+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Производство биогаза | Биогаз в России. Биогазовые установки. Компания Биокомплекс

Производство биогаза — технология, за которой будущее

Использование биогаза человечеством имеет давнюю историю. Более двух тысяч лет назад, по свидетельству Геродота, древнегерманские племена, живущие в заболоченных местностях, использовали выделяющийся болотный газ для своих нужд, подводя его к своим жилищам по кожаным трубам. Чтобы процесс выработки газа не прекращался, они периодически сбрасывали в болото шкуры убитых животных и бытовые отходы. Научная европейская мысль зафиксировала выделение горючего газа разлагающейся органикой в XVII веке, а появление первых биогазовых установок относится ко второй половине XIX века.

В настоящее время наибольшее количество биогаза производится в энергетически бедных странах, однако, исходя из очевидных выгод его получения и использования, популярность установок, перерабатывающих органику в горючий газ, растет и у нас. Несмотря на многочисленные препятствия, вызванные как недостатком финансовых средств, так и инерционностью мышления отдельных руководителей, биогазовые станции понемногу завоевывают популярность среди предпринимателей.

Что такое биогаз?

Биогаз образуется в результате разложения анаэробными бактериями органических соединений и является смесью метана и углекислого газа. В зависимости от используемого в процессе брожения сырья, процент метана в биогазе варьируется от 50 % (из навоза крупного рогатого скота) до 85 % (из жировых отходов).

В качестве сырья для производства биогаза используются пищевые отходы, кормовые остатки, навоз свиней, КРС и птицы, отходы предприятий пищевой промышленности, а также специально выращиваемые энергетические растения (рапс, подсолнечник, кукуруза, свекла и т. д.), их ботва и солома, опилки, силос и многое другое, вплоть до опавших листьев и другого органического мусора. Любые отходы растительного и животного происхождения можно использовать для получения биогаза. Применительно к использованию биогазовых установок для переработки отходов животноводческих ферм, можно утверждать, что содержание одной коровы обеспечит производство 2,5 куб.

м биогаза в сутки, одного откормочного быка — 1,6 куб. м, свиньи — 0,3 куб. м, курицы или утки — 0,02 куб. м.

Как получают биогаз?

Для получения биогаза измельченные и увлажненные органические отходы закладывают в емкость, называемую реактором или анаэробной колонной, где они подвергаются процессу сбраживания метановыми анаэробными (живущими без доступа воздуха) бактериями. Жизнедеятельность метановых бактерий требует соблюдения определенных условий: в реакторе необходимо поддерживать комфортную для них температуру (40–70 градусов Цельсия) и периодически перемешивать питательную смесь, способствуя распределению бактерий по всему пространству реактора.

Чем мельче частицы органики, тем легче идет процесс брожения, поэтому перед закладкой в реактор любое органическое сырье необходимо измельчать до однородного состояния (гомогенизировать). Облегчает переработку и увеличивает выход газа использование энзимов, а также постоянное перемешивание массы с помощью различных средств, в том числе жидкостных либо ультразвуковых кавитаторов.

Из одного килограмма сухого сырья на современной биогазовой станции можно получить 350–500 литров биогаза.

Как используют производство биогаза?

  1. Для обогрева помещений. Отопительный котел на биогазе позволит отапливать производственные помещения предприятия или фермы, а также близлежащие жилые дома. Некоторая часть газа (зимой — около 15 %) расходуется на поддержание оптимальной температуры для брожения массы в реакторе.
  2. Для производства электроэнергии. Газогенератор, смонтированный в комплексе биогазовой установки, даст возможность получать около 2 кВт электроэнергии из 1 куб. м биогаза.
  3. Для получения биогаза с целью использования его как топлива для автомобилей, а также для сжижения излишков и реализации другим потребителям.
  4. Для производства высококачественных органических удобрений. Твердый остаток, получаемый после окончания процесса брожения, является прекрасным удобрением, эффективным и лишенным неприятного запаха. Его использование повышает урожай сельскохозяйственных культур более чем вдвое.
  5. Для экологически чистой утилизации отходов. Фекалии животных и птицы, отходы предприятий пищевой промышленности, будучи захороненными на полигоне для отходов, загрязняют окружающую среду и издают неприятный запах. Процесс разложения, происходящий в биогазовых реакторах, нейтрализует токсины и делает оставшуюся массу безопасной для природной среды.

Преимущества биогазовых станций

Энергетическое: станция дает возможность организовать собственное отопление и освещение промышленного или сельскохозяйственного предприятия. Особенно важно это в удаленных районах, где прокладка электрических сетей и централизованного отопления экономически невыгодна — в этом случае биогазовая установка обеспечит предприятие и прилегающий жилой район светом и теплом.

Экономическое: использование биогаза дает возможность существенно снизить затраты на энергообеспечение и на утилизацию отходов.

Экологическое: нейтрализуется вред, наносимый сельскохозяйственными или промышленными отходами окружающей среде, снижаются выбросы метана в атмосферу. Сохраняется чистота грунтовых вод, которые нередко используются как источник питьевой воды в данной местности.

Географическое: станция может быть построена в любом, даже самом отдаленном и недоступном районе и в любой климатической зоне, основным условием ее строительства является доступность органического сырья для производства биогаза

.

Инфраструктурное: строительство станции дает возможность для поддержания и развития энергетической и коммунальной инфраструктур.

Социальное: помимо производственных зданий, возможно снабжение теплом и электроэнергией социально-бытовых и культурных объектов: жилых зданий, детских учреждений, больниц, магазинов, домов отдыха, клубов и т. д.

Технология получения биогаза | Журнал главного инженера

Биогаз это один из ярких примеров того, как из отходов можно получить золото. Побочные продукты хозяйственной деятельности, после переработки превращаются в экологически чистое газообразное топливо. Данный цикл утилизации отходов позволяет построить замкнутое производство, на основе фермерского предприятия или городского очистительного сооружения.

Как получить биогаз

Для того чтобы получить биогаз, понадобиться специальное устройство: биогазовая установка. Она представляет собой комплекс инженерных сооружений, который состоит из агрегатов и емкостей, предназначенных для хранения и подготовки сырья, непосредственно самого производства биогаза, а также его сбора и очистки, выделения таких побочных продуктов переработки как сухая часть, которая используется для получения высококачественных минеральных удобрений и воды. Для получения электроэнергии биогазовая установка может быть совмещена с мини газотурбинным или другим типом генератора. Для получения не только электро, но и дополнительно тепловой энергии, биогазовый завод комплектуется когенерационными установками.

Поучение биогаза происходит в специальных, корозионностойких цилиндрических герметичных цистернах, также их называют ферментерами. В таких емкостях протекает процесс брожения. Но до того как попасть в ферментер, сырье загружается в емкость приемник. Тут оно смешивается с водой до однородного состояния, с помощью специального насоса. Далее из емкости приемника в ферментеры вводится уже подготовленный сырьевой материал. Надо заметить, что процесс перемешивания при этом не останавливается и продолжается до тех пор, пока в емкости приемнике ничего не останется. После ее опустошения насос автоматически останавливается. И вот, процесс ферментации запущен, начинает выделяться биогаз, который по специальным трубам поступает в газгольдер, размещенный неподалеку.

Биореактор располагается в отдельно стоящем быстровозводимом здании, это вынужденная необходимость обусловлена требованиями норм безопасности и тем, что производство биогаза нуждается в поддержании постоянной, относительно высокой температуры в 30 – 50 С°. Технология получения биогаза требует периодического перемешивания смеси ферментируемых веществ. Это препятствует их расслоению и остановке процесса брожения. Также не помешает измельчить крупные куски в сырье, приготовленном для ферментации.

Большие комки замедляют скорость выделения метана тормозя тем самым техпроцесс. Работа профессиональных биогазовых установок, которые мы предлагаем, регулируется автоматикой, и уход даже за несколькими станциями средних размеров, не требует штата более чем в два чеовека.

Сырье, из которого получают биогаз

Сырьем для производства биогаза могут служить как органическая составляющая твердых бытовых отходов, так и сточные воды, а также жидкие и твердые отходы сельскохозяйственного производства.

Качество сырья зависит от множества факторов, начиная с его влажности, заканчивая объемом получаемого биогаза на единицу ферментируемого вещества. Так, к примеру, разные типы, к примеру, навоза, имеют разный выход биогаза на килограмм вещества с не одинаковым содержанием в нем метана. Самый большой выход биогаза и самый высокий процент в нем метана имеет свекольная ботва, именно поэтому получение топлива на свекольно-сахарных заводах наиболее эффективно.

В зависимости от типа ферментируемого сырья меняется и вариант исполнения установки для получения биогаза. Так, если используется сухое или твердое сырье, его механически загружают в шнековый транспортер, который поставляет продукт брожения в реактор. Если в качестве продукта для ферментации используются стоковые воды или навоз, то сырье может попадать в емкости самотеком, откуда с помощью насосов, по мере надобности, перекачивается в биореактор. Иногда сырье требует дополнительной очистки и гидролиза, в таком случае система получения биогаза будет включать в себя два соединенных вместе биореактора.

Получаемый биогаз может сжигаться для обогрева промышленных теплиц, фермерских хозяйств и т.д.

Биогазовая установка, оборудованная дополнительными модулями делает процесс получения метана из биогаза практически полностью безотходным. Специальная система очистки может отделять от метана углекислый газ, который также является ценным промышленным продуктом. Сырье, оставшееся после ферментации, идет на производство экологически чистых минеральных удобрений, а если биогазовая установка связана с когенерационным устройством, кроме тепла, из метана можно добывать экологически чистое электричество.

Источник: www.rosbiogas.ru

Технология получения биогаза – СКБ ВАТРА

В последнее время во всем мире все большее внимание уделяют нетрадиционным с технической точки зрения, возобновляемым источникам энергии (ВИЭ). Для Украины из ВИЭ имеет значение энергия: солнечного излучения, ветра, малых речных потоков, термальных источников, биомассы. Одним из «забытых» видов сырья является и биогаз, использовавшийся еще в Древнем Китае и вновь «открытый» в наше время.

Что же такое биогаз? Этим термином обозначают газообразный продукт, получаемый в результате анаэробной, то есть происходящей без доступа воздуха, ферментации органических веществ самого разного происхождения. В любом крестьянском хозяйстве в течение года собирается значительное количество навоза, ботвы растений, различных отходов. Обычно после разложения их используют как органическое удобрение. Однако мало кто знает, какое количество биогаза и тепла выделяется при ферментации. А ведь эта энергия тоже может сослужить хорошую службу сельским жителям.

Биогаз – смесь газов. Его основные компоненты: метан (СН4) – 55-70% и углекислый газ (СО2) – 28-43%, а также в очень малых количествах другие газы, например – сероводород (Н2S).

В среднем 1 кг органического вещества, при 70% биологическом разложении, производит 0,18 кг метана, 0,32 кг углекислого газа, 0,2 кг воды и 0,3 кг неразложимого остатка.

Свежий навоз животноводческих ферм и жидкие составляющие навоза вместе со сточными водами являются загрязнителями окружающей среды. Повышенная восприимчивость сельскохозяйственных культур к свежему навозу приводит к загрязнению грунтовых вод и воздушного бассейна, создает благоприятную среду для заражения почвы вредными микроорганизмами. В навозе животных жизнедеятельность болезнетворных бактерий и яиц гельминтов не прекращается, содержащиеся в нем семена сорных трав сохраняют свои свойства.

Для устранения этих негативных явлений необходима специальная технология обработки навоза, позволяющая повысить концентрацию питательных веществ и одновременно устранить неприятные запахи, подавить патогенные микроорганизмы, снизить содержание канцерогенных веществ. Перспективным, экологически безопасным и экономически выгодным направлением решения этой проблемы является анаэробная переработка навоза и отходов в биогазовых установках с получением биогаза. Благодаря высокому содержанию метана (до 70%) биогаз может гореть. Оставшаяся после такой естественной переработки органическая масса представляет собой качественное обеззараженное удобрение.

Для переработки используются дешевые отходы сельского хозяйства – навоз животных, помет птицы, солома, отходы древесины, сорная растительность, бытовые отходы и органический мусор, отходы жизнедеятельности человека и т.п.

Полученный биогаз, может идти на отопление животноводческих помещений, жилых домов, теплиц, на получение энергии для приготовления пищи, сушку сельскохозяйственных продуктов горячим воздухом, подогрев воды, выработку электроэнергии с помощью газовых генераторов.

После утилизации содержание питательных веществ в полученном удобрении увеличивается на 15% по сравнению с обычным навозом. При этом в новом удобрении уничтожены гельминты и болезнетворные бактерии, семена сорных трав. Такой навоз применяется без традиционных выдержек и хранения. При утилизации получается также жидкий экстракт, который предназначается для полива кормовых трав, овощей и т.п. Сухое удобрение используется по прямому назначению, при этом урожайность люцерны повышается на 50%, кукурузы на 12, овощей на 20-30%.

Из навоза одной коровы можно получить в сутки до 4,2 м3 биогаза. Энергия, заключенная в одном м3 биогаза, эквивалентна энергии 0,6 м3 природного горючего газа, 0,74 л нефти, 0,65 л дизельного топлива, 0,48 л бензина и т.п. При применении биогаза экономятся также мазут, уголь, электроэнергия и другие энергоносители. Внедрение биогазовых установок улучшает экологическую обстановку на животноводческих фермах, птицефабриках и на прилегающих территориях, предотвращаются вредные воздействия на окружающую среду.

ПОЛУЧЕНИЕ БИОГАЗА ПРИ ОЧИСТКЕ КОНЦЕНТРИРОВАННЫХ СТОЧНЫХ ВОД СПИРТЗАВОДА | Голуб

1. Kaparaju, P. Optimization of biogas production from wheat straw stillage in UASB reactor / P. Kaparaju, M. Serrano, I. Angelidaki // Applied Energy. – 2010. – No. 87. – Р. 3779–3783.

2. Moraes, S.B. Anaerobic digestion of vinasse from sugarcane ethanol productionin Brazil: Challenges and perspectives [E-resource] / S.B. Moraes, M. Zaiat, A. Bonomi // Renewable and Sustainable Energy Reviews. – 2015. – No. 44. – Р. 888–903. Available on: DOI: 10.1016/j.rser.2015.01.023

3. Gupta, S.K. Biodegradation of distillery spent wash in anaerobic hybrid reactor / S.K. Gupta, G. Singh // Water research. – 2007. – No. 41. – Р. 721–730.

4. Pant, D. Biological approaches for treatment of distillery wastewater: A review / D. Pant, A. Adholeya // Bioresource Technology. – 2007. – No. 98. – Р. 2321– 2334.

5. Kumar, V. Bioremediation and decolorization of anaerobically digested distillery spentwash / V. Kumar [et al.] // Biotech. Lett. – 1997. – No. 19. – Р. 311– 313.

6. Маляренко, В.А. Перспективы использования биоэнергетических технологий в Украине / В.А. Маляренко, И.И. Капцов, И.Г. Жиганов // Интегрированные технологии и энергосбережение. – 2005. – № 2. – С. 22 – 28.

7. Желєзна, Т.А. Біоенергетика в Україні / Т.А. Желєзна, Г.Г. Гелетуха // Зелена енергетика. – 2004. – № 4. – С. 11 – 13.

8. Mao, Ch. Review on research achievements of biogas from anaerobic digestion / Ch. Mao [et al.] // Renewable and Sustainable Energy Reviews. – 2015. – No. 45. – Р. 540–555.

9. Дыганова, Р.Я. Разработка методики выбора технологий переработки отходов спиртовой промышленности как инструмента экологического менеджмента / Р.Я. Дыганова, Ю.С. Беляева // Известия Самарского научного центра Российской академии наук. – 2014. – Т. 16. – № 4 (2). – С. 1728–1736.

10. Кузнецов, И.Н. Анализ мирового опыта в технологии переработки послеспиртовой барды / И. Н. Кузнецов, Н.С. Ручай // Труды БГТУ. Серия 4: Химия, технология органических веществ и биотехнология. – 2010. – Т. 1. – № 4. – С. 294–301.

11. Krzywonos, M. Utilization and biodegradation of starch stillage (distillery wastewater) [Электронный ресурс] / M. Krzywonos, E. Cibis, T. Miśkiewicz, A. Ryznar-Luty // Electronic Journal of Biotechnology. – 2009. – No. 12. – Р. 1–9. – Режим доступа: http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v12n1-5/685.

12. Гладченко, М.А. Обзор современного состояния анаэробной очистки сточных вод бродильных производств / М.А. Гладченко [и др.] // Производство спирта и ликероводочных изделий. — 2002. — № 1. — С. 22–23.

13. Pathe, P.P. Performance evaluation of a full scale effluent treatment plant for distillery spent wash / P.P. Pathe [et al.] // Intern. J. Environ. Studies. – 2002. – Vol. 59. – No. 4. – P. 415–437.

14. Дыганова, Р.Я. Экспериментальное определение оптимального состава комплексного субстрата для анаэробного сбраживания в спиртовой промышленности / Р.Я. Дыганова, Ю.С. Беляева // Известия Самарского научного центра Российской академии наук. – 2014. – Т. 16. – № 1(6). – С. 1737–1740.

15. Hutnan, M. Anaerobic Treatment of Wheat Stillage / M. Hutnan [et al.] // Chem. Biochem. Eng. Q. – 2003. – Vol. 17. – No. 3. – Р. 233–241.

16. Wilkie, A.C. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks / A.C. Wilkie [et al.] // Biomass and Bioenergy. – 2000. – No. 19. – Р. 63–102.

17. Mise, Sh.R. Treatment of distillery spent wash by anaerobic digestion process / Sh.R. Mise, R. Saranadgoudar, R. Lamkhade // International Journal of Research in Engineering and Technology. – 2013. – No. 11. – Р. 310–313.

18. Prakash, N.B. Anaerobic Digestion of Distillery Spent Wash / N. B. Prakash, V. Sockan, V.S. Raju // Journal of Science and Technology. – 2014. – Vol. 4. – No. 3. – Р. 134–140.

19. Venkatasamy, G. Treatment of Distillery Spentwash in Upflow Anaerobic Contact Filter / G. Venkatasamy, S. Aruna // Іndian journal of applied research. – 2013. – Vol. 3. – No. 7. – Р. 199–200.

20. Лурье, Ю.Ю. Аналитическая химия производственных сточных вод / Ю.Ю. Лурье – М.: Химия, 1984. – 448 с.

21. Агеев, Л.М. Химико-технический контроль и учет гидролизного и сульфитно-спиртового производства / Л. M. Агеев, С. А. Корольков. – М., Л. : Гослесбумиздат, 1953. – 404 с.

22. Хроматограф лабораторный ЛХМ–8МД: техническое описание, инструкция по эксплуатации. Опытный завод «Хроматограф». Москва. 1992. – 50 с.

23. Степанов, Д. В. Оцінка можливостей отримання енергоносіїв з органічних відходів з урахуванням техногенного навантаження на навколишнє середовище / Д. В. Степанов, С. Й. Ткаченко, A. П. Ранський // Наукові праці ВНТУ. – 2012. – № 1. – С. 1–7.

24. Куріс, Ю. В. Способи утилізації біогазу / Ю. В. Куріс, С. І. Ткаченко, Н. В. Семененко // Энергосбережение. Энергетика. Энергоаудит. – 2010. – № 7(77). – С. 20–30.

25. Салюк, А.І. Виробництво біогазу з курячого посліду та його оптимізація / А.І. Салюк, С.О.Жадан, Є.Б. Шаповалов // Харчова промисловість. – 2012. – № 13. – С. 33.

26. Эдер, Б. Биогазовые установки. Практическое пособие / Б. Эдер, Х. Шульц. – Пер. с нем.: Zorg Biogas. – 2008. – С. 268.

27. Гюнтер, Л.И. Метантенки. / Л.И. Гюнтер – М.: Строй-издат, 1991. – 128 с.

28. Хенце, М. Очистка сточных вод. / М. Хенце – М.: Мир, 2009. – 480 с.

29. Rongzhong, Ye. pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic-minerotrophic gradient / Ye. Rongzhong [et al.] // Soil Biology & Biochemistry. – 2012. – No. 54. – Р. 36–47.

30. Zhang, Qu. Biogas from anaerobic digestion processes: Research updates / Qu. Zhang, J. Hu, Duu-J. Lee // Renewable Energy. – 2016. – No. 98. – Р. 1–12

Биогаз — производство и использование

Удорожание и планомерное сокращение исчерпаемых природных запасов углеводородов заставляет всё чаще задумываться о производстве и использовании альтернативных способов  топлива. Одним  из наиболее популярных,  на сегодняшний день,  является так называемый  биогаз, получаемый из органических отходов.

Что такое биогаз и в чем его преимущества

Биогаз – смесь 55–75% метана, 25–45% углекислого газа и небольшого количества водорода, сероводорода и других газов, полученная в результате жизнедеятельности бактерий при разложении биомассы. Основной полезной составляющей данного био топлива является метан, при сжигании которого выделяется 20–25 МДж энергии, примерно столько же, сколько при сгорании 1,5 кг угля.

Основное достоинство биогаза в том, что получают его из органического мусора. Таким образом,  решаются сразу две задачи: утилизация пищевых отходов и получение сравнительно недорогого и энергоемкого топлива. Образующиеся при производстве биогаза отходы также идут в дело – их используют в качестве удобрений. Ещё одно преимущество такого подхода – экономия природных ресурсов и сокращение выделения вредных свалочных газов в атмосферу.

Технология получения биогаза

На сегодняшний день известно более 60 различных технологий получения биогаза, различающихся видами и соотношением используемых компонентов, а также схемой переработки и конструкцией оборудования. В основе же так или иначе лежит процесс, суть которого заключается в последовательном разложении биомассы тремя группами бактерий – гидролизными, кислотообразующими и метанообразующими.

Основным элементом любой биогазовой установки является реактор – герметичная емкость, в которой происходит вышеописанный процесс. При этом в результате реакции в верхней части резервуара образуется биогаз, из которого в дальнейшем выделяют метан, а в нижней скапливается отработанная масса, пригодная для использования в качестве удобрения.

Для того, чтобы процесс образования биогаза происходил успешно и эффективно, необходимы определенные условия. В частности  необходимо поддерживать температуру в емкости не менее 30 С. Масса в нем должна постоянно перемешиваться, а удаляемая отработанная часть своевременно замещаться новыми отходами. Немаловажное значение имеет и состав поступающей на переработку биомассы.

Какие отходы используются для получения биогаза

Соотношение веществ в составе биомассы напрямую влияет на количество и скорость образующегося биогаза, а также содержание в нем метана. Наилучший эффект достигается при сочетании фекальных осадков, пищевых и растительных отходов сельскохозяйственной и деревообрабатывающей промышленности. Однако простейшую установку для изготовления биогаза вполне можно изготовить и использовать в частном доме или на даче. Так называемые семейные биогазовые установки активно используют в Индии, Непале, Вьетнаме и других странах. По сути,  они являются более современным вариантом компостных ям, в которые складируются образующиеся в домашнем хозяйстве в результате жизнедеятельности домашнего скота и людей отходы.

В Европе биогаз производят в промышленных масштабах. Такую возможность обеспечивает создание соответствующей инфраструктуры на аграрных предприятиях и очистных сооружениях. Лидером в этой области является Дания, здесь биотопливо обеспечивает 18% от всех энергозатрат. Биогазом отапливают более половины европейских птицеферм, где они производится, а в Швейцарии его используют в качестве топлива для более чем 10% общественного транспорта.

В России биогазовые установки пока используются недостаточно активно, хотя ресурсов для производства биотоплива предостаточно: ежегодно в стране образуется до 300 миллионов тонн органических отходов. Их переработка потенциально позволяет произвести около 90 миллиардов кубометров биогаза.

В то же время кое-где в нашей стране уже взяли эту идею на вооружение. Так, в Курьяновских очистных сооружениях весь выделяемый из сточных вод осадок сбраживается в метантенках при температуре 53 С, что позволяет получать биогаз с содержанием метана до 65%. Это топливо используется на местных мини-ТЭЦ. Таким образом, чтобы поспособствовать увеличению количества производимого в РФ биотоплива, москвичам необязательно собирать свою установку – достаточно утилизировать максимум органического мусора через канализацию, установив дома измельчитель пищевых отходов.

 

 

Производство биогаза своими руками в домашних условиях, фото

Автор newwebpower На чтение 10 мин. Просмотров 10 Опубликовано Обновлено

Выделение горючих газов из разлагающихся отходов жизнедеятельности организмов и биомассы было замечено еще в 17 веке.

В 1776 году ученый Аллесандро Вольта сделал вывод о существовании взаимной зависимости между массой разлагающегося вещества и объемом выделяющегося газа, а позднее было обнаружено, что основным горючим компонентом получаемого биогаза является метан.

Поскольку метан является основным компонентом добываемого из недр природного газа, то в процессе изучения биогаза начали появляться установки для его промышленного производства в качестве альтернативы ископаемому топливу.

Первая документально подтвержденная биогазовая установка была построена в 1859 году в Индии, а впервые в Европе, в Великобритании биогаз начал применяться в уличных фонарях освещения в 1895 году.

Рисунок, показывающий поперечный разрез первой биогазовой установки

Биохимические процессы образования биогаза

Первые экспериментальные установки для получения биогаза разрабатывались методом проб и ошибок, без истинного понимания происходящих процессов. С развитием микробиологии было выявлено, что выделение газа происходит из-за водородного и метанового брожения биомассы. Поскольку данные типы брожения происходят без доступа кислорода, выделяющий метан процесс разложения биомассы еще называют анаэробным.

Анаэробное сбраживание встречается в природе при образовании болотного газа

По-другому синтез биогаза называют биодеструкцией (биологическим разрушением) органических веществ с выделением свободного газообразного метана (Ch5). Ниже дана упрощенная формула, демонстрирующая выделение химических веществ из органических соединений в процессе жизнедеятельности бактерий метаногенов, у которых в процессе метаболизма выделяется побочный газ метан:

Другими словами, микроскопические бактерии, потребляя органические вещества, содержащиеся в биомассе и биологических отходах, выделяют горючий газ. Но даже при самых благоприятных условиях выделение горючего газа происходит не сразу – вначале нужен процесс ферментации биомассы, разложение которой происходит в несколько этапов за определенные периоды времени.

Стадии синтеза биогаза

Для размножения и жизнедеятельности выделяющих метан метаногенов нужна питательная среда, которая формируется в установке для получения биогаза предыдущими поколениями других бактерий. В первой стадии белки, жиры и углеводы, имеющиеся в биомассе, под воздействием гидролитических ферментов распадаются на простые органические соединения: аминокислоты, сахар, жирные кислоты. Данная стадия протекает под действием ацетогенных бактерий и называется гидролизом.

Различные бактерии, вид под микроскопом

Во второй стадии под действием гетероацетогенных бактерий происходит гидролизное окисление части органических соединений, при этом получается углекислый газ, свободный водород и ацетат.

Не окислившаяся часть получившихся на первой стадии простых органических соединений при взаимодействии с образовавшимся на второй стадии ацетатом формирует простейшие органические кислоты, которые и являются необходимой питательной средой для бактерий, выделяющих метан на третьей стадии.

Стадии жизнедеятельности микроорганизмов при образовании метана

Именно на третьей стадии происходит производство биогаза, интенсивность которого зависит от таких основных факторов:

  • Состава биомассы;
  • Температуры питательной среды;
  • Давления внутри установки;
  • Кислотно-щелочного баланса pH;
  • Соотношения воды и загружаемой биомассы;
  • Измельчения сырья и частоты перемешивания субстрата;
  • Наличия стимулирующих и замедляющих компонентов в среде;
  • Соотношения углерода, фосфора, азота и других элементов.
Схематическое отображение основных узлов биогазовой установки

Оптимальный состав сырья для производства биогаза

Поскольку белки, жиры и углеводы содержатся в любой биомассе растительного или животного происхождения, а также в отходах жизнедеятельности и пищевой промышленности, то помимо научных лабораторий и промышленных установок, вполне реально получать биогаз в домашних условиях.

Но в самодельной домашней установке будет очень трудно контролировать описанные выше параметры. На видео ниже показан пример промышленной биогазовой установки для дома:



В продолжение данной темы в следующей статье будет подробно рассказано о существующих типах генераторов биогаза и самодельных биогазовых установках, которые народные умельцы делают своими руками.

На данном этапе стоит напомнить, что биогаз горюч и взрывоопасен, а чрезмерное давление может разорвать биогазовую установку с последующем взрывом газа. Поэтому первоочередным контролируемым параметром должно быть давление в установке и герметичность конструкции.

Примеры сырья для получения биогаза

Максимальное количество биогаза можно получить из животных жиров – около 1500 м3 из тонны сырья при концентрации метана 87%. Также значительный выход биогаза получается из пережаренного растительного масла – около 1200 м3 при концентрации Ch5­ 68%.

Значительно меньше  биогаза получается из семян различных растений от 500 м3 — 54% Ch5, (овес) до 644 м3 — 65,7% Ch5 (рапс). Из силоса кукурузы, травы и других растений можно получить 450-100 м3 при средней концентрации метана 55-50%.

Возможное получение биогаза из различных семян и корнеплодов
Биогаз из отходов жизнедеятельности животных

Из навоза животных выход газа получается значительно меньшим, так как после прохождения пищевого тракта в отходах жизнедеятельности количество питательных веществ для метанобразующих микроорганизмов мало.

Поскольку у птиц пищеварительная система предназначена для быстрого отбора основной части питательных веществ из пищи, с частыми испражнениями для облегчения полета, то выход биогаза из помета будет наибольшим – около 100 м3 при 65% Ch5.

Применение биогазовой установки наиболее выгодно на птицефермах, где существует проблема утилизации птичьего помета

Тогда как навоз крупного рогатого скота обладает наименьшим выходом биогаза – в среднем 25 м3 при 55% Ch5, из-за пищеварительного тракта, предназначенного для максимального извлечения питательных веществ из корма в течение длительного времени с многократным пережевыванием пищи.

Выход биогаза из навоза увеличивается при его смешивании с подстилкой и остатками корма. Также имеет значение влажность и свежесть навоза – для более подробных данных нужно изучать специальные таблицы.

Возможное получение биогаза из навоза сельскохозяйственных животных

Большое влияние на скорость брожения и концентрацию метана в биогазе оказывает качество воды и наличие примесей. Сильно хлорированная водопроводная вода, используемая для разбавления навоза, будет угнетать процесс брожения.

Если при уборке стойл применяются бактерицидные вещества и химические моющие средства, то скорость реакций в биогазовой установке значительно замедлится. По этой же причине возникают значительные трудности при газификации отходов канализации человеческого жилья из-за малой рентабельности и большой концентрации моющих средств.

Несмотря на низкий выход биогаза из отходов жизнедеятельности организмов, в самодельных биогазовых установках необходимо добавлять навоз в другие виды сырья для размножения в субстрате всех требуемых видов бактерий, которые изначально проживают в пищеварительном тракте

Содержащий бактерии навоз необходимо добавлять в субстрат для получения биогаза

Состав биогазовой смеси

Как говорилось выше, на разных стадиях в процессе биосинтеза помимо метана выделяются углекислый газ и водород. Также в зависимости от сырья выделяются аммиак и сероводород. Водород хоть и горюч, но его летучесть не позволяет использовать этот газ в стандартных газовых установках.

Аммиак и сероводород являются ядовитыми соединениями, которые вредят как бактериям внутри биогазовой установки, так и окружающей среде. Углекислый газ является балластом, а его большое количество в смеси значительно снижает горючесть и калорийность биогаза.

Среднее процентное соотношение примесей в биогазе, получаемом из различного сырья

Очевидно, что из-за большого количества примесей использование биогаза в обычных котлах и кухонных плитах возможно только после тщательной очистки синтезированной газовой смеси. Очищают полученный биогаз в несколько этапов, но практически невозможно достичь идеально чистого метана, главное, чтобы концентрация примесей не выходила за установленные нормы.

Пламя горящего биогаза должно быть чистым, как и вся биологическая энергия

На первом этапе очистки биогаз проходит через водяной фильтр, где растворяется большая часть углекислого газа, аммиака и различных ароматических соединений. Вода с большой концентрацией растворенного углекислого газа и аммиака может использоваться для выращивания водорослей, которые, в свою очередь, пойдут на синтез биогаза в биогазовой установке.

Системы очистки биогаза на промышленной биогазовой установке

После водяной очистки биогаз поступает на фильтр очистки от сероводорода. Наиболее простым является фильтр из металлической стружки и опилок, на которых осаждается сера. В промышленных фильтрах применяются специальные катализаторы и осаждающие серу растворы. Наилучшее качество биогаза получается после прохождения мембранного фильтра, где на молекулярном уровне отсеиваются молекулы нежелательных примесей.

Очистка биогаза до чистого метана при помощи мембранного фильтра

Описание влияния некоторых факторов на выделение биогаза

Для определения скорости брожения и интенсивности выделения биогаза одним из решающих факторов является температура смеси. Нужен термометр, а лучше электрический датчик для контроля температурного режима.

В промышленных биогазовых установках температурный режим и другие параметры контролируются специальными контроллерами. Иногда теплоты реакции бывает достаточно для поддержания оптимальной температуры, но чаще всего субстрат приходится подогревать, особенно в холодный период года.

Компьютеризированный контроллер биогазовой установки с газоанализаторами

По температурному режиму различают три вида анаэробного брожения:

  • Психрофильные установки, работающие без обогрева, где температура самопроизвольно поддерживается на уровне 15-25ºC. Применяются в странах с теплым климатом;
  • Мезофильные, требуют дополнительного незначительного обогрева для поддержания температуры 25-40ºC. Обладают наиболее богатым составом образующихся после генерации экологически чистых удобрений, из-за чего оптимально подходят для небольших хозяйств;
  • Термофильные биогазовые установки, требующие больших затрат энергии, для поддержания температуры свыше 40ºC, максимум 90ºC. При данной температуре гибнут болезнетворные бактерии в образующихся удобрениях, и получается наибольший выход биогаза, из-за чего широко применяется при промышленном производстве биологического газа.
Термоизоляция реактора термофильной биогазовой установки

Наряду с температурой большое значение имеет размер твердых частиц навоза, отходов и биомассы. Чем меньше частицы сырья, тем больше площадь контакта бактерий с питательной средой. Поэтому самое главное при приготовлении сырья – это его измельчение.

Контакт бактерий с пищей затрудняется в процессе биосинтеза из-за накопления продуктов жизнедеятельности микроорганизмов. Поэтому своевременное перемешивание субстрата в процессе брожения также являет собой значительный фактор для газификации биомассы. Пример промышленной биогазовой установки с контролем всех параметров:


Рентабельность производства биогаза

Лидером в производстве качественного биогаза из выращиваемого сырья и отходов животноводческих ферм является Германия. Рентабельность биосинтеза газа определяется большой стоимостью энергоносителей с одной стороны и наличием стимулирующих государственных программ.

Стимулом к внедрению биогазовых технологий является как значительная субсидия при покупке экологических энергоносителей у производителей, так и внушительная сумма штрафа за загрязнение окружающей среды не переработанным навозом.

Экологически чистый биогазовый комплекс в экономически развитой стране

В бедных деревнях Индии и Китая собственники полукустарных биогазовых установок практически не очищают свой газ, тут же сжигая его в плите или газовой горелке. В данных странах производство биологического газа из бытовых отходов и специально выращиваемого растительного сырья окупается благодаря низкой стоимости ручного труда крестьян и небольшой стоимости самих установок, лишенных дорогих систем очистки и сложных автоматизированных комплексов контроля и управления.

Пример полукустарных биогазовых установок в бедных деревнях Азии

В прессе и интернете можно найти много жизнерадостных заголовков типа:  «Экономия бюджета с помощью биогазовой установки», «Бесплатная энергия из навоза», «Биогаз своими руками», но на практике ожидания по окупаемости дорогостоящего оборудования и затрат расходятся с реальностью. Это происходит из-за сложности контроля всех параметров, а также необходимостью подогрева для оптимальной скорости брожения. Пример оптимистического новостного сюжета:



В следующей статье будут приведены примеры самодельных установок с демонстрацией выхода газа в реальных условиях, и каждый сможет для себя определить рентабельность самостоятельного производства биогаза, исходя из своих возможностей и тарифов на энергоносители.

Значительным достоинством самостоятельного производства биогаза является побочное получение высококачественного экологически чистого удобрения. На видео ниже мастер объясняет теоретические основы получения биогаза и получения удобрений.


Выставка технологий на ЦАКИК 2019: Биогаз

Биогаз – образуется в результате брожения органического субстрата. Его разлагают гидролизные, кислотные и метанобразующие бактерии. Смесь вырабатываемых бактериями газов получается горючей, так как содержит большой процент метана. 

В качестве сырья для биогаза используют разнообразные отходы. Технологии шагнули так далеко, что дают возможность получать биогаз практически из любого сырья органического происхождения. Однако разные его виды имеют разную долю сухого вещества на килограмм, выход биогаза и содержание в нем метана. Именно поэтому вид отходов играет большую роль при расчете важных технических и экономических показателей. Очень важную роль играет соблюдение температурного режима. Образование биогаза в природе происходит при значениях температур от 0 до 90° С. Однако наибольшей эффективности процесса можно добиться при поддержании постоянной температуры и если биореактор производящий газ теплоизолирован.

Назначение технологии:  получении газа, тепла и электрической энергии из отходов сельхозпроизводства и навоза.

На  учебном видеоролике  показана биогазовая установка на экоферме Дениса Тена из Алма-атинскй области Казахстана.  Бытовая биогазовая установка объемом 10 м3 позволяет получать тепло и газ из сельскохозяйственных отходов, птичьего помета и  и навоза овец и коз. Фермер использует полученный газ для обогрева дома площадью около 100 м2, нагрева воды и приготовления пищи на кухне. Биогазовая установка для теплоизоляции накрыта сверху куполом, внутри которого установлены датчики позволяющие контролировать работу биореактора, часть помещения под куполом используется как теплица, там же размещен аквариум для аквапоники. Самый главный продукт, по мнению Дениса Тэна, это не только вырабатываемый биогазовой установкой -газ, метан, а остаток брожения органического субстрата, который является ценным органическим удобрением. Оно используется для жидкой подкормки овощей на огороде фермера и  является главным продуктом фермерского хозяйства для продажи садоводам и фермерам развивающим бизнес в органическом сельском хозяйстве.

Для стран, где развито животноводство и птицеводство проблема переработки навоза, птичьего помета и биологических отходов достаточно актуальна. Если отходы животноводства традиционно используются как удобрения на полях, то птичий помет в виду его токсичности ухудшает экологическую ситуацию и по этому, используется для получения газа на биогазовых установках, либо для изготовления топливных гранул. Многие сельскохозяйственные предприятия и фермерские хозяйства, особенно птицеводческие могут обеспечиваться электро и тепловой энергией исключительно за счет собственных ресурсов и получения биогаза.

В условиях изменения климата, одной из адаптационных стратегий в энергетическом секторе может стать развитие энергоснабжения и теплоснабжения домохозяйств с опорой на собственные силы. В этом случае диверсификация источников энергии, внедрение биогаза, будет служить более эффективному использованию сельскохозяйственных отходов и поможет смягчить уязвимость фермерских хозяйств перед неблагоприятными воздействием изменением климата.


 


Биогаз — возобновляемый природный газ — Управление энергетической информации США (EIA)

Биогаз из биомассы

Биогаз — это богатый энергией газ, получаемый в результате анаэробного разложения или термохимического преобразования биомассы. Биогаз состоит в основном из метана (Ch5), того же соединения, что и природный газ, и диоксида углерода (CO2). Содержание метана в неочищенном (неочищенном) биогазе может варьироваться от 40% до 60%, при этом СО2 составляет большую часть остатка вместе с небольшим количеством водяного пара и других газов.Биогаз можно сжигать непосредственно в качестве топлива или обрабатывать для удаления CO2 и других газов для использования так же, как природный газ. Очищенный биогаз может называться возобновляемым природным газом или биометаном .

Анаэробное разложение биомассы происходит, когда анаэробные бактерии — бактерии, которые живут без свободного кислорода — поедают и разрушают, или переваривают биомассу и производят биогаз. Анаэробные бактерии естественным образом встречаются в почвах, в водоемах, таких как болота и озера, а также в пищеварительном тракте людей и животных.Биогаз образуется и может собираться на полигонах твердых бытовых отходов и в прудах для хранения навоза. Биогаз также можно производить в контролируемых условиях в специальных резервуарах, называемых анаэробными варочными котлами . Материал, оставшийся после завершения анаэробного переваривания, называется дигестатом, он богат питательными веществами и может использоваться в качестве удобрения.

Термохимическое преобразование биомассы в биогаз может быть достигнуто за счет газификации. Министерство энергетики США поддерживает исследования по газификации биомассы для производства водорода.

Биогаз может квалифицироваться как возобновляемое топливо для производства электроэнергии в государственных стандартах портфеля возобновляемых источников энергии. Он также подпадает под стандартную программу США по возобновляемым источникам топлива как передовое или целлюлозное биотопливо и по Калифорнийскому стандарту на низкоуглеродистое топливо как сырье для низкоуглеродного топлива. Почти весь биогаз, потребляемый в настоящее время в Соединенных Штатах, производится в результате анаэробного разложения и используется для производства электроэнергии.

Сбор и использование биогаза со свалок

Свалки твердых бытовых отходов являются источником биогаза.Биогаз вырабатывается естественным путем анаэробными бактериями на полигонах твердых бытовых отходов и называется свалочным газом . Свалочный газ с высоким содержанием метана может быть опасен для людей и окружающей среды, поскольку метан легко воспламеняется. Метан также является сильным парниковым газом. Биогаз содержит небольшое количество сероводорода, вредного и потенциально токсичного соединения в высоких концентрациях.

Источник: по материалам Национального энергетического образовательного проекта (общественное достояние)

В США нормы Закона о чистом воздухе требуют, чтобы на полигонах твердых бытовых отходов определенного размера была установлена ​​и эксплуатировалась система сбора и контроля свалочного газа.Некоторые свалки сокращают выбросы свалочного газа за счет улавливания и сжигания (или сжигания) свалочного газа. При сжигании метана в свалочном газе образуется CO2, но CO2 не является таким сильным парниковым газом, как метан. Многие свалки собирают и обрабатывают свалочный газ для удаления CO2, водяного пара и сероводорода и используют его для выработки электроэнергии или продажи в качестве заменителя природного газа.

По оценкам Управления энергетической информации США (EIA), в 2019 году около 257 миллиардов кубических футов (Bcf) свалочного газа было собрано на 336 U. S. свалки и сжигаются для выработки около 10,5 миллиардов киловатт-часов (кВтч) электроэнергии, или около 0,3% от общего объема выработки электроэнергии коммунальными предприятиями США в 2019 году.

Биогаз от очистки сточных вод и промышленных сточных вод

Многие муниципальные очистные сооружения и производители, такие как бумажные фабрики и предприятия пищевой промышленности, используют анаэробные варочные котлы как часть своих процессов обработки отходов. Некоторые очистные сооружения и промышленные предприятия собирают и используют биогаз, произведенный в анаэробных варочных котлах, для нагрева варочных котлов, что усиливает анаэробный процесс сбраживания и уничтожает патогенные микроорганизмы, а некоторые используют его для выработки электроэнергии для использования на предприятии или для продажи.По оценкам EIA, в 2019 году 65 таких предприятий по переработке отходов в Соединенных Штатах произвели в общей сложности около 1 миллиарда кВтч электроэнергии.

Анаэробные варочные котлы на очистных сооружениях Линкольна, Небраска

Источник: Линкольн, правительство Небраски (защищено авторским правом)

Анаэробный варочный котел на молочной ферме

Источник: Университет штата Мичиган (защищен авторским правом)

Использование биогаза из отходов животноводства

Некоторые молочные фермы и животноводческие хозяйства используют анаэробные варочные котлы для производства биогаза из навоза и подстилки из коровников. Некоторые животноводы закрывают свои навозные пруды (также называемые навозными лагунами ), чтобы улавливать биогаз, который образуется в лагунах. Метан в биогазе можно сжигать для нагрева воды и зданий, а также в качестве топлива в дизельных генераторах для выработки электроэнергии для фермы. По оценкам EIA, в 2019 году 25 крупных молочных и животноводческих предприятий в США произвели в общей сложности около 224 млн кВтч (или 0,2 млрд кВтч) электроэнергии из биогаза.

Последнее обновление: 4 ноября 2020 г.

Что такое биогаз? Руководство для начинающих | Homebiogas

Биогаз — это вид биотоплива, который естественным образом производится при разложении органических отходов.Когда органические вещества, такие как пищевые отходы и отходы животных, распадаются в анаэробной среде (среде, в которой отсутствует кислород), они выделяют смесь газов, в первую очередь метана и диоксида углерода. Поскольку это разложение происходит в анаэробной среде, процесс производства биогаза также известен как анаэробное сбраживание.

Анаэробное сбраживание — это естественная форма преобразования отходов в энергию, которая использует процесс ферментации для разложения органических веществ. Навоз, пищевые отходы, сточные воды и сточные воды — все это примеры органических веществ, которые могут производить биогаз путем анаэробного сбраживания.Из-за высокого содержания метана в биогазе (обычно 50-75%) биогаз легко воспламеняется, поэтому образует темно-синее пламя и может использоваться в качестве источника энергии.

Экология биогаза

Биогаз известен как экологически чистый источник энергии, потому что он одновременно решает две основные экологические проблемы:

  1. Глобальная эпидемия отходов, при которой каждый день выделяется опасный уровень метана
  2. Опора на энергия ископаемого топлива для удовлетворения глобального спроса на энергию

Преобразовывая органические отходы в энергию, биогаз использует элегантную тенденцию природы перерабатывать вещества в производственные ресурсы. Производство биогаза восстанавливает отходы, которые в противном случае загрязнили бы свалки; предотвращает использование токсичных химикатов на очистных сооружениях и экономит деньги, энергию и материалы за счет обработки отходов на месте. Более того, использование биогаза не требует добычи ископаемого топлива для производства энергии.

Вместо этого биогаз берет проблемный газ и преобразует его в более безопасную форму. Более конкретно, метан, присутствующий в разлагающихся отходах, превращается в диоксид углерода. Газообразный метан примерно в 20–30 раз больше улавливает тепло, чем диоксид углерода.Это означает, что когда гниющая буханка хлеба превращается в биогаз, ее воздействие на окружающую среду будет примерно в 10 раз меньше, чем если бы ее оставили гнить на свалке.

Биогазовые котлы

Биогазовые варочные котлы — это системы, которые не позволяют выпускать газ метан в атмосферу, они перерабатывают отходы в биогаз, а затем направляют этот биогаз для продуктивного использования энергии. Существует несколько типов биогазовых систем и установок, которые были разработаны для эффективного использования биогаза.Хотя каждая модель различается в зависимости от входа, выхода, размера и типа, биологический процесс преобразования органических отходов в биогаз является единообразным. Биогазовые дигестеры получают органические вещества, которые разлагаются в варочной камере. Камера для разложения полностью погружена в воду, что делает ее анаэробной (бескислородной) средой. Анаэробная среда позволяет микроорганизмам расщеплять органический материал и превращать его в биогаз.

Полностью натуральные удобрения

Поскольку органический материал разлагается в жидкой среде, питательные вещества, содержащиеся в отходах, растворяются в воде и образуют богатый питательными веществами осадок, обычно используемый в качестве удобрения для растений.Эти удобрения производятся ежедневно и поэтому являются высокопродуктивным побочным продуктом анаэробного сбраживания.

Биологический распад

Для производства биогаза органические вещества ферментируются с помощью бактериальных сообществ. Четыре стадии ферментации переводят органический материал из исходного состава в состояние биогаза.

  1. Первая стадия процесса разложения — стадия гидролиза. На стадии гидролиза нерастворимые органические полимеры (например, углеводы) расщепляются, делая их доступными для следующей стадии бактерий, называемых ацидогенными бактериями.
  2. Ацидогенные бактерии превращают сахара и аминокислоты в диоксид углерода, водород, аммиак и органические кислоты.
  3. На третьей стадии ацетогенные бактерии превращают органические кислоты в уксусную кислоту, водород, аммиак и углекислый газ, оставляя на заключительном этапе метаногены.
  4. Метаногены превращают эти конечные компоненты в метан и двуокись углерода, которые затем можно использовать в качестве горючей зеленой энергии.

История биогаза

Этот анаэробный процесс разложения (или ферментации) органических веществ происходит повсюду вокруг нас в природе и продолжается уже очень лет. Фактически, бактерии, которые разлагают органический материал до биогаза, являются одними из самых старых многоклеточных организмов на планете. Использование биогаза человеком, конечно, не начинается с , а с , однако некоторые анекдотические свидетельства прослеживают первое использование биогаза ассирийцами в 10 -х годах века и персами в 16 -х годах века. Совсем недавно, 20, -е, -е годы привели к возрождению как промышленных, так и малых биогазовых систем.

В 18, -м, веке фламандскому химику Яну Баптизу ван Гельмонту стало ясно, что при разложении органических веществ образуется горючий газ.Вскоре после этого Джон Далтон и Хамфри Дэви пояснили, что этот горючий газ был метаном. Первый крупный завод по анаэробному сбраживанию был построен в 1859 году в Бомбее. Вскоре после этого, в 1898 году, Великобритания применила анаэробное сбраживание для преобразования сточных вод в биогаз, который затем использовался для освещения уличных фонарей. В следующем столетии анаэробное сбраживание в основном использовалось как средство очистки городских сточных вод. Когда в 1970-х годах цены на ископаемое топливо выросли, популярность и эффективность промышленных установок для анаэробного сбраживания возросли.

И Индия, и Китай начали разработку небольших биогазовых варочных котлов для фермеров примерно в 1960-х годах. Цель состояла в том, чтобы уменьшить энергетическую бедность в сельских районах и сделать более чистые виды топлива для приготовления пищи более доступными в отдаленных районах. Около одной трети мирового населения по-прежнему использует дрова и другую биомассу для производства энергии, вызывая разрушительные проблемы для здоровья и окружающей среды. (Ссылка на сообщение в блоге о развивающихся странах)

В Индии популярная модель известна как варочный котел с плавающим барабаном, а предпочтительная модель биогаза в Китае — варочный котел с фиксированным куполом.

С тех пор биогазовые установки для семейного использования приобретают все большее внимание и популярность как средство сокращения бытовых отходов и как средство обеспечения чистой возобновляемой энергией семьи во всем мире. За последние 15 лет страны по всему миру принимают программы по биогазу, чтобы сделать как домашние биогазовые системы, так и более крупные установки для анаэробного сбраживания доступными, эффективными и удобными. Поскольку свалки незаконно перегружаются, а выброс метана создает все более тревожные проблемы, преимущества использования биогазовых систем для преобразования отходов в энергию становятся все более актуальными и важными.

Биогаз для многих целей:

Биогаз может производиться из различных типов органических веществ, поэтому существует несколько типов моделей биогазовых реакторов. Некоторые промышленные системы предназначены для очистки: городских сточных вод, промышленных сточных вод, твердых бытовых отходов и сельскохозяйственных отходов.

Мелкомасштабные системы обычно используются для переработки отходов животноводства. А новые семейные системы предназначены для переваривания пищевых отходов. Полученный биогаз можно использовать несколькими способами, в том числе: газ, электричество, тепло и транспортное топливо.

Например, в Швеции сотни автомобилей и автобусов работают на очищенном биогазе. Биогаз в Швеции производится в основном на очистных сооружениях и на свалках.

Еще одним примером разнообразного использования биогаза является завод First Milk. Один из крупнейших производителей сыра в Великобритании строит завод по анаэробному сбраживанию, который будет перерабатывать остатки молочных продуктов и превращать их в биометан для газовой сети. Новые заводы по анаэробному пищеварению, подобные этим, с увлекательными историями появляются каждый день!

Малые биогазовые системы

Малые или семейные биогазовые котлы чаще всего встречаются в Индии и Китае.Однако спрос на такие устройства во всем мире быстро растет благодаря более совершенным и удобным технологиям, таким как HomeBiogas . Поскольку современный мир производит все больше и больше отходов, люди стремятся найти экологические способы обращения с мусором.

Традиционные системы, обычно используемые в Индии и Китае, ориентированы на отходы животноводства. Из-за нехватки энергии в сельской местности в сочетании с избытком навоза биогазовые реакторы очень популярны, полезны и даже меняют жизнь.Во многих развивающихся странах биогазовые установки даже субсидируются и поддерживаются правительством и местными министерствами, которые видят разнообразие выгод, получаемых от использования биогаза. Помимо получения газа на кухне из экологически чистых возобновляемых источников энергии, многие семьи широко используют побочные продукты удобрений, которые вырабатываются биогазовыми метантенками.

В африканских странах некоторые пользователи биогаза даже получают прибыль, продавая побочный продукт биогазового шлама, производимый биогазовыми системами.Этот био-суспензия отличается от жидких удобрений, которые производятся ежедневно. Биологическая суспензия относится к наиболее разложившейся стадии органического вещества после того, как оно было разложено в системе. Биошлам опускается на дно биогазовой системы и с помощью современных устройств, таких как HomeBiogas, легко сливается после накопления (обычно это ежегодный процесс). Этот биошлам на самом деле представляет собой насыщенный питательными веществами ил, который приносит много пользы почве и может повысить продуктивность огородов.

Биогаз — это технология, которая имитирует способность природы отдавать. Биогазовые установки промышленного и семейного размера становятся невероятно популярными и актуальными в современном мире. По мере роста сферы применения и повышения эффективности биогаз может оказывать значительное влияние на сокращение выбросов парниковых газов. В качестве чистого источника энергии и возобновляемого средства обработки органических отходов биогаз применим как в слаборазвитых, так и в промышленно развитых странах.

Производство биогаза — обзор

17.3.5 Сырье

Наиболее важным исходным вопросом при рассмотрении применения систем анаэробного сбраживания является сырье для процесса. Варочные котлы обычно могут принимать любой биоразлагаемый материал; однако, если целью является производство биогаза, уровень гниения является ключевым фактором в его успешном применении. Чем более гнилостный (усвояемый) материал, тем выше возможный выход газа из системы.

Состав субстрата является основным фактором, определяющим выход метана и скорость образования метана при сбраживании биомассы.Доступны методы для определения характеристик состава сырья, в то время как такие параметры, как анализ твердых веществ, элементный и органический анализ, важны для проектирования и эксплуатации варочного котла.

Анаэробы могут расщеплять материал с разной степенью успеха: от легкого в случае короткоцепочечных углеводородов, таких как сахара, до более длительных периодов времени в случае целлюлозы и гемицеллюлозы. Анаэробные микроорганизмы не могут расщеплять длинноцепочечные древесные молекулы, такие как лигнин.Анаэробные варочные котлы изначально проектировались для работы с осадком сточных вод и навозом. Однако сточные воды и навоз не являются материалом с наибольшим потенциалом для анаэробного переваривания, поскольку биоразлагаемый материал уже получил большую часть энергии, потребляемой животным, которое его произвело. Поэтому многие варочные котлы работают с совместным сбраживанием двух или более типов сырья. Например, в варочном котле на ферме, который использует молочный навоз в качестве основного сырья, добыча газа может быть значительно увеличена за счет добавления второго сырья, например.грамм. трава и кукуруза (типичное сырье на месте) или различные побочные органические продукты, такие как отходы скотобойни, жиры, масла и жир из ресторанов, органические бытовые отходы и т. д. (типичное сырье за ​​пределами площадки). Дигесторы, перерабатывающие специальные энергетические культуры, могут достичь высокого уровня деградации и производства биогаза. Системы, использующие только жидкий навоз, как правило, дешевле, но производят гораздо меньше энергии, чем системы, использующие такие культуры, как кукуруза и травяной силос; за счет использования небольшого количества растительного материала (30%) установка AD может увеличить выработку энергии в десять раз, всего лишь в три раза превышая капитальные затраты по сравнению с системой, работающей только на навозной жиже.

Второе соображение, связанное с сырьем, — это влажность. Сушильные, штабелируемые субстраты, такие как пищевые и дворовые отходы, подходят для разложения в камерах типа туннеля. Системы туннельного типа обычно также имеют почти нулевой сброс сточных вод, поэтому такой тип системы имеет преимущества там, где сброс жидкостей из метантенка является препятствием. Чем влажнее материал, тем больше он подходит для работы со стандартными насосами вместо энергоемких бетононасосов и физических средств передвижения.Кроме того, чем влажнее материал, тем больший объем и площадь он занимает по сравнению с уровнем выделяемого газа. Содержание влаги в целевом сырье также будет влиять на то, какой тип системы применяется для его обработки. Чтобы использовать анаэробный варочный котел с высоким содержанием твердых веществ для разбавленного сырья, следует применять наполнители, такие как компост, для увеличения твердого содержания входящего материала. Еще одним ключевым моментом является соотношение углерода и азота в исходном материале. Это соотношение представляет собой баланс пищи, необходимой микробу для роста.Оптимальное соотношение C: N для «пищи» микроба составляет 20–30: 1. Избыток азота может привести к угнетению пищеварения аммиаком.

Уровень загрязнения исходного материала является ключевым фактором. Если сырье для варочных котлов имеет значительные уровни физических загрязнителей, таких как пластик, стекло или металлы, то для использования материала потребуется предварительная обработка. Если его не удалить, варочные котлы могут быть заблокированы и не будут работать эффективно. Исходя из этого понимания, проектируются установки для механической биологической очистки.Чем выше уровень предварительной обработки сырья, тем больше потребуется технологического оборудования, и, следовательно, проект будет иметь более высокие капитальные затраты.

После сортировки или просеивания для удаления любых физических загрязнителей, таких как металлы и пластмассы из сырья, материал часто измельчают, измельчают и механически или гидравлически измельчают, чтобы увеличить площадь поверхности, доступную для микробов в варочных котлах и, следовательно, увеличить скорость пищеварения. Мацерация твердых веществ может быть достигнута с помощью измельчающего насоса для перекачки исходного материала в герметичный варочный котел, где происходит анаэробная обработка.

Введение в биогаз и биометан — Перспективы биогаза и биометана: перспективы органического роста — Анализ

Развитие биогаза в мире было неравномерным, поскольку оно зависит не только от наличия сырья, но и от политики, поощряющей его производство и использование. На Европу, Китайскую Народную Республику (далее «Китай») и Соединенные Штаты приходится 90% мирового производства.

Европа на сегодняшний день является крупнейшим производителем биогаза.Германия — безусловно, крупнейший рынок, на котором сосредоточено две трети мощности биогазовых установок Европы. Энергетические культуры были основным сырьем, которое поддерживало рост биогазовой промышленности Германии, но в последнее время политика в большей степени сместилась в сторону использования пожнивных остатков, последовательных культур, отходов животноводства и улавливания метана со свалок. Другие страны, такие как Дания, Франция, Италия и Нидерланды, активно продвигают производство биогаза.

В Китай политика поддержала установку варочных котлов в домашних условиях в сельских районах с целью расширения доступа к современной энергии и чистому топливу для приготовления пищи; на эти варочные котлы сегодня приходится около 70% установленной мощности по биогазу.Было объявлено о различных программах в поддержку установки более крупных когенерационных установок (т. Е. Установок, производящих как тепло, так и электроэнергию). Кроме того, в конце 2019 года Китайская национальная комиссия по развитию и реформам выпустила руководящий документ, посвященный индустриализации биогаза и переходу на биометан, поддерживая также использование биометана в транспортном секторе.

В США основным путем получения биогаза является сбор свалочного газа, на который сегодня приходится почти 90% производства биогаза.Также растет интерес к производству биогаза из сельскохозяйственных отходов, поскольку на домашние рынки животноводства приходится почти треть выбросов метана в Соединенных Штатах (USDA, 2016). Соединенные Штаты также лидируют во всем мире в использовании биометана в транспортном секторе благодаря поддержке штата и федерального правительства.

Около половины оставшейся продукции приходится на развивающиеся страны Азии, в частности на Таиланд и Индию .Вознаграждение через Механизм чистого развития (МЧР) было ключевым фактором, поддерживавшим этот рост, особенно в период с 2007 по 2011 год. Развитие новых биогазовых проектов резко упало после 2011 года, поскольку стоимость кредитов на сокращение выбросов, предоставленных в рамках МЧР, упала. Таиланд производит биогаз из потоков отходов производства крахмала маниоки, биотопливной промышленности и свиноферм. Индия планирует построить около 5000 новых установок для производства сжатого биогаза в течение следующих пяти лет (GMI, 2019). Аргентина и Бразилия также поддержали биогаз через аукционы; В Бразилии большая часть продукции производится со свалок, но есть потенциал и из барды, побочного продукта этанольной промышленности.

Четкая картина сегодняшнего потребления биогаза Африка осложняется отсутствием данных, но его использование было сосредоточено в странах с конкретными программами поддержки. Некоторые правительства, такие как Бенин, Буркина-Фасо и Эфиопия, предоставляют субсидии, которые могут покрывать от половины до всех инвестиций, в то время как многочисленные проекты, продвигаемые неправительственными организациями, предоставляют практические ноу-хау и субсидии для снижения чистых инвестиционных затрат. В дополнение к этим субсидиям в некоторых странах были достигнуты успехи кредитные механизмы, в частности недавняя договоренность о сдаче в аренду в Кении, которая профинансировала почти половину установок варочного котла в 2018 году (ter Heegde, 2019)

Как производится биогаз? | Gasum

Доля:

Биогаз производится путем переработки различных видов органических отходов. Это возобновляемое и экологически чистое топливо, изготовленное из 100% местного сырья, которое подходит для самых разных целей, включая топливо для транспортных средств и промышленность. Влияние производства биогаза на экономику замкнутого цикла еще больше усиливается за счет органических питательных веществ, восстанавливаемых в процессе производства.

Биогаз можно производить из самых разных видов сырья (сырья). Наибольшую роль в процессе производства биогаза играют микробы, питающиеся биомассой.

При переваривании, осуществляемом этими микроорганизмами, образуется метан, который может быть использован на месте или повышен до уровня биогаза, эквивалентного качеству природного газа, что позволяет транспортировать биогаз на большие расстояния.В процессе также производится материал, содержащий органические питательные вещества, который можно использовать в таких целях, как сельское хозяйство.

Этапы производства биогаза

Биогаз производится по отработанной технологии в несколько этапов:

  1. Биологические отходы измельчают на более мелкие кусочки и суспендируют, чтобы подготовить их к анаэробному процессу разложения. Под суспендированием понимается добавление жидкости к биоотходам для облегчения обработки.

  2. Микробам необходимы теплые условия, поэтому биологические отходы нагревают примерно до 37 ° C.

  3. Фактическое производство биогаза происходит путем анаэробного сбраживания в больших резервуарах в течение примерно трех недель.

  4. На заключительном этапе газ очищается (повышается) за счет удаления примесей и диоксида углерода.


После этого биогаз готов к использованию предприятиями и потребителями, например, в сжиженном виде или после закачки в газопроводную сеть.

Превращение разнообразных материалов в газ

Производство биогаза начинается с момента поступления сырья на биогазовую установку.Может использоваться широкий спектр твердого, а также шламообразного сырья.

Материалы, подходящие для производства биогаза, включают:

  • биоразлагаемые отходы предприятий и промышленных объектов, такие как избыток лактозы от производства безлактозных молочных продуктов

  • испорченные продукты из магазинов

  • Биоотходы потребителей

  • ил очистных сооружений сточных вод

  • навоз и полевая биомасса от сельского хозяйства

Материал обычно доставляется в приемную яму биогазовой установки грузовиком или транспортным средством для утилизации отходов.

Поставка твердых веществ, таких как биологические отходы, затем подвергается измельчению, чтобы сделать ее однородной по возможности. На этом этапе вода, содержащая питательные вещества, полученная на следующем этапе производственного процесса, также смешивается с сырьем, чтобы снизить количество твердых веществ до примерно одной десятой от общего объема.

Это также происходит, когда из смеси отделяются любые нежелательные не поддающиеся биологическому разложению отходы, такие как упаковочный пластик устаревших пищевых отходов из магазинов.Эти отходы отправляются на очистные сооружения, где используются для выработки тепла и электроэнергии. Биомасса, прошедшая суспензию, объединяется с биомассой, доставляемой в виде суспензии на биогазовую установку, и перекачивается в резервуар предварительного варочного котла, где ферменты, выделяемые бактериями, разрушают биомассу до еще более тонкой консистенции.

Затем биомасса дезинфицируется перед поступлением в собственно биогазовый реактор (варочный котел). При санитарной обработке любые вредные бактерии, обнаруженные в материале, удаляются путем нагревания смеси до температуры выше 70 ° C в течение одного часа.После дезинфекции масса перекачивается в главный реактор, где происходит производство биогаза. Санитарная обработка позволяет использовать удобрения в сельском хозяйстве.

Биомасса превращается в газ микробами

В биогазовом реакторе начинается действие микробов, и биомасса вступает в постепенный процесс ферментации.

На практике это означает, что микробы питаются органическими веществами, такими как белки, углеводы и липиды, а их переваривание превращает их в метан и углекислый газ.

Большая часть органических веществ расщепляется на биогаз — смесь метана и углекислого газа — примерно за три недели. Биогаз собирается в сферическом газгольдере сверху биогазовых реакторов.

Дигестат, используемый в качестве удобрений или садоводческой почвы

Остаточные твердые частицы и жидкости, образующиеся при производстве биогаза, называются дигестатом. Этот дигестат поступает в реактор пост-варочного котла, а оттуда — в резервуары для хранения. Дигестаты хорошо подходят для таких целей, как удобрение полей.

Дигестаты также можно центрифугировать для разделения твердой и жидкой частей.

Твердые дигестаты используются в качестве удобрений в сельском хозяйстве или озеленении, а также могут быть превращены в садовую почву в процессе созревания, включающего компостирование.

Дигестаты центрифугируют, чтобы получить достаточно технологической воды для суспендирования биоотходов в начале процесса. Это помогает сократить потребление чистой воды. Центрифугированная жидкость богата питательными веществами, в частности азотом, которые можно дополнительно разделить с помощью таких методов, как технология очистки, и использовать в качестве удобрений или источников питательных веществ в промышленных процессах.

Чистый биогаз помогает двигаться в сторону низкоуглеродного общества

Газ уже будет готов для нескольких применений прямо из газгольдера биогазовой установки. Однако перед закачкой в ​​газопроводную сеть или использованием в качестве топлива для транспортных средств он все равно будет подвергаться очистке.

В этом процессе модернизации газ фильтруется и направляется в колонны, где он очищается каскадной водой при очень определенном давлении и температуре. Вода эффективно поглощает углекислый газ и соединения серы, содержащиеся в газе.

Биогаз также можно очистить другими методами, например, пропуская его через фильтры с активированным углем для удаления примесей.

Конечный объем биогаза, закачиваемого в газовую сеть, составляет не менее 95% и обычно около 98% метана. Модернизированный биогаз по-прежнему содержит пару процентов диоксида углерода, поскольку его дальнейшее отделение от метана нерентабельно, не говоря уже о целесообразности использования газа. Биогаз тщательно просушивают перед закачкой в ​​газовую сеть, чтобы предотвратить конденсацию в зимних минусовых условиях.

Произведенный биогаз может использоваться в таких целях, как топливо для транспортных средств, занимающихся утилизацией бытовых отходов, городских автобусов или частных автомобилей. В то же время газ служит свидетельством тех практических действий, которые ведут нас к низкоуглеродному обществу будущего.

биогаз | Описание, производство, использование и факты

Биогаз , природный газ, который образуется в результате разложения органических веществ анаэробными бактериями и используется в производстве энергии.Биогаз отличается от природного газа тем, что это возобновляемый источник энергии, получаемый биологическим путем путем анаэробного сбраживания, а не ископаемое топливо, производимое геологическими процессами. Биогаз в основном состоит из метана, диоксида углерода и следовых количеств азота, водорода и монооксида углерода. Это происходит естественным образом в компостных кучах в виде болотного газа и в результате кишечной ферментации у крупного рогатого скота и других жвачных животных. Биогаз также можно производить в анаэробных варочных котлах из растительных или животных отходов или собирать на свалках.Он сжигается для выработки тепла или используется в двигателях внутреннего сгорания для производства электроэнергии.

Британника исследует

Список дел Земли

Действия человека вызвали обширный каскад экологических проблем, которые теперь угрожают продолжающейся способности как природных, так и человеческих систем процветать.Решение критических экологических проблем глобального потепления, нехватки воды, загрязнения и утраты биоразнообразия, возможно, является величайшей задачей 21 века. Мы встанем им навстречу?

Использование биогаза — это зеленая технология с экологическими преимуществами. Биогазовая технология позволяет эффективно использовать накопленные отходы животноводства от производства продуктов питания и твердые бытовые отходы от урбанизации. Преобразование органических отходов в биогаз снижает производство метана, вызывающего парниковый эффект, поскольку при эффективном сжигании метан заменяется диоксидом углерода. Учитывая, что метан почти в 21 раз эффективнее улавливает тепло в атмосфере, чем диоксид углерода, сжигание биогаза приводит к чистому сокращению выбросов парниковых газов. Кроме того, производство биогаза на фермах может уменьшить запахи, количество насекомых и патогенов, связанных с традиционными запасами навоза.

Отходы животных и растений могут использоваться для производства биогаза.Они перерабатываются в анаэробных варочных котлах в виде жидкости или суспензии, смешанной с водой. Анаэробные варочные котлы обычно состоят из держателя источника сырья, бака для разложения, блока регенерации биогаза и теплообменников для поддержания температуры, необходимой для бактериального разложения. Мелкие бытовые варочные котлы емкостью всего 757 литров (200 галлонов) могут использоваться для обеспечения топливом для приготовления пищи или электрического освещения в сельских домах. По оценкам, миллионы домов в менее развитых регионах, включая Китай и некоторые части Африки, используют бытовые метантенки в качестве возобновляемого источника энергии.

Крупные фермы для хранения жидкого или жидкого навоза сельскохозяйственных животных. Основными типами варочных котлов на фермах являются варочные котлы с закрытой лагуной, варочные котлы для жидкого навоза, варочные котлы с поршневым потоком для молочного навоза и сухие варочные котлы для жидкого навоза и растительных остатков. В варочных котлах обычно требуется тепло, чтобы поддерживать постоянную температуру около 35 ° C (95 ° F), чтобы бактерии разлагали органический материал в газ. Эффективный варочный котел может производить 200–400 кубометров (7000–14000 кубических футов) биогаза, содержащего 50–75 процентов метана на тонну сухих поступающих отходов.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Естественное разложение органических веществ на свалке происходит в течение многих лет, и производимый биогаз (также известный как свалочный газ) можно собирать из ряда соединенных между собой труб, расположенных на разной глубине через полигон. Состав этого газа меняется в течение срока службы полигона. Обычно через год газ состоит примерно из 60 процентов метана и 40 процентов диоксида углерода.Сбор на свалках варьируется в зависимости от процента органических отходов и возраста объекта, средний энергетический потенциал составляет около 2 гигаджоулей (1 895 634 БТЕ) на тонну отходов.

Системы сбора свалочного газа все чаще внедряются для предотвращения взрывов из-за накопления метана внутри полигона или для предотвращения утечки метана, парникового газа, в атмосферу. Собранный газ можно сжигать на объекте или рядом с ним в печах или котлах, но вместо этого он часто используется в двигателях внутреннего сгорания или газовых турбинах для выработки электроэнергии, учитывая ограниченную потребность в производстве тепла на большинстве удаленных полигонов.

Производство биогаза | BioNinja

Заявка:

• Биогаз производится бактериями и археями из органических веществ в ферментерах


Биогаз — это чистый и возобновляемый источник топлива, получаемый при расщеплении органических веществ определенными микроорганизмами

  • Биогаз в основном состоит из метана, диоксида углерода и водяного пара
  • Биогаз можно производить из различных источников биомассы, включая навоз, сточные воды, сельскохозяйственные отходы или пищевые отходы


В производстве биогаза участвуют две группы микроорганизмов — эубактерии и археи (метаногены)

  • Бактерии сначала превращают органический материал в органические кислоты и спирт
  • Другие бактерии превращают эти продукты на ацетат, диоксид углерода и газообразный водород
  • Археи затем создают метан либо путем разложения ацетата, либо посредством реакции между диоксидом углерода и газообразным водородом


Производство биогаза может происходить в небольших ферментерах в анаэробных условиях

  • Ферментер необходимо поддерживать в постоянный pH (~ 7) и постоянная температура (~ 35ºC) для максимального выхода

Навык:

• Производство биогаза в небольшом ферментере


Малые биогазовые ферментеры представляют собой герметичные контейнеры, которые анаэробно разрушают кухонные и садовые отходы для производства биогаза

  • В процессе ферментации образуется сброженная суспензия (дигестат), которую можно использовать в качестве удобрения.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *