Преобразователи частоты | INSTART
Данная политика конфиденциальности относится к сайту под доменным именем instart-info.ru. Эта страница содержит сведения о том, какую информацию мы (администрация сайта) или третьи лица могут получать, когда вы пользуетесь нашим сайтом.
Данные, собираемые при посещении сайта
Персональные данные
Персональные данные при посещении сайта передаются пользователем добровольно, к ним могут относиться: имя, фамилия, отчество, номера телефонов, адреса электронной почты, адреса для доставки товаров или оказания услуг, реквизиты компании, которую представляет пользователь, должность в компании, которую представляет пользователь, аккаунты в социальных сетях; поля форм могут запрашивать и иные данные.
Эти данные собираются в целях оказания услуг или продажи товаров, связи с пользователем или иной активности пользователя на сайте, а также, чтобы отправлять пользователям информацию, которую они согласились получать.
Мы не проверяем достоверность оставляемых данных, однако не гарантируем качественного исполнения заказов или обратной связи с нами при некорректных данных.
Данные собираются имеющимися на сайте формами для заполнения (например, регистрации, оформления заказа, подписки, оставления отзыва, обратной связи и иными).
Формы, установленные на сайте, могут передавать данные как напрямую на сайт, так и на сайты сторонних организаций (скрипты сервисов сторонних организаций).
Также данные могут собираться через технологию cookies (куки) как непосредственно сайтом, так и скриптами сервисов сторонних организаций. Эти данные собираются автоматически, отправку этих данных можно запретить, отключив cookies (куки) в браузере, в котором открывается сайт.
Не персональные данные
Кроме персональных данных при посещении сайта собираются не персональные данные, их сбор происходит автоматически веб-сервером, на котором расположен сайт, средствами CMS (системы управления сайтом), скриптами сторонних организаций, установленными на сайте. К данным, собираемым автоматически, относятся: IP адрес и страна его регистрации, имя домена, с которого вы к нам пришли, переходы посетителей с одной страницы сайта на другую, информация, которую ваш браузер предоставляет добровольно при посещении сайта, cookies (куки), фиксируются посещения, иные данные, собираемые счетчиками аналитики сторонних организаций, установленными на сайте.
Эти данные носят неперсонифицированный характер и направлены на улучшение обслуживания клиентов, улучшения удобства использования сайта, анализа посещаемости.
Предоставление данных третьим лицам
Мы не раскрываем личную информацию пользователей компаниям, организациям и частным лицам, не связанным с нами. Исключение составляют случаи, перечисленные ниже.
Данные пользователей в общем доступе
Персональные данные пользователя могут публиковаться в общем доступе в соответствии с функционалом сайта, например, при оставлении отзывов, может публиковаться указанное пользователем имя, такая активность на сайте является добровольной, и пользователь своими действиями дает согласие на такую публикацию.
По требованию закона
Информация может быть раскрыта в целях воспрепятствования мошенничеству или иным противоправным действиям; по требованию законодательства и в иных случаях, предусмотренных законом.
Для оказания услуг, выполнения обязательств
Пользователь соглашается с тем, что персональная информация может быть передана третьим лицам в целях оказания заказанных на сайте услуг, выполнении иных обязательств перед пользователем. К таким лицам, например, относятся курьерская служба, почтовые службы, службы грузоперевозок и иные.
Сервисам сторонних организаций, установленным на сайте
На сайте могут быть установлены формы, собирающие персональную информацию других организаций, в этом случае сбор, хранение и защита персональной информации пользователя осуществляется сторонними организациями в соответствии с их политикой конфиденциальности.
Сбор, хранение и защита полученной от сторонней организации информации осуществляется в соответствии с настоящей политикой конфиденциальности.
Как мы защищаем вашу информацию
Мы принимаем соответствующие меры безопасности по сбору, хранению и обработке собранных данных для защиты их от несанкционированного доступа, изменения, раскрытия или уничтожения, ограничиваем нашим сотрудникам, подрядчикам и агентам доступ к персональным данным, постоянно совершенствуем способы сбора, хранения и обработки данных, включая физические меры безопасности, для противодействия несанкционированному доступу к нашим системам.
Ваше согласие с этими условиями
Используя этот сайт, вы выражаете свое согласие с этой политикой конфиденциальности. Если вы не согласны с этой политикой, пожалуйста, не используйте наш сайт. Ваше дальнейшее использование сайта после внесения изменений в настоящую политику будет рассматриваться как ваше согласие с этими изменениями.
Отказ от ответственности
Политика конфиденциальности не распространяется ни на какие другие сайты и не применима к веб-сайтам третьих лиц, которые могут содержать упоминание о нашем сайте и с которых могут делаться ссылки на сайт, а также ссылки с этого сайта на другие сайты сети Интернет. Мы не несем ответственности за действия других веб-сайтов.
Изменения в политике конфиденциальности
Мы имеем право по своему усмотрению обновлять данную политику конфиденциальности в любое время. В этом случае мы опубликуем уведомление на главной странице нашего сайта. Мы рекомендуем пользователям регулярно проверять эту страницу для того, чтобы быть в курсе любых изменений о том, как мы защищаем информацию пользователях, которую мы собираем.
Как с нами связаться
Если у вас есть какие-либо вопросы о политике конфиденциальности, использованию сайта или иным вопросам, связанным с сайтом, свяжитесь с нами:
8 800 222 00 21
Преобразователи частоты для ваших приводов
Являясь одним из ведущих изготовителей приводной техники, к нашим механическим компонентам мы, конечно же, предлагаем и подходящую преобразовательную технику. Мы разрабатываем и производим приводные преобразователи и преобразователи частоты для управления и регулирования приводов в машинах и установках. И это не только для централизованного монтажа в электрошкафу или для настенного монтажа, но и для децентрализованного монтажа.
Что такое преобразователь частоты?
Преобразователи частоты – это электронные устройства, которые позволяют регулировать частоту вращения асинхронного двигателя. Обоснование: Если электрические машины или асинхронные двигатели работают непосредственно от сети переменного напряжения, у них есть только одна фиксированная частота вращения – в зависимости от числа полюсов и частоты местной электросети. Однако если приводной системе или производственному процессу требуется изменяемое переменное напряжение, т. е. регулируемая скорость, то применяются преобразователи частоты. Из фиксированного переменного напряжения они могут
Как работает преобразователь частоты?
>Преобразователь частоты подключается перед двигателем, чтобы создавать соответствующее потребностям, изменяемое переменное напряжение. Таким образом, уже не электросеть создает частоту и величину напряжения, с которыми работает двигатель, а преобразователь частоты берет на себя эту задачу и
Большое преимущество преобразователя частоты? С его помощью вы плавно изменяете частоту вращения двигателя почти от нуля до нужного номинального уровня и заметно расширяете ее диапазон. При этом вращающий момент двигателя остается неизменным. Таким образом пользователи оборудования всегда могут адаптировать свою приводную технику к текущим условиям. Кроме того, преобразователь частоты позволяет быстро менять направление вращения. Чтобы изменить порядок следования фаз, достаточно простого управляющего сигнала. После этого подключенный асинхронный двигатель будет работать в противоположном направлении.
Какие типы преобразователей существуют?
Бывают преобразователи с управлением по току и с управлением по напряжению. В работе они различаются следующим образом:
- Преобразователи частоты с управлением по току поддерживают отношение тока к частоте (I/f) всегда постоянным и применяются в верхнем мегаваттном диапазоне.
- А в нижнем мегаваттном и в киловаттном диапазонах последним словом техники являются преобразователи частоты с управлением по напряжению. Они поддерживают на постоянном уровне отношение напряжения к частоте: То есть если двигатель, рассчитанный на напряжение 230 В и частоту 50 Гц, должен работать с частотой 25 Гц, то и напряжение уменьшается вдвое до 115 В.
Проще говоря, в преобразователе частоты с управлением по напряжению происходит следующее: На входе имеется выпрямитель, который преобразует переменное напряжение электросети в постоянное напряжение. Затем это постоянное напряжение сглаживается и стабилизируется звеном постоянного тока. Далее действующий со стороны двигателя инвертор генерирует переменное напряжение с выходной частотой, необходимой для приводной системы. Получаемое при этом отношение „напряжение/частота“ определяет необходимую частоту вращения двигателя. Задание или расчет необходимой частоты вращения выполняет встроенный блок управления, который соединяет друг с другом все компоненты.
Где применяются преобразователи?
Преобразователи частоты используются в самых разных отраслях и задачах промышленности. Будь то приводы насосов и вентиляторов, обрабатывающих станков, конвейеров и сборочных линий, кранов или роботизированных систем: представить себе промышленное производство без преобразователей частоты уже невозможно. Ведь там адаптированная или непрерывно регулируемая частота вращения обеспечивает оптимизированные технологические процессы – с тем дополнительным преимуществом, что приводы с регулированием частоты вращения способствуют экономии энергии при работе
Преобразователи для любых установок и машин
В зависимости от спроса и требований наши преобразователи частоты доступны в различных исполнениях и с множеством дополнительных функций. К тому же очень важно, где нужно разместить преобразователь частоты – на стене, в центральном и защищенном месте в электрошкафу или прямо в цеху, то есть децентрализованно. И в зависимости от того, насколько проста или сложна та или иная приводная система, применяются либо простые преобразователи частоты, либо так называемые специальные преобразователи с большим объемом функций или многоосевые сервоусилители
SEW-EURODRIVE был первой компанией, которая разработала децентрализованную технику и вывела на рынок соответствующие преобразователи частоты и мехатронные приводы. С их помощью пользователи оборудования значительно сокращают затраты на монтаж и создают себе много возможностей для модульного построения своих систем, независимых от электрошкафа. Кроме того, в нашем ассортименте в области преобразовательной техники есть устройства рекуперации энергии в сеть, которые комбинируются с одним или несколькими преобразователями частоты и приводными преобразователями. Также мы предлагаем простые пускатели двигателя для встраивания в
Преобразователи частоты для монтажа в электрошкафу
От простого преобразователя до стандартного или специального преобразователя и далее до модульного сервопреобразователя – мы предлагаем вам широкий ассортимент приводной электроники для централизованного размещения в электрошкафу или распределительном щите:
Преобразователи частоты для настенного монтажа
Еще одна и при этом менее затратная возможность централизованного размещения преобразователей частоты – это настенный монтаж. Он всегда используется в тех случаях, когда приобретать дорогой электрошкаф нерационально. Наши преобразователи частоты, которые подходят для такого способа монтажа, имеют соответствующую степень защиты от IP 54 до IP 66 (для пыльных и влажных условий окружающей среды).
Пускатели двигателя для децентрализованного монтажа
Достаточно ли для вашей приводной системы функции именно преобразователя? Или вам нужно простое включение/выключение двигателя или переключение направления вращения двигателя с левого на правое? Подходящие продукты в ассортименте SEW-EURODRIVE найдутся и для этого случая:
Преобразователи частоты для децентрализованного монтажа
Для размещения вашей приводной электроники рядом с двигателем или мотор-редуктором мы предлагаем широкий выбор преобразователей частоты: от простого преобразователя с настройкой темпа для надежного применения в простых системах до стандартного преобразователя с расширенными функциями регулирования и далее до свободно программируемого специального преобразователя для систем сложной архитектуры. А если вам нужно децентрализованным образом реализовать многоосевые перемещения, а также системы с цепочкой рабочих модулей, то лучшим выбором будут многоосевые сервоусилители. Децентрализованные преобразователи в нашем ассортименте:
Применение преобразователей частоты в подъемно-транспортном оборудовании (ПТО)
В подъемно-транспортном оборудовании (все виды кранов, тельферы, кран-балки) для перемещения устройства захвата, подъема и опускания грузов используются несколько типов электродвигателей. Это двигатели с фазным ротором, двигатели постоянного тока и асинхронные двигатели с короткозамкнутым ротором. Рассмотрим особенности использования всех выше перечисленных двигателей в различных механизмах кранов.
В моторах с фазным ротором используется реостатный пуск. За счет наличия сопротивления в цепи ротора пусковые токи имеют небольшие значения. Разгон двигателей происходит с помощью специального реле времени. Недостатками такого типа двигателей являются отсутствие возможности плавной регулировки скорости, большие габариты, значительное тепловыделение резисторов, большое количество контактной аппаратуры, которая со временем требует обслуживания.
Двигатели постоянного тока используются в тех случаях, когда нужен плавный подъем груза и точное регулирование скорости вращения вала мотора. В этом случае скорость регулируется с помощью тиристорного преобразователя. Общие недостатки двигателя этого типа – большая масса и стоимость самого мотора, сложность конструкции, необходимость в регулярном обслуживании щеточного узла мотора.
Асинхронные двигатели с короткозамкнутым ротором имеют много достоинств, в частности к ним относятся надежность в эксплуатации, простота конструкции и отсутствие необходимости регулярного обслуживания. Общим недостатком асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи, которые в 6-7 раз превышают номинальные.
Внедрение преобразователей частоты (ПЧ) для питания и управления асинхроннымидвигателями с короткозамкнутым ротором позволяет более эффективно регулировать скорость вращения электродвигателей, значительно снизить их пусковые токи и потребление электроэнергии. Эти особенности привели к постепенному вытеснению из использования двигателей постоянного тока и двигателей с фазным ротором в качестве приводов в подъемно-транспортном оборудовании и их замене на асинхронные двигатели с короткозамкнутым ротором, управляемые преобразователем частоты. Применение частотных преобразователей в механизмах кранов позволяет регулировать скорость подъема груза, перемещения самого крана или тележки в процессе работы, улучшает эксплуатационные характеристики кранов, снижает затраты и упрощает техническую эксплуатацию оборудования.
Преобразователи частоты, применяемые в крановом оборудовании, должны обеспечивать динамичную работу привода и поддерживать требуемый момент на валу двигателя даже при низких частотах вращения. Так как все электродвигатели монтируются непосредственно на конструкциях кранов, подверженных вибрациям, частотные преобразователи должны быть виброустойчивы. Кроме того, ПЧ должны иметь высокую перегрузочную способность, возможность работы в широком диапазоне температур. Всем эти требованиям соответствуют векторные преобразователи частоты ERMAN, их использования для управления приводами в подъемно-транспортном оборудовании позволяет решать следующие характерные задачи.
- Организация простой системы управления приводами.
Для управления преобразователем частоты используются стандартные аналоговые и дискретные сигналы, а также последовательный интерфейс RS485 с типовым протоколом информационного обмена MODBUS, используя который все ПЧ можно объединить в одну сеть.
- Плавное увеличение, уменьшение и программируемое изменение скорости механизмов крана.
Алгоритм разгона, торможения и программируемого изменения скорости прописывается в самих частотных преобразователях исходя из технологических требований. Это позволяет значительно снизить ударные и механические нагрузки на конструкцию крана.
- Управление электромеханическим тормозом.
ПЧ управляет электромеханическим тормозом двигателя и другим сопряженным оборудованием посредством дискретных и релейных выходов Преобразователи частоты ERMAN для кранового и подъемно-транспортного оборудования зарекомендовали себя самым наилучшим образом. На все частотные преобразователи ERMAN предоставляется гарантия 18 месяцев, при этом мы осуществляем сервисную и техническую поддержку наших клиентов в течение всего срока эксплуатации выпускаемой нами продукции.
Для подбора преобразователя частоты для вашего ПТО заполните форму «Получить коммерческое предложение».
Получить коммерческое предложениеЧто такое преобразователь частоты и для чего он нужен?
Для регулирования работы асинхронного двигателя с целью не допустить снижения его КПД применяют специальные устройства – частотные преобразователи. Их работа заключается в том, что они плавно изменяют скорость вращения двигателя, с помощью смены частоты питающего напряжения.
В данной статье мы постараемся рассмотреть ряд незаметных, на первый взгляд, особенностей в работе асинхронного электродвигателя и проанализируем, насколько важно в ходе его эксплуатации использовать частотный преобразователь.
Что может привести к неисправности?
В асинхронном двигателе напряжение для работы чаще всего поступает через последовательно включенный автоматический выключатель. То сесть данный способ запуска двигателя по другому называется — плавный пуск. Таким образом это провоцирует высокий рост тока пусковой обмотки, что для оборудования закончится весьма плачевно.
Частотный преобразователь имеет к этому важное отношение – он контролирует ток электродвигателя. Формируя необходимое напряжение нужной амплитуды и частоты, частотник подает их на двигатель. Поясним – в процессе его запуска преобразователь отдает не полную частоту, скажем, в 50 Герц, а где-то 0,1Гц (или чуть больше). То же самое и с напряжением – не все 220 В или 380 В, а около 20-30 (смотря, какие выставлены настройки).
Принцип работы преобразователя частоты для электродвигателя
Все это позволяет пропускать через обмотку статора ток оптимального значения, не выше номинального показателя, чтобы создать магнитное поле, которое, в свою очередь, вместе с созданным в обмотке током создаст крутящий момент. Что касается принципов изменения характеристик напряжения, то подробно об этом, а также о критериях выбора частотника, вы можете прочесть здесь, в одной из других наших статей. Кстати, если говорить о критериях выбора, то отметим также, что выходные токи преобразователя частоты должны быть ниже тока полного режима нагрузки.
Выше мы описывали старт двигателя. Что касается разгона, то в ходе этого процесса преобразователь плавно повышает частоту и величину поступаемого напряжения, тем самым разгоняя двигатель. Главное – настроить частотник таким образом, чтобы времени на разгон уходило как можно меньше, а ток обмотки статора не был выше её номинального значения. Кроме того, важно поддерживать достаточный крутящий момент на валу.
Почему без преобразователя не обойтись? Главные преимущества его использования
Итак, преобразователь частоты дает следующие преимущества при управлении асинхронным двигателем:
- Плавный пуск и остановка электропривода
- Управление производительностью оборудования
- Установка оптимальных режимов работы
- Взаимное согласование электроприводов в сложных системах
Самые важные – это 1 и 2 пункты. Почему именно они?
Плавный пуск позволяет наращивать скорость постепенно, что позволяет не допустить скачков тока. Неконтролируемые скачки опасны, так как при прямом пуске они превышают номинальные показатели в 5-7 раз, что может спровоцировать высокую нагрузку на электросеть, защитит оборудование от перегрузок и сэкономит деньги на затратах электроэнергии.
Что касается управления производительностью, то в этом случае преобразователь частоты контролирует скорость работы электродвигателя с учетом «реальных нужд» в системе в целом. Это также помогает напрасно не тратить энергию и гарантирует её экономию в 30-60%.
Помимо 4-х основных преимуществ описанных выше, использование преобразователя обеспечивает следующие преимущества:
- Понижение величины пусковых токов в 4-6 раз
- Регулировка частоты и напряжения с экономией до 50% электроэнергии
- Самостоятельное выключение контактора, снятие напряжения и с его плавной подачей в звено постоянного тока
- Устранение ударных нагрузок, защита двигателя от механической перегрузки, либо недогрузки
- Понижение общего числа ненужных отключений при ударных нагрузках
- Обеспечение нужной величины и частоты при запуске оборудования, поддержание обратной связи смежных приводов
- Контроль скорости вращения ротора и анализ работы двигателя
Классификация частотных преобразователей
В первую очередь, данные устройства различаются по режимам работы:
- Амплитудно-частотное регулирование (скалярное) – применяются в обычных установках с вентиляторами, насосами, тележками, транспортерами и т. д. где не требуется стабилизация оборотов двигателя
- Векторное регулирование – используются на любом оборудовании, где возможны резкие изменения крутящего момента на валу, причем в большом диапазоне и где нужна высокая стабильность оборотов на валу электродвигателя.
По типу питания:
- Низковольтный 0,4 кВ
- Среднее напряжение 0,69 кВ
- Высоковольтный 6 и 10 кВ
Также данные устройства бывают с промежуточным звеном (связью) и без него. О характере работы таких устройств читайте тут, в ещё одной нашей статье.
Настройка
Настройка преобразователей выполняется строго по инструкции производителя и с учетом особенностей задачи, которая решается посредством оборудования, в котором установлен двигатель.
Например, если применяется асинхронный двигатель скалярного типа, то амплитуду сигнала и выходную частоту устанавливают по определенной формуле. Для других видов двигателя обычно используют датчики скорости вращения вала двигателя. Последовательность этапов алгоритма настройки мы перечислили здесь, в другом нашем материале.
Можно ли отказаться от частотных преобразователей?
Можно. Но лучше этого не делать. Безусловно, скорость вращения можно также регулировать и при помощи гидравлической муфты или механического вариатора и других. Но данные приспособления неэкономичны (а в промышленности это крайне важно!), у них узкий диапазон регулирования, что доставляет серьезные неудобства в ходе эксплуатации, а также они гораздо быстрее выйдут из строя.
Итоги: почему нужно использовать преобразователи частоты?
Вот основной перечень преимуществ для работы оборудования, которые вы получаете, используя преобразователи:
- Плавный пуск и плавную остановку оборудования
- Эффективную защиту от перегрузок и бросков напряжения
- Возможность эксплуатации оборудования с большими номинальными сетевыми напряжениями и токами
- Понижение энергопотребления
- Стабильность технологического процесса и улучшение КПД
Итак, это наиболее важная информация о частотных преобразователях, которую мы хотели до вас донести. В завершение скажем о том, от чего зависит стоимость и на что стоит обращать внимание при выборе. Это такие факторы, как марка производителя, модель и тип управления преобразователем. Также стоит обращать внимание при выборе на тип и уровень мощности двигателя, его диапазон и точность, а также степень точности поддержки крутящего момента.
Преобразователь частоты для электродвигателя
30.10.2017
Тематика: Полезная информация
Введение
Существует немало технологических операций, нуждающихся в регулировании угловых скоростей приводных валов механизмов. Традиционно эта задача решалась двумя путями:
- применением механических многоскоростных редукторов для ступенчатого регулирования скорости, либо вариаторов для плавного регулирования;
- использованием электродвигателей постоянного тока совместно с регуляторами уровня питающего напряжения.
Регулирование угловой скорости ротора, основанное на изменении передаточного числа механической трансмиссии, характеризуется снижением общего КПД передачи. Это объясняется высоким уровнем механических потерь в редукторе, подверженном к тому же, интенсивному износу.
Двигатели постоянного тока представляют собой достаточно сложные и дорогие машины. Наличие коллекторного механизма со щёточным аппаратом, предъявляет повышенные требования к их обслуживанию и снижает надёжность.
Компания Овердрайв-Электро предлагает частотно-регулируемые приводы ABB со склада в Минске:
Принцип частотного регулирования
В основе частотного регулирования двигателя переменного тока лежит взаимосвязь угловой скорости, с которой вращается поле статора с частотой напряжения питания. Это означает, что изменение частотной характеристики напряжения статора приводит к пропорциональному изменению угловой скорости вращающегося ротора. Угловая скорость, или частота вращающегося поля статора асинхронного электрического двигателя выражается следующим соотношением:
ω0 = 2πf1/р,
где f1 — значение частоты напряжения, питающего обмотку статора, р — количество полюсных пар статорной обмотки.
Из приведенной формулы следует, что совершая изменение значения частоты подводимого к двигателю напряжения, можно плавно изменять значение угловой скорости (частоты) вращающегося поля статора, что приведёт к изменению частоты вращения ротора электродвигателя.
Данный принцип позволяет использовать в регулируемых приводах наиболее технологичные, простые и надёжные асинхронные двигатели, имеющие короткозамкнутый ротор. Благодаря высоким технико-экономическим показателям систем частотного регулирования происходит их активное внедрение в сферу промышленной и бытовой техники.
Устройство преобразователя частоты.
На рисунке 1 показана структурная схема, иллюстрирующая устройство преобразователя частоты (ПЧ).
Рис.1 Преобразователь частоты
Сетевое питающее напряжение промышленной частоты 50 герц поступает на вход выпрямителя (В), представляющего собой обычную мостовую диодную сборку. На выходе выпрямителя установлен Г — образный LC фильтр, выполняющий функции сглаживания пульсаций, которые присутствуют в выпрямленном напряжении.
Основной частью преобразователя является инвертор (И), осуществляющий преобразование постоянного напряжения в трёхфазную систему напряжений синусоидальной формы с регулируемой частотой и амплитудой. Ключевыми элементами инвертора служат мощные IGBT транзисторы, которые коммутируются сигналами, генерируемыми в системе импульсно — фазового управления. Система управления транзисторами, формирующими выходное напряжение, которое поступает на статор асинхронного двигателя (АД), основана на принципе ШИМ — широтно-импульсной модуляции. Сигнал управления представляет собой чередование импульсов напряжения с изменяемой скважностью.
Примечание. Скважность — это оценочная характеристика периодического импульсного сигнала, рассчитываемая как отношение периода чередования сигнала к длительности импульса. То есть, величина скважности показывает, какую часть периода занимают импульсы. При изменении скважности изменяется соотношение длительностей импульсов и промежутков между ними.
Следует обратить внимание на одну интересную особенность частотных преобразователей. На рисунке 1 показан преобразователь, подключенный к трёхфазной сети. Существуют модели преобразователей, питающихся от однофазной сети, при этом, на выходе инвертора формируется всё та же трёхфазная система. Разница между трёхфазными и однофазными частотными преобразователями заключается только в качестве напряжения на выходе выпрямителя. Трёхфазный выпрямительный мост создаёт меньший уровень пульсаций напряжения, по этой причине, однофазное выпрямление предъявляет повышенные требования к параметрам LC фильтра.
Применение частотных преобразователей
Сегодня трудно найти область, где не нашли своего применения частотно-регулируемые приводы асинхронных электродвигателей.
На крупных блочных электрических станциях частотные регуляторы осуществляют регулирование подачи топлива в котлы, гибко адаптируя работу энергоблоков к изменяющемуся режиму работы энергосистемы. В этом качестве частотные приводы функционируют как исполнительные звенья автоматизированной системы управления технологическими процессами электростанции.
Частотное регулирование приводов мощных вентиляторов промышленных систем позволяет автоматически поддерживать оптимальные условия их работы при изменении внутренних и внешних факторов, экономя при этом электрическую энергию и продлевая ресурс оборудования.
Большую финансовую экономию принесло внедрение частотных регуляторов в городские системы водоснабжения. Рабочее давление в водоводах питьевого назначения ранее поддерживалось в основном путём оперирования задвижками. Это приводило к неэффективной работе насосного оборудования, повышенному расходу энергии и износу. Насосы, оснащённые частотным приводом способны гибко реагировать на изменение расхода воды в системе и изменяя частоту вращения поддерживать необходимое давление.
Применение частотных регуляторов не обошло стороной и область бытовой электротехники. Все современные стиральные машины и пылесосы оснащены частотным приводом. Это позволило отказаться от редукторов и ремённых приводов и повысить экономичность работы домашних агрегатов.
Преобразователи частоты. 12 важных вопросов при выборе и установке
Преобразователи частоты (ПЧ) — один из основных элементов комплексных решений для энергетических и промышленных проектов. Современные частотные преобразователи — это продукт высоких технологий, они выпускаются с применением новейших разработок и способны не только управлять скоростью вращения электродвигателя, но и защищать электропривод от преждевременного выхода из строя, обеспечивать контроль множества параметров во время его работы. Грамотно выбрать преобразователь частоты, сориентировавшись в многообразии предложений — задача сложная и ответственная, ведь от принятого решения зависит стабильность производственных процессов. Разобраться со всеми тонкостями выбора поможет эта статья.
Часть 1. Зачем нужен преобразователь частоты?
Частотный преобразователь — незаменимое оборудование в любой сфере, где используются электродвигатели. Он обеспечивает плавный пуск, непрерывное автоматическое регулирование скорости и момента во время работы, а также множество других параметров работы электродвигателя. В ряде применений преобразователи обеспечивают снижение потребления электроэнергии до 50 %. Современные ПЧ с широтно-импульсной модуляцией (ШИМ) способны снижать пусковые токи в среднем в 4-5 раз и выдерживать перегрузки до 200 %.
На сегодняшний день в интернете можно найти большое количество рекомендаций и советов по подбору ПЧ, однако в большинстве случаев они являются общими, неконкретными и никак не применимыми на практике. Как же сориентироваться в огромном количестве критериев и выбрать подходящее оборудование? Рекомендации дают специалисты IEK GROUP, одного из ведущих российских производителей и поставщиков электротехнического оборудования: Артем Мошечков (ведущий инженер) и Петр Ивлев (специалист по техническому обучению Академии IEK GROUP).
— Зачем устанавливать и использовать преобразователь частоты?
Артем Мошечков: «Данное оборудование решает сразу несколько задач: управляет скоростью вращения электродвигателя, защищает его и в определенных режимах обеспечивает энергосбережение. ПЧ снижает слишком большой пусковой ток и момент, исключая удары, рывки и повышенные механические нагрузки на привод. Также преобразователь частоты позволяет защищать электродвигатель при коротком замыкании, страхует при отклонениях от номинального напряжения сети, контролирует температуру механизма, не допускает перегрева. Таким образом ПЧ обеспечивает более длительную и надежную работу привода, минимизирует затраты на обслуживание и ремонт. Кроме того, в определенных сферах применения и режимах работы преобразователь частоты снижает потребление электроэнергии на 30-50 %».
— Есть задача: выбрать и купить преобразователь частоты. С чего начать?
Петр Ивлев: «Модельный и функциональный ряд современного оборудования предлагает множество вариантов для решения широкого спектра задач. От самых простых до обеспечивающих управление сложнейшими автоматизированными электроприводами. Существует несколько основных критериев, основываясь на которых следует принимать решение о выборе той или иной модели частотного преобразователя».
Чтобы подобрать нужный вариант ПЧ, необходимо прежде всего определиться: для каких именно целей выбирается оборудование, какие конкретные задачи оно должно выполнять. Разумеется, необходимо знать условия эксплуатации и основные характеристики электродвигателя, для управления которым необходим ПЧ.
Современные серии преобразователей частоты включают до нескольких десятков моделей. Например, в линейке CONTROL-L620 IEK®, выведенной на рынок нашей компанией в 2017 году, представлено оборудование от 0,75 до 560 киловатт. В семействе CONTROL-А310 IEK® диапазон мощностей — до 22 киловатт, при этом уже с 11 киловатт есть возможность изготовить преобразователь со встроенным дросселем постоянного тока, что продлевает срок службы преобразователя. Номинальные напряжения — 220 и 380 В.
Такой бренд, как ONI®, предлагает сразу четыре марки частотных преобразователей: ONI-А400, ONI-М680, ONI-A650 и ONI-К800 — в диапазоне мощностей от 0,4 до 132 кВт.
— Мощность, номинальный ток, напряжение питающей сети: как сориентироваться в этих параметрах?
Петр Ивлев: «Указанные критерии очень важны для оптимальной работы оборудования».
- Мощность ПЧ должна быть равна мощности двигателя либо превышать ее. В случаях «тяжелого» применения, с высокими пусковыми нагрузками, допускается, чтобы мощность преобразователя была выше на одну, реже — на две ступени. Современные преобразователи частоты имеют большой диапазон мощности. Опять же обратимся к конкретным примерам оборудования: в линейке серии CONTROL-A310 представлены модели с мощностью от 0,4 до 22 кВт в режиме HD и от 0,75 до 22 кВт в режиме ND. Преобразователи частоты CONTROL-L620 поддерживают мощность в режиме HD от 0,75 до 500 кВт, в режиме ND — от 1,5 до 560 кВт. Есть и более узкий разбег: например, ПЧ линейки ONI-А400 работают в пределах мощности от 0,2 до 3,7 кВт.
- Следующий критерий — номинальный ток. Электропривод не работает в идеальном режиме — всегда есть вероятность изменений динамических нагрузок на валу или превышения значений номинального тока. Поэтому наряду с мощностью при выборе ПЧ обращают внимание на номинальный ток электродвигателя и преобразователя частоты. Рабочее значение данного параметра у ПЧ берется либо с запасом относительно номинального тока двигателя, либо номинал в номинал. Это делается для того, чтобы обезопасить электропривод от возможных перегрузок.
- Если говорить о напряжении питающей сети, то самыми распространенными моделями, которые используются на производстве, в ЖКХ и прочих сферах народного хозяйства, являются преобразователи напряжения 220 и 380 В. Напомню: значение данного параметра питающей сети и электродвигателя должно быть одинаковым.
— Какой преобразователь частоты лучше — однофазный или трехфазный?
Артем Мошечков: «В интернете можно прочитать, что однофазный преобразователь частоты обладает менее широким спектром возможностей, но это не так. Он способен решать все поставленные задачи».
На вход инвертора такого ПЧ подается однофазное напряжение соответствующей сети, которое на выходе формируется в трехфазное с частотой от 0 до 400 и выше Гц. Таким образом, при помощи однофазного ПЧ можно подключить обычный асинхронный трехфазный двигатель к однофазной сети. Для этого требуется подключить двигатель к преобразователю, правильно скоммутировав обмотки двигателя (на напряжение 220 В). Такие преобразователи частоты есть в семействе ONI — это серия А400, которая предназначена для управления асинхронными двигателями в системах небольшой мощности, но с большими перегрузками.
Трехфазные преобразователи частоты более распространены. Они преобразуют напряжение трехфазной промышленной сети и регулируют большое количество параметров электродвигателя. Примеры оборудования:
- CONTROL-A310 IEK®,
- CONTROL-L620 IEK®,
- ONI-А400,
- ONI-М680,
- ONI-A650,
- ONI-К800.
Часть 2. Нюансы
— Как правильно подобрать диапазон регулирования частоты и какой способ управления выбрать?
Петр Ивлев: «Использование ПЧ позволяет регулировать скорость электродвигателя от нуля до номинального значения и выше. При этом важно помнить, что преобразователь может обеспечить на выходе напряжение, равное напряжению питающей сети. Образно говоря, если двигателю нужно 690 В, а ПЧ рассчитан на 380 В — это в корне неправильный подбор оборудования».
О способах управления
В интернете много теоретической информации о том, какой вариант лучше. На самом деле основывать свой выбор надо не на оценках метода управления, а на области применения преобразователя частоты. В оборудовании, которое работает с кранами, подъемными механизмами или протяжными станками используется векторный способ. В насосах и вентиляторах, то есть в тех механизмах, где скорость практически не меняется, обычно используется скалярный. Оба этих метода решают одну задачу: регулировки скорости и изменения момента.
— Что такое ПИД-регулятор, управляющие входы/выходы, и насколько это важно?
Петр Ивлев: «Пропорционально-интегрально-дифференцирующий регулятор (ПИД-регулятор) управляет внешними процессами, анализируя сигналы обратной связи, поступающие на преобразователь частоты. Этот регулятор есть в 95 % современных преобразователей частоты».
Самый простой пример его использования: требуется поддерживать постоянное давление в трубе 5 Бар. ПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим работы ПЧ.
ПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим его работыЧто касается входов и выходов
Сегодня большинство преобразователей частоты имеют в базовой комплектации аналоговые и цифровые входы/выходы, последовательный интерфейс и т. д. Такой набор функций позволяет интегрировать ПЧ в большинство автоматических систем, без ограничений в выборе способов управления преобразователем.
- Дискретное (цифровое) управление считается самым простым, данные входы используются для передачи основных команд: пуск или остановка электропривода, регулирование скорости, переключение между режимами работы ПЧ. Такие выходы сообщают о неисправностях, достижениях заданных пределов по частоте и току, дают команды на включение ведомых электроприводов и т.д. На один дискретный вход можно задать необходимую функцию, выбрав из более чем нескольких десятков.
- Аналоговое управление решает другие задачи. Например, обеспечивает плавное регулирование. Также данный способ управления позволяет проводить постоянный мониторинг и контролировать состояние необходимых параметров системы. Сигналы поступают на вход ПЧ с соответствующих датчиков.
- Управление по последовательному интерфейсу используется для построения сложной автоматизированной системы. Данный способ позволяет управлять сразу несколькими преобразователями частоты, причем они могут находиться далеко друг от друга. Такой способ значительно сокращает число проводов, одновременно увеличивая возможности передачи информации. Наиболее универсальным и, соответственно, популярным и надежным интерфейсом (протоколом) для подключения к ПЧ на сегодняшний день считается Modbus (RS485).
— На что еще стоит обратить внимание, выбирая преобразователь частоты?
Артем Мошечков: «Разумеется, на функциональность, эргономичность оборудования, наличие дополнительных возможностей, понятный интерфейс. Важный для многих вопрос — условия работы и монтажа ПЧ. Например, преобразователи частоты серии CONTROL-А310 и L620 IEK® требуют достаточного свободного пространства для охлаждения, а ONI-А400 можно монтировать по принципу «стенка к стенке». Но все эти серии отличаются малыми габаритами и неприхотливостью в монтаже».
В некоторых линейках есть возможность использования стандартной витой пары UTP кат. 5e для выносного монтажа идущей в комплекте панели управления, что позволяет максимально упростить и до 10 раз удешевить монтаж панели управления по сравнению с преобразователями, использующими специальные коммутационные шлейфы.
Обращайте внимание на условия эксплуатации: например, если необходимо, чтобы преобразователь частоты безотказно работал при высокой влажности, стоит рассмотреть серию CONTROL-L620 IEK® — данное оборудование без дополнительного охлаждения можно эксплуатировать при относительной влажности до 95 % и температуре от -10 до +40 °C. А специальное покрытие плат, в соответствии с промышленными стандартами, позволяет применять эти преобразователи в тяжелых условиях.
Обязательно поинтересуйтесь, какие силовые ключи используются при сборе ПЧ — одними из самых надежных являются IGBT производства компании Infineon. Они позволяют существенно повысить надёжность и отказоустойчивость оборудования.
Система управления частотным преобразователем должна быть интуитивно понятной, функциональной, вариативной. В передовых моделях, например, таких как серия ONI-M680, источником управляющего сигнала может быть кнопочная панель, промышленная сеть, цифровые входы и импульсный вход. Имеется возможность подключения исполнительных устройств, датчиков, программируемых логических контроллеров. Некоторые входы и выходы способны функционировать в различных режимах.
И, разумеется, важны сертификация, гарантия производителя. Если говорить о тех сериях, на основе которых мы разбирали принципы работы ПЧ, то у линейки CONTROL IEK® расчетный срок службы составляет 7 лет, гарантия — два года. Все преобразователи, выпускающиеся под этой маркой, имеют сертификаты соответствия ГОСТ. Аналогичные показатели у частотных преобразователей семейства ONI®.
Часть 3. Особенности применения ПЧ для различного оборудования
— Преобразователь частоты для насосного оборудования: что он дает?
Артем Мошечков: «В случае с насосным оборудованием чаще всего требуется защитить трубопровод от гидроударов во время запуска насоса, а сам электропривод — от преждевременного выхода из строя и работы в аварийном режиме. Немаловажное значение имеет оптимизация расхода электроэнергии и поддержание постоянного давления в системе водоснабжения».
Для решения этих задач требуется обеспечить плавный пуск насосов и плавное же изменение частоты вращения электродвигателя. Причем диапазон значений должен быть достаточно широк: во время пиковой нагрузки электропривод работает на номинальных оборотах, обеспечивая необходимый расход воды. При малом разборе поддерживается в рабочем состоянии, потребляя тот минимум электроэнергии, который необходим в данный момент. Также в сфере ЖКХ с помощью ПЧ возможно создание автоматизированной каскадной системы насосов, когда, в зависимости от разбора воды в жилых домах, работает один насос или, например, три. С помощью специальных функций преобразователь частоты позволяет экономить электроэнергию — это происходит за счет автоматической остановки работающего насоса при отсутствии расхода воды в системе.
С этой задачей справятся ПЧ следующих серий: CONTROL-A310 IEK®, CONTROL-L620 IEK®, ONI-А400, ONI-M680. Однако наиболее удачным выбором станет преобразователь частоты ONI-A650, разработанный специально для применения в системах вентиляции и насосных установках. Уже в базовой конфигурации он содержит специальную плату каскадного управления насосами, что позволяет объединить до 5 насосов в единый каскад.
Мнение: Преобразователь частоты ONI-К800 был применен в приводе насоса системы водоснабжения и в приводе конвейера. Зарекомендовал себя с положительной стороны. При настройке и в ходе эксплуатации легко монтировались силовые и контрольные кабели, преобразователь просто настраивался с лицевой панели. Обладает большим функционалом защит, большим количеством входов-выходов.
Начальник отдела ЭМП АО «Уралгипромез» Д.Н. Томашевский.
— Какие преобразователи частоты подойдут для грузоподъемных механизмов (крановое оборудование, лебёдки)?
Петр Ивлев: «Современный крановый механизм — очень сложная система. Поэтому преобразователь частоты для электропривода такого механизма должен соответствовать высоким требованиям: обладать высокой перегрузочной способностью (до 200 %), уметь управлять механическим тормозом электродвигателя, иметь возможность подключения тормозного резистора (встроенный тормозной модуль) и организации обратной связи для регуляции скорости вращения электродвигателя. Последняя необходима для обеспечения быстрого обмена информацией между звеньями системы, непрерывного мониторинга всех процессов и точного управления параметрами во время работы сложнейшего кранового механизма».
Преобразователи частоты для электродвигателей грузоподъемных механизмов позволяют организовать надежное управление электроприводом при подъеме и опускании груза, поворотах стрелки, обеспечивая вертикальное и горизонтальное перемещение без раскачивания, с различными скоростями, таким образом гарантируя максимальную производительность.
В зависимости от модели крана, это могут быть следующие виды частотных преобразователей:
- для обеспечения плавного перемещения крана можно порекомендовать серии CONTROL-L620 IEK®, ONI-M680 и ONI-K800;
- для надежной работы лебёдки подъёма, в зависимости от задачи, подойдут М680 и К800.
— Как преобразователь частоты работает в случае с транспортерным и конвейерным оборудованием?
Артем Мошечков: «При запуске таких механизмов возникает пусковой ток, превышающий номинальный в 6-7 раз, а также — большая нагрузка на детали механизма и, как следствие, повышенный износ узлов или перегрев электродвигателя. Это самая частая причина отказов подобного оборудования. Далее, в процессе работы привод обычно вращается с одинаковой скоростью. Поэтому для механизмов непрерывного транспорта очень важны плавный разгон и торможение без рывков, пробуксовок, остановок, а также постоянная заданная скорость движения. Следовательно, преобразователь частоты для такого оборудования решает задачи по обеспечению постоянной скорости транспортера или конвейера, повышению уровня надежности (так как значительно снижает количество отказов как механического, так и электрического происхождения), устранению перегрузок во время запуска».
Использование преобразователей частоты с электродвигателями конвейеров и транспортеров позволяет не просто автоматизировать запуск, регулирование скорости и остановки ленты, но и создавать более сложные алгоритмы работы оборудования (зависит от выбранной модели ПЧ и подключенных датчиков).
Мнение: Преобразователь частоты CONTROL-L620 IEK® номинальной мощностью 5.5 был установлен на подающем конвейере в установке № 2 для сушки травяной муки. Режим работы преобразователя — круглосуточный «старт-стоп». Оборудование зарекомендовало себя с положительной стороны. Во время тестирования все функции работали в заявленном штатном режиме, замечаний во время эксплуатации выявлено не было.
Заместитель генерального директора по IT ПАО «Птицефабрика Боровская» С.М. Солкин.
— Есть ли смысл использовать преобразователи частоты для вентиляторного оборудования?
Петр Ивлев: «Есть. ПЧ для вентиляторного оборудования регулирует скорость вращения вала электропривода, позволяя экономить на электричестве. В случае установки дополнительного датчика, который передает оперативные данные о текущей потребности в воздухе на преобразователь, последний изменяет скорость вращения электродвигателя. Это позволяет экономить электроэнергию на 20-40 %. Кроме того, ПЧ надежно защищает электропривод вентилятора от бросков тока и перегрузок за счет плавного пуска и такой же плавной остановки вала».
Можно порекомендовать к установке на вентиляторное оборудование преобразователи частоты следующих серий: ONI-A650, CONTROL-A310 IEK®, CONTROL-L620 IEK®, ONI-A400.
— «Тяжелый» или «нормальный» режим работы преобразователя частоты — какой выбрать?
Артем Мошечков: «Современные ПЧ обеспечивают пуск и работу двигателей в нормальном или тяжелом режиме. Для их обозначения используются аббревиатуры ND — нормальный и HD — тяжелый».
В режиме ND величина вращающего момента постоянна, независимо от скорости вращения двигателя. В частности, таким образом работают насосы.
Тяжелый режим (НD) характеризуется нагрузкой с переменным вращающим моментом — как в случае с экструдерами, конвейерами или компрессорами. При этом существуют частотные преобразователи, которые поддерживают сразу два указанных режима, что позволяет экономить бюджет при проектировании различных систем. Например, преобразователи частоты IEK® серий CONTROL-A310 и L-620 могут работать как в ND-режиме, так и в режиме HD. Также оба режима поддерживают ПЧ ONI-М680.
Частотные преобразователи для промышленных электродвигателей, частотные регуляторы для насосов и вентиляторов
Частотные преобразователи и устройства плавного пуска для асинхронного электродвигателя это высокотехнологичное оборудование, позволяющее не только экономить электроэнергию и снижать нагрузку на оборудование и электрические сети вашего производства, а так же значительно снизить нагрузку на всю электрическую сеть нашей страны.
Наша компания относительно недавно на рынке регулируемого электропривода, но на протяжении этого времени зарекомендовала себя как надежный и качественный поставщик, о чем свидетельствуют отзывы наших партнеров, о которых есть информация на нашем сайте. Это конечно не все кто приобрел наше оборудование, по Вашему запросу мы готовы предоставить любые имеющиеся рекомендации. В производстве нашего оборудования используются комплектующие ведущих мировых производителей электронных компонентов и модулей, проверенных временем и тяжелыми условиями эксплуатации. Мы осуществляем модульную сборку своих приборов в России.
В распоряжении ООО «Лидер» имеется штат квалифицированных специалистов, а так же оборудование позволяющее тестировать преобразователи частоты и устройства плавного пуска в различных режимах, что позволяет гарантировать их надежность и работоспособность перед отгрузкой конечному потребителю. В настоящее время очень много предложений на рынке аналогичной продукции, может быть и по более привлекательной цене, но как показывает практика низкая цена, не всегда гарантирует заявленное качество оборудования и сервисного обслуживания. Мы не навязываем собственный продукт! Мы рекомендуем покупать продукцию ООО «Лидер». Конечный выбор за Вами!
Ниже представлены три линейки частотных преобразователей, каждая из которых содержит в себе весь спектр мощностей от 0,75 кВт до 630 кВт.
Серия А300 — для общепромышленной нагрузки
Общепромышленная серия преобразователей частоты подходит для оборудования с тяжелым пуском и высокой нагрузкой (станки, экструдеры, куттеры, компрессоры, конвейеры, погружные насосы и мн. др.). Преобразователь частоты с высокоточным пусковым моментом при низких скоростях (пусковой вращающий момент: 0.5Hz/150% (векторное управление), 1Hz/150% (U/f)), встроенным ПИД-регулятором (см. инструкцию по настройке), функции полной защиты двигателя с возможностью изменять параметры настройки, съемным выносным пультом управления, повышенным перегрузочным моментом до 200%, автоматическим подъемом крутящего момента, функцией коррекции скольжения, автоматическим регулированием напряжения (AVR) и встроенным интерфейсом RS-485.
Преобразователь частоты серии А300 имеет съемный пульт управления и может использоваться удаленно, до 60 метров от частотного преобразователя по витой паре без переходников и дополнительных модулей, усилителей сигнала.
Серия В600 — для вентиляторной нагрузки (Снят с производства)
Специальная вентиляторная серия преобразователей частоты предназначена для управления электродвигателями насосов, вентиляторов, дымососов и прочего оборудования. Инвертор имеет высокоточный пусковой момент при низких скоростях, встроенный ПИД-регулятор, функции полной защиты двигателя с возможностью изменять параметры настройки, перегрузочный момент до 180%, автоматический подъем крутящего момента, функцию коррекции скольжения, съемный выносной пульт управления, автоматическое регулирование напряжения (AVR) и встроенный интерфейс RS-485 (протокол Modbus-RTU)
В частотных преобразователях серии В600 мощностью от 18.5 кВт установлен двухстрочный пульт управления, который позволяет отслеживать два параметра одновременно.
Серия B601 — для вентиляторной нагрузки
Улучшенная серия для управления электродвигателями насосов, вентиляторов, дымососов и прочего оборудования. Инвертор имеет высокоточный пусковой момент при низких скоростях, Векторное управление, встроенный ПИД-регулятор, функции полной защиты двигателя с возможностью изменять параметры настройки, перегрузочный момент до 160%-1с, автоматический подъем крутящего момента, функцию коррекции скольжения, несущая частота 1-16 кГц, выходная частота 0-600Гц, съемный выносной пульт управления, автоматическое регулирование напряжения (AVR) и встроенный интерфейс RS-485 (протокол Modbus-RTU)
Серия B60 mini (Снят с производства)
Серия Мини используется для регулирования приводов с асинхронным электродвигателем, предназначена для управления приводами насосов, вентиляторов, лентопротяжных машин, транспортёров миксеров и т. д — для использования в системах малой автоматизации.
Зачем двигателю переменного тока преобразователь частоты?
Что такое преобразователь частоты?
Проще говоря, преобразователь частоты — это устройство преобразования энергии. Преобразователь частоты преобразует базовую синусоидальную мощность с фиксированной частотой и фиксированным напряжением (сетевое питание) в выходной сигнал переменной частоты и переменного напряжения, используемый для управления скоростью асинхронных двигателей.
Зачем нужен преобразователь частоты?
Основная функция преобразователя частоты в водной среде — сбережение энергии.За счет регулирования скорости насоса, а не регулирования расхода с помощью дроссельных клапанов, можно значительно сэкономить энергию. Например, снижение скорости на 20% может дать экономию энергии на 50%. Ниже описывается снижение скорости и соответствующая экономия энергии. Помимо экономии энергии, значительно увеличивается срок службы крыльчатки, подшипников и уплотнений.
Преобразователи частоты
Доступные во многих различных типах преобразователи частоты предлагают оптимальный метод согласования производительности насоса и вентилятора с требованиями системы.Чаще всего используется преобразователь частоты. Он преобразует стандартную мощность предприятия (220 В или 380 В, 50 Гц) в регулируемое напряжение и частоту для питания двигателя переменного тока. Частота, подаваемая на двигатель переменного тока, определяет скорость двигателя. Двигатели переменного тока обычно представляют собой такие же стандартные двигатели, которые могут быть подключены к линии переменного тока. Благодаря включению байпасных пускателей работа может поддерживаться даже в случае отказа инвертора. Преобразователи частоты
также обладают дополнительным преимуществом — увеличенным сроком службы подшипников и уплотнений насоса. Поддерживая в насосе только давление, необходимое для удовлетворения требований системы, насос не подвергается воздействию более высоких давлений, чем необходимо. Следовательно, компоненты служат дольше.
Те же преимущества — но в меньшей степени — применимы и к вентиляторам, работающим от преобразователей частоты.
Для достижения оптимальной эффективности и надежности многие специалисты по спецификациям получают от производителей подробную информацию об эффективности преобразователя частоты, требуемом техническом обслуживании, диагностических возможностях преобразователя частоты и общих рабочих характеристиках. Затем они проводят подробный анализ, чтобы определить, какая система даст наилучшую окупаемость инвестиций.
Дополнительные преимущества преобразователей частоты
Помимо экономии энергии и лучшего управления технологическим процессом преобразователи частоты могут обеспечить и другие преимущества:
- Преобразователь частоты может использоваться для управления технологической температурой, давлением или расходом без использования отдельного контроллера. Соответствующие датчики и электроника используются для сопряжения управляемого оборудования с преобразователем частоты.
- Затраты на техническое обслуживание могут быть снижены, поскольку более низкие рабочие скорости приводят к увеличению срока службы подшипников и двигателей.
- Устранение дроссельных клапанов и заслонок также устраняет необходимость технического обслуживания этих устройств и всех связанных с ними элементов управления.
- Устройство плавного пуска для двигателя больше не требуется.
- Контролируемая скорость нарастания в жидкостной системе может устранить проблемы гидравлического удара.
- Способность преобразователя частоты ограничивать крутящий момент до уровня, выбранного пользователем, может защитить приводимое оборудование, которое не может выдерживать чрезмерный крутящий момент.
Анализировать систему в целом
Поскольку процесс преобразования входящей мощности с одной частоты на другую приведет к некоторым потерям, экономия энергии всегда должна происходить за счет оптимизации производительности всей системы. Первым шагом в определении потенциала энергосбережения системы является тщательный анализ работы всей системы. Чтобы обеспечить экономию энергии, необходимы подробные знания о работе оборудования и технологических требованиях. Кроме того, следует учитывать тип преобразователя частоты, предлагаемые функции и общую пригодность для применения.
Внутренняя конфигурация преобразователя частоты
Преобразователь частоты состоит из трех основных частей:
- Схема выпрямителя — состоит из диодов, тиристоров или биполярных транзисторов с изолированным затвором. Эти устройства преобразуют мощность сети переменного тока в постоянный ток.
- Шина постоянного тока — состоит из конденсаторов, которые фильтруют и накапливают заряд постоянного тока.
- Инвертор — состоит из высоковольтных мощных транзисторов, которые преобразуют мощность постоянного тока в выход переменного тока с переменной частотой и напряжением, подаваемый на нагрузку.
Преобразователи частоты также содержат мощный микропроцессор, который управляет схемой инвертора для создания почти чистого синусоидального напряжения переменной частоты, подаваемого на нагрузку. Микропроцессор также управляет конфигурациями ввода / вывода, настройками преобразователя частоты, состояниями неисправности и протоколами связи.
Роторные преобразователи частоты — Мотор-генераторные установки
Georator — международный лидер в производстве и продаже вращающихся преобразователей частоты.Мы работаем по всему миру и гордимся нашим качеством и сервисом. Обратитесь к одному из наших опытных торговых представителей сегодня, чтобы запросить расценки или дополнительную информацию.
Что такое вращающийся преобразователь частоты?
Вращающиеся преобразователи частоты (также называемые «Мотор-генераторы» или MG Sets) преобразуют поступающую мощность переменного тока в механическую энергию вращения (вращающийся двигатель), который передает свою мощность вращения генератору, который преобразует свою механическую мощность в электрическую мощность переменного тока на выходе. Мощность вращения часто описывается в лошадиных силах, в то время как электрическая мощность описывается в киловаттах (кВт) или киловольт-амперах (кВА).Этому процессу присуще преобразование частоты (герц — Гц), напряжения и / или фазы (3 фазы, 1 фаза).
Типы поворотных преобразователей и двигателей-генераторов
Электрогенератор с ременной муфтой
Мотор-генераторная установка с ременной муфтой
Самый простой способ подсоединения приводного двигателя к генератору — это использование приводных ремней и шкивов.
Прочитайте большеЭлектрогенераторные установки с прямым подключением электродвигателей
Электрогенераторные установки с прямым подключением электродвигателей
Этот метод также позволяет параллельную работу нескольких преобразователей частоты.
Прочитайте большеМотор-генераторные установки с общим валом
Мотор-генераторные установки с общим валом
Синхронный двигатель — это самый совершенный и точный преобразователь частоты вращения.
Прочитайте большеБесщеточные генераторы на постоянных магнитах
Бесщеточные генераторы на постоянных магнитах
Бесщеточные преобразователи частоты с постоянным магнитом 400 Гц, также известные под торговым наименованием «NoBrush».
Прочитайте большеЧто питает вращающийся преобразователь частоты?
Двигатель В генераторных установках используется несколько методов соединения приводного двигателя с генератором.Самый простой и наименее затратный метод — это преобразователи с ременной муфтой, в которых приводные ремни и шкивы используются не только для передачи энергии от двигателя к генератору, но и для изменения частоты с помощью передаточного числа шкивов. Некоторые клиенты обеспокоены долговечностью приводных ремней, но на практике приводные ремни не выходят из строя при правильной конструкции и установке. Georator имеет безупречный послужной список в этом отношении.
Другой метод — это преобразователи с прямым соединением, которые напрямую соединяют вал двигателя с валом генератора с помощью механической муфты и регулируют скорость приводного двигателя для изменения скорости вращения генератора, таким образом изменяя выходную частоту. Для этой цели используется электронный привод с регулируемой скоростью (ASD) вместо обычного пускателя двигателя.
Наконец, наиболее сложным и дорогостоящим методом является сборка двигателя и генератора на одном общем валу, называемых преобразователями частоты с общим валом. В этом случае изменение частоты осуществляется путем намотки двигателя с другим числом электрических полюсов, чем у генератора. Например, 12-полюсный двигатель и 10-полюсный генератор обеспечат преобразование с 60 Гц в 50 Гц.
В некоторых приложениях требуется только изоляция линии электропередачи (полное отсутствие непрерывности на входе и выходе) или кондиционирование линии электропередачи (плохая входящая электрическая мощность преобразуется в хорошую выходную мощность). В этих изоляторах линии электропередачи между двигателем и генератором используется изолированная гибкая муфта для передачи мощности от двигателя к генератору и полной изоляции входа от выхода. Обычно частоты не меняются, хотя может потребоваться преобразование фазы или напряжения.
Каковы общие области применения поворотных преобразователей?
Ротационные преобразователи частоты очень хороши при запуске и работе с типичными заводскими нагрузками. Они обладают способностью создавать высокие пусковые импульсные токи в течение коротких периодов времени, что делает их идеальными для нагрузок двигателя. Эти преобразователи очень прочные и могут выдерживать суровые условия окружающей среды. Несмотря на то, что они подвержены проливному дождю, с соответствующими кожухами эти устройства могут быть размещены на открытом воздухе и выдерживают широкий диапазон рабочих температур.
Типовые характеристики поворотных преобразователей частоты
- Больше приспособлено к более крупным приложениям 10 кВА плюс
- Намного лучше при пуске двигателя нагрузки
- Прочная напольная конструкция
- Обычно фиксированная выходная частота
- Стоимость не увеличивается линейно с увеличением мощности; например, 3x мощность = 1,5x стоимость
- Гармонические искажения и шум от входной мощности не передаются на выход
- Может вызывать сильные токи перегрузки 2-4X на короткие периоды времени
- КПД при полной нагрузке до 90 +% на больших агрегатах
Преобразователь частоты — преобразователь частоты
ЧТО ТАКОЕ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ?
Преобразователь частоты, также известный как преобразователь частоты сети, представляет собой устройство, которое принимает входящую мощность, обычно 50 или 60 Гц, и преобразует ее в выходную мощность 400 Гц. Существуют разные типы преобразователей частоты мощности, в частности, есть как вращательные преобразователи частоты, так и твердотельные преобразователи частоты. Вращающиеся преобразователи частоты используют электрическую энергию для привода двигателя. Твердотельные преобразователи частоты принимают входящий переменный ток (AC) и преобразуют его в постоянный ток (DC).
Для чего нужен преобразователь промышленной частоты для коммерческого использования?Стандартное энергоснабжение от электросети — переменный ток (AC).Под переменным током понимается количество циклов в секунду («герц» или Гц), при которых мощность колеблется, положительная и отрицательная, вокруг нейтральной точки отсчета. В мире существует два стандарта: 50 и 60 герц. 50 Гц распространен в Европе, Азии и Африке, а 60 Гц является стандартом в большинстве стран Северной Америки и некоторых других странах (Бразилия, Саудовская Аравия, Южная Корея) по всему миру.
Нет неотъемлемого преимущества одной частоты перед другой частотой. Но могут быть и существенные минусы.Проблемы возникают, когда запитываемая нагрузка чувствительна к входной частоте питания. Например, двигатели вращаются с частотой, кратной частоте сети. Таким образом, двигатель 60 Гц будет вращаться со скоростью 1800 или 3600 об / мин. Однако при подаче питания 50 Гц частота вращения составляет 1500 или 3000 об / мин. Машины, как правило, чувствительны к скорости, поэтому мощность для их запуска должна соответствовать предполагаемой расчетной скорости вращения. Таким образом, для типичного европейского оборудования требуется входная частота 50 Гц, а если он работает в Соединенных Штатах, требуется преобразователь частоты 60–50 Гц для преобразования имеющейся мощности 60 Гц в 50 Гц.То же самое относится и к преобразованию мощности 50 Гц в 60 Гц. Хотя для преобразователей частоты существуют стандартные номиналы мощности и мощности, наши преобразователи работают в диапазоне напряжений от 100 В до 600 В. Чаще всего указываются напряжения 110 В, 120 В, 200 В, 220 В, 230 В, 240 В, 380 В, 400 В и 480 В. Поскольку наши стандартные и индивидуальные возможности проектирования могут удовлетворить ряд требований энергосистем, Georator является вашим поставщиком преобразователей частоты в напряжение.
ПОЧЕМУ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ТАК ДОЛЖЕН?
Многие клиенты испытывают «шок от наклеек», когда смотрят на преобразователь частоты.Не имеет большого значения, является ли преобразователь промышленной частоты вращающимся блоком (мотор-генераторной установкой) или твердотельным (электронным) блоком. И действительно, разброс цен между поставщиками на удивление невелик.
Так что же делает преобразователи частоты такими дорогими? Что ж, это закон. В частности, законы физики.
В отличие от преобразования напряжения, для которого требуется только довольно пассивный трансформатор, преобразователь частоты должен полностью переделывать мощность, чтобы изменить частоту. Во вращающемся преобразователе поступающая электрическая энергия преобразуется в механическую энергию приводного двигателя. Эта мощность вращения затем питает генератор, где энергия вращения снова преобразуется в электрическую мощность. Много движущихся частей, много оборудования, много затрат.
Аналогичным образом твердотельный преобразователь частоты преобразует поступающую мощность переменного тока в постоянный ток с помощью выпрямителя. Затем энергия постоянного тока снова преобразуется в мощность переменного тока с помощью секции инвертора. Опять же, много запчастей, много затрат.
Одно положительное побочное преимущество любого типа преобразователя частоты заключается в том, что любое желаемое преобразование напряжения происходит «бесплатно» как часть процесса преобразования частоты.К сожалению, это часто не утешает наших клиентов.
Извините, это просто закон.
ДЕЙСТВИТЕЛЬНО НУЖЕН ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ?
Когда потенциальные клиенты сталкиваются с необходимостью покупки преобразователя частоты, нашего или наших конкурентов, они часто считают, что его стоимость является серьезным препятствием. Им действительно нужен преобразователь частоты? Что ж, ответ заключается в том, какой тип нагрузки обслуживается.
Приложения, включающие нагрузки двигателей, часто нуждаются в преобразователе промышленной частоты, поскольку характеристики вращения, в частности число оборотов в минуту (об / мин), напрямую зависят от входной частоты электричества.Двигатель с частотой 60 Гц будет вращаться со скоростью, кратной 60, например, 1800 об / мин. Одновременно двигатель с частотой 50 Гц будет вращаться с частотой, кратной 50, например 1500 об / мин. Таким образом, при работе с нагрузкой двигателя, особенно в машине с несколькими двигателями, может оказаться необходимым использовать преобразователь частоты, чтобы двигатели вращались в соответствии с исходной конструкцией вращения.
Однако резистивные нагрузки, такие как резистивные нагреватели и некоторые источники света, не заботятся о частоте входящей мощности. Таким образом, если нагрузка является неустойчивой, преобразование частоты может не потребоваться. Единственное предостережение — напряжение должно быть в нужном диапазоне. Даже если только большая часть нагрузки является резистивной, может оказаться более экономичным разделить нагрузку на части и запитать только частотно-зависимый компонент с преобразователем.
Также разумно рассмотреть возможность замены двигателя (ов) в нагрузке на правильную частоту, поскольку это может дать менее затратное решение, чем использование преобразователя частоты.
ИнженерыGeorator готовы обсудить с вами эти вопросы; свяжитесь с нашей командой для получения помощи.Хотя мы ценим ваш бизнес, мы не хотим продавать вам то, что вам не нужно.
Поворотный преобразователь частоты— Системы питания и управления
серии RFC
Вращающиеся преобразователи частоты — это машины, которые преобразуют мощность с одной частоты на другую. Двигатель, соединенный с генератором, укомплектован продуктом. Муфта прямая или с ремнями и шкивами. Однако есть несколько с подключением коробки передач. Другими словами, это достигается либо изменением скорости вращения генератора (в версиях с ремнями и шкивами), либо коробкой передач.И моторы, и генераторы соединены разным числом полюсов. В результате достигается тот же результат — получение желаемой выходной частоты. Вращающийся преобразователь частоты также может одновременно вырабатывать другое напряжение. Если вы работаете с другим напряжением, отличным от 208 В, вам нужно будет изменить напряжение.Power Systems & Controls ’ Series RFC — это вращающиеся преобразователи частоты , предназначенные для преобразования электроэнергии от электросети во многие другие частоты.Например, стандартные частоты: мощность 25 Гц, 50 Гц, 60 Гц, 100 Гц и 400 Гц. Вращающийся преобразователь частоты обеспечит требуемую номинальную мощность в кВА на необходимой выходной мощности. Кроме того, двигатель и синхронный генератор обеспечат необходимую частоту и напряжение. Вращающиеся преобразователи частоты PS&C состоят из 2-х и 4-х подшипниковых опор, а также в вертикальной или горизонтальной конфигурации. Встроенный в систему прецизионный регулятор напряжения поддерживает выходное напряжение на уровне (+/-.5%) намного лучше отраслевого стандарта.
Поворотный преобразователь Функциональность:
В нормальном режиме работы преобразователи частоты RFC (вращающиеся преобразователи частоты) серии защищают критическую нагрузку от переходных процессов и отключений в электросети. Однако вращающийся преобразователь частоты доступен как с синхронным, так и с асинхронным двигателем. Другими словами, это будет зависеть от того, какой продукт лучше всего подходит для данной области применения. Синхронный двигатель создает точную частоту на выходе без отклонений.Это идеально подходит для лабораторных испытаний, поддержки самолетов и систем вооружения. Асинхронный двигатель с малым скольжением вызывает отклонение выходной частоты (0,6 Гц). Это может быть приемлемо для проектов, требующих более экономичного решения.Аналогичным образом, при работе с номинальной скоростью двигателя частота генератора регулируется числом оборотов двигателя. Это сделает выходную частоту переменной или неконтролируемой. Он также на 100% эффективен при отключениях на срок менее 1 часа. Кроме того, отсутствие щеток и контактных колец как в двигателе, так и в генераторе позволяет практически не требовать обслуживания.Кроме того, из-за его прочной конструкции средний срок службы вращающегося преобразователя частоты превышает 20 лет. Помимо всего прочего, доступно множество опций, от пультов дистанционного управления и цветных сенсорных дисплеев до специализированных корпусов NEMA и ISO.
Общие термины, связанные с преобразователем:
- Мотор-генератор = (комплект MG)
- Общий вал = Вал с прямым соединением с валом Комплект MG
- Одиночный вал = Комплект MG представляет собой единую поковку с обмоткой двигателя и генератора на одном валу
- Ременный привод = Комплект MG, соединенный с помощью ремней и шкивов
- Зубчатая передача = Параллельное соединение или прямое соединение со смещенным комплектом MG, подключенное через зубчатую передачу
Зачем покупать вращающийся преобразователь частоты:
Преобразователи частоты имеют множество применений (см. Ниже).Однако для некоторых приложений требуются машины промышленного уровня с грубой силой, в то время как для других требуется 100% изоляция. Следовательно, изоляция по своей природе производится роторной машиной. Прежде всего, электрическая изоляция достигается за счет механически соединенного двигателя-генератора, который не пропускает мощность через вал. Следовательно, изоляция выполняется от двигателя к генератору и наоборот. Эти машины созданы для работы в очень суровых условиях. Они могут выжить в экстремальных условиях, когда твердотельный эквивалент не сможет работать в том же самом.Частотный преобразователь
Применения:
Частотный преобразователь
Преимущества:
- 100% истинная электрическая изоляция
- Прецизионное регулирование напряжения
- Комплекты M-G с 2 и 4 подшипниками
- Контроль и мониторинг неисправностей
- Защита от переходных процессов и сбоев
- Вертикальная и горизонтальная конфигурации
- Конструкции с общим и одним валом
Обязательно ли использовать мотор-генератор:
Существует другая версия преобразования, кроме роторного или мотор-генератора. Подобно роторной машине, PS&C производит статические преобразователи как однофазные, так и трехфазные.
База знаний о преобразователе частоты— Мотор-генератор
Мотор-генератор Обзор
Мотор-генераторы (комплекты MG)используют электромеханические средства для преобразования напряжения и частоты. Установки MG состоят из двигателя переменного тока, работающего непосредственно от линии электропередачи 60 Гц на вашем предприятии, и его вал соединен с валом синхронного генератора.Генератор выдает новые уровни частоты и напряжения.
Регулировка выходного напряжения генератора
Выходное напряжение генератора регулируется твердотельным регулятором напряжения, который непрерывно измеряет напряжение на выходных клеммах генератора и выполняет необходимую регулировку для поддержания выходного напряжения в пределах технических характеристик. Типичное регулирование выходного напряжения составляет +/- 1% или лучше в условиях установившейся нагрузки от 0% до 100%.
Выходное напряжение генератораможет быть отрегулировано пользователем в диапазоне приблизительно +/- 8% от номинального выходного напряжения (более широкий диапазон на некоторых моделях), что облегчается с помощью элемента регулировки напряжения, расположенного на панели управления оператора.
Регулировка выходной частоты генератора
Выходная частота синхронного генератора прямо пропорциональна частоте вращения вала генератора. В зависимости от типа двигателя, приводящего в движение вал генератора, выходная частота может оставаться точной или иметь допуск регулирования до +/- 2,5% от номинальной номинальной выходной частоты в условиях нагрузки от 0% до 100%.
Прецизионный синхронный двигатель
MG Set, работающий от электросети вашего объекта 60 Гц с номинальной выходной частотой 50 Гц и использующий синхронный двигатель переменного тока, обеспечит точные 50.0 Гц при любых условиях выходной нагрузки от 0% до 100% номинальной нагрузки. Такое точное регулирование частоты возможно благодаря присущей синхронному двигателю способности поддерживать одинаковую скорость вращения при любой величине нагрузки вплоть до 100% номинальной нагрузки.
Работа асинхронного двигателя
В некоторых наборах MG используются стандартные асинхронные двигатели переменного тока (асинхронные двигатели) для привода вала синхронного генератора. Рабочие характеристики асинхронного двигателя переменного тока позволяют уменьшать частоту вращения генератора по мере увеличения нагрузки на вал.Если MG работает от вашего объекта с питанием от электросети 60 Гц и имеет номинальную выходную частоту 50 Гц, выходная частота не будет точной и обычно будет находиться в диапазоне от 50,5 Гц или выше до 49,5 Гц или ниже в зависимости от конструкции MG и уровня входного напряжения. , и количество нагрузки, подключенной к выходу генератора.
Влияние нестабильной частоты на нагрузку
В большинстве случаев нестабильная частота нежелательна. Например, в тестовой среде использование преобразователя частоты с нестабильной частотой может привести к сбою в работе тестируемого устройства (UUT) или к ошибочным данным тестирования.При простом управлении оборудованием 50 Гц на нестабильной частоте может возникнуть колебательное или резонансное взаимодействие между нагрузкой и MG Set, что может привести к неправильной работе оборудования в нагрузке.
Практически все комплекты MG, которые можно взять напрокат, в нашем парке аренды включают в себя настоящий синхронный двигатель переменного тока, который обеспечивает стабильную частоту источника питания для нагрузки. Если комплект MG, включающий асинхронный двигатель переменного тока, предлагается любому арендатору AP&C, наш инженер-разработчик поможет обеспечить его совместимость с нагрузкой клиента.
Влияние нагрузочного оборудования на мощность комплекта MG
Типы нагрузок, подключенных к выходу преобразователя частоты, играют важную роль при выборе преобразователя частоты. Каждый тип нагрузочного оборудования или цепи демонстрирует характеристики, которые необходимо учитывать, чтобы гарантировать правильную работу оборудования или приемлемые результаты. Ниже приведены лишь некоторые из вариантов нагрузки, которые могут повлиять на производительность выхода преобразователя частоты.
Влияние пусковых токовых нагрузок
Определенные типы нагрузочного оборудования или цепей потребляют значительно больший ток при первом включении, чем во время работы. Нагрузки, содержащие двигатели, трансформаторы, электронные источники питания или преобразователи с входными конденсаторами, имеют характеристику потребления мгновенного пикового тока в течение первых 3-5 циклов, в 5-60 раз или больше, чем их номинальный ток полной нагрузки.
Когда к выходу MG подключена нагрузка пускового тока, уровень напряжения генератора на мгновение упадет пропорционально пиковому току нагрузки и интервалу. Это мгновенное напряжение может быть на 30% или более ниже номинального выходного напряжения.По истечении периода времени пускового тока регулятор напряжения будет регулировать выходное напряжение в пределах номинальных характеристик регулирования напряжения, обычно +/- 1% или меньше. Промышленность приняла 30% -ное падение максимально допустимого снижения напряжения, которое должно произойти, чтобы обеспечить нормальную работу большинства нагрузочного оборудования. Максимально допустимое падение напряжения 10% рекомендуется для более чувствительного нагрузочного оборудования, такого как некоторые медицинские или научные устройства. Наши опытные инженеры по применению помогут определить оборудование в вашей нагрузке, которое считается пусковым током.
Влияние однофазной нагрузки на трехфазный выход MG
Использование однофазного преобразователя частоты на выходе рекомендуется для использования с однофазными нагрузками. Однако иногда нагрузочное оборудование или проверяемое оборудование состоит из однофазных и трехфазных компонентов.
Когда однофазные нагрузки подключены к трехфазному выходу преобразователя частоты с MG, они должны быть распределены между тремя фазами как можно более равномерно. Помимо возможности перегрева генератора и оборудования трехфазной нагрузки, может возникнуть несимметрия напряжения.
Когда однофазная нагрузка подключена к трехфазному выходу MG Set, уровень напряжения на нагруженной фазе будет снижаться, в то время как уровень напряжения на ненагруженных фазах будет увеличиваться. По мере увеличения дисбаланса тока нагрузки на каждой фазе уровни напряжения могут стать преувеличенными, так что выход MG Set отключается схемами безопасности, либо оборудование нагрузки или проверяемое оборудование срабатывает неправильно или выходит из строя. Превышение примерно 2% несимметрии напряжения может привести к перегреву генератора или трехфазного оборудования и возможному выходу из строя.
Влияние нелинейных нагрузок на выход MG Set
Нелинейные нагрузки — это нагрузки или проверяемое оборудование, которые включают в себя электронные силовые устройства, такие как диоды, тиристоры или силовые транзисторы. Эти устройства используются в таком оборудовании, как преобразователи частоты, источники бесперебойного питания, источники питания переменного / постоянного тока и инверторы.
Нелинейные нагрузки вызывают искажение синусоидального сигнала на выходе преобразователя частоты MG Set, а также дополнительный нагрев обмоток генератора. Если нелинейные нагрузки создают чрезмерное искажение синусоидальной волны на данном выходе MG Set, выходное напряжение может стать нестабильным, что приведет к сбою в работе нагрузочного оборудования или выхода MG Set из строя его схемами безопасности.
Физические характеристики мотор-генераторной установки
Мотор-генераторные установкимногие считают большими, тяжелыми и прочными по сравнению с их электронными аналогами с преобразователями частоты. Комплекты MG подходят для работы в таких средах, как защита от непогоды (не обязательно в помещении), или в помещениях, содержащих другое электрическое оборудование, такое как силовые трансформаторы и воздушные компрессоры.
Звуковой шум, создаваемый наборами MG, обычно зависит от номинальной мощности в кВА и обычно составляет от 70 дБА до 90 дБА при измерении на расстоянии 3 фута от оборудования.
Именно по указанным выше основным причинам при определении размеров и выборе преобразователя частоты на базе двигателя-генератора для данной нагрузки следует проконсультироваться с нашими инженерами по применению.
Заявление об ограничении ответственности: Вся описательная информация представлена в виде общих неспецифических характеристик оборудования и предлагается нашим арендаторам лучше понять преобразователи частоты и их применение. Читателю следует связаться с инженерами по приложениям AP&C для получения подробной или конкретной технической информации о преобразователях частоты и их использовании.
База знаний — Электронные / статические преобразователи
Что такое преобразователь частоты? Как это устроено?
Работа с переменной частотой в виде генератора переменного тока используется с момента появления асинхронного двигателя. Измените скорость вращения генератора, и вы измените его выходную частоту. До появления высокоскоростных транзисторов это был один из немногих вариантов, доступных для изменения скорости двигателя, однако изменения частоты были ограничены, поскольку снижение скорости генератора приводило к снижению выходной частоты, но не напряжения.Мы увидим, почему это важно, чуть позже. В нашей отрасли применения насосов с регулируемой скоростью в прошлом были намного сложнее, чем сегодня. Один из более простых методов заключался в использовании многополюсного двигателя, намотанного таким образом, чтобы переключатель (или переключатели) мог изменять количество полюсов статора, которые были активны в любой момент времени. Скорость вращения можно было изменять вручную или с помощью датчика, подключенного к переключателям. Этот метод все еще используется во многих насосных системах с переменным расходом.Примеры включают циркуляционные насосы для горячей и охлажденной воды, бассейновые насосы, а также вентиляторы и насосы градирни. Некоторые отечественные бустерные насосы используются привод текучей среды или система переменной ременного привода (автоматическая коробка передач сортов) для изменения скорости насоса на основе обратной связи от мембранного клапана. И несколько других были еще более сложными.Судя по обручам, через которые нам приходилось преодолевать в прошлом, становится довольно очевидно, почему появление современного преобразователя частоты произвело революцию (еще один каламбур) в среде насосов с регулируемой скоростью.Все, что вам нужно сделать сегодня, — это установить относительно простой электронный блок (который часто заменяет более сложное пусковое оборудование) на месте применения и внезапно вы можете вручную или автоматически изменить скорость насоса по своему желанию.
Итак, давайте взглянем на компоненты преобразователя частоты и посмотрим, как они на самом деле работают вместе, чтобы изменять частоту и, следовательно, скорость двигателя. Думаю, вы удивитесь простоте этого процесса. Все, что для этого потребовалось, — это созревание твердотельного устройства, известного как транзистор.
Компоненты преобразователя частоты
Выпрямитель
Поскольку трудно изменить частоту синусоидальной волны переменного тока в режиме переменного тока, первая задача преобразователя частоты — преобразовать волну в постоянный ток. Как вы увидите немного позже, постоянным током относительно легко управлять, чтобы он выглядел как переменный ток. Первым компонентом всех преобразователей частоты является устройство, известное как выпрямитель или преобразователь, оно показано слева на рисунке ниже.
Схема выпрямителя преобразует переменный ток в постоянный и делает это почти так же, как и в зарядном устройстве для аккумуляторов или в аппарате для дуговой сварки. Он использует диодный мост для ограничения распространения синусоидальной волны переменного тока только в одном направлении. В результате получается полностью выпрямленная форма волны переменного тока, которая интерпретируется цепью постоянного тока как естественная форма волны постоянного тока. Трехфазные преобразователи частоты принимают три отдельные входные фазы переменного тока и преобразуют их в один выход постоянного тока. Большинство трехфазных преобразователей частоты также могут принимать однофазное питание (230 В или 460 В), но, поскольку есть только две входящие ветви, мощность преобразователя частоты (HP) должна быть снижена, поскольку производимый постоянный ток уменьшается пропорционально.С другой стороны, настоящие однофазные преобразователи частоты (те, которые управляют однофазными двигателями) используют однофазный вход и вырабатывают выход постоянного тока, который пропорционален входу.
Есть две причины, по которым трехфазные двигатели более популярны, чем их однофазные счетчики, когда речь идет о работе с регулируемой скоростью. Во-первых, они предлагают гораздо более широкий диапазон мощности. Но не менее важна их способность начать вращение самостоятельно. С другой стороны, однофазный двигатель часто требует некоторого вмешательства извне, чтобы начать вращение.В этом случае мы ограничимся рассмотрением трехфазных двигателей, используемых в трехфазных преобразователях частоты.
Шина постоянного тока
Второй компонент, известный как шина постоянного тока (показан в центре рисунка), не виден и не во всех преобразователях частоты, потому что он не вносит непосредственного вклада в работу с переменной частотой. Но он всегда будет там в виде высококачественных преобразователей частоты общего назначения (производимых специализированными производителями преобразователей частоты).Не вдаваясь в подробности, шина постоянного тока использует конденсаторы и катушку индуктивности для фильтрации «пульсаций» переменного напряжения от преобразованного постоянного тока до того, как оно попадет в секцию инвертора. Он также может включать фильтры, препятствующие гармоническим искажениям, которые могут возвращаться в источник питания, питающий преобразователь частоты. Преобразователи частоты более старых версий и некоторые преобразователи частоты для конкретных насосов требуют отдельных сетевых фильтров для выполнения этой задачи.
Инвертор
Справа от иллюстрации — «кишки» преобразователя частоты.Инвертор использует три набора высокоскоростных переключающих транзисторов для создания «импульсов» постоянного тока, которые имитируют все три фазы синусоидальной волны переменного тока. Эти импульсы определяют не только напряжение волны, но и ее частоту. Термин инвертор или инверсия означает «реверсирование» и просто относится к движению вверх и вниз генерируемой формы волны. В современном преобразователе частоты преобразователь частоты использует метод, известный как «широтно-импульсная модуляция» (ШИМ), для регулирования напряжения и частоты. Мы рассмотрим это более подробно, когда рассмотрим выход инвертора.
Еще один термин, с которым вы, вероятно, столкнетесь, читая литературу или рекламу по преобразователям частоты, — это «IGBT». IGBT относится к «биполярному транзистору с изолированным затвором», который является переключающим (или импульсным) компонентом инвертора. Транзистор (который заменил электрическую лампу) выполняет две функции в нашем электронном мире. Он может действовать как усилитель и увеличивать сигнал, как в радио или стерео, или он может действовать как переключатель и просто включать и выключать сигнал. IGBT — это просто современная версия, которая обеспечивает более высокие скорости переключения (3000 — 16000 Гц) и пониженное тепловыделение.Более высокая скорость переключения приводит к повышению точности эмуляции волн переменного тока и снижению слышимого шума двигателя. Уменьшение выделяемого тепла означает меньшие радиаторы и, следовательно, меньшую площадь основания преобразователя частоты.
Выход инвертора
На рисунке справа показана форма сигнала, генерируемого инвертором преобразователя частоты с ШИМ, по сравнению с формой истинной синусоидальной волны переменного тока. Выход инвертора состоит из серии прямоугольных импульсов с фиксированной высотой и регулируемой шириной.В этом конкретном случае есть три набора импульсов — широкий набор в середине и узкий набор в начале и конце как положительной, так и отрицательной частей цикла переменного тока. Сумма площадей импульсов равна эффективному напряжению истинной волны переменного тока (мы обсудим эффективное напряжение через несколько минут). Если бы вы отрезали части импульсов выше (или ниже) истинной волны переменного тока и использовали их для заполнения пустых пространств под кривой, вы бы обнаружили, что они почти идеально совпадают.Таким образом преобразователь частоты регулирует напряжение, подаваемое на двигатель.
Сумма ширины импульсов и пустых промежутков между ними определяет частоту волны (отсюда ШИМ или широтно-импульсная модуляция), воспринимаемой двигателем. Если бы импульс был непрерывным (то есть без пробелов), частота все равно была бы правильной, но напряжение было бы намного больше, чем у истинной синусоидальной волны переменного тока. В зависимости от желаемого напряжения и частоты преобразователь частоты будет изменять высоту и ширину импульса, а также ширину пустых промежутков между ними.Хотя внутренние компоненты, обеспечивающие это, относительно сложны, результат элегантно прост!
Некоторые из вас, вероятно, задаются вопросом, как этот «фальшивый» переменный ток (на самом деле постоянный ток) может управлять асинхронным двигателем переменного тока. В конце концов, разве не требуется переменный ток, чтобы «вызвать» ток и соответствующее ему магнитное поле в роторе двигателя? Итак, переменный ток вызывает индукцию естественным образом, потому что он постоянно меняет направление. DC, с другой стороны, этого не делает, потому что он обычно неподвижен после активации цепи.Но постоянный ток может индуцировать ток, если его включать и выключать. Для тех из вас, кто достаточно взрослый, чтобы помнить, автомобильные системы зажигания (до появления твердотельного зажигания) имели набор точек в распределителе. Назначение очков было «импульсное» питание от аккумулятора в катушку (трансформатор). Это вызвало заряд в катушке, который затем увеличил напряжение до уровня, при котором свечи зажигания могли загореться. Широкие импульсы постоянного тока, показанные на предыдущем рисунке, на самом деле состоят из сотен отдельных импульсов, и именно это включение и выключение выхода инвертора позволяет возникать индукции через постоянный ток.
Действующее напряжение
Мощность переменного тока — довольно сложная величина, и неудивительно, что Эдисон почти выиграл битву за то, чтобы сделать постоянный ток стандартом в США. К счастью, для нас все сложности были объяснены, и все, что нам нужно сделать, это следовать правилам, изложенным до нас.
Один из атрибутов, делающих переменный ток сложным, заключается в том, что он непрерывно изменяет напряжение, переходя от нуля к некоторому максимальному положительному напряжению, затем обратно к нулю, затем к некоторому максимальному отрицательному напряжению, а затем снова обратно к нулю.Как определить действительное напряжение, приложенное к цепи? На рисунке слева изображена синусоидальная волна 60 Гц, 120 В. Обратите внимание, однако, что его пиковое напряжение составляет 170 В. Как мы можем назвать это волной 120 В, если ее фактическое напряжение составляет 170 В. В течение одного цикла он начинается с 0 В и повышается до 170 В, затем снова падает до 0. Он продолжает падать до –170, а затем снова повышается до 0. Оказывается, площадь зеленого прямоугольника, верхняя граница которого находится на уровне 120 В, равна сумме площадей под положительной и отрицательной частями кривой.Может ли тогда 120 В быть средним? Ну, если бы вы усреднили все значения напряжения в каждой точке цикла, результат был бы примерно 108 В, так что это не должно быть ответом. Почему же тогда значение, измеренное VOM, составляет 120 В? Это связано с тем, что мы называем «эффективным напряжением».
Если бы вы измерили тепло, выделяемое постоянным током, протекающим через сопротивление, вы бы обнаружили, что оно больше, чем тепло, производимое эквивалентным переменным током. Это связано с тем, что переменный ток не поддерживает постоянное значение на протяжении всего цикла. Если вы проделали это в лаборатории в контролируемых условиях и обнаружили, что определенный постоянный ток вызывает повышение температуры на 100 градусов, его эквивалент по переменному току приведет к увеличению на 70,7 градуса или всего 70,7% от значения постоянного тока. Следовательно, эффективное значение переменного тока составляет 70,7% от постоянного. Также оказывается, что эффективное значение переменного напряжения равно квадратному корню из суммы квадратов напряжения на первой половине кривой. Если пиковое напряжение равно 1, и вы должны были измерить каждое из отдельных напряжений от 0 до 180 градусов, эффективное напряжение будет равно 0.707 пикового напряжения. 0,707 пикового напряжения 170, показанного на рисунке, равно 120 В. Это эффективное напряжение также известно как среднеквадратическое или среднеквадратичное напряжение. Отсюда следует, что пиковое напряжение всегда будет в 1,414 пикового значения от эффективного напряжения. Ток 230 В переменного тока имеет пиковое напряжение 325 В, а 460 — пиковое напряжение 650 В. Эффект пикового напряжения мы увидим немного позже.
Ну, я, вероятно, говорил об этом дольше, чем необходимо, но я хотел, чтобы вы получили представление об эффективном напряжении, чтобы вы поняли иллюстрацию ниже.В дополнение к изменению частоты преобразователь частоты также должен изменять напряжение, даже если напряжение не имеет ничего общего со скоростью, с которой работает двигатель переменного тока.
На рисунке показаны две синусоидальные волны 460 В переменного тока. Красный — это кривая 60 Гц, а синий — 50 Гц. Оба имеют пиковое напряжение 650 В, но 50 Гц намного шире. Вы можете легко увидеть, что область под первой половиной (0–10 мс) кривой 50 Гц больше, чем площадь первой половины (0–8,3 мс) кривой 60 Гц.И, поскольку площадь под кривой пропорциональна эффективному напряжению, его эффективное напряжение выше. Это увеличение эффективного напряжения становится еще более значительным при уменьшении частоты. Если позволить двигателю 460 В работать при этих более высоких напряжениях, его срок службы может значительно сократиться. Следовательно, преобразователь частоты должен постоянно изменять «пиковое» напряжение относительно частоты, чтобы поддерживать постоянное эффективное напряжение. Чем ниже рабочая частота, тем ниже пиковое напряжение и наоборот.По этой причине двигатели 50 Гц, используемые в Европе и некоторых частях Канады, рассчитаны на напряжение 380 В. Видите ли, я говорил вам, что кондиционер может быть немного сложным!
Теперь вы должны иметь довольно хорошее представление о работе преобразователя частоты и о том, как он управляет скоростью двигателя. Большинство преобразователей частоты предлагают пользователю возможность устанавливать скорость двигателя вручную с помощью многопозиционного переключателя или клавиатуры или использовать датчики (давления, расхода, температуры, уровня и т. Д.) Для автоматизации процесса.
Оптимизированная работа с преобразователями частоты
Для многих типов приложений точное управление скоростью и крутящим моментом имеет решающее значение в повседневной работе. Точное регулирование скорости может быть необходимо, например, для адаптации конвейерной ленты к остальному процессу, а возможность регулировки производительности насоса может обеспечить значительную экономию энергии. В то же время возможность управления скоростью может улучшить рабочую среду за счет гашения шума и вибрации и уменьшения механической нагрузки на двигатель.
Преобразователь частоты, также называемый ЧРП (частотно-регулируемый привод), часто является оптимальным решением для регулирования скорости приложения, приводимого в действие электродвигателем.Преобразователь частоты преобразует переменный ток из сети в постоянный ток, а затем обратно в переменный ток с регулируемой частотой и напряжением, что позволяет двигателю работать с желаемым крутящим моментом и числом оборотов.
Экономия энергии до 50 процентов
При использовании преобразователя частоты обычно достигается лучшее и более эффективное управление, чем при гидравлическом или механическом регулировании. Вместо того, чтобы двигатель работал на полную мощность и использовал такое оборудование, как клапаны или зубчатые передачи для управления скоростью и крутящим моментом, двигатель, подключенный к преобразователю частоты, потребляет ровно столько энергии, сколько требуется для процесса.В определенных типах применений, таких как центробежные вентиляторы и насосы, это может обеспечить экономию энергии почти на 50 процентов.
«Например, более энергоэффективно управлять центробежным насосом путем регулирования оборотов двигателя с помощью преобразователя частоты, чем использование клапанов для регулирования объема жидкости. В то же время это приводит к меньшему износу, а преобразователь также может обеспечить более мягкий пуск и остановку в качестве альтернативы устройству плавного пуска », — говорит Клаус Балле Томсен, менеджер по продукции Hoyer Drives & Controls.
Соединительная линия для интеллектуального управления
Еще одно важное преимущество преобразователей частоты состоит в том, что они могут быть адаптированы для сбора таких данных, как температура и вибрации двигателя, с помощью датчиков. Их можно использовать для контроля состояния двигателя и создания возможностей для более интеллектуального управления приложениями и профилактического обслуживания. Это также позволяет отслеживать работу через облачное решение и, в некоторых случаях, устранять неполадки, не присутствуя физически в производственной среде.
«На вашем ноутбуке можно получать такую информацию, как часы работы и показания энергии, которые, например, можно использовать для диагностики изношенного оборудования за счет увеличения энергопотребления. Таким образом можно предотвратить выход из строя приложения, которое необходимо обслуживать раньше, чем планировалось, и отложить обслуживание приложений, находящихся в хорошем состоянии. Преобразователь также может изменить направление вращения двигателя и тем самым освободить заблокированный насос, если что-то застряло в корпусе насоса.Все эти функции могут помочь улучшить время безотказной работы », — объясняет Клаус Балле Томсен.
Обращение к источникам шума
Преобразователь частоты может быть встроен в двигатель (см. Видео) или подключен через кабель. Во время установки важно учитывать множество различных проблем. Преобразователь частоты может, среди прочего, создавать различные типы помех, акустический шум, гармонические помехи в сети и шум ЭМС, также называемый электромагнитной совместимостью, который может влиять на радиооборудование и передачу данных.
«Помехи от преобразователя частоты следует ограничивать с помощью фильтров и экранированных кабелей, чтобы установка соответствовала требованиям ЭМС. По этой причине при выборе преобразователей частоты всегда следует обращаться за профессиональной консультацией. Сервисный переключатель для механического обслуживания может, например, быть встроен в преобразователь, чтобы избежать типичного источника неисправности ЭМС и, в то же время, добиться экономии затрат на установку. Со стороны Хойера мы можем предоставить рекомендации по правильному экранированию и снабдить двигатель соответствующими фильтрами ЭМС, чтобы он был готов к правильному подключению вместе с преобразователем частоты », — говорит Клаус Балле Томсен.
Hoyer Drives & Controls — факты
- С созданием компании Hoyer Drives & Controls компания Hoyer Motors теперь может предложить комплексное решение, охватывающее как двигатель, так и преобразователь частоты.
- Предлагаются решения с комбинированным двигателем и частотно-регулируемым приводом от 0,37 до 1800 кВт.
- Основное внимание уделяется OEM-решениям, в которых частотно-регулируемый привод либо интегрирован с двигателем, либо поставляется как отдельный автономный блок с высокими классами защиты (IP), либо устанавливается в шкаф.
- Hoyer Motors работает с ведущими производителями частотных преобразователей, такими как Schneider Electric и Kostal Inveor.Предлагаются отраслевые решения.
Узнайте больше о Hoyer Drives & Controls здесь.
.