+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Частотный преобразователь (электропривод) — Википедия

Частотный преобразователь — электронное устройство для изменения частоты электрического тока (напряжения)[1][2].

Частотный асинхронный преобразователь частоты служит для преобразования сетевого трёхфазного или однофазного переменного тока частотой 50 (60) Гц в трёхфазный или однофазный ток, частотой от 1 Гц до 800 Гц.

Промышленностью выпускаются частотные преобразователи электроиндукционного типа, представляющего собой по конструкции асинхронный двигатель с фазным ротором, работающий в режиме генератора-преобразователя, и преобразователи электронного типа.

Частотные преобразователи электронного типа часто применяют для плавного регулирования скорости асинхронного электродвигателя или синхронного двигателя за счет создания на выходе преобразователя электрического напряжения заданной частоты. В простейших случаях регулирование частоты и напряжения происходит в соответствии с заданной характеристикой V/f, в наиболее совершенных преобразователях реализовано так называемое векторное управление.

Частотный преобразователь электронного типа — это устройство, состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный, и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемой частоты и амплитуды. Выходные тиристоры (GTO) или транзисторы (IGBT) обеспечивают необходимый ток для питания электродвигателя.

Для улучшения формы выходного напряжения между преобразователем и двигателем иногда ставят дроссель, а для уменьшения электромагнитных помех — EMC-фильтр.

ПЧ — преобразователь частоты;
ИТ — преобразователь частоты источник тока;
ИН — преобразователь частоты источник напряжения;
АИМ — преобразователь частоты с амплитудно-импульсной модуляцией;
ШИМ — преобразователь частоты с широтно-импульсной модуляцией Функциональная схема преобразователя частоты, выполненного по схеме источника напряжения Функциональная схема преобразователя частоты, выполненного по схеме источника тока

Электронный преобразователь частоты состоит из схем, в состав которых входит тиристор или транзистор, которые работают в режиме электронных ключей. В основе управляющей части находится микропроцессор, который обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

В зависимости от структуры и принципа работы электрического привода выделяют два класса преобразователей частоты:

  1. С непосредственной связью.
  2. С явно выраженным промежуточным звеном постоянного тока.

Каждый из существующих классов преобразователей имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

В преобразователях с непосредственной связью электрический модуль представляет собой управляемый выпрямитель. Система управления поочередно отпирает группы тиристоров и подключает обмотки двигателя к питающей сети.

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. Частота выходного напряжения у таких преобразователей не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 50 Гц, и как следствие — малый диапазон управления частотой вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование незапираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя. «Резаная» синусоида на выходе преобразователя с непосредственной связью является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению КПД системы в целом.

Наиболее широкое применение в современных частотно регулируемых модулях находят преобразователи с явно выраженным промежуточным звеном постоянного тока. В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе, фильтруется фильтром, сглаживается, а затем вновь преобразуется инвертором в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению КПД и к некоторому ухудшению массо-габаритных показателей по отношению к преобразователям с непосредственной связью.

Для формирования синусоидального переменного напряжения используют автономный инвертор, который формирует электрическое напряжение заданной формы на обмотках электродвигателя (как правило, методом широтно-импульсной модуляции). В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия. Они имеют более высокий КПД (до 88 %) по отношению к преобразователям на IGBT-транзисторах

[источник не указан 267 дней].

Преобразователи частоты являются нелинейной нагрузкой, создающей токи высших гармоник в питающей сети, что приводит к ухудшению качества электроэнергии.

  • ВРД 39-1.10-052-2001 Методические указания по выбору и применению асинхронного частотно-регулируемого электропривода мощностью до 500 кВТ

ru.wikipedia.org

Частотный преобразователь

27.05.2019

Частотный преобразователь напряжения — это электрический прибор, служащий для преобразования напряжения и частоты переменного тока в напряжение с заданной амплитудой и частотой. Он также способен преобразовывать постоянное напряжение в переменное с заданными характеристиками.

Частотные преобразователь Toshiba

Для чего нужен частотный преобразователь?

Этот вопрос задают множество людей, которым впервые понадобилось подключить трехфазный двигатель насоса или вентилятора. Конечно, любой электродвигатель можно напрямую подключить к сети переменного тока через соответствующую защитную аппаратуру (моторный автоматический выключатель или контактор с тепловым реле).

Насос водяной

szma.com

Частотные преобразователи


Назначение.

Преобразователи частоты представляют собой устройства силовой промышленной электроники и предназначены для преобразования однофазного или трехфазного напряжения сети переменного тока постоянной частоты в трехфазное напряжение регулируемой частоты. Возможность регулирования частоты выходного напряжения позволяет применять частотные преобразователи для изменения скорости вращения электродвигателей, одновременно обеспечивая умную защиту подключенной нагрузки. Кроме основной защиты от перегрузки по току, большая часть современных преобразователей частоты оснащена функциями защиты от понижения напряжения источника питания (защита ЗМН), перенапряжения, однофазного короткого замыкания на землю и других неисправностей. Наличие этих опций значительно увеличивает срок безаварийной эксплуатации электродвигателей. Регулирование частоты осуществляется по закону V/f или используется векторное управление. Системы под управлением частотных преобразователей обладают высоким коэффициентом полезного действия. За счет этого, а также благодаря возможности динамического изменения скорости вращения электродвигателя в зависимости от входных сигналов с датчиков или по заданной оператором программе, применение частотных преобразователей дает возможность снизить затраты на потребляемую электроэнергию до 30%. Окупаемость использования систем управления с преобразователями частоты в среднем достигается в первые 1-2 года после внедрения.

Устройство.

Частотный преобразователь состоит из нескольких основных электронных узлов.

  1. Однофазный или трехфазный выпрямительный мост на основе диодов, тиристоров соединенных чаще всего по схеме Ларионова для трехфазных цепей.
  2. ЭМС фильтр содержит дроссель на ферритовом сердечнике и неполярные конденсаторы.
  3. Емкостная часть цепи постоянного тока состоит из сборки конденсаторов включенных последовательно для увеличения общего номинального напряжения и параллельно для увеличения общей емкости.
  4. Схема управления собрана на основе микропроцессора, драйвера, опторазвязки.
  5. Источник питания чаще всего состоит из многоканального импульсного блока питания с выходными каналами +5В, +12В, -12В, +24В. В редких случаях используются источники питания на основе низкочастотных понижающих трансформаторов.
  6. Силовая часть частотных преобразователей обычно состоит из шести IGBT транзисторов, объединенных в IGBT модули.
  7. Схема измерения основана на датчиках тока Холла.
  8. Схема ввода-вывода представлена чаще всего в виде отдельной платы с АЦП, ЦАП, оптической развязкой, интерфейсом связи RS-485.
  9. Узел ограничения зарядного тока конденсаторов цепи постоянного тока содержит термистор для устройств небольшой мощности или ограничительный резистор, шунтирующий нормально открытые контакты реле (контактора) для мощных частотных преобразователей.
  10. Цепь торможения — тормозной резистор применяется для динамического торможения электродвигателей средней и большой мощности и может быть как встроенным, так и внешним по отношению к преобразователю частоты.
  11. Система охлаждения может содержать радиатор и вентиляторы.
  12. Панель управления с цифровым дисплеем — может являться как обязательной частью частотного преобразователя, так и независимым устройством для считывания и записи настроек.

Принцип действия.

Выпрямленное напряжение от шины постоянного тока поступает на IGBT транзисторы, которые управляются через оптическую развязку от драйвера ШИМ. На драйвер сигналы управления через схему согласования уровней передаются от микропроцессора, содержащего алгоритм управления. По этому алгоритму происходит управление работой драйвера и далее взаимозависимое открытие-закрытие соответствующих выходных транзисторов. В результате на выходе каждого из трех каналов будут получены сигналы синусоидальной формы со смещением друг относительно друга. Чем выше частота переключения ШИМ — тем больше форма синусоиды близка к идеальной. Наиболее частыми значениями частоты работы ШИМ являются 4 кГц, 8 кГц, 16 кгц. Эти значения могут быть изменены пользователем в процессе подготовки к эксплуатации.

Время выполнения запроса: 0,00276613235474 секунд.

prom-electric.ru

Частотный преобразователь

Дмитрий Левкин

Частотный преобразователь, или преобразователь частоты — электротехническое устройство (система управления), используемое для контроля скорости и/или момента двигателей переменного тока путем изменения частоты и напряжения питания электродвигателя.

Согласно ГОСТ 23414-84 полупроводниковый преобразователь частоты — полупроводниковый преобразователь переменного тока, осуществляющий преобразование переменного тока одной частоты в переменный ток другой частоты

Частотный преобразователь — это устройство, используемое для того чтобы обеспечить непрерывное управление процессом. Обычно частотный преобразователь способен управлять скоростью и моментом асинхронных и/или синхронных двигателей.

Частотный преобразователь небольшой мощности

Высоковольтный преобразователь

Преобразователи частоты находят все более широкое применение в различных приложениях промышленности и транспорта. Благодаря развитию силовых полупроводниковых элементов, инверторы напряжения и инверторы тока с ШИМ управлением получают все более широкое распространение. Устройства, которые преобразуют постоянный сигнал в переменный, с желаемым напряжением и частотой, называются инверторами. Такое преобразование может быть осуществлено с помощью электронных ключей (BJT, MOSFET, IGBT, MCT, SIT, GTO) и тиристоров в зависимости от задачи.

На данный момент основная часть всей производимой электрической энергии в мире используется для работы электрических двигателей. Преобразование электрической мощности в механическую мощность осуществляется с помощью электродвигателей мощностью от меньше ватта до нескольких десятков мегаватт.

    Современные электроприводы должны отвечать различным требованиям таким как:
  • максимальный КПД;
  • широкий диапазон плавной установки скорости вращения, момента, ускорения, угла и линейного положения;
  • быстрое удаление ошибок при изменении управляющих сигналов и/или помех;
  • максимальное использование мощности двигателя во время сниженного напряжения или тока;
  • надежность, интуитивное управление.

Основными элементами частотного преобразователя являются силовая часть (преобразователь электрической энергии) и управляющее устройство (контроллер). Современные частотные преобразователи обычно имеют модульную архитектуру, что позволяет расширять возможности устройства. Также зачастую имеется возможность установки дополнительных интерфейсных модулей и модулей расширения каналов ввода/вывода.

Функциональная схема частотного преобразователя

На микроконтроллере частотного преобразователя выполняется программное обеспечение, которое управляет основными параметрами электродвигателя (скоростью и моментом). Основные методы управления бесщеточными двигателями, используемые в частотных преобразователях представлены в таблице ниже.

Характеристики основных способов управления электродвигателями используемых в частотных преобразователях [3]

Примечание:

  1. Без обратной связи.
  2. С обратной связью.
  3. В установившемся режиме

Широкое развитие силовых электрических преобразователей в последние десятилетия привело к увеличению количества исследований в области модуляции. Метод модуляции непосредственно влияет на эффективность всей энергосистемы (силовой части, системы управления), определяя экономическую выгоду и производительность конечного продукта.

Главная цель методов модуляции – добиться лучшей формы сигналов (напряжений и токов) с минимальными потерями. Другие второстепенные задачи управления могут быть решены посредством использования правильного способа модуляции, такие как уменьшение синфазной помехи, выравнивание постоянного напряжения, уменьшение пульсаций входного тока, снижение скорости нарастания напряжения. Одновременное достижение всех целей управления невозможно, необходим компромисс. Каждая схема силового преобразователя и каждое приложение должны быть глубоко изучены для определения наиболее подходящего метода модуляции.

    Методы модуляции можно разделить на четыре основные группы:
  • ШИМ — широтно-импульсная модуляция
  • ПВМ — пространственно-векторная модуляция
  • гармоническая модуляция
  • методы переключения переменной частоты

Корни силовой электроники уходят к 1901 году, когда П.К. Хьюитт изобрел ртутный вентиль. Однако современная эра полупроводниковой силовой электроники началась с коммерческого представления управляемого кремниевого выпрямителя (тиристора) компанией General Electric в 1958 году. Затем развитие продолжалось в области новых полупроводниковых структур, материалов и в производстве, давая рынку много новых устройств с более высокой мощностью и улучшенными характеристиками. Сегодня силовая электроника строится на металл-оксид-полупроводниковых полевых транзисторах (MOSFET — metal-oxide-semiconductor field-effect transistor) и биполярных транзисторах с изолированным затвором (IGBT — Insulated-gate bipolar transistors), а для диапазона очень высоких мощностей — на тиристорах с интегрированным управлением (IGCT – Integrated gate-commutated thyristor). Также сейчас доступны интегрированные силовые модули. Новая эра высоковольтных, высокочастотных и высокотемпературных технологий открывается многообещающими полупроводниковыми устройствами, основанными на широкой запрещенной зоне карбида кремния (SiC). Новые силовые полупроводниковые устройства всегда инициируют развитие новых топологий преобразователей [3].

Инвертор напряжения

Инвертор напряжения наиболее распространен среди силовых преобразователей.

Двухуровневый инвертор напряжения

Двухуровневый инвертор напряжения (two-level voltage-source inverter) – наиболее широко применяемая топология преобразователя энергии. Он состоит из конденсатора и двух силовых полупроводниковых ключей на фазу. Управляющий сигнал для верхнего и нижнего силовых ключей связан и генерирует только два возможных состояния выходного напряжения (нагрузка соединяется с положительной или отрицательной шиной источника постоянного напряжения).

Схема двухуровневого инвертора напряжения

Фазное напряжение двухуровневого инвертора напряжения

Используя методы модуляции для генерирования управляющих импульсов возможно синтезировать выходное напряжение с желаемыми параметрами (формой, частотой, амплитудой). Из-за содержания высоких гармоник в выходном сигнале для генерирования синусоидальных токов выходной сигнал необходимо фильтровать, но так как данные преобразователи обычно имеют индуктивную нагрузку (электродвигатели) дополнительные фильтры используются только при необходимости.

Максимальное выходное напряжение определяется значением постоянного напряжения звена постоянного тока. Для эффективного управления мощной нагрузкой требуется высокое постоянное напряжение звена постоянного тока, но на практике это напряжение ограничено максимальным рабочим напряжением полупроводников. Для примера низковольтные IGBT транзисторы обеспечивают выходное напряжение до 690 В. Для того чтобы обойти данное ограничение по напряжению в последние десятилетия были разработаны схемы многоуровневых преобразователей. Данные преобразователи сложнее, чем двухуровневые в плане топологии, модуляции и управления, но при этом имеют лучшие показатели по мощности, надежности, габаритам, производительности и эффективности.

Трехуровневый преобразователь с фиксированной нейтральной точкой

В трехуровневом преобразователе с фиксированной нейтральной точкой (three-level neutral point clamped converter) постоянное напряжение делится поровну посредством двух конденсаторов, поэтому фаза может быть подключена к линии положительного напряжения (посредством включения двух верхних ключей), к средней точке (посредством включения двух центральных ключей) или к линии отрицательного напряжения (посредством включения двух нижних ключей). Каждому ключу в данном случае требуется блокировать только половину напряжения звена постоянного тока, тем самым позволяя увеличить мощность устройства, используя те же самые полупроводниковые ключи, как и в обычном двухуровневом преобразователе. В данном преобразователе обычно используются высоковольтные IGBT транзисторы и IGCT тиристоры.

Схема трехуровневого преобразователя с фиксированной нейтральной точкой

    Недостатками данных преобразователей являются:
  • Дисбаланс конденсаторов, создающий асимметрию в преобразователе. Данную проблему предлагается решать путем изменения метода модуляции.
  • Неравное распределение потерь из-за того, что потери на переключение внешних и центральных ключей отличаются в зависимости от режима работы. Данная проблема не может быть решена с использованием обычной схемы, поэтому была предложена измененная топология – активный преобразователь со связанной нейтральной точкой (active NPC). В этой схеме диоды заменены управляемыми ключами. Таким образом, выбирая соответствующую комбинацию ключей, возможно уменьшить и равномерно распределить потери.
    • Фазное напряжение трехуровневого преобразователя с фиксированной нейтральной точкой

      Преобразователь с фиксированной нейтральной точкой может масштабироваться для достижения больше чем трех уровней выходного сигнала путем деления напряжения звена постоянного тока более чем на два значения посредством конденсаторов. Каждое из этих деленных напряжений может быть подключено к нагрузке с использованием расширенного набора ключей и ограничительных диодов. Вместе с увеличением мощности преимуществами многоуровневого преобразователя является лучшее качество электроэнергии, меньшее значение скорости нарастания напряжения (dv/dt) и связанных электромагнитных помех. Однако, когда преобразователь со связанной нейтральной точкой имеет более трех уровней, появляются другие проблемы. С точки зрения схемотехники в таком случае ограничительные диоды требуют более высокое максимальное рабочее напряжение чем основные ключи, что требует использования различных технологий или нескольких ограничительных диодов соединенных последовательно. В дополнение становится критическим неравномерное использование силовых элементов в схеме. В итоге из-за увеличения количества элементов снижается надежность. Приведенные недостатки ограничивают использование преобразователей с фиксированной нейтральной точкой с более чем тремя уровнями в промышленных приложениях.

      Многоуровневые преобразователи

      Каскадные преобразователи основанные на модульных силовых ячейках со схемой H-мост (cascaded H-bridge — CHB) и преобразователи с плавающими конденсаторами (flying capacitor converter) были предложены для обеспечения большего количества уровней выходного напряжения в сравнении с преобразователями с фиксированной нейтральной точкой.

      Каскадный Н-мостовой преобразователь

      Каскадный преобразователь — высоко модульный преобразователь, состоящий из нескольких однофазных инверторов, обычно называемыми силовыми ячейками, соединенными последовательно для формирования фазы. Каждая силовая ячейка выполнена на стандартных низковольтных компонентах, что обеспечивает их легкую и дешевую замену в случае выхода из строя.

      Схема каскадного преобразователя

      Основным преимуществом данного преобразователя является использование только низковольтных компонентов, при этом он дает возможность управлять мощной нагрузкой среднего диапазона напряжения. Несмотря на то что частота коммутации в каждой ячейке низкая, эквивалентная частота коммутации приложенная к нагрузке – высокая, что уменьшает потери на переключение ключей, дает низкую скорость нарастания напряжения (dv/dt) и помогает избежать резонансов.

      Фазное напряжение каскадного преобразователя

      Преобразователь с плавающими конденсаторами

      Выходное напряжение преобразователя с плавающими конденсаторами получается путем прямого соединения выхода фазы с положительной, отрицательной шиной или подключением через конденсаторы. Количество уровней выходных напряжений зависит от количества навесных конденсаторов и отношения между различными напряжениями.

      Схема преобразователя с плавающими конденсаторами

      Этот преобразователь, как и в случае каскадного преобразователя, также имеет модульную топологию, где каждая ячейка состоит из конденсатора и двух связанных ключей. Однако, в отличие от каскадного преобразователя добавление дополнительных силовых ключей к конденсаторному преобразователю не увеличивает номинальную мощность преобразователя, а только уменьшает скорость нарастания напряжения (dv/dt), улучшая коэффициент гармоник выходного сигнала. Как и у каскадного преобразователя, модульность уменьшает стоимость замены элементов, облегчает поддержку и позволяет реализовать отказоустойчивую работу.

      Фазное напряжение преобразователя с плавающими конденсаторами

      Конденсаторный преобразователь требует только один источник постоянного тока для питания всех ячеек и фаз. Поэтому, можно обойтись без входного трансформатора, а количество ячеек может быть произвольно увеличено в зависимости от требуемой выходной мощности. Подобно преобразователю с фиксированной нейтральной точкой, этому преобразователю требуется специальный алгоритм управления для регулирования напряжения на конденсаторах.

      Инвертор тока

      Для работы инвертору тока всегда требуется управляемый выпрямитель, чтобы обеспечить постоянный ток в звене постоянного тока. В стандартной топологии обычно используются тиристорные выпрямители. Чтобы уменьшить помехи в нагрузке, в звене постоянного тока используется расщепленная индуктивность. Инвертор тока имеет схему силовых ключей наподобие инвертора напряжения, но в качестве силовых ключей используются тиристоры с интегрированным управлением (IGCT). Выходной ток имеет форму ШИМ и не может быть напрямую приложен к индуктивной нагрузке (электродвигателю), поэтому инвертор тока обязательно включает выходной емкостной фильтр, который сглаживает ток и выдает гладкое напряжение на нагрузку. Этот преобразователь может быть реализован для работы на средних напряжениях и более того он по природе имеет возможность рекуперации энергии.

      Схема инвертора тока с выпрямителем

      Прямые преобразователи

      Прямые преобразователи передают энергию прямо от входа к выходу без использования элементов накопления энергии. Основным преимуществом таких преобразователей является меньшие габариты. Недостатком – необходимость более сложной схемы управления.

      Циклоконвертер относится к категории прямых преобразователей. Данный преобразователь широко использовался в приложениях требующих высокую мощность. Этот конвертер состоит из двойных тиристорных преобразователей на фазу, который может генерировать изменяемое постоянное напряжение, контролируемое таким образом, чтобы следовать опорному синусоидальному сигналу. Вход каждого преобразователя питается от фозосмещающего трансформатора, где устраняются гармоники входного тока низкого порядка. Выходное напряжение является результатом комбинации сегментов входного напряжения в котором основная гармоника следует за опорным сигналом. По своей природе данный преобразователь хорошо подходит для управления низкочастотными мощными нагрузками.

      Схема циклоконвертера

      Матричный преобразователь в его прямой и непрямой версии также принадлежит к категории прямых преобразователей. Основной принцип работы прямого матричного преобразователя (direct matrix converter) — возможность соединения выходной фазы к любому из входных напряжений. Преобразователь состоит из девяти двунаправленных ключей, которые могут соединить любую входную фазу с любой выходной фазой, позволяя току течь в обоих направлениях. Для улучшения входного тока требуется индуктивно-емкостной фильтр второго порядка. Выход напрямую соединяется с индуктивной нагрузкой. Не все доступные комбинации ключей возможны, они ограничены только 27 правильными состояниями коммутации. Как говорилось ранее, основное преимущество матричных преобразователей — меньшие габариты, что важно для автомобильных и авиационных приложений.

      Схема прямого матричного преобразователя

      Непрямой матричный преобразователь (indirect matrix converter) состоит из двунаправленного трехфазного выпрямителя, виртуального звена постоянного тока и трехфазного инвертора. Количество силовых полупроводников такое же как у прямых матричных преобразователей (если двунаправленный ключ рассматривается как два однонаправленных ключа), но количество возможных состояний включения отличается. Используя ту же самую конфигурацию непрямого матричного преобразователя, возможно упростить его топологию и уменьшить количество элементов ограничив его работу от положительного напряжения в виртуальном звене постоянного тока. Уменьшенная топология называется разреженный матричный преобразователь (sparse matrix converter).

      Схема непрямого матричного преобразователя

      Схема разреженного матричного преобразователя

        Библиографический список
      • ГОСТ Р 50369-92 Электроприводы. Термины и определения.
      • Rahul Dixit, Bindeshwar Singh, Nupur Mittal. Adjustable speeds drives: Review on different inverter topologies.- Sultanpur, India.:International Journal of Reviews in Computing, 2012.
      • Marian P. Kazmierkowski, Leopoldo G. Franquelo, Jose Rodriguez, Marcelo A. Perez, Jose I. Leon, «High-Performance Motor Drives», IEEE Industrial Electronicsd, vol. 5, no. 3, pp. 6-26, Sep.2011.

engineering-solutions.ru

Зачем нужен частотный преобразователь — верный ответ

Преобразователь частоты является электронным устройством, которое служит для преобразования параметров частоты электрического тока. Его использование позволяет обеспечить непрерывное управления процессом трансформации входных электрических параметров — в выходные. 

Назначение и область применения преобразователей частоты

Наибольшую актуальность частотные преобразователи приобрели в сфере управления скоростью вращения синхронных и асинхронных электродвигателей. Использование частотников в значительной мере позволяет оптимизировать производство, снизить потребление энергоресурсов, и увеличить срок службы подключённого к ним электрооборудования.

Преимущества использования преобразователей частоты:

  • управление и контроль скорости вращения электродвигателя;
  • защита от бросков напряжения и перегрузок;
  • обеспечение плавного пуска и остановки подконтрольного электрооборудования;
  • облегчение рабочего процесса при выполнении сложных технических задач;
  • устойчивость к продолжительным нагрузкам и импульсным действиям;
  • возможность экономии энергоресурсов вплоть до 40-50 %;
  • увеличение КПД электродвигателей;
  • снижение износа и улучшение механических показателей подключённого оборудования;
  • осуществление непрерывного мониторинга технологических параметров и возможность оперативного вмешательства.
Благодаря возможности регулировки скоростных характеристик двигателей, инверторы получили широкое распространение в промышленности и хозяйственной деятельности человека.

Сфера применения частотника:

  • пищевая промышленность;
  • тяжёлая промышленность;
  • лёгкая промышленность;
  • средства малой механизации;
  • медицинское оборудование;
  • насосное оборудование;
  • система водоснабжения;
  • компрессоры;
  • транспорт;
  • высокоточные электромеханические станки.
Устройство и принцип действия

Электрическая схема частотного преобразователя состоит из двух частей:
  • силовой;
  • управляющей.
Силовая часть собрана на транзисторах или тиристорах. Управляющая часть имеет вид электрической схемы на цифровых микропроцессорах, которая способна управлять силовыми электрическими составляющими входящих параметров.

Выделяют два этапа преобразования:



1) На первом этапе преобразования входное напряжение (220В либо 380В) выпрямляется с помощью диодного моста. Затем, проходя через фильтр собранный на конденсаторах, «вырезанные» части входного сигнала сглаживаются.

2) На этом этапе, из частей выпрямленного напряжения, формируется сигнал желаемой последовательности с необходимыми параметрами амплитуды и частоты. Это достигается при помощи микросхем, способных управлять выходными параметрами. Заданные элементами управления прямоугольные импульсы необходимой частоты передаются двигателю. Индуктивность обмотки статора интегрирует эти импульсы, превращая их в синусоиду.

Классификация частотников



По величине и типу электропитания различают инверторы нескольких видов:
  • однофазные;
  • трёхфазные;
  • высоковольтные агрегаты.
Полупроводниковые частотные преобразователи производят преобразование тока или напряжения промышленной сети. Выходные параметры необходимого сигнала свободно регулируются элементами управления.

По принципу функционирования частотники делятся на классы:

ПЧ с промежуточным звеном постоянного тока. Тиристорный либо транзисторный преобразователь, нуждающийся в дополнительном звене постоянного напряжения, для безопасной и правильной работы подключённого электродвигателя.

ПЧ с непрерывной связью питающей сети и электрической машины. Представляет собой тиристорный реверсивный преобразователь, способный надёжно функционировать без использования дополнительного оборудования.

У современных преобразователей частоты присутствует экранный дисплей с возможностью отслеживания и задания различных параметров (частота, ток, напряжение, мощность, скорость, крутящий момент, продолжительность работы инвертора).

В зависимости от сферы применения различают инверторы:

• промышленного применения;
• осуществляющие управление техники с насосно-вентиляторным типом нагрузки;
• используемые в условиях динамической нестабильности и взрывоопасности;
• монтируемые непосредственно на корпус двигателя;
• векторного способа управления;
• для кранового и подъёмного механизмов.

Способы подключения и настройка

Все современные преобразователи частоты оснащены специальными выводами для более удобного их подключения к электродвигателю. Всё сложное схемное исполнение уже смонтировано в корпусе агрегата. В электрической цепи инвертор занимает место сразу после автоматического выключателя, который должен соответствовать номиналу рабочего тока электродвигателя.

При включении частотного преобразователя в однофазную цепь, порог срабатывания автоматического выключателя рассчитывается на величину, в три раза превосходящую рабочий ток в этой цепи.

При трёхфазном питании, необходимо использовать специальный трёхфазный автоматический выключатель с общим рычагом. Ток срабатывания автомата в этом случае, должен ровняться рабочему току каждой из фаз двигателя.

Внимание! Монтаж автоматического выключателя, при подключении двигателя к инвертору, необходимо выполнять в разрыв нулевого провода. Устанавливать автомат в разрыв провода заземления – запрещено!
Настройка подключения преобразователя частоты, заключается в правильном подсоединении проводов и жил кабеля необходимого сечения к конкретным выводам подключаемого электродвигателя.

Способы подключения частотных преобразователей частоты к электродвигателям:
Треугольник. Выводы преобразователя соединяются с последовательно соединёнными обмотками статора управляемого двигателя. Такое подключение используется для бытового подключения к однофазным сетям, где напряжение на выходе инвертора не превышает значение на входе более чем на 50%.

Звезда. Тип соединения, при котором выводы инвертора подключаются к параллельно соединённым обмоткам электродвигателя. Такое соединение используется при включении преобразователя в трёхфазную сеть промышленных объектов.


Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

epusk.ru

Частотный преобразователь: устройство, принцип работы, назначение

Так как электропривод является одним из основных способов механизации производств и бытовых задач, в ряде случаев возникает необходимость регулировки оборотов электродвигателей. В зависимости от их вида и принципа работы используются различные технические решения. Одним из них является частотный преобразователь. Что это такое и где применяется частотник, мы расскажем в этой статье.

Определение

По определению частотный преобразователь – это электронный силовой преобразователь для изменения частоты переменного тока. Но в зависимости от исполнения изменяется и уровень напряжения, и число фаз. Может быть вам не совсем понятно, для чего нужен такой прибор, но мы постараемся рассказать о нём простыми словами.

Частота вращения вала синхронных и асинхронных двигателей (АД) зависит от частоты вращения магнитного потока статора и определяется по формуле:

n=(60*F/p)*(1-S),

где n – число оборотов вала АД, p – число пар полюсов, s – скольжение, f – частота переменного тока (для РФ – 50 Гц).

Простым языком, частота вращения ротора зависит от частоты и числа пар полюсов. Число пар полюсов определяется конструкцией катушек статора, а частота тока в сети постоянна. Поэтому, чтобы регулировать обороты мы можем регулировать только частоту с помощью преобразователей.

Устройство

С учетом сказанного выше сформулируем заново ответ на вопрос, что это такое:

Частотный преобразователь — это электронное устройство для изменения частоты переменного тока, следовательно, и числа оборотов ротора асинхронной (и синхронной) электрической машины.

Условное графическое обозначение согласно ГОСТ 2.737-68 вы можете видеть ниже:

Электронным он называется потому, что в основе лежит схема на полупроводниковых ключах. В зависимости от функциональных особенностей и типа управления будут видоизменяться и принципиальная электрическая схема, и алгоритм работы.

На схеме ниже вы видите как устроен частотный преобразователь:


Принцип действия преобразователя частоты лежит в следующем:

  • Сетевое напряжение подаётся на выпрямитель 1 и становится выпрямленным пульсирующим.
  • В блоке 2 сглаживаются пульсации и частично компенсируется реактивная составляющая.
  • Блок 3 – это группа силовых ключей, управляемых системой управления (4) методом широтно-импульсной модуляции (ШИМ). Такая конструкция позволяет получить на выходе двухуровневое ШИМ-регулируемое напряжение, которое после сглаживания приближается к синусоидальному виду. В дорогих моделях нашла применение трёхуровневая схема, где используется больше ключей. Она позволяет добиться более близкой к синусоидальной формы сигнала. В качестве полупроводниковых ключей могут использоваться тиристоры, полевые или IGBT-транзисторы. В последнее время наиболее востребованы и популярны последние два типа из-за эффективности, малых потерь и удобства управления.
  • С помощью ШИМ формируется нужный уровень напряжения, простыми словами – так модулируют синусоиду, поочередно включая пары ключей, формируя линейное напряжение.

Так мы кратко рассказали, как работает и из чего состоит частотный преобразователь для электродвигателя. Он используется в качестве вторичного источника электропитания и не просто управляет формой тока питающей сети, а преобразует его величину и частоту в соответствии с заданными параметрами.

Виды частотников и сфера применения

Способы управления

Регулировка оборотов может осуществляться разными способами, как по способу установки требуемой частоты, так и по способу регулирования. Частотники по способу управления делят на два типа:

  1. Со скалярным управлением.
  2. С векторным управлением.

Устройства первого типа регулируют частоту по заданной функции U/F, то есть вместе с частотой изменяется и напряжение. Пример такой зависимости напряжения от частоты вы можете наблюдать ниже.

Она может отличаться и программироваться под конкретную нагрузку, например, на вентиляторах она не линейная, а напоминает ветвь параболы. Такой принцип работы поддерживает магнитный поток в зазоре между ротором и статором почти постоянным.

Особенностью скалярного управления является его распространенность и относительная простота реализации. Используется чаще всего для насосов, вентиляторов и компрессоров. Такие частотники часто используют, если нужно поддерживать стабильное давление (или другой параметр), это могут быть погружные насосы для скважин, если рассматривать бытовое применение.

На производстве же сфера применения широка, например, регулировка давления в тех же трубопроводах и производительности автоматических систем вентиляции. Диапазон регулирования обычно составляет 1:10, простым языком максимальная скорость от минимальной может отличаться в 10 раз. Из-за особенностей реализации алгоритмов и схемотехники такие устройства обычно дешевле, что и является основным преимуществом.

Недостатки:

  • Не слишком точная поддержка оборотов.
  • Медленнее реакция на изменение режима.
  • Чаще всего нет возможности контролировать момент на валу.
  • С ростом скорости сверх номинальной падает момент на валу двигателя (то есть когда поднимаем частоту выше номинальных 50 Гц).

Последнее связано с тем, что напряжение на выходе зависит от частоты, при номинальной частоте напряжение равняется сетевому, а выше частотник поднимать «не умеет», на графике вы могли видеть ровную часть эпюры после 50 Гц. Следует отметить и зависимость момента от частоты, она падает по закону 1/f, на графике ниже изображена красным, а зависимость мощности от частоты синим.

Преобразователи частоты с векторным управлением имеют другой принцип работы, здесь не просто напряжение соответствует кривой U/f. Характеристики выходного напряжения изменяются в соответствии с сигналами от датчиков, так чтобы на валу поддерживался определенный момент. Но зачем нужен такой способ управления? Более точная и быстрая регулировка – отличительные черты частотного преобразователя с векторным управлением. Это важно в таких механизмах, где принцип действия связан с резким изменением нагрузки и момента на исполнительном органе.

Такая нагрузка характерна для токарных и других видов станков, в том числе ЧПУ. Точность регулирования до 1,5%, диапазон регулировки – 1:100, для большей точности с датчиками скорости и пр. – 0,2% и 1:10000 соответственно.

На форумах бытует мнение, что на сегодняшний день разница в цене между векторными и скалярными частотниками меньше чем была раньше (15-35% в зависимости от производителя), а главным отличием является в большей степени прошивка, чем схемотехника. Также отметим, что большинство векторных моделей поддерживают и скалярное управление.

Преимущества:

  • большая стабильность работы и точность;
  • быстрее реакция на изменения нагрузки и высокий момент на низкой скорости;
  • шире диапазон регулирования.

Главный недостаток – стоит дороже, чем скалярные.

В обоих случаях частота может задаваться вручную или датчиками, например, датчиком давления или расходомером (если речь вести о насосах), потенциометром или энкодером.

Во всех или почти во всех преобразователях частоты есть функция плавного пуска двигателя, что позволяет легче пускать двигатели от аварийных генераторов практически без риска его перегрузки.

Количество фаз

Кроме способов реагирования частотники отличаются и количеством фаз на входе и выходе. Так различают частотные преобразователи с однофазным и трёхфазным входом.

При этом большинство трёхфазных моделей могут питаться от одной фазы, но при таком применении их мощность уменьшается до 30-50%. Это связано с допустимой токовой нагрузкой на диоды и другие силовые элементы схемы. Однофазные же модели выпускаются в диапазоне мощностей до 3 кВт.

Важно! Учтите, что при однофазном подключении с напряжением на вход 220В, будет выход 3 фазы по 220В, а не по 380В. То есть линейное на выходе будет именно 220В, если говорить кратко. В связи с чем распространенные двигатели с обмотками, рассчитанными на напряжения 380/220В нужно соединять в треугольник, а те что на 127/220В – в звезду.

В сети вы можете найти много предложений типа «частотный преобразователь 220 на 380» — это в большинстве случаев маркетинг, продавцы любые три фазы называют «380В».

Чтобы получить настоящие 380В из одной фазы нужно либо использовать однофазный трансформатор 220/380 (если вход преобразователя частоты рассчитан на такое напряжение), либо использовать специализированный частотный преобразователь с однофазным входом и 380В трёхфазным выходом.

Отдельным и более редким видом преобразователей частоты являются однофазные частотники с однофазным выходом 220. Они предназначены для регулировки однофазных двигателей с конденсаторным пуском. Примером таких устройств являются:

  • ERMAN ER-G-220-01
  • INNOVERT IDD

Схема подключения

В реальности же, чтобы получить из частотного преобразователя 380В выход 3 фазы, нужно подключить на вход 3 фазы 380В:

Подключение частотника к одной фазе аналогично, за исключением подключения питающих проводов:

Однофазный преобразователь частоты для двигателя с конденсатором (насоса или вентилятора малой мощности) подключается по такой схеме:

Как вы могли видеть на схемах, кроме питающих проводов и проводов к двигателю у частотника есть и другие клеммы, к ним подключаются датчики, кнопки выносного пульта управления, шины для подключения к компьютеру (чаще стандарта RS-485) и прочее. Это даёт возможность управления двигателем по тонким сигнальным проводам, что позволяет убрать частотный преобразователь в электрощит.

Частотники – это универсальные устройства, назначение которых не только регулировка оборотов, но и защита электродвигателя от неправильных режимов работы и электропитания, а также от перегрузки. Кроме основной функции в устройствах реализуется плавный пуск приводов, что снижает износ оборудования и нагрузки на электросеть. Принцип работы и глубина настройки параметров большинства частотных преобразователей позволяет экономить электроэнергию при управлении насосами (ранее управление осуществлялось не за счет производительности насоса, а с помощью задвижек) и другим оборудованием.

На этом мы и заканчиваем рассмотрение вопроса. Надеемся, после прочтения статья вам стало понятно, что такое частотный преобразователь и для чего он нужен. Напоследок рекомендуем просмотреть полезно видео по теме:

Наверняка вы не знаете:

samelectrik.ru

Преобразователи частоты. Различие между ними.

Настоящим прорывом в области регулируемого электропривода стало появление силовых преобразователей частоты или как их именуют в профильной среде — частотников. Это открытие кардинально изменило подход в проектировании систем электроприводов. Если относительно недавно при проектировании сложных механизмов, где без точного регулирование параметров (скорость, момент) не обойтись, выбирались двигатели постоянного тока — ДПТ, то с появлением частотников привода переменного тока начали активно вытеснять двигатели постоянного тока из данных систем. Даже в тяговых электроприводах асинхронный двигатель с коротко-замкнутым ротором вытесняет ДПТ последовательного возбуждения.

Содержание:

Классификация преобразователей частоты

Техническое устройство, преобразующее переменное напряжения  одной частоты на входе, в изменяющееся по определенному закону переменное напряжение, но уже другой частотой на выходе называется преобразователем частоты (ПЧ). Бывают двух типов:

  • Непосредственные
  • Двухзвенные

Непосредственные – это реверсивный тиристорный преобразователь. Главное его достоинство в том, что он подключается напрямую в сеть без дополнительных устройств.

Двухзвенные – представляют собой транзисторный или тиристорный преобразователь. Но главное их отличие от непосредственных преобразователей в том, что для корректной и безопасной работы инвертора необходимо звено постоянного напряжения. Соответственно для подключения их к общепромышленным сетям необходим выпрямитель. Как правило изготавливаются комплектными (инвертор и выпрямитель поставляются вместе и работают от одной системы управления).

Двухзвенные преобразователи частоты

Двухзвенный или как его еще называют со звеном постоянного тока, созданный на базе АИН (автономный инвертор напряжения), содержит в комплекте выпрямитель и фильтр:

ЭМ – электрическая машина, АИН – автономный инвертор напряжения, Lф, Сф – индуктивности и емкости фильтра, fнз – задание частоты выхода инвертора, udз – задание выходного напряжения для выпрямителя, если используются управляемые выпрямители, СУВ, СУИ – системы управления выпрямителем и инвертором соответственно, uнз – задание выходного напряжения инвертора, В – выпрямитель. Пунктиром показаны связи, которые включаются в систему в зависимости от типа устройства.

Для улучшения качества энергии в звене постоянного напряжения и сглаживании пульсаций напряжения и тока используют L-C фильтр. Зачастую он имеют Г – образную схему включения, как показано выше. Также иногда используют фазовый сдвиг в цепи переменного напряжения путем включения обмоток трансформатора в треугольник и звезду:

Данная схема более дорогостоящая и может применяться только при использовании индивидуального трансформатора.

В данной системе выпрямитель может быть управляем или не управляем. Если он управляем, то функция регулирования напряжения ложится на него, если нет, то на АИН. Для рекуперации энергии в сеть выпрямитель должен быть полностью управляем и реверсивен (двухкомплектный). Управление частотным преобразователем производится импульсным методом. Самые распространенные методы это ШИР (широтно-импульсное регулирование) и ШИМ (широтно-импульсная модуляция).

Еще более широкое применение получили автономные инверторы тока (АИТ):

АИТ – автономный инвертор тока, СУИ, СУВ – системы управления преобразователями, УВ – управляемый выпрямитель, Lф – индуктивность фильтра, fнз – задание частоты выходного тока, іdз – задание выходного тока в звене постоянного тока.

В отличии от АИН, где регулируемой выходной величиной является напряжение, в АИТ регулируемой величиной является ток. Немаловажную роль в формировании выходного сигнала заданной частоты является частота коммутации транзисторов или тиристоров. Чем выше частота коммутации, тем лучше качество синусоиды на выходе частотника, но возрастают потери в преобразователе. Ниже приведен результат моделирования работы АИТ (на IGBT транзисторах) на активно-индуктивную нагрузку при различных частотах коммутации:

Частота коммутации 800 ГцЧастота коммутации 2000 Гц 

Частота коммутации 8000 Гц

Как видно из графиков уменьшение частоты коммутации очень плохо влияет на выходное качество тока. Поэтому для каждого устройства необходимо подбирать частоту коммутации частотника соответственно качеству выходного напряжения или тока. Для оптимизации данных процессов на выходе преобразователя частоты иногда ставят L-C фильтр, для сглаживания пульсаций токов и напряжений:

Как видим из схемы —  последовательно подключают индуктивность, для сглаживания пульсаций тока, и параллельно емкость, для сглаживания пульсаций напряжения.

Также работа частотника генерирует высшие гармоники в питающей сети:

Ток двух фаз питающего напряжения

Для уменьшения влияния высших гармоник на сеть используют фильтро-компенсирующие устройства (ФКУ)

Ниже показаны принципиальные схемы преобразователей частоты.

Автономный инвертор напряжения с управляемым выпрямителем

Тиристоры VS1-VS6 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. При увеличении напряжения на емкости Сф выше заданного, транзистор VT7 открывается и вводится в работу тормозной резистор Rб, на котором рассеивается энергия переданная от электрической машины. При глубоком регулировании VD0 повышает коэффициент мощности выпрямителя.

Данный ПЧ не может рекуперировать энергию в сеть, а также насыщает выходное напряжение высшими гармониками и усложняет систему управления из-за необходимости управления УВ. При исполнении УВ двухкомплектным, рекуперирует энергию в сеть, но усложняет систему и делает ее более дорогостоящей. В настоящее время является устаревшим.

Автономный инвертор напряжения с неуправляемым выпрямителем

Диоды VD7-VD12 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. За счет использования ШИМ происходит регулирование амплитуды выходного напряжения и его частоты.

При использовании неуправляемого выпрямителя  для торможения двигателя АИН переводится в режим управляемого выпрямителя, работающего таким образом, что напряжение на емкости Сф выше заданного, несмотря на уменьшение скорости вращения двигателя. При увеличении напряжения на емкости Сф открывается транзистор VT7 и энергия выделяемая электродвигателем гасится на тормозном резисторе.

Данный способ торможения получил названия инверторного торможения, хотя инвертирования на самом деле нет. Это связано с тем, что термин динамическое торможение для систем с асинхронным двигателем занят, под ним понимается пропускания постоянного тока через обмотки двигателя.

Главным недостатком такой системы есть отсутствие возможности рекуперировать энергию в сеть, но она получила широкое применение для систем, где не требуется частое торможение.

Рекуперирующий двухзвенный преобразователь частоты на основе обратимого преобразователя напряжения

ОПН – обратимый преобразователь напряжения. В данной схеме имеется два ОПН. ОПН1 работает в выпрямительном режиме и передает энергию через ОПН2, работающий в инверторном режиме, к двигателю. При торможении ОПН2, подключенный к двигателю переходит в выпрямительный режим, а ОПН1, подключенный к сети, в инверторный режим. При этом происходит рекуперация энергии в сеть. Если задать схеме управления на входе cosφ = ± 1, то во всех режимах при регулировании и торможении двигателя из сети будет потребляться или в сеть будет отдаваться практически только активная мощность, а ток будет практически синусоидален, что определяет минимальное вредное влияние на питающую сеть. Эти преобразователи на сегодняшний день являются самыми близким к идеальным.

Ниже приведена функциональная схема данного устройства:

В схеме имеются следующие элементы: ОПН1, подключенный к сети, ОПН2, подключенный к двигателю, датчики тока и напряжения ДТ1 и ДН1 на стороне сети и ДТ2 и ДН2 на стороне постоянного напряжения. Требуемая мощность на стороне постоянного напряжения определяется измерением средних значений Ud и Id, а затем и мощности Pd с помощью вычислителя ВМ, куда поступают сигналы с ДН2 и ДТ2 через фильтр Ф. По действующему значению напряжения сети U1, определенному с помощью вычислителя напряжения ВН, и с учетом заданного угла φ1 определяется ток I1зад, обеспечивающий заданную мощность. Блок ФСН формирует синусоидальное напряжение, повторяющее напряжение сети, а блок «φ1» формирует заданную синусоиду с учетом фазового сдвига φ1. В блоке «ЗАД i1» формируется заданная синусоида тока. В модуляторе М она сравнивается с сигналом датчика тока ДТ1 i1, и формируются управляющие импульсы, которые через усилитель мощности УМ поступают на транзисторы. Блок НТ определяет направление тока (выпрямительный или инверторный режим). Блок выбора режима ВР в соответствии с сигналом от НТ задает угол φ1.

Преимущества двухзвенного рекуперирующего ПЧ: независимость выходной частоты от входной, возможность получения высокого коэффициента мощности на стороне сети. К недостаткам можно отнести: высокая стоимость, сложность системы управления.

Рекуперирующие двухзвенный преобразователь частоты на основе инверторов тока

Автономный инвертор тока, преобразовывает постоянный ток, подаваемый на его вход, в пропорциональный по величине переменный ток. Режим источника тока на входе обеспечивается за счет большой индуктивности L и применения токостабилизирующей обратной связи, поддерживающей заданное значение тока Idз. АИТ выполнен по схеме с отсекающими диодами. Рекуперация энергии при торможении в АИТ возможна при сохранении направления тока за счет сдвига токов и напряжений, т.е. переводом АИТ в режим выпрямления за счет сдвига управляющих импульсов относительно фазных ЭДС электрической машины.

Энергия, передаваемая от электрической машины на сторону постоянного напряжения, должна быть далее передана в сеть переменного напряжения. Для этого управляемый выпрямитель на входе ПЧ должен быть переведен в инверторный режим. При этом сохраняется направление тока и не требуется установка дополнительного комплекта вентилей. Схема применяется в двигателях достаточно большой мощности. Недостатками схемы являются ее не очень хорошие характеристики, поэтому она не является перспективной.

Появление запираемых тиристоров позволило улучшить характеристики ДПЧ на основе АИТ.

Формирование выходного тока осуществляется совместно управляемым выпрямителем и автономным инвертором тока.

Показана временная диаграмма, отражающая моменты включенного и выключенного состояний тиристора V1. На участке соответствующим зоне 2, ключ V1 включен постоянно, и ток сглаживающего дросселя непрерывно поступает в фазу А двигателя. Для формирования тока в зонах 1 и 3 необходимо соответствующим образом переключать тиристоры. Для обеспечения нарастания и спадания тока (зоны 1 и 3) обычно используется два метода – трапецеидальный и метод выборочного исключения гармоник.

При использовании первого метода моменты коммутации ключей АИТ определяются по пересечению линейно нарастающего сигнала и опорного сигнала пилообразной формы следующего с несущей частотой, при втором методе моменты коммутации ключей рассчитываются заранее исходя из условия подавления высших гармоник определенного порядка (5 и 7 и т.д.). В этой схеме улучшается синусоидальность тока, протекающего по фазам двигателя. Но сохраняются все недостатки, возникающие при питании от сети управляемых выпрямителей напряжения. Преобразователи частоты на основе инверторов тока наиболее применимы в электроприводе синхронных машин, где на выходе вместо автономного инвертора тока включается инвертор тока, ведомый электрической машиной.

Таким образом, на входе и на выходе ПЧ включаются однокомплектные рекуперирующие преобразователи (ОРП) на тиристорах. При этом ведомый инвертор полностью аналогичен выпрямителю, подключенному к сети. Коммутация вентилей ведомого инвертора осуществляется за счет ЭДС электрической машины.При низкой скорости вращения электрической машины эта ЭДС недостаточна для коммутации вентилей. Поэтому при пуске коммутация осуществляется путем прерывания тока в цепи постоянного тока включением и запиранием выпрямителя.


Непосредственные преобразователи частоты

При использовании НПЧ напряжение из сети подается через управляемые вентили на двигатель. В каждой фазе НПЧ установлен реверсивный двухкомплектный преобразователь с совместным или раздельным управлением силовыми комплектами.

На рис. 1а приведена схема трехфазно-однофазного НПЧ на основе трехфазных нулевых схем. Он преобразует трехфазное напряжение в однофазное, но с регулируемой частотой.Комплекты В и Н переключаются, и на выходе получается двуполярное напряжение. Для управления преобразователями используют определенные законы управления — прямоугольный и синусоидальный. Если используют прямоугольный принцип управления, то алгоритм работы будет таков: при прохождении одной полуволны напряжения, на один из комплектов подаются управляющие импульсы с углом управления (углом задержки) a = const. Этот комплект будет работать в режиме выпрямителя, а затем с углом управления (углом опережения) b = a. Чтоб снизить ток необходимо перейти в инверторный режим (рис. 1 б). Для избежания короткого замыкания в самом инверторе необходимо чтоб ток снизился до нуля – это называется бестоковой паузой. После осуществления бестоковой паузы в работу включается второй комплект.

Если используют синусоидальное управление, то гладкая составляющая выходного напряжения должна изменятся по синусоидальному закону, для этого угол управления a непрерывно меняется (рис. 1 в).

Рисунок 1. 

Схема трехфазно-трехфазного НПЧ, выполненного на основе трехфазных мостовых схем. Ниже приведена схема.

Данный тип преобразователей не получил широкого применения из-за ряда недостатков при его применении. А это: невозможность полного регулирования выходной частоты (при использовании трехфазных мостовых схем диапазон регулирования 25-45 Гц, а при нулевых 15-45 Гц). Постоянная коммутация вентилей, что приводит к ухудшению коэффициента мощности, а также плохое качество выходного напряжения и большое влияние на питающую сеть.

Преимуществом можно признать то, что у таких преобразователей более высокий КПД, из-за однократного преобразования энергии.

Наиболее распространены преобразователи частоты на базе АИТ и АИН на IGBT транзисторах, в силу лучших показателей качества энергии на выходе преобразователя и их влияния на сеть.

elenergi.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *