+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Принцип работы понижающего трансформатора напряжения и его устройство

Большинство электрических инструментов, приборов, оборудования работает от сетевого напряжения переменного тока, равного 220 В. Но для низковольтных электропотребителей – галогенных осветительных приборов, низковольтных обогревателей, светодиодных светильников и других – его значение снижают до определенной величины. Для решения этой задачи применяются аппараты без подвижных компонентов – понижающие трансформаторы, которые понижают величину напряжения до нужного значения, оставляя частоту неизменной. Различные модели этих аппаратов могут использоваться в энергетической отрасли, промышленности, а также в быту для получения значения напряжения, безопасного для пользователя.

Содержание

Устройство и принцип работы понижающего трансформатора

В состав аппарата входит ферромагнитный сердечник с двумя обмотками – первичной и вторичной. На обмотки наматываются проводники, каждый слой которых изолируется кабельной бумагой. Поперечное сечение проводника может быть круглым или прямоугольным (шина).

Первичная и вторичная обмотки между собой электрически не контактируют. Отсутствие электроконтакта обеспечивают изоляционные прокладки, изготовленные из электрокартона или других изоляторов. Большинство аппаратов со всеми компонентами заключается в защитный корпус.

Принцип действия:

  • На первичную обмотку, имеющую большее количество витков по сравнению с вторичной, поступает сетевой ток. Он образует магнитное поле, пересекающее вторичную обмотку.
  • Во вторичной обмотке образуется ЭДС, под воздействием которой генерируется выходное напряжение со значением, необходимым для электропитания электронных приборов. Отношение входного (высокого, ВН) напряжения к выходному (низкому, НН) равно отношению количества витков первичной обмотки к числу витков вторичной. Конструкция понижающего трансформатора может предусматривать одновременное подключение нескольких низковольтных потребителей.
  • В ходе трансформации происходят потери мощности, равные примерно 3 %.

Понижающий трансформатор

Понижающие трансформаторы не меняют частоту тока. Для ее изменения, в том числе для получения постоянного тока, в схему включают выпрямители. Чаще всего они представляют собой диодные мосты. Современные приборы могут дополняться другими полупроводниковыми и интегральными схемами, которые улучшают эксплуатационные характеристики аппаратов.

Чтобы определить, какой перед вами трансформатор – понижающий или повышающий, необходимо посмотреть маркировки обмоток. В понижающем аппарате первичной является высоковольтная обмотка, которая маркируется буквой «Н», вторичной – низковольтная обмотка, обозначаемая буквой «Х». В повышающем устройстве первичной является низковольтная обмотка «Х», вторичной – высоковольтная «Н».

Виды понижающих трансформаторов

В зависимости от конструктивных особенностей и принципа действия выделяют следующие типы устройств:

  • Стержневые. Эти модели, в которых обмотки располагаются вокруг сердечников магнитопровода, обладают средней или высокой мощностью. Стержневые понижающие трансформаторы имеют простую конструкцию, их обмотки легко изолировать, обслуживать и осуществлять ремонт. Их разновидность – броневые аппараты, в которых обмотки «броней» охватывают магнитопровод. Это простой и дешевый аппарат, но его трудно обслуживать и ремонтировать.
  • Тороидальные. Сердечник в таких аппаратах имеет форму тора. Тороидальные модели применяются в маломощных радиоэлектронных устройствах. Они легкие, имеют небольшие размеры, позволяют достигать высокой плотности тока. Ток намагничивания – минимальный. Аппараты могут выдерживать достаточно высокие температуры.
  • Многообмоточные. Имеют две или более вторичных обмоток. Позволяют получать несколько значений выходного напряжения, то есть обеспечивают питание нескольких потребителей.

По роду тока, с которым работают трансформаторы, их разделяют на:

  • Однофазные. Наиболее распространенный тип, имеющий профессиональное и бытовое применение. Фазный и нулевой провода электропроводки подсоединяются к первичной обмотке.
  • Трехфазные. Востребованы в энергетике, на производственных предприятиях, реже – в бытовых условиях. Служат для трансформации трехфазного напряжения.

Для чего нужен понижающий трансформатор


Для чего нужен понижающий трансформатор

Разнообразие конструкций, имеющихся в продаже, позволяет выбрать оптимальную модель для конкретной области применения:

  • В энергетической индустрии используют понижающие аппараты высокой мощности – до 1000 МВА. Выпускаемые модели – 765/220 кВ, 410/220 кВ, 220/110 кВ.
  • Для адаптации высокого напряжения к параметрам бытовой электросети используют малые распределительные трансформаторы, мощность которых достигает 1-5 МВА. На стороне высокого напряжения могут быть предусмотрены значения 10, 20, 35 кВ, на низкой – 400 или 230 В.
  • Для бытовой техники обычно применяют трансформаторы, изменяющие напряжение с 220-230 В до 42, 36, 12 В. Конкретная величина Uвых определяется требованиями потребителя.

При подборе оптимальных устройств учитывают суммарную мощность потребителей, напряжение на входе и выходе, необходимость (или ее отсутствие) изменения частоты, габариты и массу.


Понижающий трансформатор: устройство, принцип действия, разновидности

В силу ряда причин электрический ток, транспортируемый по проводам высоковольтных ЛЭП, не может быть использован напрямую. Главная из этих причин – высокое напряжение, достигающее десятков, а то и сотен киловольт. Поэтому перед подачей электроэнергии потребителям используют понижающий трансформатор, преобразующий напряжение 380 вольт в привычные нам 220 вольт.

Во многих случаях даже это напряжение слишком высокое для питания современной электротехники. Данную проблему решают путем повторного понижения напряжения, часто с выпрямлением тока. До недавнего времени каждый бытовой прибор был оборудован собственным понижающим трансформатором. Сегодня уже существуют бестрансформаторные блоки питания, но они не могут в полной мере заменить трансформаторы из-за малой выходной мощности. В электротехнике понижающий трансформатор еще долго будет востребован.

Конструкция и принцип действия

Устройство всех типов (за исключением электронных трансформаторов) мало чем отличается. Главными рабочими элементами понижающих аппаратов являются магнитопроводы и катушки. Различия наблюдаются в конфигурации сердечников и в способах соединения обмоток.

Схематичное изображение понижающего устройстваРис. 1. Схематичное изображение понижающего устройства

Геометрические формы ферромагнетиков производитель выбирает исходя из целесообразности производства. Тип остова существенно не влияет на трансформацию. Критерии преобразования тока больше зависят от состава ферромагнетика и параметров обмоток.

Магнитная система понижающего трансформатора может иметь разные формы, определяемые способом расположения стержней:

  • плоскую;
  • пространственную;
  • симметрическую форму;
  • несимметрическую.

Напомним вкратце принцип действия понижающих трансформаторов.

Переменным током, попадающим на первичную катушку, возбуждается электромагнитная индукция. Переменное электромагнитное поле распространяется по всему магнитопроводу. Во вторичной катушке силами переменных магнитных полей возбуждается ЭДС.

Величина электродвижущей силы (а значит и разница потенциалов между катушками) определяется соотношением: U2/U1 = W2/W1 = k , где U – напряжение, аW – количество витков. Коэффициент трансформации k находится в пределах от 0 до 1. Чем ближе к нулю находится значение

k, тем меньшее значение выходных напряжений. Конфигурация сердечника не влияет на работу трансформатора.

Напоследок заметим, что понижающий прибор легко превратить в повышающий трансформатор. Для этого достаточно изменить способ подключения понижающего аппарата: поменять местами первичную и вторичную катушки.Разумеется, нельзя вторичную катушку рассчитанную на 12 В подключать к сети на 220 В. 

Назначение

Основное применение понижающего трансформатора – получение низкого напряжения для питания электрического прибора. Очень часто эти устройства являются главным элементом схем блоков питания бытовых электрических приборов. Так как большинство бытовой электроники потребляет постоянный ток, то после понижения напряжения до приемлемого уровня, полученную электрическую синусоиду еще и выпрямляют.

С целью повышения качества электрического питания применяют стабилизирующие и фильтрующие схемы, отсекающие нежелательные искажения. В ряде случаев в бытовой технике используется переменное напряжение, преобразованное понижающим трансформатором, без выпрямления тока.

Для получения пониженного импульсного напряжения существуют модели импульсных трансформаторов. На выходе этих устройств изменяется не только амплитуда колебаний, но и форма кривой.

Разновидности

Производители поставляют на рынок множество различных моделей. Среди них различают конструкции однофазных трансформаторов броневого типа (рис. 2), модели с сердечниками стержневого или тороидального типа (рис. 3).

Конструкция броневого типаРис. 2. Конструкция броневого типа Тороидальный понижающий трансформатор
Рис. 3. Тороидальный понижающий трансформатор

В трехфазных конструкциях (рис. 4) один из выводов первичной обмотки подключается к фазе, а другие соединены звездой или треугольником. Аналогичным образом соединяются выводы вторичных обмоток. Такие же схемы применяются для соединения обмоток промышленных силовых трансформаторов.

Трехфазный понижающий трансформаторРис. 4. Трехфазный понижающий трансформатор

Существуют многообмоточные конструкции, имеющие боле двух вторичных обмоток, с которых можно снимать напряжения различной величины. Это удобно для питания устройств, цепи которых требуют нескольких, различающихся по величине напряжений.

Отдельно упомянем конструкции электронных понижающих моделей, набирающие популярность сегодня (см. рис. 5). К классу трансформаторных устройств их можно отнести весьма условно, так как принцип преобразования переменных напряжений кардинально отличается от классической трансформации. В этих электронных устройствах ток сначала выпрямляется, проходя через диодный мост, потом снова преобразуется в переменное напряжение, но уже с другой частотой.

Электронный понижающий трансформаторРис. 5. Электронный понижающий трансформатор

Зависимость частоты от нагрузки и ограниченная мощность являются недостатком трансформаторов электронного типа. Главное их достоинство – экономичность. Они работают только при подключении нагрузки, все остальное время находятся в режиме ожидания. Данное свойство полезно, например, для питания систем светодиодного освещения.

Разновидности по признакам применения:

  • ТСЗИ – трехфазные конструкции в специальном защитном кожухе;
  • OCM – конструкции для систем сигнализации и освещения. Монтируются на дин-рейку;   
  • TTп, TC-180, ЯTП – применяются для бытовых нужд. Рассчитаны на небольшие нагрузки;  
  • OCOB, OCO – модели, применяемые для работы в бытовых сетях.

Технические характеристики

Понижающие трансформаторы характеризуются следующими важными показателями:

  • величиной входного напряжения;
  • коэффициентом трансформации;
  • параметрами выходного тока;
  • мощностью устройства;
  • частотой.

Такие технические характеристики как габариты, тип системы охлаждения, вес устройств учитываются исходя из конкретных условий применения. Основные данные о трансформаторе указываются на корпусе или в паспорте изделия.

Как выбрать?

Критериев выбора может быть несколько, исходя из условий эксплуатации и назначения прибора. Главные же критерии – это параметры выходного тока. Именно от этих параметров зависит стабильность и корректность работы подключаемых электротехнических устройств.

Если мы выбираем понижающий трансформатор для бытовой техники – первичная катушка должна быть рассчитана на сетевое напряжение дома. Для однофазных конструкций это, как правило, 220 В. Трехфазные модели подключаются к сети, напряжением 380 В.

Тип сердечника, его конфигурация не имеет особого значения. Выбор по этому параметру осуществляйте исходя из требований по размеру или предпочтений к форме устройства.

Важно правильно подобрать выходную мощность. Особенное внимание обращайте на то, чтобы мощность нагрузки не превышала возможностей трансформатора. Иначе обмотки будут перегреваться, а если мощности не хватит, то подключаемый электроприбор вообще не будет работать.

Превышать запас мощности также не желательно из-за перерасхода электроэнергии. К тому же, изделие будет иметь большие габариты, соответственно больший вес, а значит и стоимость его будет выше. Однако, если вы планируете подключать к одному трансформатору несколько устройств, тогда запас мощности оправдан.

Если вы планируете использовать трансформатор в качестве переносного источника тока – обратите внимание на модели с защитным кожухом (рис. 7). Среди этих моделей можно встретить изделия с регулируемым выходным напряжением.

Переносные трансформаторыПереносные трансформаторы

Для оборудования светодиодного освещения приобретите экономичный электронный трансформатор. Существуют изделия, выдающие на выходе постоянный ток, необходимый для питания светодиодов.

Правильный выбор понижающих устройств обеспечит вам бесперебойную и безопасную эксплуатацию бытовой техники.

Понижающие трансформаторы где и для чего применяются, особенности работы понижающих трансформаторов

20.05.2019

Трансформатор — это аппарат без подвижных частей, который преобразует электрическую энергию из одной цепи в другую с изменением напряжения тока и без изменения частоты. Существует два типа трансформаторов, классифицируемых по их функции: повышающий трансформатор и понижающий трансформатор, про принцип работы которого мы и расскажем.


Понижающий трансформатор преобразует высокое напряжение (ВН) и низкий ток с одной стороны в низкое напряжение (НН) и высокое значение тока на другой стороне. Этот тип трансформатора имеет широкое применение в электронных устройствах и электрических системах.

Когда доходит до операций с напряжением, применение трансформатор можно разделить на 2 вида: НН (напряжение тока ниже 1кВ) и ВН (напряжение тока выше 1 кВ).

Первый способ НН относится к трансформаторам в электронных устройствах. Электронные схемы требуют поставки низкого значения напряжения (например, 5В или ещё ниже).

Понижающий трансформатор используется для того чтобы обеспечить соответствие поставляемого низкого напряжения требованиям электроники. Оно преобразовывает бытовое напряжение тока (220/120 В) из первичного в напряжение более низкое на вторичной стороне, которая используется для снабжения электронных приборов.

Если электронные устройства рассчитаны на более высокую номинальную мощность, то используются трансформаторы с высокой рабочей частотой (кГц). Трансформаторы с более высоким номинальным значением мощности и номинальной частотой 50/60 Гц были бы слишком большими и тяжелыми. Также, ежедневно-используемые зарядки используют понижающий трансформатор в своей конструкции.


Понижающие трансформаторы имеют очень большое значение в энергосистеме. Они понижают уровень напряжения и адаптируют его для систем-потребителей энергии. Трансформация выполняется в несколько шагов, описанных ниже:
  1. Система передачи энергии на большие расстояния должна иметь максимально высокий уровень напряжения. С высоким напряжением и низким током, потеря мощности передачи будет значительно уменьшена. Электрическая сеть сконструирована таким образом, что должна соединяться с системой передачи с различными уровнями напряжения тока.
  2. Понижающие трансформаторы используются в соединении систем передачи с различным уровнем напряжения. Они уменьшают уровень напряжения тока от максимального к более низкому значению (например,  765/220 кВ, 410/220 кВ, 220/ 110 кВ). Эти трансформаторы огромны и имеют очень высокую  мощность (даже 1000 МВА). В том случае, когда коэффициент оборотов трансформатора не высок, обычно устанавливаются автоматические трансформаторы.
  3. Следующим шагом преобразования уровня напряжения является адаптация напряжения передачи к уровню распределения. Характерные отношения напряжений в этом случае 220/20 кВ, 110/20 кВ (также можно найти вторичные напряжения ЛВ 35 кВ и 10 кВ). Номинальная мощность этих трансформаторов составляет до 60 мВА (обычно 20 мВА). Переключатель  изменения нагрузки почти всегда установлен в таких трансформаторах.
  4. Заключительный шаг преобразования напряжения — адаптация напряжения к уровню домашнего напряжения. Эти трансформаторы называемые малыми распределительными трансформаторами имеют номинальную силу до 5 мВА (чаще всего 1 мВА) и с номинальными значениями напряжения тока 35, 20, 10 кВ на стороне ВН и 400/200 В на стороне НН. Такие трансформаторы имеют высокий коэффициент оборота.

Виды понижающих трансформаторов

В нашем каталоге понижающих трансформаторов есть разные модели и виды.

Однофазный трансформатор


Самый популярный и распространенный вид. Как правило, используется в быту. Подключается от однофазной сети. Фазный и нулевой провод подключены на первичную обмотку.

Трехфазный трансформатор


По большей части применяется в промышленности, но есть случаи применения и в быту. Призван понижать более высокое напряжение около 380 В до необходимого в трехфазной сети.

Многообмоточный трансформатор

Трансформатор, имеющий две или более обмотки. Устанавливается несколько вторичных обмоток для получения нескольких различных показателей  напряжения тока от одного источника.

Тороидальный трансформатор

По сравнению с другими трансформаторами имеет легкий вес и малые габариты. Используется в радиоэлектронике для получения высокой плотности тока, из-за хорошего охлаждения обмотки. Стоит недорого, так как длина обмотки значительно короче других из-за сердечника в форме тора. Может выдерживать более высокие температуры, чем остальные виды прибора.

Броневой трансформатор


На нем установлена одна катушка, из-за чего очень агрегат прост и дешев в производстве. Броневым он называется из-за того что обмотки покрывают стержень как броня. Однако из-за плотности той же обмотки его трудно осматривать и ремонтировать.

Стержневой трансформатор

Этот вид трансформаторов используется для обработки высоких и средних значений напряжения. Также имеет хорошее охлаждение. Устроен это вид прибора довольно просто, что позволяет легко осматривать и ремонтировать его.

Преимущества

  • Понижает напряжение, что делает передачу энергии проще и дешевле.
  • Более 99% эффективности.
  • Обеспечивает различные требования к напряжению.
  • Бюджетный.
  • Высокая надежность.
  • Высокая длительность работы.

Недостатки

  • Требует внимательного обслуживания, ошибки в котором могут привести к поломке аппарата.
  • Устранение неисправностей занимает много времени.

Мощность в понижающих трансформаторах

Мощность в любом трансформаторе неизменяема, т. е. мощность, поступающая на вторичную обмотку трансформатора такая же как мощность на первичной  обмотке трансформатора. Это применимо и к понижающему трансформатору. Но, поскольку вторичное напряжение в понижающем трансформаторе меньше, чем первичное, сила тока на вторичном будет увеличена, чтобы сбалансировать общую мощность в трансформаторе.


Принцип работы

В большинстве домов ток проходит под напряжением в 220 В. Однако для правильной работы многие приборы подключаются к трансформатору. Но что делать, если вы купили прибор, который работает при более низком напряжении. Если вы подключите прибор к розетке без трансформатора, то, скорее всего, как только вы его включите, он сломается.

Как работает трансформатор? Первый комплект катушки, который называется первичной катушкой или первичной обмоткой, подключен к источнику переменного напряжения, называемому первичным напряжением.

Другая катушка, которая называется вторичной катушкой или вторичная обмотка, соединена с нагрузкой и нагрузка показывает измеренное напряжение (повышенное или пониженное).

Из источника ток проходит через витки первичной обмотки, вызывая появление магнитного потока, он проходит по виткам второй обмотки. Во вторичной обмотке возникает ЭДС (электродвижущая сила) в результате чего образуется напряжение, отличающееся от первичного напряжения. Разница между начальным и конечным напряжением определяется разницей числа витков на первичной и вторичной обмотке.

Если на вторичной витков меньше, чем на первичной  – напряжение понизится, если витков больше – повысится. Напряжение тока меняется без изменения его частоты.

Где используется понижающий трансформатор?

Все уличные трансформаторы, которые мы видим возле наших домов, — это понижающие трансформаторы. Они принимают переменное напряжение 11 кВ на первичной обмотке и преобразуют его в напряжение 220 В для распределения в наших домах.


До широкого использования импульсных источников питания почти все низковольтные настенные адаптеры использовали понижающие трансформаторы.

Как определиться с выбором понижающего трансформатора?

Пользоваться трансформатором в бытовых целях очень легко. Подключите трансформатор к розетке, а устройство к трансформатору. Однако чтобы пользоваться трансформатором, нужно выбрать правильный трансформатор. При выборе подходящего прибора нужно учитывать следующие пять критериев.

Какова средняя мощность, потребляемая приборами, подключаемыми к трансформатору?

Выберите свой аппарат в зависимости от того, сколько ватт потребляет ваше устройство. Например: Playstation 3 потребляет 380 Вт, поэтому вам необходим понижающий трансформатор на 500 Вт. Убедитесь в том, что ваше устройство не превышает мощность выбранного типа трансформатора.

Есть ли в вашем устройстве мотор?
Если мотор присутствует, то добавьте 20% к необходимой мощности.

В каких условиях вы будете работать?
В условиях низких температур, например, вам понадобится тороидальный трансформатор.

Знаете ли вы амперы вашего устройства?

Так вы можете рассчитать необходимые ватты = Ампер х 110 В (например, 5 А х 110 = 550 Вт)

Вы хотите использовать один трансформатор для нескольких устройств? Проверьте общую мощность всех устройств, она должна быть меньше, чем значение ВА трансформатора.

Заключение

Понижающие напряжение трансформаторы применяются повсеместно. В зависимости от типа, прибор может применяться как в бытовых условиях, так и в промышленных, однако чаще всего они используются в источниках питания различных приборов и в электросетях. Выбор конкретного устройства необходимо осуществлять очень тщательно, предварительно посоветовавшись с профессионалом и учитывать все, даже малозначительные, факторы для каждой конкретной ситуации.


Трансформатор | Устройство, виды, принцип работы

Слово “трансформатор” образуется от английского слова “transform”  – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

трансформатор напряжения

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

трансформатор в разборе

а с другой катушки два красных провода

обмотки трансформатора

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

трансформатор однофазный

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

ПЭТВ-2

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

трансформатор напряжения

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

шильдик трансформатора

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

 

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

как работает трансформатор

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

формула трансформатора

где

U2  – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

однофазный трансформатор

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

однофазный трансформатор обозначение на схеме

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

вторичные обмотки трансформатора

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

трехфазный трансформатор

На схемах трехфазные трансформаторы обозначаются вот так:

виды соединений обмоток трехфазного трансформатора

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

трансформатор напряжения

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

работа трансформатора на холостом ходу

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

работа трансформатора на нагрузку

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

потребление тока лампочкой накаливания

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток

Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток

При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

сопротивление первичной обмотки

Таким же образом проверяем и вторичную обмотку.

проверка вторичной обмотки

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Лабораторный автотрансформатор (ЛАТР)

Программа для расчета трансформатора

Как получить постоянное напряжение из переменного

Трансформатор 220 на 220 вольт разделительный и 220/110 понижающий: устройство и принцип работы

Автор Aluarius На чтение 6 мин. Просмотров 548 Опубликовано

Все обыватели сталкиваются в повседневной жизни с понижающими трансформаторами. К примеру, с трансформатором 220 на 110 вольт или 380/220 В, или с другим понижающим показателем. Они нам необходимы только потому, что многие бытовые приборы могут работать на низком напряжении. Все детали телевизоров работают только под напряжением 12 вольт. Правда, в телевизионном аппарате трансформатор установлен, как встроенный элемент, и делают это на заводе. Но не все знают, что существуют так называемые разделительные устройства. Это трансформатор 220 на 220 вольт. Для чего необходим данный прибор, какие функции на него возложены? Об этом и другом в данной статье.

Разделительный трансформаторРазделительный трансформатор

Устройство распределительного трансформатора

Перед тем как определить, для чего необходим трансформатор данного типа, необходимо разобраться в его конструкции и принципе работы. Итак, начнем с того, что однофазная сеть, которая подает электричество в наши дома и квартиры, это по конструктивным особенностям два провода: один фаза, через нее и поступает электричество, второй – ноль. Если дотронуться до двух проводов одновременно, то произойдет короткое замыкание, соединяющей цепью которой будет сам человек. То есть, через него пройдет ток большой силы, что может привести к летальному исходу.

Так вот в распределительном трансформаторе, как и в любом понижающем, есть две обмотки. Но есть в конструкции прибора одна хитрость – вторичная обмотка (катушка) не имеет заземляющего контура. И если человек дотронется до бытового прибора с оголенной обмоткой или до самих проводов, идущих после трансформатора, то потенциал электричества через человека не пройдет. Получается так, что трансформатор этого типа – это, по сути, подушка безопасности. Но учитывать придется тот момент, что если на вторичной обмотке присутствует потенциал тока, то при соприкосновении одновременно с обмоткой и заземляющим устройством, замыкание произойдет обязательно. Кстати, вот схема распределительного устройства, которое отличается от трансформатора 220 на 110 отсутствием заземления.

Схема

Но это не единственная причина, по которой эти приборы используются в быту. Давайте не будем забывать тот факт, что отечественные линии электропередач – это постоянные скачки напряжения, от которых портятся чувствительные детали бытовых приборов. Так вот этот трансформатор предназначается именно для выравнивания выходящего из него напряжения. То есть, электроприбор постоянно будет получать ровно 220 вольт. Вот почему специалисты рекомендуют всю бытовую технику в доме подключать только через трансформатор 220/220 вольт.

К тому же разделительные электрические установки надо обязательно устанавливать во влажных помещениях, и в комнатах, где присутствуют открытые металлические конструкции. Потому что влага и металл – два самых мощных проводника электрического тока. Именно в таких помещениях может произойти короткое замыкание в первую очередь.

Но тут возникает один очень серьезный вопрос. Если трансформатор 220/220 В создает преграды образования утечки потенциала, то, наверное, есть возможность не устанавливать УЗО в систему электрической подачи. Теоретически, так оно и есть, но не стоит рисковать. Ведь потенциал может оказаться на корпусе бытовой техники из-за повреждений изоляции внутри прибора. А от этого может спасти только УЗО.

Понижающие трансформаторы

Итак, с распределительным видом разобрались. Теперь можно переходить к понижающим. Это самая распространенная категория, которая используется в быту. Начнем, как всегда, с конструктивных особенностей и принципа работы.

Устройство (к примеру, трансформатора 220 на 110 вольт) – это две катушки с обмоткой из медной проволоки. На первую катушку подается напряжение из сети (это 220 вольт), выходное напряжение со второй обмотки – 110 вольт. В принципе, это и есть схема работы прибора.

Принцип же действия основан на том, что электрический ток первой катушки создает магнитное поле, оно должно вращаться в определенную сторону. Оно же создает на вторичной катушке точно такое же магнитное поле. Именно второе поле образует на катушке ток. Как же уменьшается величина напряжения? Все дело в количестве витков на вторичной катушке. Чем их меньше, тем меньше напряжение выдается на выходе. Небольшой расчет поможет правильно собрать или подобрать сам трансформатор под необходимую величину напряжения на выходе.

Стандартное устройство трансформатораСтандартное устройство трансформатора

Внимание! Изменение количества витков можно провести в ту или другую сторону. К примеру, повышающий прибор можно собрать, если увеличить число витков на вторичной обмотке, чтобы этот показатель был больше, чем на первичной.

Обратите внимание также на тот факт, что переменный ток, прошедший через трансформатор, будет только переменным. Можно получить и ток постоянного действия, только придется к трансформатору 220/110 В присоединить выпрямитель.

Какие трансформаторы 220/110 вольт предлагают производители сейчас, ведь понятно, что научно-технический прогресс движется вперед. Новые модели – это приборы, в которых отсутствуют катушки и сердечники. Вся их конструктивная электрическая схема основана на микросхемах, резисторах и конденсаторах, отсюда и достоинства электронных образцов.

Блок питания

 

  • Компактность и небольшая масса.
  • Высокий КПД.
  • При работе не шумит и не греется.
  • Внутри устройства установлены дополнительные приборы, с помощью которых можно регулировать выходное напряжение.
  • Система защиты от короткого замыкания.

То есть, по всем показателям это современный и очень безопасный аппарат.

Критерии выбора

Если разговор идет о трансформаторе 220/110 вольт, то на корпусе прибора должны стоять соответственно эти цифры. Конечно, этими позициями устройство не ограничено, ведь есть и устройства такого типа: 220/36 вольт, 220/24, 220/12. Поэтому подбираем под условия эксплуатации самого технического бытового прибора или типа освещения. Кстати, аппараты 220/36 вольт и на 24 В обычно используются для освещения, сигнализации, видеонаблюдения, 220/12 только для освещения.

Второй критерий выбора – это мощность. Во-первых, определяется суммарная мощность всех потребителей, которые трансформатор будет обеспечивать током. Во-вторых, к полученной величине придется добавить еще 20%. Только таким образом выбирается понижающий прибор по мощности.

Как правильно подключить

В принципе, процесс подключения трансформатора 220/110 В или любого другого не очень сложный. Если это заводской вариант, то производитель клеммы соединения обозначает, так что ошибиться здесь трудно.

Схема подключенияСхема подключения
  • Входные и выходные клеммы для нулевого контура обозначаются или нулем, или латинской буквой «N».
  • Для фазного контура входная клемма обозначается или латинской буквой «L», или числом 220 (величина входного напряжения). Выходная клемма обозначается той же латинской буквой или числом, соответствующим выходному напряжению (это может быть 220, 110, 36 и так далее).

И последняя рекомендация, которую можно использовать, как предупреждение, это правильная установка и эксплуатация трансформаторов. Место для монтажа должно быть сухим, герметичным, чтобы не просочилась пыль, поэтому под этот прибор обычно монтируют специальный ящик, который навешивается на стены или крепится к полу. И в дополнение – трансформатор должен быть заземлен в обязательном порядке.

схемы соединения и принцип работы

Трансформатор напряжения – предназначен для понижения первичного напряжения до значений удобных для измерительных приборов и реле, а также для отделения цепей измерений и защиты от первичных цепей высокого напряжения. Используется в цепях переменного тока частотой 50 или 60 Гц с номинальными напряжениями от 0,22 до 750 кВ.

трансформатор напряженияВысоковольтный ТН(слева) и низковольтный ТН(справа)

Принцип работы

Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и 1-ой или 2-х вторичных обмоток(конструкцию конкретного устройства можно посмотреть в паспорте или каталоге от производителя).

В результате изготовления должен быть достигнут необходимый класс точности по:

  • амплитуде,
  • углу.

Измерительный трансформатор напряжения по принципу работы не отличается от силового понижающего трансформатора или от трансформатора тока.

Ещё раз опишем работу трансформатора тока. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток, который пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключить нагрузку, то по ней начнёт течь ток, который возникает из-за действия ЭДС(электродвижущая сила). ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе.

Принцип работы трансформатораПринцип работы трансформатора

Такие устройства работаю только на переменном напряжение. Если на ТН подавать постоянное напряжение, т.к. ЭДС не будет создаваться постоянным магнитным потоком.

Расшифровка ТН

Расшифровка маркировки:

расшифровка маркировки ТН

  • Н — трансформатор напряжения;
  • Т — трёхфазный;
  • О — однофазный;
  • С — сухой;
  • М — масляный;
  • К — каскадный либо с коррекцией;
  • А — антирезонансный;
  • Ф — в фарфоровом корпусе;
  • И — контроль Изоляции;
  • Л — в литом корпусе из эпоксида;
  • ДЕ — с ёмкостным делителем напряжения;
  • З — с заземляемой первичной обмоткой.

Коэффициент трансформации

Коэффициент трансформации – показывает во сколько раз увеличивается или уменьшается первичное значение напряжение.

Формула по вычислению коэффициента трансформацииФормула по вычислению коэффициента трансформации

Вторичное напряжение

Напряжения на вторичной обмотки:

  • 100 В,
  • 100/√3 В,
  • 100/3.

Классы точности

Классы точности:

  • 0,1;
  • 0,2;
  • 0,5 – применяется для измерений;
  • 1,0;
  • 3,0;
  • 3Р или 6Р – предназначены для защиты, управление, автоматика или сигнализация.

Номинальные мощности трансформаторов для любого класса точности следует выбирать из ряда(В·А): 10; 15; 25; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 800; 1000; 1200.

Виды и классификации

Основные классификации трансформаторов:

  1. По числу фаз.
  2. По наличию или отсутствию заземления вывода,
  3. По принципу действия.
  4. По числу ступеней трансформации.
  5. По наличию компенсационной обмотки или обмотки для контроля изоляции сети.
  6. По виду изоляции:виды изоляции
  7. По особенностям конструктивного исполнения.
виды изоляцииСтарый 3-х фазный масляный ТН

Место установки:

  • наружная,
  • внутренняя,
  • встроенный в силовой трансформатор,
  • установка отдельным элементом.

Основные признаки трансформаторов и их обозначения приведены в таблице:

конструктивное исполнение трансформаторов

Трёхобмоточный трансформатор следует изготовлять с двумя вторичными обмотками:

  • основной,
  • дополнительной.

Условия выбора ТН

Устройство выбирается по следующим критериям:

  1. Номинальное напряжение ТН = Напряжение уставки.
  2. Схема соединение обмоток должна совпадать со схемой приборов.
  3. По классу точности.
  4. Вторичной нагрузке ТН ⩽ нагрузке приборов.

Более подробно можете прочитать в учебнике(со страницы 301): Смотреть

Режим работы

ТН работает в режиме близко к холостому ходу, так как нагрузка на выходную катушку минимальная.

Цена трансформаторов напряжения

Цены сильно зависят от конструкции и класса напряжения:

  • 0,66 кВ(660В) – от 1 000 до 15 000 руб,
  • 10 кВ,10 кВ
  • 35 кВ,35 кВ
  • 110 кВ и выше цены нужно уточнять у производителей.

Схемы подключения

Схемы соединений однофазных ТН:

однофазные

Схемы соединений трёхфазных ТН:

1

2

3

Схемы и группы соединений обмоток трёхфазных трёхобмоточных трансформаторов с основной и дополнительной вторичными обмотками

4

5

Испытания на устойчивость к токам короткого замыкания

К первичным обмоткам трансформаторов подводят напряжение, равное 0,9-1,05 номинального, при разомкнутых вторичных обмотках. Затем одну из вторичных обмоток с помощью специального устройства закорачивают и выдерживают режим в течение 1 с. При этом напряжение на выводах первичной обмотки должно сохраняться в указанных пределах.

Видео

Видео про трансформатор напряжения ЗНОЛ.06-10.

устройство и принцип работы, назначение, схемы, фото и видео-инструкция как сделать и подключить трансформатор своими руками

Автор Aluarius На чтение 7 мин. Просмотров 384 Опубликовано

Вопрос, что такое трансформатор, для опытных и даже начинающих электриков совершенно простой. Но обычные обыватели, которые с электрикой не дружат, даже и не представляют, как выглядит трансформатор, для чего он необходим, а тем более, не осведомлены о его конструкции и принципе работы. Поэтому в этой статье будем разбираться с этим прибором, рассмотрим вопрос, а можно ли сделать трансформатор своими руками, и так далее. Итак, трансформатор – это электромагнитное устройство, которое  может изменять напряжение переменного тока (увеличивать или уменьшать).

Трансформаторы токаТрансформаторы тока

Устройство и принцип работы

Итак, конструкция трансформатора достаточно проста и состоит из сердечника и двух катушек из медной проволоки. В основе принципа работы лежит электромагнитная индукция. Чтобы вы поняли, как работает этот прибор, рассмотрим, как магнитное поле, образуемое в катушках (обмотках) устройства, изменяет показатель напряжения.

Подаваемый на первую обмотку электрический ток (он переменный, поэтому изменяется по направлению и величине) образует в катушке магнитное поле (оно также переменное). В свою очередь магнитное поле образует во второй катушке электрический ток. Такой своеобразный обмен параметрами. Но просто так изменение напряжения не произойдет, оно зависит от того, сколько витков медной проволоки в каждой обмотке. Конечно, величина изменения магнитного поля (скорость) также влияет на величину напряжения.

Устройство и принцип работы

Что касается количества витков, то получается так:

  • если число витков в первичной катушке больше, чем во вторичной, то это понижающий трансформатор;
  • и, наоборот, если количество витков во вторичной обмотке больше, чем в первичной, то это повышающий трансформаторный прибор.

Поэтому существует формула, которая определяет так называемый коэффициент трансформации. Вот она:

k=w1/w2, где w – это число витков в катушке с соответствующим номером.

Внимание! Любой трансформатор может быть и понижающим, и повышающим, все зависит от того, к какой обмотке (катушке) подсоединяется питающий кабель сети переменного тока.

И еще один момент, касающийся устройства. Это сердечник трансформатора. Все дело в том, что существуют разные виды этого устройства, в которых сердечник присутствует или отсутствует.

Что такое трансформатор

  • Так вот, в тех видах, где сердечник трансформатора отсутствует или изготовлен из феррита или альсифера называются высокочастотными (выше 100 кГц).
  • Приборы с сердечником из стали, феррита или пермаллои – низкочастотные (ниже 100 кГц).

Первые используются в радио- и электросвязи. Вторые в для усиления звуковых частот, к примеру, в телефонии. Со стальным сердечником используется в электротехнике (в бытовых приборах в том числе).

Условные обозначения и параметры

Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение. Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта.

А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).

Расшифровка маркировки трансформатораРасшифровка маркировки трансформатора

Что касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:

  • Напряжение в первичной катушке.
  • Напряжение во вторичной катушке.
  • Первичная сила тока.
  • Вторичная сила тока.
  • Общая мощность аппарата.
  • Коэффициент трансформации.
  • КПД.
  • Коэффициент мощности и нагрузки.

Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:

Обозначение на схемахОбозначение на схемах

K=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.

Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.

Как сделать самостоятельно

Итак, как сделать трансформатор самому? Зная, принцип работы установки и его конструктивные особенности, можно собрать своими руками простейший аппарат. Для этого вам понадобится любое металлическое кольцо, на котором надо накрутить два участка обмотки. Самое важно – обмотки не должны касаться друг друга, а место их намотки не зависит конкретно от их расположения. То есть, они могут быть размещена напротив друг друга или рядом. Важно – даже небольшое расстояние между ними.

Внимание! Трансформатор работает только от сети переменного тока. Так что не стоит подключать к вашему устройству батарейку или аккумулятор, где присутствует ток постоянный. Работать от этих источников электроэнергии он не будет.

Как уже было сказано выше, количество витков в обмотках определяет, какой прибор вы собираете – понижающий или повышающий. К примеру, если вы на первичной обмотке соберете 1200 витков, а на вторичной всего лишь 10, то на выходе вы получите напряжение 2 вольта. Конечно, при подключении первичной катушки к напряжению 220-240 вольт. Если фазировка трансформатора будет заменена, то есть, провести подсоединение 220 вольт к вторичной обмотке, то на выходе первичной получится ток напряжением 2000 вольт. То есть, к назначению трансформатора надо подходить осторожно, учитывая тот самый коэффициент трансформации.

Трансформатор своими руками

Как правильно подключить

Что касается монтажа трансформатора, особенно его понижающего типа в быту дома, то необходимо знать некоторые нюансы проводимого процесса.

  • Во-первых, это касается самого устройства. При монтаже трансформатора иногда появляется необходимость подключения не одного потребителя, а сразу нескольких. Поэтому обращайте внимание на количество выходных клемм. Конечно, необходимо знать, что суммарная потребляемая мощность потребителей не должна быть больше мощности самого трансформаторного устройства. Во всяком случае, специалисты рекомендуют, чтобы второй показатель был всегда больше первого на 15-20%.
  • Во-вторых, подключение трансформатора производится электрической проводкой. Так вот ее длина и до прибора, и после не должна быть очень большой. К примеру, понижающий аппарат для светодиодного освещения предполагает наличие проводки от него до светильников не больше двух метров. Это позволит избежать больших потерь мощности.
Схема подключения понижающего трансформатораСхема подключения понижающего трансформатора

Внимание! Нельзя процесс монтажа трансформатора проводить и в том случае, если потребляемая мощность потребителей будет меньше мощности самого агрегата.

  • В-третьих, место установки электрического понижающего прибора должно быть выбрано правильно. Самое важное, чтобы до него всегда можно было бы добраться просто, особенно когда есть необходимость провести демонтаж со следующей заменой и монтажом трансформатора. Поэтому перед тем как подключить трансформатор, необходимо определиться с его местом установки.

Схема замещения

Буквально несколько слов о том, что такое схема замещения трансформатора. Начнем с того, что две катушки соединены между собой магнитным полем, поэтому проанализировать работы трансформатора, а тем более его характеристики, очень сложно. Поэтому для этих целей сам прибор заменяют моделью, которая и называется схема замещения трансформатора.

По сути, все переводится на математический уровень, а точнее, в уравнения (токов и электрического состояния). Здесь важно, чтобы все уравнения, касающиеся прибора и его модели, совпадали. Кстати, для многих схема замещения трансформатора достаточно сложна, поэтому существует упрощенный вариант, в котором нет тока холостого хода, ведь на него приходится незначительная часть.

Фазировка

Фазировка трансформатора – это испытание его выходов, когда в одну цепь подключены несколько приборов параллельно. Ведь обязательное условие эффективной работы цепи с отсутствием больших потерь мощности – это правильное соединение фаз между собой, чтобы образовался замкнутый контур.

Фазировка обмоток трансформатора

Если фазы не совпадут, то падает мощности и растет нагрузка. Если не совпадает чередование фаз, то произойдет короткое замыкание.

Заключение по теме

Итак, был сделан небольшой обзор всего, что касается трансформаторных установок, поэтому будем считать, что вопрос, зачем нужны трансформаторы, исчерпан, хотя и не полностью. Об этом приборе можно говорить долго. К примеру, самые простые варианты: как разобрать трансформатор, как прозвонить его, как подключить или демонтировать самому дома.

Что такое повышающий и понижающий трансформатор? Определение и применение

повышающий трансформатор

Трансформатор, в котором выходное (вторичное) напряжение больше, чем его входное (первичное) напряжение, называется повышающим трансформатором. Повышающий трансформатор уменьшает выходной ток для поддержания равной входной и выходной мощности системы.

Рассмотрен повышающий трансформатор, показанный на рисунке ниже. E 1 и E 2 — это напряжения, а T 1 и T 2 — это число витков первичной и вторичной обмоток трансформатора.

step-down-transformer Число витков вторичной обмотки трансформатора больше, чем у первичной, т. Е. T 2 > T 1 . Таким образом, коэффициент поворота повышающего трансформатора составляет 1: 2. Первичная обмотка повышающего трансформатора составлена ​​из толстого изолированного медного провода, потому что через него протекает ток малой величины.

Применения — Повышающий трансформатор используется в линиях передачи для преобразования высокого напряжения, генерируемого генератором переменного тока.Потери мощности линии электропередачи прямо пропорциональны квадрату тока, протекающего через нее.

Мощность = I 2 R

Выходной ток повышающего трансформатора меньше, и, следовательно, он используется для снижения потерь мощности. Повышающий трансформатор также используется для запуска электродвигателя, в микроволновой печи, рентгеновских аппаратах и ​​т. Д.

понижающий трансформатор

Трансформатор, в котором выходное (вторичное) напряжение меньше, чем его входное (первичное) напряжение, называется понижающим трансформатором.Число витков на первичной обмотке трансформатора больше, чем число оборотов вторичной обмотки трансформатора, т. Е. T 2 1 . Понижающий трансформатор показан на рисунке ниже.

step-up-transformer Коэффициент разворота понижающего трансформатора составляет 2: 1. Коэффициент поворота напряжения определяет величину преобразования напряжения от первичной обмотки к вторичной обмотке трансформатора.

Понижающий трансформатор состоит из двух или более катушек, намотанных на железный сердечник трансформатора.Работает по принципу магнитной индукции между катушками. Напряжение, приложенное к первичной обмотке, намагничивает железный сердечник, который наводит вторичные обмотки трансформатора. Таким образом, напряжение преобразуется из первичной обмотки во вторичную обмотку трансформатора.

Применения — Используется для электрической изоляции, в распределительной сети, для управления бытовыми приборами, в дверном звонке и т. Д.

,
Что такое трансформатор? Конструкция, работа, типы и применение.

Что такое трансформатор? Его части, эксплуатация, типы, ограничения и применение

Что такое трансформатор?

  • Как следует из названия, трансформатор передает электроэнергию из одной электрической цепи в другую электрическую цепь. Это не меняет значение силы.
  • Трансформатор не изменяет частоту цепи во время работы.
  • Трансформатор работает на электрическом я.е. взаимная индукция.
  • Трансформатор работает, когда обе цепи вступают в силу взаимной индукции.
  • Трансформатор не может повышать или понижать уровень постоянного напряжения или постоянного тока.
  • Трансформатор только повышает или понижает уровень переменного или переменного тока.
  • Трансформатор не меняет значение магнитного потока.
  • Трансформатор не будет работать при постоянном напряжении.

What is a Transformer, Its Types, Construction, Working, & Applications What is a Transformer, Its Types, Construction, Working, & Applications

Без трансформаторов электрической энергии, генерируемой на электростанциях, вероятно, будет недостаточно для питания города.Только представьте, что нет трансформаторов. Как вы думаете, сколько электростанций нужно настроить, чтобы обеспечить город энергией? Нелегко настроить электростанцию. Это дорого.

Для обеспечения достаточной мощности необходимо установить множество электростанций. Трансформаторы помогают, усиливая выход трансформатора (повышая или понижая уровень напряжения или тока).

Когда число витков вторичной катушки больше числа витков первичной катушки, такой трансформатор называется повышающим трансформатором.

Аналогично, когда число витков катушки первичной катушки больше, чем у вторичного трансформатора, такой трансформатор известен как понижающий трансформатор.

Конструкция трансформатора (детали трансформатора)

Construction of a Transformer Construction of a Transformer Детали трансформатора
1 Клапан масляного фильтра 17 Клапан слива масла
2 Консерватор 18 Подъемный патрон
3 Реле Бухгольца 19 Стопор
4 Клапан масляного фильтра 20 Фундаментный болт
5 Вентиляционное отверстие 21 Клемма заземления
6 Высоковольтная втулка 22 Опорная база
7 Низковольтная втулка 23 Катушка
8 Подвеска 24 Прижимная пластина катушки
9 BCT Termin al 25 Сердечник
10 Бак 26 Клеммная коробка для защитных устройств
11 Устройство обесточивания ответвления 27 Паспортная табличка
12 Ручка устройства РПН 28 Циферблатный термометр
13 Крепеж для сердечника и катушки 29 Радиатор
14 Подъемный крюк для сердечника и катушки 30 Люк
15 Торцевая рама 31 Подъемный крюк
16 Болт давления катушки 32 Указатель уровня масла циферблатного типа

Принцип работы трансформатора

Трансформатор статическое устройство (и не содержит вращающихся частей, следовательно, нет потерь на трение), которое с преобразовывать электрическую мощность из одной цепи в другую, не меняя ее частоту.Шаг вверх (или шаг вниз) уровня переменного напряжения и тока.

Трансформатор работает по принципу взаимной индукции двух катушек или по закону Фарадея об электромагнитной индукции. Когда ток в первичной катушке изменяется, поток, связанный со вторичной катушкой, также изменяется. Следовательно, ЭДС индуцируется во вторичной катушке из-за законов электромагнитной индукции Фарадея.

Трансформатор основан на двух принципах: во-первых, электрический ток может создавать магнитное поле (электромагнетизм), а во-вторых, что изменяющееся магнитное поле в катушке с проволокой индуцирует напряжение на концах катушки (электромагнитная индукция) ).Изменение тока в первичной катушке изменяет магнитный поток, который развивается. Изменяющийся магнитный поток индуцирует напряжение во вторичной катушке.

Operating-Working-Principle-of-a-Transformer Operating-Working-Principle-of-a-Transformer

Простой трансформатор имеет сердечник из мягкого железа или кремниевой стали и обмотки (железный сердечник). Как сердечник, так и обмотки изолированы друг от друга. Обмотка, подключенная к основному источнику питания, называется первичной, а обмотка, подключенная к цепи нагрузки, называется вторичной.

Обмотка (катушка), подключенная к более высокому напряжению, называется обмоткой высокого напряжения, а обмотка, подключенная к низкому напряжению, называется обмоткой низкого напряжения.В случае повышающего трансформатора первичной обмоткой (обмоткой) является обмотка низкого напряжения, число витков обмотки вторичной обмотки больше, чем у первичной обмотки. Наоборот для понижающего трансформатора.

Как объяснено ранее, ЭДС индуцируется только изменением величины потока.

Когда первичная обмотка подключена к сети переменного тока, через нее течет ток. Поскольку обмотка связана с сердечником, ток, протекающий через обмотку, будет создавать переменный поток в сердечнике.ЭДС индуцируется во вторичной катушке, так как переменный поток связывает две обмотки. Частота наведенной ЭДС такая же, как у потока или подаваемого напряжения. Operating & Working Principle of a Transformer Operating & Working Principle of a Transformer

При этом (изменение потока) энергия передается от первичной обмотки к вторичной обмотке посредством электромагнитной индукции без изменения частоты напряжения, подаваемого на трансформатор. Во время процесса в первичной катушке возникает самоиндуцированная ЭДС, которая противодействует приложенному напряжению.ЭДС самоиндукции называется обратной ЭДС.

Ограничение трансформатора

Чтобы понять основные моменты, мы должны обсудить некоторые основные термины, связанные с работой трансформатора. Итак, давайте вернемся к основному на некоторое время.

Трансформатор — это машина переменного тока, которая повышает или понижает переменное напряжение или ток. Однако трансформатор, являющийся машиной переменного тока, не может повышать или понижать постоянное напряжение или постоянный ток. Это звучит немного странно, хотя. Вы можете подумать: «А разве нет трансформаторов постоянного тока?»

Чтобы ответить на два вопроса, есть ли трансформаторы постоянного тока или нет, и знать, «почему трансформатор не может увеличивать или понижать напряжение постоянного тока», необходимо знать, как электрический ток и магнитное поле взаимодействуют друг с другом в работе трансформатора.

Электромагнетизм

Взаимодействие между магнитным полем и электрическим током называется электромагнетизмом. Токопроводящие проводники создают магнитное поле, когда ток проходит через него. Движение электронов в проводнике приведет к появлению электрического тока (дрейфующих электронов), который возникает в результате ЭДС, установленной на проводнике.

ЭДС, установленная через проводник, может быть в форме той, которая хранится в химической энергии или магнитном поле. Токопроводящий проводник, помещенный в магнитные поля, будет испытывать механическую силу, в то время как проводник, помещенный в магнитное поле, будет дрейфовать электронами, что приведет к электрическому току.

Field Flux

Два магнита разных полюсов будут притягивать друг друга, в то время как магниты одинаковых полюсов будут отталкивать друг друга (так же как и с электрическими зарядами). Каждый магнит окружен силовым полем и представлен воображаемыми линиями, исходящими от северного полюса магнита, идущими в южный полюс того же магнита.

Прочтите важные термины, относящиеся к потоку поля и магнитному полю, с формулами Здесь

«Линии, связывающие северный и южный полюс магнита, представляющего силовое поле, связывающее катушки в трансформаторе, называются магнитным потоком».

Электромагнитная индукция

Электромагнитная индукция — это явление, объясняющее, как ЭДС и ток индуцируются или могут индуцироваться в катушке при взаимодействии катушки и магнитного поля. Это явление «электромагнитная индукция» объясняется законами электромагнитной индукции Фарадея. Направление наведенной ЭДС в катушке объясняется законом Ленца и правилом правой руки Флеминга.

Законы Фарадея об электромагнитной индукции

После того, как Ампер и другие исследовали магнитное влияние тока, Майкл Фарадей попытался сделать обратное.В ходе своей работы он обнаружил, что при изменении магнитного поля, в котором размещалась катушка, в катушке индуцировалась ЭДС.

Это происходило только тогда, когда он перемещал катушку или магнит, который использовал в эксперименте. ЭДС индуцировалась в катушке только при изменении потока поля (если катушка зафиксирована, перемещение магнита в направлении или от катушки вызывает индукцию ЭДС). Таким образом, законы электромагнитной индукции Фарадея состоят в следующем;

Первый закон Фарадея

Первый закон электромагнитной индукции Фарадея гласит, что «ЭДС индуцируется в катушке при изменении потока, связывающего катушку».

Второй закон Фарадея

Второй закон электромагнитной индукции Фарадея гласит, что «величина индуцированной ЭДС в катушке прямо пропорциональна скорости изменения потока, связывающего катушку».

e = N dϕ / dt

Где

  • e = индуцированная ЭДС
  • N = число витков
  • dϕ = изменение потока
  • dt = изменение во времени

Похожие сообщения: Есть ли Возможно ли эксплуатировать трансформатор 50 Гц на частоте 5 Гц или 500 Гц?

Закон Ленца

Закон Ленца предусматривает, как можно определить направление наведенной ЭДС в катушке.«Таким образом, в нем говорится, что направление наведенной ЭДС таково, что оно противостоит изменению, вызывающему его.

Другими словами, когда в цепи индуцируется E.M.F, текущая установка всегда противодействует движению или изменению тока, который его вызывает. ИЛИ

Индуцированная ЭДС вызовет ток, протекающий в замкнутой цепи в таком направлении, что его магнитный эффект будет противодействовать изменению, которое его вызвало.

Согласно этому закону (введенному Лансом в 1835 году), направление тока может быть найдено.когда ток через катушку меняет магнитное поле, напряжение создается в результате изменения магнитного поля, направление индуцированного напряжения таково, что оно всегда противодействует изменению тока.

очень простыми словами, закон Ленца, утверждающий, что индуцированный эффект всегда таков, чтобы противостоять причине, вызвавшей его. Lenz-Law Lenz-Law

Правило правой руки Флеминга

В нем говорится, что «если большой, указательный и средний пальцы удерживаются таким образом, что они взаимно перпендикулярны друг другу (составляет 90 ° углов), затем указательный палец указывает направление поля, большой палец указывает направление движения проводника, а средний палец указывает направление индуцированного тока (от ЭДС).Lenz-Law Lenz-Law

Почему трансформаторы не могут повышать или понижать постоянное напряжение или ток?

Трансформатор не может повышать или понижать постоянное напряжение. Не рекомендуется подключать источник постоянного тока к трансформатору, потому что, если к катушке (первичной) трансформатора приложено номинальное напряжение постоянного тока, поток, создаваемый в трансформаторе, не изменится по своей величине, а останется тем же и результат ЭДС не будет индуцироваться во вторичной катушке, кроме как в момент включения, поэтому трансформатор может начать курить и гореть, потому что;

В случае питания постоянного тока, Частота равна нулю .Когда вы подаете напряжение на чистую индуктивную цепь, то в соответствии с

X L = 2 π f L

Где:

  • X L = Индуктивная реактивность
  • L = Индуктивность
  • f = частота

, если мы введем частоту = 0, то общий X L (индуктивное сопротивление) также будет равен нулю.

Теперь перейдем к току, I = V / R (а в случае индуктивной цепи, I = V / X L )….Основной закон Ома

Если мы установим индуктивное сопротивление равным 0, то ток будет бесконечным (короткое замыкание)…

Итак, если мы подадим постоянное напряжение на чисто индуктивную цепь, цепь может начать дымиться и гореть.

Таким образом, трансформаторы не способны повышать или понижать постоянное напряжение. Также в таких случаях не будет самоиндуцированной ЭДС в первичной катушке, которая возможна только с изменяющейся магнитной связью, чтобы противостоять приложенному напряжению. Сопротивление первичной катушки является низким, и, как таковой, сильный ток, протекающий через него, приведет к выгоранию первичной катушки из-за чрезмерного нагрева, создаваемого током.

Читайте также: При каких условиях источник питания постоянного тока безопасно подключается к первичной обмотке трансформатора?

Типы трансформаторов

Существуют различные типы трансформаторов в зависимости от их использования, конструкции и конструкции.

Типы трансформаторов на основе своих фаз
  1. Однофазный трансформатор
  2. Трехфазные трансформаторы
Типы трансформаторов на основе своей базовой конструкции
  • Тип сердечника трансформатора
  • Тип оболочки 9 Трансформатор
  • Тип корпуса 9 Трансформатор
  • Тип корпуса 9 Трансформатор
  • Тип оболочки 9 Трансформатор
  • Тип оболочки 9 Трансформатор
  • Тип оболочки 9 Трансформатор
  • Трансформатор
Типы трансформаторов на основе его сердечника
  • Воздушный сердечник Трансформатор
  • Трансформатор с ферромагнитным / железным сердечником
Типы трансформаторов на основе Преобразователь Большой000000
    Распределительный трансформатор
  • Малый силовой трансформатор
  • Знаковый осветительный трансформатор
  • Управляющий и сигнальный трансформатор
  • Газоразрядная лампа Трансформатор
  • Звонящий трансформатор
  • Инструментальный трансформатор
  • Трансформатор постоянного тока
  • Серия Трансформатор для уличного освещения

Похожие сообщения: Разница между силовыми и распределительными трансформаторами?

Типы трансформаторов на основе изоляции и охлаждения
  • Трансформатор с воздушным или сухим воздушным охлаждением
  • Сухой тип с воздушным охлаждением
  • с масляным погружением, с автоматическим охлаждением (OISC) или ONAN (масло натуральное, воздушное натуральное)
  • с масляным погружением, комбинация с самоохлаждением и воздушной струей (ONAN)
  • с масляным погружением, с водяным охлаждением (OW)
  • с масляным погружением, принудительным масляным охлаждением
  • с масляным погружением, сочетание с автоматическим охлаждением и водяным охлаждением (ONAN + OW)
  • Принудительное масло с воздушным охлаждением (OFAC)
  • Принудительное масло с водяным охлаждением (FOWC)
  • Принудительное масло с автоматическим охлаждением (OFAN)
Типы измерительных трансформаторов

Связанные должности: Защита силовых трансформаторов и неисправности

Использование и применение трансформатора

Использование и применение трансформатора уже обсуждались в этом предыдущем посте.

Преимущества 3-фазного трансформатора по сравнению с 1-фазным трансформатором

Ознакомьтесь с преимуществами и недостатками однофазного и трехфазного трансформатора здесь.

Похожие сообщения:

.
Как работают трансформаторы | Проекты самодельных цепей

Согласно определению, данному в Википедии, электрический трансформатор — это стационарное оборудование, которое обменивает электроэнергию через пару близко намотанных катушек посредством магнитной индукции.

Постоянно изменяющийся ток в одной обмотке трансформатора генерирует переменный магнитный поток, который, следовательно, индуцирует переменную электродвижущую силу над второй катушкой, построенной на том же сердечнике.

Основной принцип работы

Трансформаторы в основном работают, передавая электрическую мощность между парой катушек посредством взаимной индукции, не завися от какой-либо формы прямого контакта между двумя обмотками.

Этот процесс передачи электричества посредством индукции был впервые доказан законом индукции Фарадея в 1831 году. Согласно этому закону индуцированное напряжение на двух катушках создается из-за переменного магнитного потока, окружающего катушку.

Основная функция трансформатора заключается в повышении или понижении переменного напряжения / тока в различных пропорциях в соответствии с требованиями применения. Пропорции определяются числом витков и коэффициентом витка обмотки.

Анализ идеального трансформатора

Мы можем представить идеальный трансформатор как гипотетический проект, который может быть практически без каких-либо потерь. Кроме того, эта идеальная конструкция может иметь свою первичную и вторичную обмотки, идеально связанные друг с другом.

Это означает, что магнитная связь между двумя обмотками осуществляется через сердечник, магнитная проницаемость которого бесконечна, и с индуктивностями обмотки при полной нулевой магнитодвижущей силе.

Мы знаем, что в трансформаторе приложенный переменный ток в первичной обмотке пытается усилить переменный магнитный поток в сердечнике трансформатора, который также включает в себя вторичную обмотку, окруженную вокруг него.

Из-за этого изменяющегося потока электродвижущая сила (ЭДС) индуцируется на вторичной обмотке посредством электромагнитной индукции. Это приводит к генерации потока на вторичной обмотке с величиной, противоположной, но равной потоку первичной обмотки, согласно закону Ленца.

Поскольку сердечник обладает бесконечной магнитной проницаемостью, весь (100%) магнитный поток может передаваться через две обмотки.

Это означает, что, когда первичная обмотка подвергается воздействию источника переменного тока, а нагрузка подключается к клеммам вторичной обмотки, ток протекает через соответствующую обмотку в направлениях, как показано на следующей диаграмме.В этом состоянии магнитная сила сердечника нейтрализуется до нуля.

Изображение предоставлено: https://commons.wikimedia.org/wiki/File:Transformer3d_col3.svg

В этой идеальной конструкции трансформатора, поскольку передача потока через первичную и вторичную обмотку составляет 100%, согласно закону Фарадея, Индуцированное напряжение на каждой из обмоток будет совершенно пропорционально числу витков обмотки, как показано на следующем рисунке:

Тестовое видео Проверка линейной зависимости между первичным / вторичным отношением витков.

ПОВОРОТНЫЕ И НАПРЯЖЕННЫЕ ОТНОШЕНИЯ

Попробуем детально разобраться в расчетах коэффициента оборотов:

Чистая величина напряжения, индуцированного от первичной к вторичной обмотке, определяется просто отношением числа витков наматывается на первичный и вторичный отделы.

Однако это правило применяется, только если трансформатор близок к идеальному трансформатору.

Идеальный трансформатор — это тот трансформатор, который имеет незначительные потери в виде скин-эффекта или вихревого тока.

Давайте возьмем пример рисунка 1 ниже (для идеального трансформатора).

Предположим, что первичная обмотка состоит примерно из 10 витков, а вторичная — только с одной виткой. Благодаря электромагнитной индукции линии потока, создаваемые поперек первичной обмотки в ответ на вход переменного тока, попеременно расширяются и коллапсируют, прорезая 10 витков первичной обмотки. Это приводит к точно пропорциональному количеству напряжения, индуцируемого на вторичной обмотке, в зависимости от коэффициента поворота.

Обмотка, которая снабжается вводом переменного тока, становится первичной обмоткой, а дополняющая обмотка, которая производит выходной сигнал посредством магнитной индукции от первичной обмотки, становится вторичной обмоткой.

Рисунок (1)

Поскольку вторичная обмотка имеет только один виток, она испытывает пропорциональный магнитный поток через один виток относительно 10 витков первичной обмотки.

Следовательно, поскольку напряжение, приложенное к первичной обмотке, составляет 12 В, то каждая из ее обмоток будет подвергаться противо-ЭДС 12/10 = 1.2 В, и это в точности величина напряжения, которое будет влиять на один виток, присутствующий во вторичной секции. Это связано с тем, что он имеет одну обмотку, которая способна извлечь только ту же эквивалентную величину индукции, которая может быть доступна за один оборот первичной обмотки.

Таким образом, вторичное устройство с одним оборотом сможет извлечь 1,2 В из основного.

Приведенное выше объяснение указывает, что число витков на первичной обмотке трансформатора линейно соответствует напряжению питания на нем, а напряжение просто делится на число витков.

Таким образом, в приведенном выше случае, поскольку напряжение равно 12 В, а число витков равно 10, ЭДС чистого счетчика, индуцированная на каждом из витков, будет равна 12/10 = 1,2 В

Пример №2

Сейчас давайте представим рисунок 2 ниже, он показывает тип конфигурации, аналогичный показанному на рисунке 1. ожидайте вторичного, который теперь имеет 1 дополнительный ход, то есть 2 числа ходов.

Излишне говорить, что теперь вторичное устройство будет проходить в два раза больше линий потока по сравнению с состоянием на рисунке 1, которое имело всего один оборот.

Таким образом, здесь вторичная обмотка будет показывать около 12/10 x 2 = 2,4 В, потому что на два витка будет влиять величина встречной ЭДС, которая может быть эквивалентной для двух обмоток на первичной стороне трафо.

Поэтому из вышеприведенного обсуждения в целом можно сделать вывод, что в трансформаторе соотношение между напряжением и числом витков на первичной и вторичной обмотках является довольно линейным и пропорциональным.

Число оборотов трансформатора

Таким образом, полученная формула для расчета числа оборотов для любого трансформатора может быть выражена как:

Es / Ep = Ns / Np

где,

  • Es = Вторичное напряжение ,
  • Ep = первичное напряжение,
  • Ns = число вторичных витков,
  • Np = количество первичных витков.

Отношение первичных вторичных оборотов

Интересно отметить, что приведенная выше формула указывает на прямую зависимость между отношением вторичного напряжения к первичному и вторичного к первичному числу витков, которые указаны пропорциональными и равно.

Следовательно, вышеприведенное уравнение можно также выразить как:

Ep x Ns = Es x Np

Далее мы можем вывести приведенную выше формулу для решения Es и Ep, как показано ниже:

Es = (Ep x Ns) / Np

аналогично,

Ep = (Es x Np) / Ns

Приведенное выше уравнение показывает, что при наличии любых трех величин четвертую величину можно легко определить, решив формулу ,

Решение практических проблем обмотки трансформатора

Пример № 1: Трансформатор имеет 200 оборотов в первичной секции, 50 оборотов во вторичной обмотке и 120 вольт, подключенных к первичной обмотке (Ep). Какое может быть напряжение на вторичной обмотке (E s)?

Дано:

  • Np = 200 витков
  • Ns = 50 витков
  • Ep = 120 вольт
  • Es =? вольт

Ответ:

Es = EpNs / Np

Замещение:

Es = (120 В x 50 витков) / 200 витков

Es = 30 вольт

Случай в точке # 2 : Предположим, у нас 400 витков провода в катушке с железным сердечником.

Предполагая, что катушка требуется в качестве первичной обмотки трансформатора, рассчитайте число витков, которые необходимо намотать на катушку, чтобы получить вторичную обмотку трансформатора, чтобы обеспечить вторичное напряжение в один вольт в ситуации где первичное напряжение 5 вольт?

Дано:

  • Np = 400 витков
  • Ep = 5 вольт
  • Es = 1 вольт
  • Ns =? повороты

Ответ:

EpNs = EsNp

Транспонирование для Ns:

Ns = EsNp / Ep

Замена:

Ns = (1 В x 400 витков) / 5 В

9862 Ns = 80 витков

Помните: Отношение напряжения (5: 1) эквивалентно отношению обмоток (400: 80).Иногда, в качестве замены определенных значений, вы обнаруживаете, что вам назначен коэффициент поворота или напряжения.

В подобных случаях вы можете просто принять любое произвольное число для одного из напряжений (или обмоток) и вычислить другое альтернативное значение из отношения.

В качестве иллюстрации, предположим, что коэффициент намотки назначен 6: 1, вы можете представить количество витков для первичной секции и вычислить эквивалентное вторичное число витков, используя такие же пропорции, как 60:10, 36: 6, 30: 5 и т. Д.

Трансформатор во всех приведенных выше примерах имеет меньшее число витков во вторичной секции по сравнению с первичной секцией. По этой причине вы можете найти меньшее количество напряжения на вторичной обмотке trafo, а не на первичной стороне.

Что такое повышающие и понижающие трансформаторы

Трансформатор с номинальным напряжением на вторичной стороне ниже, чем номинальное напряжение на первичной стороне, называется трансформатором STEP-DOWN.

Или, альтернативно, если вход переменного тока подается на обмотку с большим числом витков, то трансформатор действует как понижающий трансформатор.

Соотношение понижающего трансформатора четыре к одному записано как 4: 1. Трансформатор, который включает меньшее число витков на первичной стороне по сравнению со вторичной стороной, будет генерировать более высокое напряжение на вторичной стороне по сравнению с напряжением, подключенным на первичной стороне.

Трансформатор, у которого вторичная сторона имеет номинальное напряжение, превышающее напряжение на первичной стороне, называется STEP-UP трансформатором. Или, в качестве альтернативы, если вход переменного тока подается на обмотку с меньшим числом витков, то трансформатор действует как повышающий трансформатор.

Соотношение повышающего трансформатора от одного до четырех необходимо записать как 1: 4. Как видно из двух соотношений, величина первичной боковой обмотки постоянно упоминается в начале.

Можем ли мы использовать понижающий трансформатор в качестве повышающего трансформатора и наоборот?

Да, определенно! Все трансформаторы работают по тому же фундаментальному принципу, что и описанный выше. Использование повышающего трансформатора в качестве понижающего трансформатора просто означает переключение входных напряжений через их первичную / вторичную обмотку.

Например, если у вас есть обычный повышающий трансформатор электропитания, который обеспечивает выходной сигнал 12-0-12 В от входного переменного тока 220 В, вы можете использовать тот же трансформатор в качестве повышающего трансформатора для получения выходного напряжения 220 В от 12 В переменного тока.

Классическим примером является схема инвертора, где в трансформаторах нет ничего особенного. Все они работают с использованием обычных понижающих трансформаторов, подключенных противоположным образом.

Воздействие нагрузки

Всякий раз, когда нагрузка или электрическое устройство подключается через вторичную обмотку трансформатора, ток или усилители проходят через вторичную сторону обмотки вместе с нагрузкой.

Магнитный поток, генерируемый током во вторичной обмотке, взаимодействует с магнитными линиями потока, генерируемыми усилителями на первичной стороне. Этот конфликт между двумя линиями потоков возникает в результате общей индуктивности между первичной и вторичной обмотками.

Взаимный поток

Абсолютный поток в материале сердечника трансформатора преобладает как в первичной, так и во вторичной обмотке. Это также способ, с помощью которого электрическая энергия может мигрировать от первичной обмотки к вторичной обмотке.

В связи с тем, что этот поток объединяет обе обмотки, это явление обычно называют ВЗАИМНЫМ ПОТОКОМ. Кроме того, индуктивность, которая генерирует этот поток, преобладает в обеих обмотках и называется взаимной индуктивностью.

На рисунке (2) ниже показан поток, создаваемый токами в первичной и вторичной обмотках трансформатора при каждом включении тока питания в первичной обмотке.

Рисунок (2)

Всякий раз, когда сопротивление нагрузки подключено к вторичной обмотке, напряжение, возбужденное во вторичной обмотке, запускает ток, который циркулирует во вторичной обмотке.

Этот ток создает кольца потока вокруг вторичной обмотки (обозначены пунктирными линиями), которые могут быть альтернативой полю потока вокруг первичной обмотки (закон Ленца).

Следовательно, поток вокруг вторичной обмотки подавляет большую часть потока вокруг первичной обмотки.

При меньшем количестве потока, окружающем первичную обмотку, обратная эдс уменьшается, и большее количество усилителя всасывается из источника питания. Дополнительный ток в первичной обмотке высвобождает дополнительные линии потока, в значительной степени восстанавливая первоначальное количество линий абсолютного потока.

ПОВОРОТНЫЕ И ТЕКУЩИЕ СООТНОШЕНИЯ

Количество линий магнитного потока, образующихся в сердечнике trafo, пропорционально силе намагничивания

(В АМПЕРНЫХ ПОВОРОТАХ) первичной и вторичной обмоток.

Ампер-виток (I x N) указывает на магнитодвижущую силу; Можно понимать, что это магнитодвижущая сила, создаваемая одним током тока, протекающим в 1 витке катушки.

Поток, который имеется в сердечнике трансформатора, окружает первичную и вторичную обмотки.

Учитывая, что поток одинаков для каждой обмотки, ампер-витки в каждой, первичной и вторичной обмотках всегда должны быть одинаковыми.

По этой причине:

IpNp = IsNs

Где:

IpNp = ампер / витки в первичной обмотке
IsNs — ампер / витки во вторичной обмотке

Делением обеих сторон Выражение
Ip , получаем:
Np / Ns = Is / Ip

, так как: Es / Ep = Ns / Np

Тогда: Ep / Es = Np / Ns

Также: Ep / Es = Is / Ip

, где

  • Ep = напряжение на первичной обмотке в вольтах
  • Es = напряжение на вторичной обмотке в вольтах
  • Ip = ток на первичной обмотке в амперах
  • Is = ток в первичной обмотке вторичные в амперах

Обратите внимание, что уравнения показывают, что отношение ампер является обратной величиной обмотки или коэффициента поворота, а также коэффициента напряжения.

Это означает, что трансформатор, имеющий меньшее количество витков на вторичной стороне по сравнению с первичной, может понизить напряжение, но увеличит ток. Например:

Предположим, что трансформатор имеет отношение напряжений 6: 1.

Попробуйте найти ток или усилитель на вторичной стороне, если ток или усилитель на первичной стороне составляет 200 миллиампер.

Предположим,

Ep = 6 В (в качестве примера)
Es = 1 В
Ip = 200 мА или 0.2Amp
Is =?

Ответ:

Ep / Es = Is / Ip

Транспонирование для Is:

Is = EpIp / Es

Замена:

Is = (6 В x 0,2A) / 1 В
Is = 1,2A

В приведенном выше сценарии говорится, что, несмотря на то, что напряжение на вторичной обмотке составляет одну шестую от напряжения на первичной обмотке, усилители во вторичной обмотке в 6 раз больше, чем в первичной обмотке.

Приведенные выше уравнения вполне можно рассматривать с альтернативной точки зрения.

Коэффициент намотки означает сумму, посредством которой трансформатор увеличивает или увеличивает или уменьшает напряжение, подключенное к первичной стороне.

Для иллюстрации предположим, что если вторичная обмотка трансформатора имеет в два раза больше оборотов, чем первичная обмотка, то напряжение, возбужденное на вторичной стороне, вероятно, будет вдвое больше напряжения на первичной обмотке.

В случае, если вторичная обмотка несет половину числа витков первичной стороны, напряжение на вторичной стороне будет составлять половину напряжения на первичной обмотке.

Сказав это, коэффициент намотки вместе с коэффициентом усиления трансформатора составляют обратную связь.

В результате повышающий трансформатор 1: 2 может иметь половину усилителя на вторичной стороне по сравнению с первичной стороной. Понижающий трансформатор 2: 1 может иметь двукратное усиление во вторичной обмотке по отношению к первичной стороне.

Иллюстрация: Трансформатор с коэффициентом обмотки 1:12 имеет ток 3 А на вторичной стороне.Узнать величину ампер в первичной обмотке?

Дано:

Np = 1 виток (например)
Ns = 12 витков
Is = 3Amp
Lp =?

Ответ:

Np / Ns = Is / Ip

Замена:

Ip = (12 витков x 3 ампер) / 1 виток

Ip = 36A

Расчет взаимной индуктивности

Взаимная индукция — это процесс, в котором одна обмотка проходит индукцию ЭДС из-за скорости изменения тока соседней обмотки, приводящей к индуктивной связи между обмоткой.

Другими словами Взаимная индуктивность — это отношение индуцированной ЭДС на одной обмотке к скорости изменения тока на другой обмотке, выраженное в следующей формуле:

M = ЭДС / ди (т) / DT

Фазирование в трансформаторах:

Обычно, когда мы исследуем трансформаторы, большинство из нас считает, что напряжение и токи первичной и вторичной обмоток находятся в фазе друг с другом. Однако это не всегда может быть правдой.В трансформаторах соотношение между напряжением, фазовым углом тока на первичной и вторичной обмотках зависит от того, как эти обмотки вращаются вокруг сердечника. Это зависит от того, находятся ли они оба в направлении против часовой стрелки или в направлении по часовой стрелке, или же одна обмотка повернута по часовой стрелке, а другая — против часовой стрелки.

Давайте посмотрим на следующие диаграммы, чтобы понять, как ориентация обмотки влияет на фазовый угол:

В приведенном выше примере направления обмотки выглядят одинаково, то есть первичная и вторичная обмотки повернуты по часовой стрелке.Благодаря этой идентичной ориентации фазовый угол выходного тока и напряжения идентичен фазовому углу входного тока и напряжения.

Во втором примере, приведенном выше, можно видеть направление намотки трансформатора с противоположной ориентацией. Как можно видеть, первичный, кажется, направлен по часовой стрелке, а вторичный намотан против часовой стрелки. Из-за этой противоположной ориентации обмотки фазовый угол между двумя обмотками составляет 180 градусов друг от друга, и индуцированный вторичный выход показывает синфазный ток и отклик напряжения.

Точечная нотация и Точечная конвенция

Чтобы избежать путаницы, Точечная нотация или Точечная конвенция используется для представления ориентации обмотки трансформатора. Это позволяет пользователю понять характеристики угла фазы на входе и выходе, независимо от того, находятся ли первичная и вторичная обмотка в фазе или в противофазе.

Соглашение о точках реализуется точечными метками на начальной точке обмотки, указывающими, находятся ли обмотка в фазе или против фазы относительно друг друга.

Следующая схема трансформатора имеет условное обозначение точки и означает, что первичная и вторичная части трансформатора находятся в фазе друг с другом.

Обозначение точек, используемое на иллюстрации ниже, показывает точки, расположенные поперек противоположных точек первичной и вторичной обмоток. Это указывает на то, что ориентация обмотки двух сторон не одинакова, и поэтому фазовый угол поперек двух обмоток будет сдвигаться по фазе на 180 градусов, когда на одну из обмоток подается вход переменного тока.

Потери в реальном трансформаторе

Расчеты и формулы, рассмотренные в предыдущих параграфах, основаны на идеальном трансформаторе. Однако в реальном мире и для настоящего трансформера сценарий может сильно отличаться.

Вы обнаружите, что в идеальной конструкции следующие основные линейные коэффициенты реальных трансформаторов будут игнорироваться:

(a) Многие типы потерь в сердечнике, вместе известные как потери тока намагничивания, могут включать в себя следующие типы потерь:

  • Гистерезисные потери: это вызвано нелинейными влияниями магнитного потока на сердечник трансформатора.
  • Потери на вихревые токи: эти потери возникают из-за явления, называемого джоулевым нагревом в сердечнике трансформатора. Он пропорционален квадрату напряжения, приложенного к первичной обмотке трансформатора.

(b) В отличие от идеального трансформатора, сопротивление обмотки в реальном трансформаторе никогда не может иметь нулевого сопротивления. Это означает, что обмотка в конечном итоге будет иметь некоторое сопротивление и индуктивность, связанные с ними.

  • Джоулевые потери: Как объяснено выше, сопротивление, генерируемое на клеммах обмотки, приводит к джоулевым потерям.
  • Поток утечки: мы знаем, что трансформаторы сильно зависят от магнитной индукции на их обмотке. Однако, поскольку обмотка построена на общем одноядерном устройстве, магнитный поток имеет тенденцию протекать через обмотку через сердечник. Это приводит к появлению полного сопротивления, называемого первичным / вторичным реактивным сопротивлением, которое способствует потерям трансформатора.

(c) Поскольку трансформатор также является своего рода индуктором, на него также влияют такие явления, как паразитная емкость и собственный резонанс, вследствие распределения электрического поля.Эти паразитные емкости обычно могут быть в трех различных формах, как указано ниже:

  • Емкость, создаваемая между витками один над другим внутри одного слоя;
  • Емкость, создаваемая в двух или более смежных слоях;
  • Емкость, создаваемая между сердечником трансформатора и обмоточным слоем (слоями), лежащим рядом с сердечником;

Заключение

Из приведенного выше обсуждения можно понять, что в практических приложениях расчет трансформатора, особенно трансформатора с железным сердечником, может быть не таким простым, как идеальный трансформатор.

Чтобы получить наиболее точные результаты для данных обмотки, нам может потребоваться учитывать множество факторов, таких как: плотность потока, площадь сердечника, размер сердечника, ширина языка, площадь окна, тип материала сердечника и т. Д.

Вы можете узнать больше обо всех эти расчеты под этим постом:

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и учебными пособиями.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать через комментарии, я буду очень рад помочь!

Как работает трансформатор?

Как работает трансформатор?

На рисунке показан блок питания, обнаруженный в школьных лабораториях. Он подключен к электросети, которая подает на него входное напряжение 240 В. С помощью переключателя напряжения вы можете выбрать выходное напряжение от 2 до 12 В. Что меняет входное напряжение с 240 В до более низкого выходного напряжения?
Основным компонентом внутри блока питания является трансформатор. Трансформаторы могут уменьшать или увеличивать a.с. На него подано напряжение .

Принцип работы трансформатора:

  1. Трансформатор работает по принципу электромагнитной индукции .
  2. Он состоит из двух катушек, намотанных на сердечник из мягкого железа, как показано на рисунке.
  3. Первичная катушка подключена к a.c. источник питания, когда вторичная катушка подключена к выходным клеммам.
  4. Когда ток в первичной цепи увеличивается, рост магнитного потока заставляет линии магнитного поля разрезать вторичную катушку.E.m.f. индуцируется во вторичной катушке.
  5. Когда ток в первичной цепи уменьшается, магнитный поток падает, и силовые линии снова обрезают вторичную катушку. E.m.f. действие в противоположном направлении индуцируется во вторичной катушке.
  6. Переменный ток в первичной катушке создает изменяющийся магнитный поток, который индуцирует переменный поток энергии. той же частоты во вторичной катушке.
  7. На рисунке показана принципиальная схема трансформатора с переменным напряжением питания.

Люди также спрашивают

Какие существуют типы трансформаторов?

Повышающие и понижающие трансформаторы:

  1. Существует два типа трансформаторов:
    (a) Повышающий трансформатор
    (b) Понижающий трансформатор
  2. На рисунке представлено сравнение между два типа трансформаторов.

Эксперимент с повышающими и понижающими трансформаторами

Цель: Чтобы понять повышающий и понижающий трансформаторы.
Материалы: медная катушка на 120 витков, медная катушка на 400 витков, соединительные провода
Аппарат: Два C-образных железных сердечника с зажимом, изолированные провода, низкое напряжение a.c. источник питания, две лампы на 2,5 В 0,3 A с держателями и две лампы на 6,2 В 0,3 A с держателями
Метод:

Повышающий трансформатор

  1. Устройство настроено, как показано на рисунке. Первичная катушка представляет собой медную катушку на 120 витков, а вторичная катушка представляет собой медную катушку на 400 витков.
  2. 6,2 В, 0,3 А лампочки вкручиваются в соответствующие патроны.
  3. Источник питания установлен на 2 В переменного тока.
  4. Блок питания включен. Яркость лампочек в первичном и вторичном контурах сравнивается.

Понижающий трансформатор

  1. Настройка устройства изменяется таким образом, что 400-витковая медная катушка становится первичной, а 120-витковая — вторичной.
  2. Лампочки заменены на 2.5 В, 0,3 А лампы.
  3. Блок питания включен. Яркость лампочек в первичном и вторичном контурах сравнивается.

Наблюдения:
Обсуждение:

  1. Яркость лампы пропорциональна напряжению на ней. Яркость лампы в первичной цепи указывает величину входного напряжения. Яркость лампы во вторичной цепи указывает величину выходного напряжения.
  2. Когда число витков вторичной катушки больше, чем первичной катушки, выходное напряжение больше, чем входное напряжение.
  3. Когда число витков вторичной катушки меньше, чем первичной катушки, выходное напряжение меньше, чем входное напряжение.

Вывод:

  1. Во вторичной катушке возникает более высокое напряжение, когда вторичная катушка имеет больше витков, чем первичная катушка.
  2. Более низкое напряжение индуцируется во вторичной катушке, когда вторичная катушка имеет меньше витков, чем первичная катушка.

Связь между отношением оборотов и отношением напряжений Эксперимент

Цель: Показать взаимосвязь V s / V p = N s / N p
Материалы с Copper 300, 600 и 900 витков соответственно, соединительные провода
Аппарат: Сердечники из мягкого железа, 0 — 12 В переменного тока блок питания, два года вольтметры (0 — 10 В)
Метод:

  1. Устройство настроено, как показано на рисунке, с 300-виточной медной катушкой в ​​качестве первичной катушки и 600-витковой катушкой в ​​качестве вторичной катушки.
  2. Напряжение источника питания установлено на 2 В.
  3. Источник питания включен, и показания вольтметров записываются.
  4. Шаги 1 3 повторяются с медной катушкой на 300 витков в качестве первичной катушки и катушкой на 900 витков в качестве вторичной катушки.
  5. Настройка устройства изменяется таким образом, что катушка на 900 витков является первичной катушкой, тогда как катушка на 600 витков является вторичной катушкой.
  6. Напряжение источника питания установлено на 10 В.
  7. Источник питания включен, и показания вольтметров записываются.
  8. Шаги 6 и 7 повторяются с катушкой на 900 витков в качестве первичной катушки и катушкой на 300 витков в качестве вторичной катушки.

Наблюдения:

Обсуждение:

  1. Соотношения N s / N p и V s / V p для каждой пары первичной и вторичной катушек приблизительно равны.
  2. Принимая во внимание экспериментальные ошибки и потери мощности в трансформаторе, можно сделать вывод, что N с / N р = V с / В с .

Вывод:
Отношение вторичного выходного напряжения к первичному входному напряжению равно отношению числа витков во вторичной катушке к числу витков в первичной катушке.

Соотношение оборотов и напряжений Проблемы с решениями

  1. На рисунке показана лампочка 12 В, подключенная к выходным клеммам трансформатора.

    Какое значение N с , если лампа должна гореть при нормальной яркости?
    Решение:
    Когда лампа загорается при нормальной яркости, напряжение на ней составляет 12 В.

Соотношение между выходной мощностью и входной мощностью идеального трансформатора

  1. Трансформатор передает электроэнергию от первичная цепь к вторичной цепи.
  2. Первичная цепь трансформатора получает питание при определенном напряжении от a.с. источник питания. Трансформатор подает эту мощность при другом напряжении на электрическое устройство, подключенное к вторичной цепи, как показано на рисунке.
  3. В идеальном трансформаторе отсутствуют потери энергии в процессе преобразования напряжения и передачи мощности.
  4. Выходная мощность равна входной мощности. Следовательно,
    Выходная мощность = Входная мощность
    То есть:

Расчет первичного и вторичного тока трансформатора

На рисунке показан трансформатор, используемый для работы нагревателя 6 В, 48 Вт от 240 В a.с. поставка.

Рассчитать
(a) число витков в первичной катушке, N p
(b) ток во вторичной катушке, I s
(c) ток в первичной катушке, I p
Решение:

.
Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о