+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Сложение колебаний, гармонических и механических

В природе часто происходят процессы, в которых складываются нескольких величин, изменяющихся по гармоническому закону. Это явления интерференции и дифракции света, различные акустические явления, процессы в цепях переменного тока. Сложение колебаний мы можем наблюдать на морской поверхности. Электрокардиограмма представляет собой сложение колебаний напряжений биотоков, вырабатываемых сердечной мышцей.

Метод векторных диаграмм для сложения колебаний

Для сложения колебаний удобно применять метод векторных диаграмм. Этот метод основан на представлении гармонического колебания в виде вектора, модуль которого равен амплитуде колебания, а направление образует с осью угол, равный фазе колебания (рис.1). Проекция этого вектора на ось равна значению . Векторная диаграмма всегда строится для какого-то одного момента времени.

Рис.1. Представление гармонического колебания в виде вектора (метод векторных диаграмм)

Сложение колебаний одинакового направления

Рассмотрим сложение колебаний одинакового направления. Пусть складываются два гармонических колебания с различными параметрами, направленные вдоль одной прямой:

   

где

   

   

Пользуясь методом векторных диаграмм, представим эти колебания с помощью векторов и (рис.2).

Рис.2. Сложение колебаний одинакового направления

Результирующее колебание:

   

Амплитуда результирующего колебания находится с использованием теоремы косинусов и равна:

   

Так как разность фаз в общем случае зависит от времени, то амплитуда результирующего колебания непостоянна. Поэтому результирующее колебание не является гармоническим, а представляет собой сложный колебательный процесс с пульсирующей амплитудой.

Если частоты колебаний равны , то разность фаз этих колебаний не зависит от времени:

   

Такие колебания называются когерентными.

В этом случае результирующая амплитуда колебаний равна:

   

а начальная фаза результирующего колебания определяется соотношением:

   

Очевидно, что:

Примеры решения задач

ru.solverbook.com

2. Сложение гармонических колебаний. Колебания. Физика. Курс лекций

2.1. Сложение гармонических колебаний одного направления

2.2. Сложение взаимно перпендикулярных колебаний

Одно и то же тело может одновременно участвовать в двух и более движениях. Простым примером является движение шарика, брошенного под углом к горизонту. Можно считать, что шарик участвует в двух независимых взаимно перпендикулярных движениях: равномерном по горизонтали и равнопеременном по вертикали. Одно и то же тело (материальная точка) может участвовать в двух (и более) движениях колебательного типа.

Под сложением колебаний понимают определение закона результирующего колебания, если колебательная система одновременно участвует в нескольких колебательных процессах. Различают два предельных случая – сложение колебаний одного направления и сложение взаимно перпендикулярных колебаний.

2.1. Сложение гармонических колебаний одного направления

1. Сложение двух колебаний одного направления (сонаправленных колебаний)

можно провести с помощью метода векторных диаграмм (Рисунок 9) вместо сложения двух уравнений.

На Рисунке 2.1 показаны векторы амплитуд А1(t) и А2(t) складываемых колебаний в произвольный момент времени t, когда фазы этих колебаний соответственно равны и . Сложение колебаний сводится к определению . Воспользуемся тем фактом, что на векторной диаграмме сумма проекций складываемых векторов равна проекции векторной суммы этих векторов.

Результирующему колебанию соответствует на векторной диаграмме вектор амплитуды и фаза .

Рисунок 2.1 – Сложение сонаправленных колебаний.

Величина вектора А(t) может быть найдена по теореме косинусов:

.

Фаза результирующего колебания задается формулой:

.

Если частоты складываемых колебаний ω1 и ω2 не равны, то и фаза φ(t), и амплитуда

А(t) результирующего колебания будут изменяться с течением времени. Складываемые колебания называются некогерентными в этом случае.

2. Два гармонических колебания x1 и x2 называются когерентными, если разность их фаз не зависит от времени:

.

Но так как , то для выполнения условия когерентности двух этих колебаний должны быть равны их циклические частоты .

Амплитуда результирующего колебания, полученного при сложении сонаправленных колебаний с равными частотами (когерентных колебаний) равна:

.

Начальную фазу результирующего колебания легко найти, если спроектировать векторы

А1 и А2 на координатные оси ОХ и ОУ (см. Рисунок 9):

.

Итак, результирующее колебание, полученное при сложении двух гармонических сонаправленных колебаний с равными частотами, также является гармоническим колебанием .

3. Исследуем зависимость амплитуды результирующего колебания от разности начальных фаз складываемых колебаний.

Если , где n – любое целое неотрицательное число

(n = 0, 1, 2…), то , т.е. результирующая амплитуда будет минимальной. Складываемые колебания в момент сложения находились в противофазе

. При результирующая амплитуда равна нулю .

Если , то , т.е. результирующая амплитуда будет максимальной. В момент сложения складываемые колебания находились в одной фазе, т.е. были синфазны. Если амплитуды складываемых колебаний одинаковы , то .

4. Сложение сонаправленных колебаний с неравными, но близкими частотами.

Частоты складываемых колебаний не равны , но разность частот много меньше и ω1, и ω2. Условие близости складываемых частот записывается соотношениями .

Примером сложения сонаправленных колебаний с близкими частотами является движение горизонтального пружинного маятника, жесткость пружин которого немного различна k

1 и k2.

Пусть амплитуды складываемых колебаний одинаковы, а начальные фазы равны нулю . Тогда уравнения складываемых колебаний имеют вид: , .

Результирующее колебание описывается уравнением:

.

Получившееся уравнение колебаний зависит от произведения двух гармонических функций: одна – с частотой , другая – с частотой , где ω близка к частотам складываемых колебаний (ω1 или ω2). Результирующее колебание можно рассматривать как гармоническое колебание с изменяющейся по гармоническому закону амплитудой.

Такой колебательный процесс называется биениями. Строго говоря, результирующее колебание в общем случае не является гармоническим колебанием.

Абсолютное значение косинуса взято потому, что амплитуда – величина положительная. Характер зависимости хрез.при биениях показан на Рисунке 2.2.

Рисунок 2.2 – Зависимость смещения от времени при биениях.

Амплитуда биений медленно меняется с частотой . Абсолютное значение косинуса повторяется, если его аргумент изменяется на π, значит и значение результирующей амплитуды повторится через промежуток времени τб, называемый периодом биений (см. Рисунок 12). Величину периода биений можно определить из следующего соотношения:

.

Величина — период биений.

Величина есть период результирующего колебания (Рисунок 2.4).

2.2. Сложение взаимно перпендикулярных колебаний

1. Модель, на которой можно продемонстрировать сложение взаимно перпендикулярных колебаний, представлена на Рисунке 2.3. Маятник (материальная точка массой m) может совершать колебания по осям ОХ и ОУ под действием двух сил упругости, направленных взаимно перпендикулярно.

Рисунок 2.3

Складываемые колебания имеют вид:

.

Частоты колебаний определяются как , , где , -коэффициенты жесткости пружин.

2. Рассмотрим случай сложения двух взаимно перпендикулярных колебаний с одинаковыми частотами , что соответствует условию (одинаковые пружины). Тогда уравнения складываемых колебаний примут вид:

Когда точка участвует одновременно в двух движениях, ее траектория может быть различной и достаточно сложной. Уравнение траектории результирующего колебаний на плоскости ОХУ при сложении двух взаимно перпендикулярных с равными частотами можно определить, исключив из исходных уравнений для х и y время t:

.

Вид траектории определяется разностью начальных фаз складываемых колебаний, которые зависят от начальных условий (см. § 1.1.2). Рассмотрим возможные варианты.

а) Если , где n = 0, 1, 2…, т.е. складываемые колебания синфазные, то уравнение траектории примет вид:

(Рисунок 2.3 а).

Рисунок 2.3.а

Рисунок 2.3 б

б) Если (n = 0, 1, 2 …), т.е. складываемые колебаний находятся в противофазе, то уравнение траектории записывается так:

(Рисунок 2.3б).

В обоих случаях ( а, б) результирующее движение точки будет колебание по прямой, проходящей через точку О. Частота результирующего колебания равна частоте складываемых колебаний ω0, амплитуда определяется соотношением:

.

Угол, который прямая (траектория) составляет с осью ОХ, можно найти из уравнения:

(знак «плюс» – случай а, знак «минус» – случай б).

Результатом сложения взаимно перпендикулярных колебаний (случай а и б) является колебание, которое называется линейно поляризованным.

в) Если (n = 0, 1, 2 …), то уравнение траектории результирующего движения примет вид:

.

Это уравнение эллипса, его оси совпадают с осями координат ОХ и ОУ, а размеры его полуосей равны и (Рисунок 2.4 ).

Рисунок 2.4

Точка в результате участия в двух взаимно перпендикулярных колебаниях описывает эллипс за время, равное периоду складываемых колебаний .

3. Сложение взаимно перпендикулярных колебаний с кратными частотами.

Складываются взаимно перпендикулярные колебания, частоты которых не равны , но , , где a и b – целые числа.

Периоды колебаний вдоль осей ОХ и ОУ соответственно равны и . Отношение периодов .

Траектория точки, участвующей во взаимно перпендикулярных колебаниях с кратными частотами, — замкнутая кривая, форма которой зависит от соотношения амплитуд, частот и начальных фаз складываемых колебаний. Такие замкнутые траектории называются фигурами Лиссажу.

siblec.ru

Построить векторную диаграмму сложения амплитуд. Сложение гармонических колебаний

Решение ряда вопросов, в частности сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций), значительно облегчается и становится наглядным, если изображать колебания графически в виде векторов на плоскости. Полученная таким способом схема называется векторной диаграммой.

Возьмем ось, которую обозначим буквой х (рис. 55.1). Из точки О, взятой на оси, отложим вектор длины а, образующий с осью угол а.

Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора будет перемещаться по оси х в пределах от -а до +а, причем координата этой проекции будет изменяться со временем по закону

Следовательно, проекция конца вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени.

Из сказанного следует, что гармоническое колебание может быть задано с помощью вектора, длина которого равна амплитуде колебания, а направление вектора образует с осью х угол, равный начальной фазе колебания.

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты. Смещение х колеблющегося тела будет суммой смещений , которые запишутся следующим образом:

Представим оба колебания с помощью векторов (рис. 55.2). Построим по правилам сложения векторов результирующий вектор а.

Легко видеть, что проекция этого вектора на ось х равна сумме проекций слагаемых векторов:

Следовательно, вектор а представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью как и векторы так что результирующее движение будет гармоническим колебанием с частотой амплитудой а и начальной фазой а. Из построения видно, что

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Этот прием бывает особенно полезен, например, в оптике, где световые колебания в некоторой точке определяются как результат наложения многих колебаний, приходящих в данную точку от различных участков волнового фронта.

Формулы (55.2) и (55.3) можно, конечно, получить, сложив выражения (55.1) и произведя соответствующие тригонометрические преобразования. Но примененный нами способ получения этих формул отличается большей простотой и наглядностью.

Проанализируем выражение (55.2) для амплитуда. Если разность фаз обоих колебаний равна нулю, амплитуда результирующего колебания равна сумме а и . Если разность фаз равна или , т. е. оба колебания находятся в противофазе, то амплитуда результирующего колебания равна

Если частоты колебаний неодинаковы, векторы а и будут вращаться с различной скоростью. В этом случае результирующий вектор а пульсирует по величине и вращается с непостоянной скоростью. Следовательно, результирующим движением будет в этом случае не гармоническое колебание, а некоторый сложный колебательный процесс.

Сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций) значительно облегчается и становится наглядным, если изображать колебания графически в виде векторов на плоскости.

Возьмем ось, которую обозначим “x”. Из точки О, взятой на оси, под углом a, равным начальной фазе колебаний, отложим вектор длины A (рис. 8.3). Спроектируем вектор A на ось x, получим x 0 =Acos a – начальное смещение колеблющейся точки от положения равновесия. Приведем этот вектор во вращение против часовой стрелки с угловой скоростью w 0 . Положение этого вектора в любые моменты времени будет характеризоваться углами, равными:

w 0 t 1 +a; w 0 t 2 +a; w 0 t 3 +a; и т.д.

А проекция этого вектора будет перемещаться по оси «x» в пределах от –А до +А. Причем координата этой проекции будет изменяться со временем по закону:

.

Следовательно, проекция конца вектора на некоторую произвольную ось будет совершать гармоническое колебание с амплитудой равной длине вектора, круговой частотой равной угловой скорости вращения вектора и начальной фазой равной углу, образованному вектором с осью в н

www.dosaaf-khab.ru

ВЕКТОРНАЯ ДИАГРАММА И СЛОЖЕНИЕ КОЛЕБАНИЙ

Существует очень наглядный геометрический способ представления гармонических колебаний, заключающийся в изображении колебаний в виде векторов на плоскости. Полученная таким образом схема называется векторной диаграммой (рис. 7.4).

Выберем ось . Из точки О, взятой на этой оси, отложим вектор длины , образующий с осью угол . Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора на ось будет меняться со временем по закону . Следовательно, проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора; с круговой частотой, равной угловой скорости вращения, и с начальной фазой, равной углу, образованному вектором с осью X в начальный момент времени.

Векторная диаграмма дает возможность свести сложение колебаний к геометрическому суммированию векторов. Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты, которые имеют следующий вид:

, .

Представим оба колебания с помощью векторов и (рис. 7.5). Построим по правилу сложения векторов результирующий вектор . Легко увидеть, что проекция этого вектора на ось равна сумме проекций слагаемых векторов . Следовательно, вектор представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью , что и векторы , , так что результирующее движение будет гармоническим колебанием с частотой , амплитудой и начальной фазой . По теореме косинусов квадрат амплитуды результирующего колебания будет равен

  . (7.3)

Из рис. 7.5 видно, что начальная фаза результирующего колебания будет равна

  . (7.4)

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Формулы (7.3) и (7.4) можно, конечно, получить, сложив выражения для и аналитически, но метод векторной диаграммы отличается большей простотой и наглядностью.

ЗАТУХАЮЩИЕ КОЛЕБАНИЯ

Во всякой реальной колебательной системе имеются силы сопротивления, действие которых приводит к уменьшению энергии системы. Если убыль энергии не восполняется за счет работы внешних сил, колебания будут затухать. В простейшем, и вместе с тем наиболее часто встречающемся, случае сила сопротивления пропорциональна величине скорости:

,

где r – постоянная величина, называемая коэффициентом сопротивления. Знак минус обусловлен тем, что сила и скорость имеют противоположные направления; следовательно, их проекции на ось X имеют разные знаки. Уравнение второго закона Ньютона при наличии сил сопротивления имеет вид:

.

Применив обозначения , , перепишем уравнение движения следующим образом:

.

Это уравнение описывает затухающие колебания системы. Коэффициент называется коэффициентом затухания.

Экспериментальный график затухающих колебаний при малом коэффициенте затухания представлен на рис. 7.6. Из рис. 7.6 видно, что график зависимости выглядит как косинус, умноженный на некоторую функцию, которая убывает со временем. Эта функция представлена на рисунке штриховыми линиями. Простой функцией, которая ведет себя подобным образом, является экспоненциальная функция . Поэтому решение можно записать в виде:

,

где – частота затухающих колебаний.

Величина x периодически проходит через нуль и бесконечное число раз достигает максимума и минимума. Промежуток времени между двумя последовательными прохождениями через нуль равен . Удвоенное его значение называется периодом колебаний.

Множитель , стоящий перед периодической функцией , называется амплитудой затухающих колебаний. Она экспоненциально убывает со временем. Скорость затухания определяется величиной . Время, по истечении которого амплитуда колебаний уменьшается в раз, называется временем затухания . За это время система совершает колебаний. Затухание колебаний принято характеризовать логарифмическим декрементом затухания. Логарифмическим декрементом затухания называется логарифм отношения амплитуд в моменты последовательных прохождений колеблющейся величины через максимум или минимум:

.

Он связан с числом колебаний соотношением:

.

Величина называется добротностью колебательной системы. Добротность тем выше, чем большее число колебаний успевает совершить система прежде, чем амплитуда уменьшится в раз.

Постоянные величины и , как и в случае гармонических колебаний, можно определить из начальных условий.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ

Из-за наличия трения свободные колебания постепенно затухают и через некоторое время прекращаются. Чтобы затухания не было, на колеблющееся тело должно периодически воздействовать какое-либо внешнее тело. Например, волна, поднимающая и опускающая буек (рис. 7.7), рука человека, подталкивающая качели (рис. 7.8). При этом колебания качелей или буйка перестают быть свободными. Их называют вынужденными.

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными. Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил сопротивления.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω0. Например, если дергать груз, подвешенный на пружине с частотой , то он будет совершать гармонические колебания с частотой внешней силы , даже если эта частота не совпадает с частотой собственных колебаний пружины.

Пусть на систему действует периодическая внешняя сила . В этом случае можно получить следующее уравнение, описывающее движение такой системы:

, (7.5)

где . При вынужденных колебаниях амплитуда колебаний, а, следовательно, и энергия, передаваемая колебательной системе, зависят от соотношения между частотами и , а также от коэффициента затухания .

После начала воздействия внешней силы на колебательную систему необходимо некоторое время ωt для установления вынужденных колебаний. В начальный момент в колебательной системе возбуждаются оба процесса – вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω0. Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы. Время установления по порядку величины равно времени затухания ω свободных колебаний в колебательной системе. Установившиеся вынужденные колебания груза на пружине происходят по гармоническому закону с частотой, равной частоте внешнего воздействия. Можно показать, что в установившемся режиме решение уравнения (7.6) записывается в виде:

,

где

,
.

Таким образом, вынужденные колебания представляют собой гармонические колебания с частотой, равной частоте вынуждающей силы. Амплитуда вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Для данной колебательной системы (то есть системы с определенными значениями и ) амплитуда зависит от частоты вынуждающей силы. Вынужденные колебания отличаются по фазе от вынуждающей силы. Сдвиг по фазе зависит от частоты вынуждающей силы.

РЕЗОНАНС

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значения. Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при этой частоте. Это явление называется резонансом, а соответствующая частота – резонансной частотой.Графически зависимость амплитуды xm вынужденных колебаний от частоты ω вынуждающей силы описывается резонансной кривой (рис. 7.9).

Исследуем поведение амплитуды вынужденных колебаний в зависимости от частоты . Оставляя амплитуду вынуждающей силы неизменной, будем менять ее частоту. При получаем статическое отклонениепод действием постоянной силы :

.

При возрастании частоты амплитуда смещения сначала также возрастает, затем проходит через максимум и, наконец, асимптотически стремится к нулю. Из рис. 7.9 видно также, что чем меньше , тем выше и правее лежит максимум данной кривой. Кроме того, чем меньше , тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем острее получается максимум.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей внешней силы. С явлением резонанса приходится считаться при конструировании машин и различного рода сооружений. Собственная частота этих устройств ни в коем случае не должна быть близка к частоте возможных внешних воздействий.

Примеры

В январе 1905г. в Петербурге обрушился Египетский мост. Повинны в этом были 9 прохожих, 2 извозчика и 3-й эскадрон Петергофского конногвардейского полка. Произошло следующее. Все солдаты ритмично шагали по мосту. Мост от этого стал раскачиваться – колебаться. По случайному стечению обстоятельств собственная частота колебаний моста совпала с частотой шага солдат. Ритмичный шаг строя сообщал мосту все новые и новые порции энергии. В результате резонанса мост настолько раскачался, что обрушился. Если бы резонанса собственной частоты колебаний моста с частотой шага солдат не было, с мостом ничего бы не случилось. Поэтому при прохождении солдат по слабым мостам принято подавать команду «сбить ногу».

 

 

2 марта 1905 г. в день предстоявшего заседания II Государственной Думы обвалился потолок в главном зале Таврического дворца. Причиной случившегося явилась работа небольшого электровентилятора на чердаке, включенного для проветривания зала перед заседанием Думы.

 

 

Говорят, что великий тенор Энрико Карузо мог заставить стеклянный бокал разлететься вдребезги, спев в полный голос ноту надлежащей высоты. В этом случае звук вызывает вынужденные колебания стенок бокала. При резонансе колебания стенок могут достичь такой амплитуды, что стекло разбивается.

 

Проделайте опыты

Подойдите к какому-нибудь струнному музыкальному инструменту и громко крикните «а»: какая-то из струн отзовется – зазвучит. Та из них, которая окажется в резонансе с частотой этого звука, будет колебаться сильнее остальных струн – она-то и отзовется на звук.

 

Натяните горизонтально нетолстую веревку. Закрепите на ней маятник из нити и пластилина. Перекиньте через веревку еще один такой же маятник, но с более длинной ниткой. Длину подвески этого маятника можно изменять, подтягивая рукой свободный конец нитки. Приведите этот маятник в колебательное движение. При этом первый маятник тоже станет колебаться, но с меньшей амплитудой. Не останавливая колебаний второго маятника, постепенно уменьшайте длину его подвески – амплитуда колебаний первого маятника будет увеличиваться. В этом опыте, иллюстрирующем резонанс механических колебаний, первый маятник является приемником колебаний, возбуждаемых вторым маятником. Причиной, вынуждающей первый маятник колебаться, являются периодические колебания веревки с частотой, равной частоте колебаний второго маятника. Вынужденные колебания первого маятника будут иметь максимальную амплитуду лишь тогда, когда его собственная частота совпадает с частотой колебаний второго маятника.

АВТОКОЛЕБАНИЯ

Многочисленны и многообразны создания рук человеческих, в которых возникают и используются автоколебания. Прежде всего, это различные музыкальные инструменты. Уже в глубокой древности – рога и рожки, дудки, свистульки, примитивные флейты. Позже – скрипки, в которых для возбуждения звука используется сила трения между смычком и струной; различные духовые инструменты; гармонии, в которых звук производят металлические язычки, колеблющиеся под действием постоянного потока воздуха; органы, из труб которых вырываются через узкие щели резонирующие столбы воздуха.

Рис. 7.12

Хорошо известно, что сила трения скольжения практически не зависит от скорости. Однако именно благодаря очень слабой зависимости силы трения от скорости звучит скрипичная струна. Качественный вид зависимости силы трения смычка о струну показан на рис. 7.12. Благодаря силе трения покоя струна захватывается смычком и смещается из положения равновесия. Когда сила упругости превысит силу трения, струна оторвется от смычка и устремится к положению равновесия со все возрастающей скоростью. Скорость струны относительно движущегося смычка будет возрастать, сила трения увеличится и в определенный момент станет достаточной для захвата струны. Затем процесс повторится вновь. Таким образом, движущийся с постоянной скоростью смычок вызовет незатухающие колебания струны.

В струнных смычковых инструментах автоколебания поддерживаются силой трения, действующей между смычком и струной, а в духовых инструментах продувание струи воздуха поддерживает автоколебания столба воздуха в трубе инструмента.

Более чем в ста греческих и латинских документах разных времен упоминается пение знаменитого «мемнонского колосса» – величественного звучащего изваяния одного из фараонов, правившего в XIV веке до нашей эры, установленного вблизи египетского города Луксора. Высота статуи около 20 метров, масса достигает тысячи тонн. В нижней части колосса обнаружен ряд щелей и отверстий с расположенными за ними камерами сложной формы. «Мемнонский колосс» представляет собой гигантский орган, звучащий под воздействием естественных потоков воздуха. Статуя имитирует голос человека.

 

Голос человека – важнейший автоколебательный процесс. В основе его находится движение постоянного потока воздуха из легких, модулируемого колебаниями голосовых связок. Тончайшие фиоритуры колоратурного сопрано из столичного оперного театра и грубый рев быка с точки зрения физики звукообразования совершенно идентичны.

Природные автоколебания несколько экзотического свойства представляют собой поющие пески. Еще в XIV веке великий путешественник Марко Поло упоминал о «звучащих берегах» таинственного озера Лоб-Нор в Азии. За шесть веков поющие пески были обнаружены в различных местах всех континентов. У местного населения они в большинстве случаев вызывают страх, являются предметом легенд и преданий. Джек Лондон так описывает встречу с поющими песками персонажей романа «Сердца трех», отправившихся с проводником на поиски сокровищ древних майя.

«»Когда боги смеются, берегись!» – предостерегающе крикнул старик. Он начертил пальцем круг на песке и, пока он чертил, песок выл и визжал; затем старик опустился на колени, песок взревел и затрубил».

Есть поющие пески и даже целая поющая песчаная гора неподалеку от реки Или в Казахстане. Почти на 300 метров поднялась гора Калкан – гигантский природный орган. По-разному называют ее люди: «поющий бархан», «поющая гора». Сложена она из песка светлых тонов и на фоне темных отрогов Джунгарского Алатау Большого и Малого Калканов представляет необычайное зрелище благодаря цветовому контрасту. При ветре и даже при спуске с нее человека гора издает мелодичные звуки. После дождя и во время штиля гора безмолвствует. Туристы любят посещать Поющий бархан и, поднявшись на одну из трех его вершин, любоваться открывшейся панорамой Или и хребта Заилийского Алатау. Если гора молчит, нетерпеливые посетители «заставляют ее петь». Для этого надо быстро сбежать по наклону горы, песчаные струйки побегут из-под ног, и из недр бархана возникнет гудение.

Много веков прошло со времени обнаружения поющих песков, а удовлетворительного объяснения этому поразительному феномену не было предложено. В последние годы за дело принялись английские акустики, а также советский ученый В.И. Арабаджи. Арабаджи предположил, что излучающий звук верхний слой песка движется при каком-либо постоянном возмущении по нижнему, более твердому слою, имеющему волнистый профиль поверхности. Вследствие сил трения при взаимном перемещении слоев и возбуждается звук.

Вынужденные колебания – это незатухающие колебания. Неизбежные потери энергии на трение при вынужденных колебаниях компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными, а процесс незатухающих колебаний в таких системах – автоколебаниями. Схематично автоколебательную систему можно представить в виде источника энергии, осциллятора с затуханием и устройства обратной связи между колебательной системой и источником (рис. 7.10).

В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов). Источником энергии может служить деформированная пружина или груз в поле тяготения. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 7.11). В часах с анкерным ходом ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник – балансиром, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир, источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

В обыденной жизни мы, возможно, сами того не замечая, встречаемся с автоколебаниями чаще, чем с колебаниями, вызванными периодическими силами. Автоколебания окружают нас повсюду в природе и технике: паровые машины, двигатели внутреннего сгорания, электрические звонки, часы, звучащая скрипичная струна или органная труба, бьющееся сердце, голосовые связки при разговоре или пении – все эти системы совершают автоколебания.

Проделайте опыт!

Рис. 7.13

Колебательное движение обычно изучают, рассматривая поведение какого-нибудь маятника: пружинного, математического или физического. Все они представляют собой твердые тела. Можно создать устройство, демонстрирующее колебания жидких или газообразных тел. Для этого воспользуйтесь идеей, заложенной в конструкцию водяных часов. Две полуторалитровые пластиковые бутылки соединяют так же, как и в водяных часах, скрепив крышки. Полости бутылок соединяют стеклянной трубкой длиной 15 сантиметров, внутренним диаметром 4-5 миллиметров. Боковые стенки бутылок должны быть ровными и нежесткими, легко сминаться при сдавливании (см. рис. 7.13).

Для запуска колебаний бутылку с водой располагают сверху. Вода из нее начинает сразу же вытекать через трубку в нижнюю бутылку. Примерно через секунду струя самопроизвольно перестает течь и уступает проход в трубке для встречного продвижения порции воздуха из нижней бутылки в верхнюю. Порядок прохождения встречных потоков воды и воздуха через соединительную трубку определяется разницей давлений в верхней и нижней бутылках и регулируется автоматически.

О колебаниях давления в системе свидетельствует поведение боковых стенок верхней бутылки, которые в такт с выпуском воды и впуском воздуха периодически сдавливаются и расширяются. Поскольку

ОБРАЗОВАНИЕ ВОЛН

Как происходит распространение колебаний? Необходима среда для передачи колебаний или они могут передаваться без нее? Как звук от звучащего камертона доходит до слушателя? Каким образом быстропеременный ток в антенне радиопередатчика вызывает появление тока в антенне приемника? Как свет от далеких звезд достигает нашего глаза? Для рассмотрения подобного рода явлений необходимо ввести новое физическое понятие – волна. Волновые процессы представляют общий класс явлений, несмотря на их разную природу.

Источниками волн, будь то морские волны, волны в струне, волны землетрясений или звуковые волны в воздухе, являются колебания. Процесс распространения колебаний в пространстве называется волной. Например, в случае звука колебательное движение совершает не только источник звука (струна, камертон), но также и приемник звука – барабанная перепонка уха или мембрана микрофона. Колеблется и сама среда, через которую распространяется волна.

Волновой процесс обусловлен наличием связей между отдельными частями системы, в зависимости от которых мы имеем упругую волну той или иной природы. Процесс, протекающий в какой-либо части пространства, вызывает изменения в соседних точках системы, передавая им некоторое количество энергии. От этих точек возмущение переходит к смежным с ними и так далее, распространяясь от точки к точке, то есть создавая волну.

Упругие силы, действующие между элементами любого твердого, жидкого или газообразного тела, приводят к возникновению упругих волн. Примером упругих волн является волна, распространяющаяся по шнуру. Если движением руки вверх-вниз возбудить колебания конца шнура, то соседние участки шнура, за счет действия упругих сил связи, также придут в движение, и вдоль шнура будет распространяться волна. Общим свойством волн является то, что они могут распространяться на большие расстояния, а частицы среды совершают колебания лишь в ограниченной области пространства. Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц среды по отношению к направлению распространения волны различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны; в поперечной – перпендикулярно к направлению распространения волны. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн.

На рис. 8.1 показано движение частиц при распространении в среде поперечной волны и расположение частиц в волне в четыре фиксированных момента времени. Номерами 1, 2 и т.д. обозначены частицы, отстоящие друг от друга на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2. По прошествии еще четверти периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнет смещаться вверх из положения равновесия. В момент времени, равный , первая частица закончит полное колебание и будет находиться в таком же состоянии движения, как и в начальный момент. Волна к моменту времени достигнет частицы 5.

На рис. 8.2 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево. Из рис. 8.2 видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разрежения частиц, перемещающиеся в направлении распространения волны со скоростью .

Тела, которые воздействуют на среду, вызывая колебания, называются источниками волн. Распространение упругих волн не связано с переносом вещества, но волны переносят энергию, которой обеспечивает волновой процесс источник колебаний.

Геометрическое место точек, до которых доходят возмущения к данному моменту времени, называется фронтом волны. То есть фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченного в волновой процесс, от области, которую возмущения еще не достигли.

Геометрическое место точек, колеблющихся в одинаковых фазах, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновые поверхности могут иметь любую форму. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей; в сферической волне – множество концентрических сфер.

Расстояние, на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны. Очевидно, что , где – скорость распространения волны.

На рис. 8.3, выполненным с помощью компьютерной графики, приведена модель распространения поперечной волны на воде от точечного источника. Каждая частица совершает гармонические колебания около положения равновесия.

Рис. 8.3. Распространение поперечной волны от точечного источника колебаний


Читайте также:


Рекомендуемые страницы:

Поиск по сайту

poisk-ru.ru

Оптика и волны

Может случиться так, что осциллятор принимает участие в двух одинаково направленных колебаниях с разными амплитудами, частотами и начальными фазами. Рассмотрим сложение таких колебаний.

Сложение колебаний с одинаковыми частотами

Для простоты рассмотрим сначала случай, когда частоты складываемых колебаний одинаковы. Общие решения складываемых гармонических колебаний имеют вид:

 

(1.34)

где x1, x2— переменные, описывающие колебания, A1, A2— их амплитуды, а  ,  — начальные фазы. Результирующее колебание

удобно найти с помощью векторной диаграммы. Этот метод использует аналогию между вращением и колебательным процессом.

Возьмем общее решение (1.23) для гармонического колебания. Выберем ось 0x. Из точки 0 отложим вектор длиной A, образующий с осью 0x угол . Если привести этот вектор во вращение с угловой скоростью , то проекция конца этого вектора будет перемещаться по оси 0x от +A до –A, причем величина проекции будет изменяться по закону

 

(1.35)

Таким образом, проекция конца вектора на ось 0x будет совершать гармонические колебания с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени (рис. 1.12).

 

Рис. 1.12. Векторная диаграмма для общего решения (1.23)

Применим теперь эту технику к сложению колебаний (1.34). Представим оба колебания с помощью векторов А1 и А2  Возьмем их векторную сумму (рис. 1.13)

  

Рис. 1.13. Векторная диаграмма для сложения одинаково направленных колебаний одинаковой частоты

Проекция вектора А1 на ось 0x равна сумме проекций соответствующих векторов

Таким образом, вектор А представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью , так что результирующее движение будет гармоническим колебанием с частотой , амплитудой A и начальной фазой a. Согласно теореме косинусов:

 

(1.36)

В частности, если фазы складываемых колебаний равны или отличаются на величину, кратную   (то есть ), то амплитуда результирующего колебания равна сумме амплитуд

Если же складываемые колебания находятся в противофазе (то есть ), то


Биения

В этом разделе мы рассмотрим случай сложения одинаково направленных гармонических колебаний с разными частотами. На практике особый интерес представляет случай, когда складываемые колебания мало отличаются по частоте. Как мы увидим, в результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой, называемые биениями.

Биения — это периодическое изменение амплитуды колебаний, возникающее при сложении двух гармонических колебаний с близкими частотами.

Для простоты рассмотрим случай, когда амплитуды складываемых колебаний равны A, а начальные фазы обоих колебаний равны нулю. Частоты складываемых колебаний равны, соответственно,  и . Итак,

 

(1.37)

Складываем эти выражения и учитываем известную формулу тригонометрии:

 

(1.38)

Если  то в аргументе второго косинуса мы можем пренебречь сдвигом частоты:

 

(1.39)

Кроме того, множитель в скобках меняется медленно по сравнению с . Поэтому результирующее колебание x можно рассматривать как модулированное гармоническое колебание с частотой w, эффективная амплитуда  которого изменяется со временем по закону (1.40) (рис. 1.14):

 

(1.40)

Подчеркнем, что в строгом смысле такое колебание не является гармоническим, и еще раз напомним, что, согласно определению, колебание гармоническое, если оно происходит по закону , причем все три его параметра:  строго постоянны во времени.

Рис. 1.14. Биения при сложении колебаний с близкими частотами 

Частота пульсаций амплитуды (ее называют частотой биений) равна разности частот складываемых колебаний. Период биений равен

 

(1.41)

Видео 1.12 Биения на экране осциллографа

Видео 1.13 Биения: осциллограф и динамик

Видео 1.14 «Двойной» маятник: запись песком картины биений


Колебания двух связанных осцилляторов

Приведем поучительный пример системы, в которой возникают биения. Рассмотрим два груза массой m, которые могут колебаться под действием двух одинаковых пружин с коэффициентами жесткости k. Пусть грузы соединены также мягкой пружиной с коэффициентом жесткости K<<k. Будем полагать длины всех пружин в нерастянутом состоянии одинаковыми и равными 2L (рис. 1.15).

Рис. 1.15. Пример связанных осцилляторов.
Колебания происходят вдоль оси 0х, сила тяжести не учитывается
 

Тогда в положении равновесия координаты грузов равны

При колебаниях координаты равны, соответственно, x1(t), x2(t). Удлинения пружин записываются как

Мы имеем дело с системой с двумя степенями свободы. Составим уравнения движения. На первый груз действуют сила со стороны пружины k, равная

и сила со стороны пружины K, равная

На второй груз действуют аналогичные силы

и

Соответственно, уравнения движения имеют вид

 

(1.42)

Эти уравнения не слишком похожи на первый взгляд на уравнения гармонических колебаний, потому что на колебания x1оказывают влияния колебания x2и наоборот. Поэтому преобразуем уравнения к новым переменным, уравнения для которых были бы независимыми (такие переменные называют нормальными координатами, а соответствующие им колебания — нормальными  колебаниями (модами)). Именно, введем новые переменные x1  и x2:

 

(1.43)

Как легко убедиться, положениям равновесия соответствуют нулевые значения этих координат

В этих переменных уравнения (1.42) принимают вид:

 

(1.44)

Складывая и вычитая эти уравнения, приходим к паре независимых уравнений для введенных нормальных координат:

 

(1.45)

Первое уравнение описывает гармонические колебания с частотой

совпадающей с частотой колебаний пружинных маятников в отсутствие соединительной пружины К. Второе уравнение описывает колебания со сдвинутой частотой

Так как K<<k, имеем

 

(1.46)

Соответственно, мы получаем общее решение системы уравнений:

 

(1.47)

Общее решение для координат х1 и х2 колеблющихся точек следуют из (1.47) и (1.43):

 

(1.48)

Для примера рассмотрим случай, когда первая масса смещается на расстояние  от положения равновесия и отпускается с нулевой начальной скоростью, а вторая масса остается в положении равновесия:

 

(1.49)

Этому соответствуют следующие начальные значения нормальных координат:

 

(1.50)

 Такие начальные условия уже рассматривались выше. Соответствующие им решения имеют вид

 

(1.51)

Подставляя найденные амплитуды и начальные фазы в (1.48), получаем решения, описывающие колебания рассматриваемых масс около их положений равновесия:

 

(1.52)

 Графики функций x1(t), x2(t) показаны на рис. 1.16. Видна характерная картина биений.

 

Рис. 1.16. Биения в системе двух связанных осцилляторов

В начальный момент времени колеблется лишь первый груз. Затем начинает колебаться второй, а амплитуда колебаний первого уменьшается. Через время  первый груз останавливается, а второй колеблется с максимально возможной амплитудой. Произошла «перекачка» энергии от первого маятника ко второму. Затем процесс «перекачки» энергии идет в обратном направлении и к моменту  первый маятник колеблется с максимальной амплитудой, а второй покоится.

На рис. 1.17 демонстрируются биения в системе двух связанных математических маятников.

Рис. 1.17. Биения в системе связанных маятников

Выясним теперь физический смысл нормальных мод, соответствующих чисто гармоническим колебаниям системы. Если возбуждены колебания только первой из них (x1), то A2 = 0 и, как следует из общего решения (1.48),

 

(1.53)

Из (1.53) видно, что первая нормальная мода соответствует такому колебанию, когда оба груза смещаются на одинаковые расстояния от их положений равновесия, но в противоположные стороны, другими словами — они колеблются в противофазе. Скорости движения грузов также равны по величине и противоположны по направлению, так что центр масс грузов остается неподвижным. Колебания происходят под действием пружин с жесткостью k, к которым добавляется соединительная пружина с жесткостью К. Как следствие, частота таких колебаний больше частоты колебаний несвязанных осцилляторов

Возбуждение только второй (x2) нормальной моды означает, что A1 = 0:

 

(1.54)

В этом случае грузы смещаются из положения равновесия в одну сторону на одинаковые расстояния, другими словами – они колеблются синфазно. Скорости их также одинаковы по величине и направлению. Соединительная пружина колеблется вместе с грузами, но остается не растянутой и потому не оказывает влияния, так что частота колебаний совпадает с частотой колебаний несвязанных маятников.

В разобранном случае мы познакомились с нормальными модами и выяснили, что их частоты сдвигаются по сравнению с частотами колебаний несвязанных маятников. Любое другое колебательное движение системы можно представить как суперпозицию нормальных мод. Аналогичным образом можно рассмотреть цепочку из множества связанных друг с другом осцилляторов и изучить их нормальные колебания. Такая система представляет собой модель кристаллической решетки.

 

Дополнительная информация

http://allphysics.ru/feynman/bieniya — Фейнмановские лекции по физике. Биения.

 

online.mephi.ru

Складываются три гармонических колебания одного направления с одинаковыми периодами. Построить векторную диаграмму сложения амплитуд, определить амплитуду и фазу результирующего колебания и записать его уравнение

Складываются три гармонических колебания одного направления с одинаковыми периодами. Амплитуды и начальные фазы колебаний равны: А1 = 3 см, φ1 = 0;   А2 = 1 см,   φ2 =п/2;       А3 = 2 см, φ3 = П.   

Построить векторную диаграмму сложения амплитуд, определить амплитуду и фазу результирующего колебания и записать его уравнение

    

ivandriver.blogspot.com

Способы представления гармонических колебаний

  Щелкните по ссылке «Способы представления гармонических колебаний «, чтобы ознакомиться с презентацией раздела в формате PowerPoint. Для возврата к данной странице закройте окно программы PowerPoint.
       Гармонические колебания можно представить несколькими способами. Рассмотрим эти способы. Рассмотрим подробнее последний способ.

       Пусть гармоническое колебание описывается уравнением  x = A cos ( ω t + φ0 ). Проведем прямую Оx (опорную) и построим вектор  , направленный из точки О под углом  φ0  к опорной линии.

       Обозначим через  x0  проекцию вектора    на опорную линию в момент времени  t = 0:

x0 = A cos ( φ0 ).

       Вращение происходит против часовой стрелки, т.е.  ω > 0. За промежуток времени  t  вектор амплитуды повернется на угол  ωt  и займет новое положение. Его проекция на опорную линию равна  x = A cos ( ω t + φ0 ).
       За время, равное периоду колебаний  Т, вектор амплитуды повернется на угол  2φ , и проекция вектора совершит полное колебание около положения равновесия (точка О). Следовательно, вращающийся вектор амплитуды полностью характеризует гармоническое колебание.

       Проекция кругового движения на ось  у  также совершает гармоническое колебание  y = A sin ( ω t + φ ).

       Таким образом, равномерное движение по окружности можно рассматривать как два колебательных гармонических движения, совершаемых одновременно в двух взаимно перпендикулярных направлениях. Этим представлением широко пользуются при сложении колебаний.

ens.tpu.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *