительного типа.
Преимущества эксплуатации и недостатки конструкции
Основные достоинства двигателей с постоянными токовыми величинами представлены:
- конструкционной простотой устройства;
- интуитивной доступностью управления;
- почти линейного типа механической и регулировочной характеристиками движка;
- легкостью регулирования показателей вращательной частоты;
- достойными пусковыми характеристиками в виде большого пускового момента;
- наибольшим пусковым моментом с характерным последовательным типом возбуждения;
- относительной компактностью по сравнению с габаритами других видов конструкций;
- возможностью применения в режимах двигателя и генератора.
Принцип устройства электродвигателя постоянного тока
К наиболее значимым недостаткам конструкций могут быть отнесены не всегда доступная цена комплектующих изделий, а также необходимость подсоединения выпрямительных устройств.
Современные модели двигателей ПТ практически полностью лишены некоторых основных конструкционных минусов, включая регулярную профилактику щеточно-коллекторных узлов и быстрый износ коллектора.
Принцип действия двигателя постоянного тока
Классификация оборудования основана на видовых особенностях магнитной статорной системы, поэтому может иметь в конструкции:
- магниты постоянного типа;
- электромагнитную систему;
- независимого типа обмоточное подключение с независимым вариантом возбуждения;
- последовательного типа обмоточное подключение с последовательным вариантом возбуждения;
- параллельного типа обмоточное подключение с параллельным вариантом возбуждения;
- смешанный вид обмоточного подключения со смешанным вариантом возбуждения и преобладанием обмотки последовательного или параллельного типа.
Принцип действия электродвигателя
Тип обмоточного подключения оказывает значительное влияние на характеристики тяги и базовые электрические свойства электродвигателя.
Конструкция с независимым или параллельным возбуждением
Обмоточный элемент на якорной части и возбуждении при независимом или параллельном типе, запитаны от различных источников, а функция обмотки возлагается, как правило, на постоянный магнит. Отличительная особенность такого движка представлена отсутствием полной зависимости токового возбуждения от якорного тока на оборудовании.
Скоростные параметры двигателя регулируются в таком случае посредством:
- изменения показателей напряжения на якорной части;
- изменения показателей сопротивления в якорной цепи;
- изменения потокового возбуждения.
Принципиальные схемы включения двигателей постоянного тока независимого и параллельного возбуждения
Последний вариант регулировки нуждается в использовании сложного оборудования, но активно применяется в электрических приводах современного типа, что обусловлено плавностью и экономичностью балансирования уровня скорости в широком диапазоне, в условиях высоких параметров жесткости, свойств механического типа.
Популярная разновидность обмоточного возбуждения независимого типа базируется на применении постоянных магнитов.
Конструкция с последовательным возбуждением
Для потока возбуждения данного типа применяется якорный ток машины, а обмоточное возбуждение и якорная часть двигателя имеют последовательное подключение относительно питающего источника. Благодаря развитию значительного электромагнитного момента, который пропорционален квадратным показателям якорного тока, двигателям с параллельным типом возбуждения обеспечиваются оптимальные пусковые характеристики.
Двигатель последовательного возбуждения
Таким образом, конструкция отличается большим пусковым моментом на фоне сравнительно малого якорного тока. Конструкционные особенности позволяют двигателям ПТ с параллельным типом возбуждения активно эксплуатироваться в приводных механизмах грузоподъемного и тягового вида.
Важно учитывать, что работа электрического двигателя ПТ последовательного типа возбуждения «вхолостую» или в условиях минимальной нагрузки становится основной и очень частой причиной быстрого износа конструкции.
Регулировка вращательной скорости двигателя ПТ с параллельным возбуждением может выполняться изменениями показателей напряжения и сопротивления якорной цепи, а также в потоковом возбуждении.
Конструкция со смешанным возбуждением
Для электрического движка ПТ, обладающего смешанным типом возбуждения, или компаундного электродвигателя, присущи основные характеристики параллельного и последовательного возбуждения, что обусловлено наличием пары видов обмоток.
Обмоточные элементы подключаются двояко:
- согласное подключение — в процессе включения в электрическую цепь, все сформированные амперные витки и магнитные потоки складываются;
- встречное подключение — включение обмоток возбуждения сопровождается направлением амперных витков и магнитных потоков друг к другу.
Варианты двигателей
Второй способ обмоточного включения в двигателях ПТ со смешанным типом возбуждения используется в спецмашинах.
Наличие в движке двойной обмотки возбуждения расширяет возможности конструирования и изготовления электрических двигателей, значительно отличающихся по своим свойствам и основным техническим характеристикам.
Область применения
Благодаря конструктивным особенностям и принципу функционирования двигателей ПТ разного типа, такие устройства находят широкое применение и устанавливаются:- в крановом оборудовании на тяжелом производстве;
- в приводных устройствах, нуждающихся в широком регулировании уровня скорости при наличии высокого пускового момента;
- в тяговых электрических двигателях, эксплуатируемых в тепловозах и электровозах, теплоходах и тяжелых самосвалах;
- в электрических стартерах автомобильной и уборочной автоматизированной техники.
Компактные низковольтные электрические двигатели ПТ активно используются в разнообразных устройствах и изделиях, включая игрушки, компьютерную и оргтехнику, а также аккумуляторный инструмент.
Электродвигатели постоянного тока разного вида характеризуются особыми естественными и искусственными механическими свойствами, что обусловлено электрической мощностью, идущей на преобразование и поступающей через якорную цепь. Именно такое устройство позволяет применять движки ПТ в регулируемых приводах разнообразных современных механизмов и достаточно сложных станков.
Видео на тему
Двигатель постоянного тока (ДПТ) принцип работы, устройство
Двигатели постоянного тока – это специализированные машины, применяемые для того, чтобы делать из энергии постоянного тока механическую.
Что касается принципа работы данной разновидности электрических двигателей, то он может осуществляться двумя способами:
- Магнитные поля статора и ротора взаимодействуют между собой.
- Стержни в количестве двух штук, концы которых замкнуты и рамка подвижного типа, в магнитном поле статора находится ток.
Как устроен двигатель
Если мы посмотрим на простейшие модели для демонстрации, то сможем увидеть лишь один стержень и рамку, по которой проходит ток.
Схема двигателя постоянного тока
Якорь основная обмотка, ток на него подается с помощью коллектора и щеточного механизма. Структура статора может быть двух типов: постоянные магниты или же обмотки возбуждения. Если используются постоянные магниты, то этот двигатель по мощности будет уступать тому, в котором установлены обмотки возбуждения.
Основные параметры электродвигателя постоянного тока
Направление ЭДС, которую навели, всегда противоположно направлению тока в проводнике. Наведенная ЭДС может последовательно изменяться, это будет зависеть главным образом от перемещения проводников в магнитном поле.
Если сложить сумму ЭДС в каждой из катушек, ты мы получим суммарную ЭДС, она является приложением к внешним выводам двигателя. Но главным параметром данной разновидности электрических двигателей является его постоянная. Ей определяется возможность двигателя преобразовывать электроэнергию в механическую.
Постоянная не будет зависеть от соединения обмоток в электродвигатели только если использоваться будет один материал проводника.
Разновидности двигателей постоянного тока
Рассмотрим разновидности двигателей постоянного тока:
- Коллекторный с постоянным магнитом. Индуктор этого двигателя включает в себя постоянный магнит, из которого состоит магнитное поле статора.
- Бесколлекторный (бесщеточный). Различие лишь в отсутствии щеток для замены при износе, из-за искрения коммутатора.
- Серводвигатель постоянного тока. Это привод, ось которого может перемещаться в заданное положение.
Управление здесь соединено печатной платой, двигателем постоянного тока и потенциометром (датчиком). Редуктор преобразует электричество в механическое действие. В результате скорость, с которой вращается выходной вал, снижается до необходимого значения.
Способы возбуждения электродвигателей постоянного тока
В этой разновидности электрических двигателей применяются специальные обмотки, которые называются «обмотками возбуждения». Они приводят в действие сам механизм двигателя.
Независимое возбуждение
При данном типе подключения обмотка накручивается напрямую к источнику питания, при этом, характеристики двигателя с таким способом возбуждения схожи с характеристиками двигателей на постоянных магнитах.
Параллельное возбуждение
Обмотка возбуждения и ротор соединены с одним и тем же источником тока параллельным способом. В этой схеме ток обмотки возбуждения ниже, чем ток Ротора. Последовательное возбуждение. Обмотка последовательно соединяется с якорем. Скорость работы двигателя зависит от его нагрузки.
Смешанное возбуждение
Данная схема предполагает использование двух обмоток возбуждения, расположенных попарно на каждом полюсе электродвигателя. Обмотки могут быть соединены двумя способами: с суммированием или с вычитанием потоков.
Какие существуют способы возбуждения двигателей постоянного тока
Осуществление переключения и контроля двигателей
Данная разновидность двигателей имеет два режима: они могут быть включёнными, либо отключёнными. Такое переключение делается переключателями, реле, транзисторами или же МОП-транзисторами.
В схеме управления используется биполярный транзистор, он играет ключевую роль в переключении режимов.
Контроль скорости двигателя
Потому как скорость данной разновидности двигателей является пропорциональной напряжению на клеммах, можно использовать транзистор для регулирования напряжения на них. Эти два транзистора подключены как пара для управления током главного ротора.
Регулировка скорости импульса
Скорость вращения данной разновидности электрических двигателей является пропорциональной среднему давлению на второй клемме.
Изменение направления движения двигателя постоянного тока
Есть много преимуществ в управлении скоростью данной разновидности электрических двигателей, но есть один большой недостаток: направление вращения всегда одно и то же. Во многих случаях машина действует по простому принципу, чтобы двигаться вперед и назад. H-мостовая схема двигателя.
Базовая конфигурация четырех переключателей, будь то электромеханические реле или транзисторы, аналогична букве Н с двигателем, расположенным на шине посередине.
Особенности эксплуатации
Двигатель оснащен механизмами защиты от перегрузки. Предохранение необходимо сделать с задержкой по времени. Защита должна действовать в отрыве, или сигнально, или вентиляционно, если возможен такой вариант.
Схема Н-моста
Подробная таблица истинности Н-моста электродвигателя
Сфера использования
На электростанциях они устанавливаются как генераторы для изготовления оборудования, автомобилей и даже различного рода быттехники. Сегодня в каждом доме есть устройство с мотором переменного тока.
Заключение
Надеемся, что после прочтения этой статьи у вас не осталось вопросов относительно данной разновидности электрических двигателей. Если вы хотите получать больше информации по этой теме, а также по теме асинхронных двигателей и сборки металлоискателей своими руками, подписывайтесь на нашу группу в социальной сети «вконтакте».
ПредыдущаяЭлектрические машиныЧто такое асинхронный двигатель и принцип его действия
СледующаяЭлектрические машиныВсе что нужно знать о шаговых электродвигателях
НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ МАШИНЫ ПОСТОЯННОГО ТОКА — Студопедия
Назначение. Машины постоянного тока применяют в качестве электродвигателей и генераторов. Электродвигатели постоянного тока имеют хорошие регулировочные свойства, значительную перегрузочную способность и позволяют получать как жесткие, так и мягкие механические характеристики. Поэтому их широко используют для привода различных механизмов в черной металлургии (прокатные станы, кантователи, роликовые транспортеры), на транспорте (электровозы, тепловозы, электропоезда, электромобили), в грузоподъемных и землеройных устройствах (краны, шахтные подъемники, экскаваторы), на морских и речных судах, в металлообрабатывающей, бумажной, текстильной, полиграфической промышленности и др. Двигатели небольшой мощности применяют во многих системах автоматики.
Конструкция двигателей постоянного тока сложнее и их стоимость выше, чем асинхронных двигателей. Однако в связи с широким применением автоматизированного электропривода и тиристорных преобразователей, позволяющих питать электродвигатели постоянного тока регулируемым напряжением от сети переменного тока, эти электродвигатели широко используют в различных отраслях народного хозяйства.
Генераторы постоянного тока ранее широко использовались для питания электродвигателей постоянного тока в стационарных и передвижных установках, а также как источники Электрической энергии для заряда аккумуляторных батарей, питания электролизных и гальванических ванн, для электроснабжения различных электрических потребителей на автомобилях, самолетах, пассажирских вагонах, электровозах, тепловозах и др.
Недостатком машин постоянного тока является наличие щеточноколлекторного аппарата, который требует тщательного ухода в эксплуатации и снижает надежность работы машины. Поэтому в последнее время генераторы постоянного тока в стационарных установках вытесняются полупроводниковыми преобразователями, а на транспорте — синхронными генераторами, работающими совместно с полупроводниковыми выпрямителями.
Принципиальная возможность создания электродвигателя постоянного тока была впервые показана М. Фарадеем в 1821 г.; в созданном им приборе проводник, по которому пропускали постоянный ток, вращался вокруг магнита.
Двигатель постоянного тока с электромагнитным возбуждением был создан в России акад. Б. С. Якоби в 1834 г., который назвал его магнитной машиной. В 1838 г. им был построен более мощный электродвигатель, который использовался для привода гребного винта речного катера. Принцип обратимости электрических машин был также впервые сформулирован русским физиком акад. Э. X. Ленцем. В дальнейшем ряд коллекторных машин постоянного тока был созданГ. Феррарисом, В. Сименсом и др. Значительное развитие теория электрических машин постоянного тока получила в трудах Д. А. Лачинова. В 1880 г. он опубликовал труд «Электромеханическая работа», в котором рассмотрел вопросы, создания вращающего момента электродвигателя, КПД электрических машин, условия питания электродвигателя от генератора и дал классификацию машин постоянного тока по способу возбуждения.
В XX столетии продолжалось развитие теории и совершенствование конструкции машин постоянного тока. Большое внимание обращалось на повышение надежности этих машин путем устранения причин, вызывающих возникновения искрения под щетками (улучшения коммутации) и образования кругового огня на коллекторе.
Важное значение в решении всех теоретических и практических вопросов работы машин постоянного тока имели в трудах советских ученых: А. Е. Алексеева, Д. А. Завалишина, Г. А. Люста, А. Б. Иоффе, В. Т. Касьянова, М. П. Костенко, В. С. Кулебакина, С. И. Курбатова, Л. М. Пиотровского, Е. М. Синельникова, В. А. Толвинского, К. И. Шенфера, венгер-ского электротехника О. В. Бенедикта и др.
В настоящее время в рамках Интерэлектро разработана серия электродвигателей постоянного тока типа ПИ мощностью от 0,25 до 750 кВт, которая выпускается электропромышленностью всех стран — членов СЭВ. Эти двигатели Предназначены для регулируемых электроприводов и рассчитаны на питание от полупроводниковых преобразователей. Кроме того, электропромышленность выпускает ряд двигателей постоянного тока специального исполнения — для электротяги, экскаваторов, металлургического оборудования, шахтных подъемников, буровых установок, морских и речных судов и других приводов мощностью от нескольких сотен до нескольких тысяч кВт.
Рис. 8.1. Электромагнитная схема двухполюсной машины постоянного тока (а) и эквивалентная схема ее обмотки якоря (б): 1 — обмотка возбуждения; 2 — главные полюсы; 3 — якорь; 4 — обмотка якоря; 5 — щетки; 6 — корпус (станина) |
Принцип действия. Машина постоянного тока (рис. 8.1, а) имеет обмотку возбуждения, расположенную на явно выраженных полюсах статора. По этой обмотке проходит постоянный ток Iв , который создает магнитное поле возбуждения Фв . На роторе расположена двухслойная обмотка, в которой при вращении ротора индуцируется ЭДС. Таким образом, ротор машины постоянного тока является якорем, а конструкция машины сходна с конструкцией обращенной синхронной машины.
При заданном направлении вращения якоря направление ЭДС, индуцируемой в его проводниках, зависит только от того, под каким полюсом находится проводник. Поэтому во всех проводниках, расположенных под одним полюсом, направление ЭДС одинаковое и сохраняется таким независимо от частоты вращения. Иными словами, характер, отображающий направление ЭДС на рис. 8.1, а, неподвижен во времени: в проводниках, расположенных выше горизонтальной оси симметрии, которая разделяет полюсы (геометрическая нейтраль), ЭДС всегда направлена в одну сторону; в проводниках, лежащих ниже геометрической нейтрали, ЭДС направлена в противоположную сторону.
При вращении якоря проводники обмотки перемещаются от одного полюса к другому; ЭДС, индуцируемая в них, изменяет знак, т. е. в каждом проводнике наводится переменная ЭДС. Однако количество проводников, находящихся под каждым полюсом, остается неизменным. При этом суммарная ЭДС, индуцируемая в проводниках, находящихся под одним полюсом, также неизменна по направлению и приблизительно постоянна по величине. Эта ЭДС снимается с обмотки якоря с помощью скользящего контакта, включенного между обмоткой и внешней цепью.
Обмотка якоря выполняется замкнутой, симметричной (рис. 8.1,б). При отсутствии внешней нагрузки ток по обмотке не проходит, так как ЭДС, индуцируемые в различных частях обмотки, взаимно компенсируются.
Если щетки, осуществляющие скользящий контакт с обмоткой якоря, расположить на геометрической нейтрали, то при отсутствии внешней нагрузки к щеткам прикладывается напряжение U, равное ЭДС Е, индуцированной в каждой из половин обмоток. Это напряжение практически неизменно, хотя и имеет некоторую переменную составляющую, обусловленную изменением положения проводников в пространстве. При большом количестве проводников пульсации напряжения весьма незначительны.
При подключении к щеткам сопротивления нагрузки Rн через обмотку якоря проходит постоянный ток Iа , направление которого определяется направлением ЭДС Е. В обмотке якоря ток Iа разветвляется и проходит по двум параллельным ветвям (токи ia ).
Для обеспечения надежного токосъема щетки скользят не по проводникам обмотки якоря (как это было вначале развития электромашиностроения), а по коллектору, выполняемому в виде цилиндра, который набирается из медных пластин, изолированных одна от другой. К каждой паре соседних коллекторных пластин присоединяют часть обмотки якоря, состоящую из одного или нескольких витков; эту часть называют секцией обмотки якоря.
Если машина работает в генераторном режиме, то коллектор вместе со скользящими по его поверхности щетками является выпрямителем. В двигательном режиме, когда к якорю подводится питание от источника постоянного тока и он преобразует электрическую энергию в механическую, коллектор со щетками можно рассматривать как преобразователь частоты, связывающий сеть постоянного тока с обмоткой, по проводникам которой проходит переменный ток.
Таким образом, главной особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью.
Двигатель постоянного тока с параллельным возбуждением (независимым): принцип работы
Двигатель постоянного тока с параллельным возбуждением – это электродвигатель, у которого обмотки якоря и возбуждения подключаются друг к другу параллельно. Часто по своей функциональности он превосходит агрегаты смешанного и последовательного типов в случаях, если необходимо задать постоянную скорость работы.
Характеристики двигателя постоянного тока с параллельным возбуждением
Формула общего тока, идущего от источника, выводится согласно первому закону Кирхгофа и имеет вид: I = Iя + Iв, где Iя — ток якоря, Iв – ток возбуждения, а I – ток, который двигатель потребляет от сети. Следует отметить, что при этом Iв не зависит от Iя, т.е. ток возбуждения не зависит от нагрузки. Величина тока в обмотке возбуждения меньше тока якоря и составляет примерно 2-5% от сетевого тока.
В целом, данные электродвигатели отличаются следующими весьма полезными тяговыми параметрами:
- Высокая экономичность (поскольку ток якоря не проходит через обмотку возбуждения).
- Устойчивость и непрерывность рабочего цикла при колебаниях нагрузки в широких пределах (т.к. величина момента сохраняется даже в случае изменения числа оборотов вала).
При недостаточном моменте пуск осуществляется посредством перехода на смешанный тип возбуждения.
Сферы применения двигателя
Поскольку частота вращения подобных двигателей остается почти постоянной даже при изменении нагрузки, а также может изменяться при помощи регулировочного реостата, они широко применяются в работе с:
- вентиляторами;
- насосами;
- шахтными подъемниками;
- подвесными электрическими дорогами;
- станками (токарными, металлорежущими, ткацкими, печатными, листоправильными и пр.).
Таким образом, этот вид двигателей в основном используется с механизмами, требующими постоянства скорости вращения или ее широкой регулировки.
Регулирование частоты вращения
Регулирование скорости – это целенаправленное изменение скорости электродвигателя в принудительном порядке при помощи специальных устройств или приспособлений. Оно позволяет обеспечить оптимальный режим работы механизма, его рациональное использование, а также уменьшить расход энергии.
Существует три основных способа регулирования скорости двигателя:
- Изменение магнитного потока главных полюсов. Осуществляется при помощи регулировочного реостата: при увеличении его сопротивления магнитный поток главных полюсов и ток возбуждения Iв уменьшаются. При этом увеличивается число оборотов якоря на холостом ходу, а также угол наклона механической характеристики. Жесткость механических характеристик сохраняется. Однако увеличение скорости может привести к механическим повреждениям агрегата и к ухудшению коммутации, поэтому не рекомендуется увеличивать частоту вращения этим методом более чем в два раза.
- Изменение сопротивления цепи якоря. К якорю последовательно подключается регулировочный реостат. Скорость вращения якоря уменьшается при увеличении сопротивления реостата, а наклон механических характеристик увеличивается. Регулировка скорости вышеуказанным способом:
- способствует уменьшению частоты вращения относительно естественной характеристики;
- связана с большой величиной потерь в регулировочном реостате, следовательно, неэкономична.
- Безреостатное изменение подаваемого на якорь напряжения. В этом случае необходимо наличие отдельного источника питания с регулируемым напряжением, например, генератора или управляемого вентиля.
Двигатель с независимым возбуждением
Двигатель постоянного тока независимого возбуждения как раз и реализует третий принцип регулирования скорости. Его отличие в том, что обмотка возбуждения и магнитное поле главных полюсов подключаются к разным источникам. Ток возбуждения является неизменной характеристикой, а магнитное поле меняется. При этом изменяется число оборотов вала на холостом ходу, жесткость характеристики остается прежней.
Таким образом, принцип работы дпт с независимым возбуждением является достаточно сложным вследствие независимой работы двух источников, тем не менее, его главное преимущество – большая экономичность.
Принцип действия машин постоянного тока
Принцип действия машин постоянного тока.
Принцип действия генератора. Простейший генератор можно представить в виде витка, вращающегося в магнитном поле (рис. 1.4, а, б). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь.
Принцип работы генератора основан на явлении электромагнитной индукции. Пусть виток приводится во вращение от внешнего приводного двигателя ПД. Проводники активной части витка пересекают магнитное поле и в них по закону электромагнитной индукции наводятся ЭДС e1 и e2, направление которых определяется по правилу правой руки. При вращении витка по направлению движения часовой стрелки в верхнем проводнике, находящемся под северным полюсом, ЭДС направлена от нас, а в нижнем, находящемся под южным полюсом, – к нам. По ходу витка ЭДС складываются, результирующая ЭДС е = е1 – е2.
Если внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него – к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя – отрицательным. При повороте витка на 180° проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменяется на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя – с верхней, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т. е. являются простейшим механическим выпрямителем.
Принцип действия двигателя. То же устройство работает в режиме электрического двигателя (рис. 1.5), если к щеткам подвести постоянное напряжение. Под действием напряжения U через щетки, пластины коллектора и виток потечет ток i. По закону электромагнитной силы (закон Ампера) взаимодействие тока и магнитного поля В создает силу f, которая направлена перпендикулярно i. Направление силы f определяется правилом левой руки (рис. 1.5): на верхний проводник сила действует вправо, на нижний – влево. Эта пара сил создает вращающий момент Мвр, поворачивающий виток по часовой стрелке. При переходе верхнего проводника в зону южного полюса, а нижнего – в зону северного полюса концы проводников и соединенные с ними коллекторные пластины вступают в контакт со щетками другой полярности.
Рис.1.5
Направление тока в проводниках витка изменяется на противоположное, а направление сил f, момента Мвр и тока во внешней цепи не изменяется. Виток непрерывно будет вращаться в магнитном поле и может приводить во вращение вал рабочего механизма (РМ).
Таким образом, коллектор в режиме двигателя не только обеспечивает контакт внешней цепи с витком, но и выполняет функцию механического инвертора, т.е. преобразует постоянный ток во внешней цепи в переменный ток в витке.
Рассмотрение принципа действия показывает, что машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя, т. е. обладает свойством обратимости.
Противодействующий момент и противо-ЭДС. При работе машины в режиме генератора по замкнутой внешней цепи и витку обмотки якоря протекает ток, направление которого совпадает с направлением ЭДС (рис. 1.4,6), взаимодействие тока с магнитным полем полюсов создает момент М, направленный в рассматриваемом случае против часовой стрелки. Так как приложенный к витку вращающий момент приводного двигателя Мвр направлен по часовой стрелке, то возникающий при работе генератора момент называется противодействующим моментом Мnp. По существу возникновение Мпр — это реакция машины на воздействие внешнего момента Мвр, а физическая природа противодействующего момента та же, что и вращающего момента у двигателя. В установившемся режиме работы генератора между Мвр и Мпр устанавливается равновесие и Мвр=Мпр.
При работе машины в режиме двигателя проводники якоря пересекают магнитное поле и в них наводится ЭДС (рис. 1.5,б). Ее направление определяется по правилу правой руки. В рассматриваемом случае она направлена против тока и, следовательно, навстречу приложенному напряжению сети U и поэтому называется противо-ЭДС Enp. Физическая природа противо-ЭДС та же, что и ЭДС генератора. В установившемся режиме работы двигателя между Enp и U устанавливается равновесие и можно считать, что Enp ≈ U .
Таким образом, при работе машины постоянного тока в любом режиме во вращающихся проводниках наводится ЭДС Е и возникает момент М, но роль их в разных режимах различная.
Что такое бесщеточный двигатель постоянного тока (BLDC)? Структура, работа и применение
Конструкция, работа и применение BLDC (бесщеточный двигатель постоянного тока)
Бесщеточные двигатели постоянного тока (BLDC) стали предметом пристального внимания многих производителей двигателей, поскольку эти двигатели становятся все более предпочтительными выбор для многих приложений, особенно в области техники управления двигателями. Двигатели BLDC превосходят щеточные двигатели постоянного тока по многим параметрам, таким как способность работать на высоких скоростях, высокий КПД и лучший отвод тепла.
Они являются неотъемлемой частью современной приводной техники, чаще всего используются для приводов, станков, электродвигателей, робототехники, компьютерной периферии, а также для выработки электроэнергии. С развитием бессенсорной технологии, помимо цифрового управления, эти двигатели стали настолько эффективными с точки зрения общей стоимости системы, размера и надежности.
Что такое бесщеточный двигатель постоянного тока (BLDC)?
Бесщеточный двигатель постоянного тока (известный как BLDC) — это синхронный электродвигатель с постоянными магнитами , который приводится в действие электричеством постоянного тока (DC) и выполняет систему коммутации с электронным управлением (коммутация — это процесс создания крутящего момента в двигателе. изменяя фазные токи через него в соответствующее время) вместо системы механической коммутации.Двигатели BLDC также называют двигателями с трапециевидными постоянными магнитами.
В отличие от обычного щеточного двигателя постоянного тока, в котором щетки механически контактируют с коммутатором на роторе, образуя электрический путь между источником постоянного тока и обмотками якоря ротора, двигатель BLDC использует электрическую коммутацию с ротором с постоянными магнитами и статором. с последовательностью катушек. В этом двигателе постоянный магнит (или полюса поля) вращается, а токоведущие проводники закреплены.
Катушки якоря переключаются электронно с помощью транзисторов или кремниевых выпрямителей в правильном положении ротора таким образом, что поле якоря находится в пространственной квадратуре с полюсами поля ротора. Следовательно, сила, действующая на ротор, заставляет его вращаться. Датчики Холла или угловые энкодеры обычно используются для определения положения ротора и размещаются вокруг статора. Обратная связь по положению ротора с датчика помогает определить, когда следует переключить ток якоря.
Эта электронная коммутационная система устраняет необходимость в коллекторном устройстве и щетках в двигателе постоянного тока и, следовательно, обеспечивает более надежную и менее шумную работу. Из-за отсутствия щеток двигатели BLDC могут работать на высоких скоростях. КПД двигателей BLDC обычно составляет от 85 до 90 процентов, тогда как электродвигатели постоянного тока щеточного типа имеют КПД от 75 до 80 процентов. Доступны широкие разновидности двигателей BLDC: от небольшого диапазона мощности до дробного, целого и большого диапазонов мощности.
Конструкция двигателя BLDC
Двигатели BLDC могут быть сконструированы в различных физических конфигурациях. В зависимости от обмоток статора они могут быть однофазными, двухфазными или трехфазными. Однако чаще всего используются трехфазные двигатели BLDC с ротором с постоянными магнитами.
Конструкция этого двигателя во многом схожа с трехфазным асинхронным двигателем, а также с обычным двигателем постоянного тока.Этот двигатель, как и все другие двигатели, имеет статор и ротор.
Статор двигателя BLDC, состоящий из многослойных стальных пластин, несущих обмотки. Эти обмотки размещены в пазах, которые прорезаны в осевом направлении по внутренней периферии статора. Эти обмотки могут быть расположены по схеме звезды или треугольника. Однако большинство двигателей BLDC имеют трехфазный статор, соединенный звездой.
Каждая обмотка состоит из множества соединенных между собой катушек, при этом одна или несколько катушек помещаются в каждый паз.Для формирования четного числа полюсов каждая из этих обмоток распределена по периферии статора.
Статор необходимо выбирать с правильным номинальным напряжением в зависимости от мощности источника питания. Для робототехники, автомобилестроения и малых исполнительных устройств предпочтительны двигатели BLDC с напряжением 48 В или менее. Для промышленных приложений и систем автоматизации используются двигатели с номинальным напряжением 100 В и выше.
Ротор
Двигатель BLDC имеет постоянный магнит в роторе.Число полюсов ротора может варьироваться от 2 до 8 пар полюсов с чередованием южного и северного полюсов в зависимости от требований приложения. Для достижения максимального крутящего момента в двигателе плотность магнитного потока материала должна быть высокой. Для создания необходимой плотности магнитного поля необходим подходящий магнитный материал для ротора.
Ферритовые магниты недороги, однако они имеют низкую магнитную индукцию для данного объема. Магниты из редкоземельных сплавов обычно используются в новых конструкциях.Некоторые из этих сплавов — самарий-кобальт (SmCo), неодим (Nd) и феррит и бор (NdFeB). Ротор может быть сконструирован с различными конфигурациями сердечника, такими как круглый сердечник с постоянным магнитом на периферии, круглый сердечник с прямоугольными магнитами и т. Д.
Датчики Холла
Датчик Холла предоставляет информацию для синхронизации возбуждения якоря статора с положением ротора , Поскольку коммутация двигателя BLDC управляется электроникой, обмотки статора должны быть последовательно запитаны для вращения двигателя.Перед подачей питания на конкретную обмотку статора необходимо подтверждение положения ротора. Таким образом, датчик Холла, встроенный в статор, определяет положение ротора.
Большинство двигателей BLDC имеют три датчика Холла, встроенные в статор. Каждый датчик генерирует сигналы низкого и высокого уровня всякий раз, когда полюса ротора проходят рядом с ним. Точная последовательность коммутации обмотки статора может быть определена на основе комбинации характеристик этих трех датчиков.
Принцип работы и работа двигателя BLDC
Двигатель BLDC работает по принципу, аналогичному принципу обычного двигателя постоянного тока, т.е.е., закон силы Лоренца, который гласит, что всякий раз, когда проводник с током помещен в магнитное поле, он испытывает силу. В результате силы реакции на магнит будет действовать равная и противоположная сила. В случае двигателя BLDC токопроводящий проводник неподвижен, а постоянный магнит движется.
Когда обмотки статора электрически переключаются источником питания, он становится электромагнитом и начинает создавать однородное поле в воздушном зазоре.Хотя источником питания является постоянный ток, при переключении генерируется сигнал переменного напряжения трапециевидной формы. Из-за силы взаимодействия между статором электромагнита и ротором с постоянным магнитом ротор продолжает вращаться.
Рассмотрим рисунок ниже, на котором статор двигателя возбуждается в зависимости от различных состояний переключения. При переключении обмоток на сигналы высокого и низкого уровня, соответствующая обмотка запитывается как северный и южный полюса. Ротор с постоянным магнитом с северным и южным полюсами совмещен с полюсами статора, заставляя двигатель вращаться.
Обратите внимание, что двигатель создает крутящий момент из-за развития сил притяжения (при выравнивании Север-Юг или Юг-Север) и сил отталкивания (при выравнивании Север-Север или Юг-Юг). Таким образом, двигатель вращается по часовой стрелке.
Здесь может возникнуть вопрос, как мы узнаем, какая катушка статора должна быть под напряжением и когда это делать. Это потому что; Непрерывное вращение двигателя зависит от последовательности переключения катушек. Как обсуждалось выше, датчики Холла передают электронному контроллеру обратную связь по положению вала.
На основе этого сигнала от датчика, контроллер решает включить определенные катушки. Датчики на эффекте Холла генерируют сигналы низкого и высокого уровня всякий раз, когда полюса ротора проходят рядом с ними. Эти сигналы определяют положение вала.
Бесщеточный привод двигателя постоянного тока
Как описано выше, схема электронного контроллера подает питание на соответствующую обмотку двигателя путем поворота транзистора или других твердотельных переключателей для непрерывного вращения двигателя. На рисунке ниже показана схема привода простого двигателя BLDC , которая состоит из моста MOSFET (также называемого мостом инвертора), электронного контроллера, датчика Холла и двигателя BLDC.
Здесь датчики Холла используются для обратной связи по положению и скорости. Электронный контроллер может быть блоком микроконтроллера или микропроцессором, или процессором DSP, или блоком FPGA, или любым другим контроллером. Этот контроллер получает эти сигналы, обрабатывает их и отправляет управляющие сигналы в схему драйвера MOSFET.
Помимо переключения на номинальную скорость двигателя, дополнительная электронная схема изменяет скорость двигателя в зависимости от требуемого применения. Эти блоки управления скоростью обычно реализуются с ПИД-регуляторами для точного управления.Кроме того, с помощью современных приводов можно производить четырехквадрантный режим работы двигателя, сохраняя при этом высокую эффективность при изменении скорости.
Связанные статьи по электроприводам
Преимущества двигателя BLDC
Двигатель BLDC имеет несколько преимуществ по сравнению с обычными двигателями постоянного тока, и некоторые из них
- У него нет механического коммутатора и связанных с ним проблем
- Высокая эффективность благодаря использованию ротор с постоянными магнитами
- Высокая скорость работы даже в нагруженных и ненагруженных условиях из-за отсутствия щеток, ограничивающих скорость
- Меньшая геометрия двигателя и меньший вес, чем щеточные двигатели постоянного тока и асинхронные двигатели переменного тока
- Длительный срок службы без проверки и техническое обслуживание требуется для системы коллектора
- Более высокая динамическая характеристика из-за низкой инерции и несущих обмоток в статоре
- Меньше электромагнитных помех
- Тихая работа (или низкий уровень шума) из-за отсутствия щеток
Недостатки бесщеточного двигателя
- Эти двигатели дорогие 9012 1 Требуется электронный контроллер для управления этим двигателем стоит дорого
- Недоступность многих интегрированных решений электронного управления, особенно для крошечных двигателей BLDC
- Требуется сложная схема привода
- Необходимы дополнительные датчики
Вы также можете прочитать: Подключение трехфазного двигателя Звезда / треугольник (Y-Δ) назад / вперед с таймером Схема питания и управления
Применения бесщеточных двигателей постоянного тока (BLDC)
Бесщеточные двигатели постоянного тока (BLDC) используются для самых разных применений требования, такие как переменные нагрузки, постоянные нагрузки и приложения для позиционирования в областях промышленного управления, автомобилестроения, авиации, систем автоматизации, медицинского оборудования и т. д.Некоторые специфические области применения двигателей BLDC:
- Жесткие диски компьютеров и DVD / CD-плееры
- Электромобили, гибридные автомобили и электрические велосипеды
- Промышленные роботы, станки с ЧПУ и простые системы с ременным приводом
- Стиральные машины, компрессоры и сушилки
- Вентиляторы, насосы и нагнетатели
Вы также можете прочитать
. Монтаж, принцип работы, поиск и устранение неисправностей двигателей постоянного и переменного тока
Ответвительные цепи двигателя
Ответвительная цепь двигателя — это система проводки, выходящая за пределы конечного автоматического устройства защиты от перегрузки. Термовыключатели или устройства защиты двигателя от перегрузки не являются защитой параллельной цепи. Это дополнительная максимальная токовая защита.
Электродвигатели переменного / постоянного тока установка, принцип работы, устранение неисправностей и ремонт Ответвительная цепь представляет собой последний этап передачи мощности от службы или источника энергии к устройствам использования.
Защита от короткого замыкания и замыкания на землю
NEC® 430, ЧАСТЬ IV — Кодекс требует, чтобы защита параллельных цепей для цепей двигателя защищала проводники цепи, аппаратуру управления и сам двигатель от перегрузки по току, вызванной коротким замыканием или заземлением (разделы с 430.51 по 430. 58).
Предохранители или автоматические выключатели являются наиболее распространенными защитными устройствами, используемыми в качестве устройств защиты параллельных цепей. Эти защитные устройства должны выдерживать пусковой ток двигателя.Для передачи этого тока они могут быть рассчитаны на 300 или 400 процентов рабочего тока двигателя, в зависимости от размера и типа двигателя.
Контроллеры двигателей обеспечивают защиту двигателя от всех обычных перегрузок, , но не предназначены для размыкания при коротких замыканиях .
Схемы ответвлений Цепи ответвлений двигателя обычно имеют разные схемы. На рисунках выше показаны пара цепей электродвигателя и то, как защита цепи используется в различных типах схем.
Как упоминалось ранее, устройство защиты от короткого замыкания и замыкания на землю в ответвленной цепи двигателя должно выдерживать пусковой ток двигателя. Для цепей двигателя с напряжением 600 В или менее допускается использование защитного устройства, номинал или настройка которого не превышает значений, указанных в таблице 430.52 кодекса. Когда вы заполните это руководство, вы сможете делать следующее:
- Опишите назначение и использование портативных тестеров электрических инструментов.
- Описать процедуры обслуживания электроинструментов.
- Опишите назначение и использование испытательного оборудования.
- Опишите различные типы двигателей и контроллеров.
- Обозначение компонентов двигателей.
- Обозначение различных компонентов двигателя постоянного тока и органов управления.
- Обозначение различных компонентов двигателей и контроллеров переменного тока.
- Опишите конструкцию трехфазных двигателей.
- Опишите функции контроллеров двигателей переменного тока.
- Опишите различные типы защиты цепей электродвигателя.
- Опишите процедуры, связанные с заземлением оборудования.
- Опишите различные типы цепей управления.
- Опишите процедуры, связанные с устранением неполадок и тестированием контроллеров.
- Опишите базовое обслуживание двигателя.
- Опишите процедуру запуска двигателя.
Электродвигатели переменного / постоянного тока установка, принцип работы, устранение неисправностей и ремонт
, Щеточные и бесщеточные двигатели: работа, конструкция и применение
Электродвигатели стали огромной частью нашей жизни. Они встречаются во всех видах устройств, от электромобилей до дронов, роботов и других электронных устройств. В общем, электродвигатель — это устройство, которое преобразует электрическую энергию в механическую энергию . Их обычно называют полной противоположностью генераторов, поскольку они работают по схожим принципам и теоретически могут быть преобразованы в генераторы.В основном они используются в ситуациях, когда необходимо вращательное движение, и находят применение в бытовой технике (вибрационные двигатели), роботах, медицинском оборудовании, игрушках и многом другом.
Электродвигатели можно разделить на две большие категории в зависимости от типа используемого для них источника питания: двигатели переменного тока и двигатели постоянного тока . Как следует из названия, двигатели переменного тока обычно питаются от источников переменного тока (однофазных или трехфазных) и в основном используются в промышленных и тяжелых приложениях, где требуется большой крутящий момент. Двигатели постоянного тока (которые являются нашим приоритетом на сегодняшний день), с другой стороны, обычно меньше и используются в приложениях, основанных на батареях (или подключенных к источникам постоянного тока), где требуется значительно меньший объем работы по сравнению с двигателями переменного тока. Они находят применение в нескольких устройствах, от повседневных устройств, таких как машинки для стрижки бритья, до игрушек для детей, роботов и дронов.
Требования к двигателям постоянного тока различаются от одного приложения к другому, поскольку одно приложение может потребовать большего крутящего момента и снижения скорости, в то время как другое может потребовать большей скорости и меньшего крутящего момента, поэтому двигатели постоянного тока иногда классифицируются продавцами на основе этого.Однако двигатели постоянного тока можно разделить на три разные категории или типы , включая:
- Матовый электродвигатель постоянного тока
- Бесщеточные двигатели постоянного тока
- Серводвигатели.
В сегодняшней статье мы сосредоточимся на бесщеточных двигателях и щеточных двигателях постоянного тока , поскольку мы исследуем разницу между ними по принципу действия, конструкции, применению, преимуществам и недостаткам. Для третьего типа вы можете просмотреть подробную статью о сервомоторе.
Принцип работы и конструкция
Работа всех двигателей обычно основана на двух принципах: ; Закон Ампера и закон Фарадея . Первый закон гласит, что электрический проводник, помещенный в магнитное поле, будет испытывать силу , если любой ток, протекающий через проводник, имеет компонент, расположенный под прямым углом к этому полю. Второй принцип гласит, что если проводник перемещается через магнитное поле, то любой компонент движения, перпендикулярный этому полю, будет генерировать разность потенциалов между концами проводника.
Согласно этим законам электродвигатели состоят из двух основных частей; Постоянный магнит и связка проводников, скрученных в катушку. Подавая электричество на катушку, она становится магнитом, и, основываясь на том факте, что магниты отталкиваются на одинаковых полюсах и притягиваются на разных полюсах, достигается вращательное движение.
Матовый двигатель постоянного тока
Щеточный двигатель постоянного тока известен как один из самых ранних и простых двигателей, поскольку он самым простым образом реализует законы, описанные выше.Как показано на изображении ниже, конструкция щеточного двигателя постоянного тока состоит из неподвижного статора, состоящего из постоянного магнита и подвижного якоря (ротора), на котором размещены такие компоненты, как коммутатор, щетки и разрезное кольцо. вал двигателя.
Когда питание подается на двигатель (через батарею или через источник переменного тока в постоянный, подключенный к источнику), электричество течет от источника к якорю через щетки, которые обычно расположены на противоположных сторонах вала двигателя.Щетки (присутствие которых в конструкции является основным фактором, определяющим название двигателя) передают электрический ток на якорь посредством физического контакта с коммутатором. Как только якорь (катушка с проволокой) находится под напряжением, он начинает вести себя как магнит, и в этот момент его полюса начинают отталкивать полюса постоянного магнита, составляющего статор. Когда полюса отталкиваются, вал двигателя, к которому прикреплен якорь, начинает вращаться со скоростью и крутящим моментом, которые зависят от силы магнитного поля вокруг якоря.
Сила магнитного поля обычно зависит от напряжения, приложенного к щеткам, и силы постоянного магнита, используемого для статора.
Бесщеточные двигатели постоянного тока
Даже при том, что они используют тот же принцип электромагнетизма, с другой стороны, бесщеточные двигатели более сложны. Они являются прямым результатом усилий, направленных на повышение эффективности щеточных двигателей постоянного тока, и их можно просто описать как двигатели, в которых для коммутации не используются щетки.Однако упрощенный характер этого описания приводит к вопросам о том, как двигатель получает питание и как достигается движение без щеток, которые я попытаюсь объяснить.
В отличие от щеточных двигателей, в бесщеточных двигателях все наоборот. Якорь, который в случае щеточного двигателя вращается внутри статора, в бесщеточных двигателях неподвижен, а постоянный магнит, который в щеточных двигателях закреплен, служит ротором в бесщеточном двигателе. Проще говоря, статор бесщеточных двигателей постоянного тока состоит из катушек, а его ротор (к которому прикреплен вал двигателя) состоит из постоянного магнита.
Поскольку бесщеточный двигатель исключает использование щеток для подачи питания на якорь, переключение (коммутация) становится более сложным и выполняется электронным способом с использованием дополнительного набора электронных компонентов (например, усилителя, запускаемого коммутирующим компонентом, например, оптическим энкодером) для достижения движение. Алгоритмы коммутации для бесщеточных двигателей постоянного тока можно разделить на два; Сенсорная и бессмысленная коммутация.
При коммутации на основе датчиков датчики (например, датчик Холла) размещаются вдоль полюсов двигателя, чтобы обеспечить обратную связь для схемы управления, чтобы помочь ей оценить положение ротора. Для коммутации на основе датчиков используются три популярных алгоритма;
- Трапецеидальная коммутация
- Синусоидальная коммутация
- Векторное (или полевое) управление.
Каждый из этих алгоритмов управления имеет свои плюсы и минусы, и эти алгоритмы могут быть реализованы по-разному в зависимости от программного обеспечения и конструкции электронного оборудования для внесения необходимых изменений.
С другой стороны, при бессенсорной коммутации вместо датчиков, размещаемых внутри двигателей, схема управления предназначена для измерения обратной ЭДС для оценки положения ротора.
Этот алгоритм работает довольно хорошо и имеет меньшую стоимость, поскольку не требует затрат на датчики Холла, но его реализация намного сложнее по сравнению с алгоритмами на основе датчиков.
Преимущества и недостатки
В щеточных двигателях постоянного тока щетки находятся в постоянном контакте с вращающимся коммутатором. Это приводит к возникновению значительного трения , что, в свою очередь, приводит к потере энергии на нагрев и постепенному износу щеток . Таким образом, щеточные электродвигатели постоянного тока имеют низкий КПД и требуют периодического обслуживания. Это создает большое трение, а трение равняется теплу (потере энергии) и износу.С другой стороны, бесщеточные двигатели постоянного тока по существу не имеют трения и, следовательно, имеют действительно высокий КПД, не требуют технического обслуживания и служат дольше, чем щеточные двигатели постоянного тока.
Однако щеточные электродвигатели постоянного тока очень дешевы по сравнению с их бесщеточными аналогами из-за простой конструкции. С другой стороны, бесщеточные двигатели постоянного тока довольно дороги из-за их сложной конструкции и дополнительных затрат на дополнительные электронные компоненты (контроллеры), необходимые для их привода.
Приложения
В то время как бесщеточные двигатели постоянного тока более популярны в наши дни, щеточные двигатели постоянного тока все еще используются в повседневной бытовой технике, детских игрушках и в промышленных приложениях из-за легкости, с которой можно изменять отношение скорости к крутящему моменту. Из-за их низкой стоимости они используются в приложениях, где главное устройство могло выйти из строя раньше двигателей.
С другой стороны, бесщеточные двигатели постоянного тока нашли применение во всех видах устройств, от медицинского оборудования, роботов и дронов до электромобилей, электроинструментов и т. Д.В основном они используются в приложениях, требующих высокой эффективности, долговечности и оправдывающих затраты.
Факторы, которые следует учитывать при выборе между бесщеточным и щеточным двигателями постоянного тока
Помимо скорости, крутящего момента, номинальной мощности и других основных требований для вашего приложения, ниже есть три фактора, которые, как мне кажется, также следует учитывать при принятии решения о типе двигателя, который будет использоваться для вашего приложения.
- Рабочий цикл / срок службы
- Эффективность
- Управление / управление
- Стоимость
Рабочий цикл / срок службы
Срок службы описывает, как долго двигатель должен проработать до отказа и при каком рабочем цикле.Это важно, потому что щеточный двигатель постоянного тока, как упоминалось ранее, подвержен износу из-за трения между щетками и коммутатором. Таким образом, важно убедиться, что это приложение, в котором двигатель будет работать в течение всего срока службы, или приложение, в котором обслуживание двигателя будет считаться нормальным и недорогим, если будут использоваться щеточные двигатели постоянного тока. Хорошим примером этого являются детские игрушки, где игрушки обычно выбрасываются или повреждаются до того, как двигатель изнашивается.В приложениях с длительным сроком службы и техобслуживанием двигатель не является жизнеспособным вариантом, бесщеточные двигатели постоянного тока обычно являются разумным вариантом.
КПД
Как правило, бесщеточные двигатели постоянного тока имеют более высокий общий КПД по сравнению с щеточными двигателями постоянного тока , но были случаи, когда двигатели с щеточным сердечником без железа имели более высокий КПД по сравнению с аналогичными бесщеточными двигателями. Однако перед принятием решения важно оценить общий требуемый КПД и сравнить его с КПД каждого двигателя.В большинстве случаев, когда решающим фактором является эффективность, бесщеточные двигатели постоянного тока обычно выигрывают.
Управление / управление
Обычно это одна из главных неудач, когда дело доходит до использования бесщеточных двигателей постоянного тока. Дополнительные требования, такие как контроллеры и т. Д., Делают приведение в действие более сложным по сравнению с щеточными двигателями постоянного тока, которые могут приводиться в действие / приводиться такими же тривиальными методами, как подключение батареи к ее клеммам. Вы должны убедиться, что объем сложности, связанный с использованием бесщеточного двигателя постоянного тока для проекта, оправдан, а вспомогательная электроника, такая как контроллеры, легко доступна.Несмотря на простоту щеточных двигателей постоянного тока, они иногда не подходят для высокоточных приложений. Хотя щеточный двигатель постоянного тока может быть легко подключен к контроллеру, например к Arduino, очень сложно подключить BLDC к Arduino Uno, однако ESC ( Electronic Speed Controller ) упрощает взаимодействие BLDC с микроконтроллером.
Стоимость
Сложность конструкции бесщеточных двигателей постоянного тока делает их действительно дорогими по сравнению с щеточными двигателями постоянного тока.Прежде чем переходить на бесщеточные двигатели постоянного тока, убедитесь, что дополнительные затраты находятся в пределах допустимых для проекта. Также рассмотрите стоимость других аксессуаров, необходимых для использования BLDC, прежде чем принимать решение.
,Двигатели переменного тока | Принцип работы | Ресурсы для инженеров
Универсальные моторы
Универсальный двигатель — это однофазный последовательный двигатель, который может работать как от переменного (ac), так и от постоянного (dc) тока, а характеристики одинаковы для переменного и постоянного тока. Обмотки возбуждения последовательных двигателей соединены последовательно с обмотками якоря
.
Основные принципы Universal Motors Области электрического проектирования универсального двигателя: магнитная цепь, обмотки возбуждения и якоря, коммутатор и щетки, изоляция и система охлаждения.
Процесс коммутации универсальных двигателей
Тактико-технические характеристики универсальных двигателей
Двигатели с экранированными полюсами
Двигатель с экранированными полюсами — это однофазный асинхронный двигатель переменного тока. Вспомогательная обмотка, состоящая из медного кольца, называется затеняющей катушкой. Ток в этой катушке задерживает фазу магнитного потока в этой части полюса, чтобы обеспечить вращающееся магнитное поле. Направление вращения — от незатененной стороны к закрашенному кольцу.
Основные принципы двигателя с экранированными полюсами
- Это устройство затеняющей катушки (кольца) смещает ось затененных полюсов относительно оси основных полюсов
- Когда питание подается на статор, магнитный поток в основной части полюса индуцирует напряжение в затеняющей катушке, которая действует как вторичная обмотка трансформатора.
- Поскольку ток во вторичной обмотке трансформатора не в фазе с током в первичной обмотке.
- Ток в затеняющей катушке не в фазе с током в основной обмотке возбуждения.
- Таким образом, поток затеняющего полюса не в фазе с потоком основного полюса.
Вращающееся поле двигателя с экранированными полюсами
Синхронные двигатели
Синхронные двигатели переменного тока — это электродвигатели с постоянной скоростью, которые работают синхронно с частотой сети. Скорость синхронного двигателя определяется количеством пар полюсов и всегда является соотношением частоты сети.
- Статор снабжен двумя простыми катушками, которые можно напрямую подключить к сети.
- Ротор состоит из цилиндрического постоянного двухполюсного магнита, диаметрально намагниченного.
Основные принципы синхронных двигателей ,
Контроллеры двигателей обеспечивают защиту двигателя от всех обычных перегрузок, , но не предназначены для размыкания при коротких замыканиях .