+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как определить твердотельный конденсатор

Если говорить о твердотельных конденсаторах, это тот же электролитический конденсатор, однако в нем используется специальный токопроводящий полимер или полимеризованный органический полупроводник. В то время как в других конденсаторах используется обычный жидкий электролит.

Общая характеристика

Как уже говорилось, отличие между твердотельными и обычными конденсаторами состоит во внутренней «начинке» устройства. Так чем же они лучше?

Первое и самое существенное отличие кроется именно в том, что в твердотельных конденсаторах используется твердый полимерный электролит, а не жидкий. Это исключает возможность протекания или испарения электролита. Вторым существенным плюсом у твердотельных устройств стало их последовательное эквивалентное сопротивление, которое называют ESR. Снижение этого показателя привело к тому, что стало возможным использование менее емкостных конденсаторов, а также меньших размеров в тех же условиях. Еще одним существенным плюсом твердотельных конденсаторов стало то, что они менее чувствительны к перепадам температуры. Это преимущество также говорит о том, что продолжительность срока службы такого объекта будет больше примерно в шесть раз, а значит и объект, в котором он установлен, прослужит намного дольше.

Электролитические

В твердотельном электролитическом конденсаторе в качестве диэлектрика используется тонкий слой оксида металла. Образование данного слоя осуществляется посредством электрохимического способа. Протекание данного процесса осуществляется на обложке из этого же металла.

Вторая обложка у данного конденсатора может быть представлена в виде жидкого или сухого электролита. В обычных электролитических используется жидкий, а в твердотельных – сухой. Для создания металлического электрода в этом типе твердотельных конденсаторов используется такой материал, как тантал или алюминий.

Стоит отметить, что к группе электролитических принадлежат также и танталовые конденсаторы.

Асимметричные

Асимметричный конденсатор с твердотельным электролитом – это относительно недавнее изобретение, так как ранее использовались другие устройства. Первым и простейшим конденсатором из этой группы стал Т-образный. В этом объекте пластины располагались в одной плоскости. Последующее развитие асимметричных конденсаторов привело к появлению дискового типа. Состоял он из плоского кольца, а также расположенного внутри него диска. Последующее совершенствование асимметричных конденсаторов привело к еще большему упрощению конструкции, и были получены устройства с двумя электродами. Один из них был представлен в виде тонкого провода, а второй – тонкой пластиной или же тонкой полоской металла. Но стоит заметить, что использование именно этого типа конденсаторов затруднено в связи с применением высоковольтного оборудования.

Маркировка

Существует маркировка твердотельных конденсаторов, которая описывает их характеристики. Наличие данной маркировки поможет понять определенные свойства конденсатора:

  • Опираясь на маркировку устройства, можно точно определить рабочее напряжение для каждого конденсатора. Также стоит отметить, что данное значение должно превышать то напряжение, которое присутствует в цепи, использующей этот объект. Если не соблюсти это условие, то будут либо сбои в работе всей цепи, либо конденсатор просто взорвется.
  • 1 000 000 пФ (пикофарад) = 1 мкФ. Данная маркировка у многих конденсаторов одинакова. Это связано с тем, что практически у всех устройств емкость равна или же близка к этому значению, а потому может указываться как в пикофарадах, так и в микрофарадах.

Вздутие конденсатора

Несмотря на то что конденсаторы этого типа довольно устойчивы к поломкам, они все же не вечные, и их также приходится менять. Замена твердотельного конденсатора может понадобиться в нескольких случаях:

  • Причин поломки, то есть вздутия этого устройства, может быть довольно много, однако главной из них называют плохое качество самой детали.
  • К причинам вздутия можно также отнести выкипание или испарение электролита. Несмотря на то что здесь используется твердый электролит, такие неполадки все равно не исключается полностью, и при очень высоких температурах такое все же случается.

Важно отметить, что перегрев этого устройства может произойти как из-за воздействия внешней среды, так и из-за внутренней. К внутреннему воздействию можно отнести неверную установку. Другими словами, если перепутать полярность при монтаже этой детали, то при ее запуске она практически моментально нагревается и, скорее всего, взорвется. Кроме этих причин, возможен также сильный перегрев из-за несоблюдения правил эксплуатации. Это может быть неверный вольтаж, емкость или работа в слишком высокой температурной среде.

Как избежать вздутия и частой замены

Начать стоит с того, как же избежать вздутия твердотельного конденсатора.

  • Первое, что советуют – это использовать только качественные детали.
  • Второй совет, который может помочь избежать таких проблем – это не давать конденсатору перегреваться. Если температура достигает 45 градусов или больше, то необходимо срочное охлаждение, а еще лучше размещать эти устройства как можно дальше от источников тепла.
  • Так как чаще всего конденсаторы вздуваются в блоках питания компьютера, рекомендуют использовать стабилизаторы напряжения, защищающие сеть от резких скачков напряжения.

Если вздутие все же произошло, то требуется замена устройства. Главное правило ремонта – это подобрать конденсатор с такой же емкостью. Допускается отклонение данного параметра в большую сторону, но лишь немного. Отклонения в меньшую сторону недопустимы. Те же правила касаются и напряжения объекта. Также стоит добавить, что при замене электролитических конденсаторов на твердотельные можно использовать устройства и с меньшей емкостью. Это возможно из-за меньшего ESR, о котором говорилось ранее. Но перед этим все же стоит посоветоваться со специалистом. Сам же процесс замены заключается в удалении сгоревшей детали посредством пайки и припаивании нового.

Ремонт

Довольно часто приходится проводить профилактический ремонт конденсаторов. Допустим, при разборке компьютера был найден подозрительный конденсатор. Его необходимо проверить и при необходимости заменить. Для замены потребуется паяльник мощностью от 25 до 40 ВТ. Это приборы средней мощности. Их использование обосновано тем, что менее мощные паяльники не смогут отпаять конденсатор, а более мощные слишком большие, и ими неудобно проводить работы.

Лучше всего иметь под рукой паяльник с конической формой жала. Для осуществления ремонта старый конденсатор выпаивают, но делать это необходимо очень осторожно, так как платы, в которых они установлены, чаще всего многослойные – до 5 слоев. Повреждение хотя бы одного из них выведет из строя всю плату, и ремонту она уже не подлежит. После выпаивания старого устройства отверстия для установки пробиваются иглой, лучше всего медицинской, она более тонкая. Припаивание нового объекта лучше всего проводить, используя канифоль.

Полимерные твердотельные конденсаторы

Можно сказать, что все устройства этого типа являются полимерными, так как внутри этого устройства используется твердый полимер вместо жидкого электролита. Применение твердого материала в стандартных твердотельных конденсаторах дало такие преимущества:

  • при высоких частотах – низкое эквивалентное сопротивление;
  • высокое значение тока пульсации;
  • срок эксплуатации конденсатора значительно выше;
  • более стабильная работа при высоких температурных режимах.

Если говорить подробнее, то, к примеру, пониженное ESR – это меньшие затраты энергии, а значит, и меньший нагрев конденсатора при тех же нагрузках. Более высокая степень пульсации тока обеспечивает стабильную работу всей платы в целом. Естественно, что именно замена жидкого электролита на твердый и привела к тому, что срок службы значительно вырос.

Если говорить о твердотельных конденсаторах, это тот же электролитический конденсатор, однако в нем используется специальный токопроводящий полимер или полимеризованный органический полупроводник. В то время как в других конденсаторах используется обычный жидкий электролит.

Общая характеристика

Как уже говорилось, отличие между твердотельными и обычными конденсаторами состоит во внутренней «начинке» устройства. Так чем же они лучше?

Первое и самое существенное отличие кроется именно в том, что в твердотельных конденсаторах используется твердый полимерный электролит, а не жидкий. Это исключает возможность протекания или испарения электролита. Вторым существенным плюсом у твердотельных устройств стало их последовательное эквивалентное сопротивление, которое называют ESR. Снижение этого показателя привело к тому, что стало возможным использование менее емкостных конденсаторов, а также меньших размеров в тех же условиях. Еще одним существенным плюсом твердотельных конденсаторов стало то, что они менее чувствительны к перепадам температуры. Это преимущество также говорит о том, что продолжительность срока службы такого объекта будет больше примерно в шесть раз, а значит и объект, в котором он установлен, прослужит намного дольше.

Электролитические

В твердотельном электролитическом конденсаторе в качестве диэлектрика используется тонкий слой оксида металла. Образование данного слоя осуществляется посредством электрохимического способа.

Протекание данного процесса осуществляется на обложке из этого же металла.

Вторая обложка у данного конденсатора может быть представлена в виде жидкого или сухого электролита. В обычных электролитических используется жидкий, а в твердотельных – сухой. Для создания металлического электрода в этом типе твердотельных конденсаторов используется такой материал, как тантал или алюминий.

Стоит отметить, что к группе электролитических принадлежат также и танталовые конденсаторы.

Асимметричные

Асимметричный конденсатор с твердотельным электролитом – это относительно недавнее изобретение, так как ранее использовались другие устройства. Первым и простейшим конденсатором из этой группы стал Т-образный. В этом объекте пластины располагались в одной плоскости. Последующее развитие асимметричных конденсаторов привело к появлению дискового типа. Состоял он из плоского кольца, а также расположенного внутри него диска. Последующее совершенствование асимметричных конденсаторов привело к еще большему упрощению конструкции, и были получены устройства с двумя электродами.

Один из них был представлен в виде тонкого провода, а второй – тонкой пластиной или же тонкой полоской металла. Но стоит заметить, что использование именно этого типа конденсаторов затруднено в связи с применением высоковольтного оборудования.

Маркировка

Существует маркировка твердотельных конденсаторов, которая описывает их характеристики. Наличие данной маркировки поможет понять определенные свойства конденсатора:

  • Опираясь на маркировку устройства, можно точно определить рабочее напряжение для каждого конденсатора. Также стоит отметить, что данное значение должно превышать то напряжение, которое присутствует в цепи, использующей этот объект. Если не соблюсти это условие, то будут либо сбои в работе всей цепи, либо конденсатор просто взорвется.
  • 1 000 000 пФ (пикофарад) = 1 мкФ. Данная маркировка у многих конденсаторов одинакова. Это связано с тем, что практически у всех устройств емкость равна или же близка к этому значению, а потому может указываться как в пикофарадах, так и в микрофарадах.

Вздутие конденсатора

Несмотря на то что конденсаторы этого типа довольно устойчивы к поломкам, они все же не вечные, и их также приходится менять. Замена твердотельного конденсатора может понадобиться в нескольких случаях:

  • Причин поломки, то есть вздутия этого устройства, может быть довольно много, однако главной из них называют плохое качество самой детали.
  • К причинам вздутия можно также отнести выкипание или испарение электролита. Несмотря на то что здесь используется твердый электролит, такие неполадки все равно не исключается полностью, и при очень высоких температурах такое все же случается.

Важно отметить, что перегрев этого устройства может произойти как из-за воздействия внешней среды, так и из-за внутренней. К внутреннему воздействию можно отнести неверную установку. Другими словами, если перепутать полярность при монтаже этой детали, то при ее запуске она практически моментально нагревается и, скорее всего, взорвется. Кроме этих причин, возможен также сильный перегрев из-за несоблюдения правил эксплуатации. Это может быть неверный вольтаж, емкость или работа в слишком высокой температурной среде.

Как избежать вздутия и частой замены

Начать стоит с того, как же избежать вздутия твердотельного конденсатора.

  • Первое, что советуют – это использовать только качественные детали.
  • Второй совет, который может помочь избежать таких проблем – это не давать конденсатору перегреваться. Если температура достигает 45 градусов или больше, то необходимо срочное охлаждение, а еще лучше размещать эти устройства как можно дальше от источников тепла.
  • Так как чаще всего конденсаторы вздуваются в блоках питания компьютера, рекомендуют использовать стабилизаторы напряжения, защищающие сеть от резких скачков напряжения.

Если вздутие все же произошло, то требуется замена устройства. Главное правило ремонта – это подобрать конденсатор с такой же емкостью. Допускается отклонение данного параметра в большую сторону, но лишь немного. Отклонения в меньшую сторону недопустимы. Те же правила касаются и напряжения объекта. Также стоит добавить, что при замене электролитических конденсаторов на твердотельные можно использовать устройства и с меньшей емкостью. Это возможно из-за меньшего ESR, о котором говорилось ранее. Но перед этим все же стоит посоветоваться со специалистом. Сам же процесс замены заключается в удалении сгоревшей детали посредством пайки и припаивании нового.

Ремонт

Довольно часто приходится проводить профилактический ремонт конденсаторов. Допустим, при разборке компьютера был найден подозрительный конденсатор. Его необходимо проверить и при необходимости заменить. Для замены потребуется паяльник мощностью от 25 до 40 ВТ. Это приборы средней мощности. Их использование обосновано тем, что менее мощные паяльники не смогут отпаять конденсатор, а более мощные слишком большие, и ими неудобно проводить работы.

Лучше всего иметь под рукой паяльник с конической формой жала. Для осуществления ремонта старый конденсатор выпаивают, но делать это необходимо очень осторожно, так как платы, в которых они установлены, чаще всего многослойные – до 5 слоев. Повреждение хотя бы одного из них выведет из строя всю плату, и ремонту она уже не подлежит. После выпаивания старого устройства отверстия для установки пробиваются иглой, лучше всего медицинской, она более тонкая. Припаивание нового объекта лучше всего проводить, используя канифоль.

Полимерные твердотельные конденсаторы

Можно сказать, что все устройства этого типа являются полимерными, так как внутри этого устройства используется твердый полимер вместо жидкого электролита. Применение твердого материала в стандартных твердотельных конденсаторах дало такие преимущества:

  • при высоких частотах – низкое эквивалентное сопротивление;
  • высокое значение тока пульсации;
  • срок эксплуатации конденсатора значительно выше;
  • более стабильная работа при высоких температурных режимах.

Если говорить подробнее, то, к примеру, пониженное ESR – это меньшие затраты энергии, а значит, и меньший нагрев конденсатора при тех же нагрузках. Более высокая степень пульсации тока обеспечивает стабильную работу всей платы в целом. Естественно, что именно замена жидкого электролита на твердый и привела к тому, что срок службы значительно вырос.

Конденсаторы широко применяются в электротехнике в качестве элементов, сглаживающих пульсации переменного тока, фильтров частоты, или накопителей энергии. Кроме того, эти радиодетали можно применять в качестве гальванической развязки. Технологий изготовление множество, принцип общий: между двумя обкладками кроме диэлектрика размещается особое химическое вещество, определяющее характеристики. Для электроустановок постоянного тока, применяются электролиты. Это недорогая технология, которая имеет серьезный недостаток: жидкость может закипеть от перегрузки или высокой температуры, и тогда конденсатор буквально взрывается. К счастью, такой «экстрим» случается редко: в большинстве случаев корпус просто разрушается, теряет герметичность, и электролит вытекает на монтажную плату.

Поэтому в ответственных узлах применяются конденсаторы, изготовленные по иной технологии. Вместо жидкого электролита применяется токопроводящий органический полимер. Он имеет фактически твердую консистенцию, поэтому при экстремальных нагрузках (включая температурные) опасности не представляет. Такие конденсаторы называются твердотельными (по причине отсутствия жидких фракций). Характеристики этих элементов не уступают традиционным «электролитам», однако стоимость деталей существенно выше. Есть еще один недостаток твердотельной конструкции — ограничения по вольтажу. Верхний предел напряжения не более 35 Вольт. Учитывая область применения (компьютеры, бытовая техника, автомобили), это не является большой проблемой.

По причине высокой стоимости, домашние мастера стараются избегать покупки дорогих деталей, используя б/у компоненты для замены. В любом случае, чтобы не тратить лишние деньги, необходимо знать, как проверить твердотельный конденсатор.

Как работает полимерный конденсатор

Чтобы проверить любой прибор, желательно понимать механизм его работы. Поскольку тема нашего материала — твердотельные конденсаторы (аналоги электролитических), значит речь пойдет о радиоэлементах для постоянного тока, то есть полярных. Все со школьной скамьи помнят эту иллюстрацию:

Две металлические пластины с диэлектриком между ними (для лаборатории подойдет даже воздух). Если на контакты подать потенциал, между пластинами накапливается разноименные заряды, и в пространстве между ними возникает электрическое поле. При отсутствии электрической цепи это поле может сохраняться достаточно долго (современные элементы обеспечивают утечку заряда, стремящуюся к нулю). Именно это свойство лежит в основе применения конденсаторов.

Элемент имеет определенные основные характеристики:

  • Рабочее напряжение определяется величиной, при которой не наступает пробой диэлектрика. Конденсаторы выглядят совсем не так, как мы привыкли видеть на лабораторном столе в классе физики. Детали весьма компактны, соответственно расстояние между пластинами минимально. Отсюда ограничение по предельному напряжению.
  • Емкость конденсатора — его главный параметр. Он определяет, сколько электрической энергии деталь может накопить и удерживать в себе. Величина напрямую зависит от площади пластин.
  • Параметры утечки. Могут определяться током потери накопленного заряда, либо сопротивлением диэлектрика. Идеальные показатели возможны только в вакууме, но такие конденсаторы для бытового использования не выпускаются.
  • Температурный коэффициент: определяется дельтой изменения емкости в зависимости от температуры.
  • Точность — указывается в процентах. Показывает разброс параметров емкости от эталонной (маркировочной) величины.

Важно: несмотря на большое количество параметров, измерению (проверке) подлежат лишь два из них: емкость и сопротивление диэлектрика.

Устройство электролитических и твердотельных конденсаторов

Радиокомпоненты такого класса применяются в электронных устройствах с высокими требованиями по габаритам. Поэтому вопрос компромисса между площадью обкладок (от этого зависит емкость) и размерами корпуса — головная боль разработчиков. Проблема решается технологически просто:

Изготавливается так называемых сэндвич, стоящий из двух тончайших обкладок, между которыми прокладывается слой пропитанной электролитом бумаги (в электролитических моделях) или токопроводящий полимер (твердотельные конденсаторы). Обычно используется танталовая или алюминиевая фольга. В качестве диэлектрика применяется естественный оксидный слой одной из пластин. У него низкая проводимость, которая определяет ток утечки емкости.

Такая конструкция может занимать достаточно большую (по меркам радиодеталей) емкость. Поэтому ее сворачивают в плотный рулон, где в качестве разделителя между слоями выступает тонкая электро-бумага (смотрим иллюстрацию). Она не участвует в схеме работы конденсатора.

Наружная оболочка выполнена из алюминия, на нее наносится информация о характеристиках.

Преимущества твердотельных конденсаторов

  • В сравнение с электролитической конструкцией, существенно снижено эквивалентное последовательное сопротивление. Благодаря этому деталь практически не нагревается на высоких частотах.
  • Значительная величина тока пульсаций делает работу более стабильной, особенно в схемах обеспечения электропитанием.
  • Твердотельные конденсаторы практически не зависят от температуры. Кроме физической защиты от раздувания корпуса, это свойство позволяет сохранять параметры при нагреве.
  • Продолжительность жизни. Если принять за эталон рабочую температуру 85 °C, срок эксплуатации (без потери характеристик) в 6 раз больше, чем у электролитов. Обычно эти детали без проблем работают не менее 5 лет.

Самостоятельная диагностика конденсатора

Поскольку мы говорим о деталях для работы с постоянным током, не имеет значения, какая применяется технология: электролитическая или полимерная. Проверка полярных конденсаторов выполняется одинаково.

Прежде всего, выполняется внешний осмотр. Электролиты не должны иметь следов вздутия, особенно на торце, где есть насечка в виде креста. При осмотре твердотельных корпусов можно увидеть термические повреждения с нарушением геометрии.

Разумеется, необходимо проверить крепление ножек. Компактная конструкция подразумевает небольшие размеры всех компонентов. Ножки могут банально оторваться еще на стадии сборки.

Если внешний осмотр не дал результатов, проводим тестирование с помощью мультиметра

В любом случае, для выполнения этих работ необходимо выпаять деталь из платы. Делать это надо осторожно, чтобы не выдернуть контактные ножки из корпуса.

Если ваш прибор имеет специализированный разъем для проверки, диагностика выполняется в соответствии с инструкцией к мультиметру. Обязательно проводится весь комплекс тестирования (если такой алгоритм имеется). Подключать нужно правильно, соблюдая полярность. Маркировка обязательно присутствует на корпусе детали. При такой проверке вы не только проверите исправность, но и увидите значение емкости.

    Проверка работоспособности конденсатора начинается с измерения сопротивления. Делается это не так, как на резисторах или диодах. Чтобы понять принцип проверки, вспомним основные свойства конденсатора. При накоплении заряда сопротивление между обкладками увеличивается. Для начала необходимо разрядить элемент (снять остаточный заряд). Разумеется, это справедливо лишь для исправной детали. Надо просто замкнуть ножки любым проводником, или сомкнуть их между собой.

Важно: электролитические конденсаторы могут работать с напряжением до 600 Вольт и более, поэтому их разряжают только инструментом с изолированной рукояткой.

Проверка межобкладочного замыкания

Даже такой надежный конденсатор, как твердотельный, может иметь банальные физические повреждения. Например, замыкание между обкладками или на корпус. В первом случае сопротивление не увеличится до бесконечности, хотя первое время будет плавно увеличиваться. При пробое на корпус, сопротивление между одной из ножек и внешней оболочкой будет критически маленьким.

В обоих случаях, такие конденсаторы следует отнести к браку, восстановлению они не подлежат.

Проверка истинных значений емкости

Как проверять детали с помощью специализированного мультиметра, мы уже рассматривали. Однако для проверки твердотельного (электролитического) конденсатора недостаточно просто зафиксировать факт исправности. Особенно, если радиоэлемент под подозрением, либо вы хотите использовать деталь, бывшую в употреблении. Необходимо использовать прибор, с достаточным диапазоном измерения емкости.

Тестирование проводится в несколько этапов:

  • несколько раз соединяем конденсатор с клеммами прибора, затем разряжаем его замыканием, и снова проверяем;
  • нагреваем радиодеталь с помощью термофена до температуры 60–85°C, и проверяем значение емкости: разброс параметров не должен превышать допустимую погрешность (указано на корпусе).

Важно: обязательно соблюдайте полярность при проведении измерений. Это необходимо не только для получения истинного значения. При напряжении питания прибора хотя бы 9 вольт (такие мультиметры встречаются часто), конденсатор может выйти из строя из-за переполюсовки.

Практическое применение на автомобиле

Далеко не все домашние мастера будут тестировать элементную базу материнских плат компьютеров. А вот навыки, как проверить конденсатор трамблера, пригодятся любому автолюбителю. Изучим методику на примере классики ВАЗ.

  • Для проверки необходимо отсоединить кабель, идущий от трамблера до конденсатора. Он обычно соединен с одним контактом прерывателя. Между контактами закрепляем лампу мощностью 35–50 Вт (разумеется, с напряжением 12 вольт). Если при включении зажигания лампа загорелась, конденсатор неисправен, то есть «пробит» (это самая характерная поломка). Если «контролька» не светится — конденсатор исправен.
  • Второй способ можно применять в крайнем случае, если у вас не нашлось лишней лампы. После включения зажигания, необходимо быстро и вскользь коснуться контактами друг к другу. Если ничего не происходит — конденсатор в порядке. При наличии искрения — радиоэлемент «пробит».

Для того, чтобы проверить твердотельные либо электролитические конденсаторы, не обязательно иметь образование радиоинженера. Руководствуясь нашими советами, вы сможете точно определить исправность радиодеталей, и сэкономить средства на покупку новых элементов. Учитывая высокую стоимость именно таких конденсаторов, снижение затрат на ремонт будет ощутимым.

Видео по теме

Маркировка твердотельных конденсаторов расшифровка — Строительство домов и бань

Что такое твердотельные конденсаторы? Маркировка и классификация

Если говорить о твердотельных конденсаторах, это тот же электролитический конденсатор, однако в нем используется специальный токопроводящий полимер или полимеризованный органический полупроводник. В то время как в других конденсаторах используется обычный жидкий электролит.

Общая характеристика

Как уже говорилось, отличие между твердотельными и обычными конденсаторами состоит во внутренней «начинке» устройства. Так чем же они лучше?

Первое и самое существенное отличие кроется именно в том, что в твердотельных конденсаторах используется твердый полимерный электролит, а не жидкий. Это исключает возможность протекания или испарения электролита. Вторым существенным плюсом у твердотельных устройств стало их последовательное эквивалентное сопротивление, которое называют ESR. Снижение этого показателя привело к тому, что стало возможным использование менее емкостных конденсаторов, а также меньших размеров в тех же условиях. Еще одним существенным плюсом твердотельных конденсаторов стало то, что они менее чувствительны к перепадам температуры. Это преимущество также говорит о том, что продолжительность срока службы такого объекта будет больше примерно в шесть раз, а значит и объект, в котором он установлен, прослужит намного дольше.

Электролитические

В твердотельном электролитическом конденсаторе в качестве диэлектрика используется тонкий слой оксида металла. Образование данного слоя осуществляется посредством электрохимического способа. Протекание данного процесса осуществляется на обложке из этого же металла.

Вторая обложка у данного конденсатора может быть представлена в виде жидкого или сухого электролита. В обычных электролитических используется жидкий, а в твердотельных — сухой. Для создания металлического электрода в этом типе твердотельных конденсаторов используется такой материал, как тантал или алюминий.

Стоит отметить, что к группе электролитических принадлежат также и танталовые конденсаторы.

Асимметричные

Асимметричный конденсатор с твердотельным электролитом — это относительно недавнее изобретение, так как ранее использовались другие устройства. Первым и простейшим конденсатором из этой группы стал Т-образный. В этом объекте пластины располагались в одной плоскости. Последующее развитие асимметричных конденсаторов привело к появлению дискового типа. Состоял он из плоского кольца, а также расположенного внутри него диска. Последующее совершенствование асимметричных конденсаторов привело к еще большему упрощению конструкции, и были получены устройства с двумя электродами. Один из них был представлен в виде тонкого провода, а второй — тонкой пластиной или же тонкой полоской металла. Но стоит заметить, что использование именно этого типа конденсаторов затруднено в связи с применением высоковольтного оборудования.

Маркировка

Существует маркировка твердотельных конденсаторов, которая описывает их характеристики. Наличие данной маркировки поможет понять определенные свойства конденсатора:

  • Опираясь на маркировку устройства, можно точно определить рабочее напряжение для каждого конденсатора. Также стоит отметить, что данное значение должно превышать то напряжение, которое присутствует в цепи, использующей этот объект. Если не соблюсти это условие, то будут либо сбои в работе всей цепи, либо конденсатор просто взорвется.
  • 1 000 000 пФ (пикофарад) = 1 мкФ. Данная маркировка у многих конденсаторов одинакова. Это связано с тем, что практически у всех устройств емкость равна или же близка к этому значению, а потому может указываться как в пикофарадах, так и в микрофарадах.

Вздутие конденсатора

Несмотря на то что конденсаторы этого типа довольно устойчивы к поломкам, они все же не вечные, и их также приходится менять. Замена твердотельного конденсатора может понадобиться в нескольких случаях:

  • Причин поломки, то есть вздутия этого устройства, может быть довольно много, однако главной из них называют плохое качество самой детали.
  • К причинам вздутия можно также отнести выкипание или испарение электролита. Несмотря на то что здесь используется твердый электролит, такие неполадки все равно не исключается полностью, и при очень высоких температурах такое все же случается.

Важно отметить, что перегрев этого устройства может произойти как из-за воздействия внешней среды, так и из-за внутренней. К внутреннему воздействию можно отнести неверную установку. Другими словами, если перепутать полярность при монтаже этой детали, то при ее запуске она практически моментально нагревается и, скорее всего, взорвется. Кроме этих причин, возможен также сильный перегрев из-за несоблюдения правил эксплуатации. Это может быть неверный вольтаж, емкость или работа в слишком высокой температурной среде.

Как избежать вздутия и частой замены

Начать стоит с того, как же избежать вздутия твердотельного конденсатора.

  • Первое, что советуют — это использовать только качественные детали.
  • Второй совет, который может помочь избежать таких проблем — это не давать конденсатору перегреваться. Если температура достигает 45 градусов или больше, то необходимо срочное охлаждение, а еще лучше размещать эти устройства как можно дальше от источников тепла.
  • Так как чаще всего конденсаторы вздуваются в блоках питания компьютера, рекомендуют использовать стабилизаторы напряжения, защищающие сеть от резких скачков напряжения.

Если вздутие все же произошло, то требуется замена устройства. Главное правило ремонта — это подобрать конденсатор с такой же емкостью. Допускается отклонение данного параметра в большую сторону, но лишь немного. Отклонения в меньшую сторону недопустимы. Те же правила касаются и напряжения объекта. Также стоит добавить, что при замене электролитических конденсаторов на твердотельные можно использовать устройства и с меньшей емкостью. Это возможно из-за меньшего ESR, о котором говорилось ранее. Но перед этим все же стоит посоветоваться со специалистом. Сам же процесс замены заключается в удалении сгоревшей детали посредством пайки и припаивании нового.

Ремонт

Довольно часто приходится проводить профилактический ремонт конденсаторов. Допустим, при разборке компьютера был найден подозрительный конденсатор. Его необходимо проверить и при необходимости заменить. Для замены потребуется паяльник мощностью от 25 до 40 ВТ. Это приборы средней мощности. Их использование обосновано тем, что менее мощные паяльники не смогут отпаять конденсатор, а более мощные слишком большие, и ими неудобно проводить работы.

Лучше всего иметь под рукой паяльник с конической формой жала. Для осуществления ремонта старый конденсатор выпаивают, но делать это необходимо очень осторожно, так как платы, в которых они установлены, чаще всего многослойные — до 5 слоев. Повреждение хотя бы одного из них выведет из строя всю плату, и ремонту она уже не подлежит. После выпаивания старого устройства отверстия для установки пробиваются иглой, лучше всего медицинской, она более тонкая. Припаивание нового объекта лучше всего проводить, используя канифоль.

Полимерные твердотельные конденсаторы

Можно сказать, что все устройства этого типа являются полимерными, так как внутри этого устройства используется твердый полимер вместо жидкого электролита. Применение твердого материала в стандартных твердотельных конденсаторах дало такие преимущества:

  • при высоких частотах — низкое эквивалентное сопротивление;
  • высокое значение тока пульсации;
  • срок эксплуатации конденсатора значительно выше;
  • более стабильная работа при высоких температурных режимах.

Если говорить подробнее, то, к примеру, пониженное ESR — это меньшие затраты энергии, а значит, и меньший нагрев конденсатора при тех же нагрузках. Более высокая степень пульсации тока обеспечивает стабильную работу всей платы в целом. Естественно, что именно замена жидкого электролита на твердый и привела к тому, что срок службы значительно вырос.

Маркировка конденсаторов

Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

Расшифровка маркировки конденсаторов

Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

Обозначение цифр

Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.

Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.

Обозначение букв

После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

Маркировка керамических конденсаторов

Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

Смешанная буквенно-цифровая маркировка

Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ – это максимальная температура.

Цифры соответствуют следующим показателям: 2 – 45 0 С, 4 – 65 0 С, 5 – 85 0 С, 6 – 105 0 С, 7 – 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

Прочие маркировки

Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.

Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

Как расшифровать маркировку конденсатора и узнать его ёмкость?

Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.

С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.

Зачем нужна маркировка?

Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:

  • данные о ёмкости конденсатора – главной характеристике элемента;
  • сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
  • данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
  • процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
  • дату выпуска.

Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.

Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.

Маркировка отечественных конденсаторов

Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.

Ёмкость

Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.

  • 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
  • 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
  • 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
  • 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.

Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

Номинальное напряжение

Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

Дата выпуска

Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.

“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц — двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).

4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”

Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

ГодКод
1990A
1991B
1992C
1993D
1994E
1995F
1996H
1997I
1998K
1999L
2000M
2001N
2002P
2003R
2004S
2005T
2006U
2007V
2008W
2009X
2010A
2011B
2012C
2013D
2014E
2015F
2016H
2017I
2018K
2019L

Расположение маркировки на корпусе

Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.

По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.

Цветовая маркировка отечественных радиоэлементов

При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.

На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.

Приводим для вас пример как обозначается тот или иной элемент — емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.

Маркировка конденсаторов импортного производства

На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

Цветовая маркировка импортных конденсаторов

Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.

Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.

Маркировка smd компонентов

Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.

Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра.2 PF) конденсатор от фирмы Kemet.

Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.

В общем случае керамические конденсаторы на

основе диэлектрика с высокой проницаемостью обозначаются

согласно EIA тремя символами, первые два из которых указывают

на нижнюю и верхнюю границы рабочего диапазона температур, а

третий – допустимое изменение емкости в этом диапазоне.6pF = 4. 7mF

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Код содержит четыре знака (буквы и цифры), обозначающие номинальную емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — емкость в пикофарадах (пф), а последняя цифра — количество нулей.

Возможны 2 варианта кодировки емкости:

а) первые две цифры указывают номинал в пФ, третья — количество нулей;

б) емкость указывают в микрофарадах, знак р выполняет функцию десятичной запятой.

Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может

указываться непосредственно в микрофарадах (мкФ) или 8 пикофарадах (пф) с указанием количества нулей. Например, первая строка — 15, вторая строка — 35V означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Маркировка Танталовых SMD конденсаторов.

Маркировка танталовых конденсаторов состоит из буквенного кода номинального напряжения в соответствии со следующей таблицей:

За ним следует трехзначный код номинала емкости в pF, в которомпоследняя цифра обозначает количество нулей в номинале. Например, маркировка E105 обозначает конденсатор емкостью 1 000 000pF = 1.0uF с рабочим напряжением 25V.

Емкость и рабочее напряжение танталовых SMD-конденсаторов

обозначаются их прямой записью, например 47 6V – 47uF 6V.

ЗЫ: Взял где взял, обобщил и добавил немного.

(Простите за плохое поведение.) — водка — зло.

Маркировка конденсаторов

Маркировка конденсаторов при выборе какого-либо элемента в схеме имеет большое значение. Она разнообразная и сложная по сравнению с резисторами. Специалист, который работает непосредственно с конденсаторами должен обязательно знать, как расшифровывается та или иная маркировка.

Таблица маркировки конденсаторов

КодПикофарады, (пф, pf)Нанофарады, (нф, nf)Микрофарады, (мкф, µf)
1091.00.0010.000001
1591.50.00150.000001
2292.20.00220.000001
3393.30.00330.000001
4794.70.00470.000001
6896.80.00680.000001
100*100.010.00001
150150.0150.000015
220220.0220.000022
330330.0330.000033
470470.0470.000047
680680.0680.000068
1011000.10.0001
1511500.150.00015
2212200.220.00022
3313300.330.00033
4714700.470.00047
6816800.680.00068
10210001.00.001
15215001.50.0015
22222002.20.0022
33233003.30.0033
47247004.70.0047
68268006.80.0068
10310000100.01
15315000150.015
22322000220.022
33333000330.033
47347000470.047
68368000680.008
1041000001000.1
1541500001500.15
2242200002200.22
3343300003300.33
4744700004700.47
6846800006800.68
105100000010001.0

Маркировка твердотельных конденсаторов

По международному стандарту — начинают читать с единиц измерения. Фарады применяются для измерения ёмкости. Маркировку наносят на корпус самого устройства.

Иногда наносят маркеры, которые указывают на допустимые отклонения от нормы емкости самого конденсатора (указывается в процентах).

Порой, вместо них используется буква, которая обозначает то или иное значение самого допуска. Затем опреедляем номинальное напряжение. В том случае, если же корпус устройства имеет большие размеры, данный параметр обозначается цифрой, за которой далее следуют буквы. Максимально допустимое значение параметра указывается с помощью цифр. Если на корпусе нет никакой информации о допустимом значении напряжения, то использовать его можно только в цепях с низким напряжением. Если же устройство, согласно его параметрам, должно использоваться в цепях, где есть переменный ток, то применяться оно, соответсвенно, должно именно так и не иначе.

Устройство, которое работает с постоянным током, нельзя использовать в цепях с переменным.

Далее, определием полярность устройства: положительную и же отрицательную. Этот шаг очень важен. Если полюса будут определены неверно, велик риск возникновения короткого замыкания или даже взрыва самого устройства. Независимо от полярности, конденсатор можно будет подключить в том случае, если не указана какая-либо информация о плюсе и же минусе клемм.

Значение полярности могут наносить в виде специальных углублений, которые имеют форму кольца, или же в виде одноцветной полосы. В конденсаторах из алюминия, которые по своему внешнему виду похожи на банку из-под консервов, подобные обозначения говорят об отрицательной полярности. А, например, в танталовых конденсаторах, которые имеют небольшие габариты, все наоборот — полярность при данных обозначениях будет являться положительной. Цветовую маркировку не стоит учитывать лишь в том случае, если на самом конденсаторе будут указаны плюс и минус.

Маркировка конденсаторов: расшифровка

Значения первых двух цифр на корпусе, которые указывают на ёмкость устройства. Если конденсатор небольшого размера — маркировка осуществляется согласно стандарту EIA.

Цифры: обозначение

Когда в обозначении указаны только одна буква и две цифры, то цифры соответствуют параметру ёмкости конденсатора. По-своему нужно расшифровывать остальные маркировки, опираясь на ту или иную инструкцию. Множитель нуля — это третья по счету цифра. Расшифровку проводят в зависимости от того, какая цифра находится в конце. К первым двум цифрам необходимо добавить определённое количество нолей, если цифра входит в диапазон от ноля до шести. Если последней цифрой является число восемь, то в таком случае необходимо на 0,01 умножить две первые цифры. Когда значение ёмкости конденсатора станет известным, нужен будет определить то, в таких единицах измерения указана данная величина. Устройства из керамики, а также плёночные варианты являются мелкими. В них данный параметр измеряется в пикофарадах. Микрофарады используются для больших конденсаторов.

Буквы: их обозначение

Далее необходимо провести расшифровку букв, которые есть в маркировке. Если в первых двух символах есть буква, то в таком случае расшифровать ее можно несколькими методами. Если есть буква R, то она играет роль запятой, которая используется в дроби. Если есть буквы u, n, p — то оно тоже выполняют роль запятой в той же самой дроби.

Керамические конденсаторы: маркировка

Данные виды устройств имеют два контакта, а также круглую форму. На корпусе будут указаны как основные показатели, так и допуск отклонений от номы параметра ёмкости. Для этого используют специальную букву, которая находится после обозначения ёмкости в цифрах.

Если есть буква В, то отклонение в таком случае будет равняться +0,1 пФ, если буква С — то + 0,25 пФ и так далее. Только при значении параметра ёмкости менее 10пФ используются данные значения. Если параметр ёмкости больше указанного выше, то буквы — это процент допустимых отклонений.

Смешанная маркировка из цифр и букв

Маркировка может быть указана в виде буквы, затем цифры, а после снова буквы. Первый символ — это самая маленькая допустимая температура. Второй символ обозначает, наоборот, самую большую допустимую температуру. Третий символ — это ёмкость устройства, которая может изменяться в переделах ранее указанных значений температур.

Остальные маркировки

Значение напряжения можно узнать с помощью маркировки, которая находится на корпусе устройства. Символы говорят о допустимом максимальном значении параметра для того или иного конденсатора. Иногда маркировку упрощают. Например, используется только первая цифра. Напряжение меньше десяти вольт будет обозначаться, например, нулём, а этот же параметр, который будет иметь напряжение в пределах от десяти до девяноста девяти вольт — единицей и так далее. Другую маркировку имеют устройства, которые были выпущены намного раньше. Тогда нужно обратиться к справочнику во избежание совершения ошибок. У нас вы можете также узнать, как проверить конденсатор мультиметром на плате.

Как обозначаются конденсаторы на схеме?

Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.

Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.

Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.

Единицы измерения

e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.

  • S – площадь одной из обкладок(в метрах).
  • d – расстояние между обкладками(в метрах).
  • C – величина емкости вфарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.

1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:

  • 1 Микрофарада – одна миллионная часть фарады.10 -6
  • 1 нанофарада – одна миллиардная часть фарады. 10 -9
  • 1 пикофарада -10 -12 фарады.
кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0.047 нФ
68068 пФ0.068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
15315000 пФ15 нФ0.015 мкФ
22322000 пФ22 нФ0.022 мкФ
33333000 пФ33 нФ0.033 мкФ
47347000 пФ47 нФ0.047 мкФ
68368000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

Маркировка четырьмя цифрами

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

Буквенно-цифровая маркировка

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.

Планарные керамические конденсаторы

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Планарные электролитические конденсаторы

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)

Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин – пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение.

Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов. Однако, существуют конденсаторы и без маркировки, – в этом случае емкость можно определить только измерив её измерителем емкости, что же касается максимального напряжения., здесь, как говорится, медицина бессильна.

Цифро-буквенное обозначение

Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

  • p – пикофарады,
  • n – нанофарады
  • m – микрофарады.

При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

Небольшие замечания и советы по работе с конденсаторами

Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

Заключение

В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.

Более подробно о маркировке конденсаторов можно узнать здесь. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Полимерные Ultra Low ESR конденсаторы Panasonic

Мы надеемся, что вся информация, представленная в каталоге, будет полезна и производителям промэлектроники, и сервисным центрам, и радиолюбителям.

Информация по размерам контактных площадок электронных компонентов, применяемых для разработки, сборки и монтажа печатных плат, находится в разделе Печатные платы.

Цены в формате  .pdf,  .xls Купить
Маркировка Емкость Напряжение tg Ток утечки ESR, на 100 кГц Ток пульсаций Склад Заказ
EEFCX1E220R 22мкФ ±20% 25В 0,06 0,3 мкА 40 милиОм
EEFCD0K330R 33мкФ ±20% 0,06 10,6 мкА 60 милиОм 1,6А
EEFCD0J470R 47мкФ ±20% 6,3В 0,06 10,6 мкА 50 милиОм 1,6А
EEFCX1A101R 100мкФ ±20% 10В 0,06 0,3 мкА 40 милиОм 3,А
Цены в формате  .pdf,  .xls Купить
Упаковка: В блистр-ленте на катушке диаметром 330 мм по 3500 штук Ultra Low ESR чип конденсаторов.

Полимерный конденсатор низкопрофильного SMD исполнения

Минимальная наработка на отказ 2000 часов при температуре +105°С.

Сопротивление на высоких частотах (1 МГц) на порядок меньше, чем у танталовых и практически не меняется во всем диапазоне рабочих температур.

Долговечность от 25 до 50 лет.

Диапазон рабочих температур: -40° … +105°С

Алюминиевый чип конденсатор SP-Cap состоит из плоского алюминиевого анода с сформированным на нем слоем непроводящего окисла, обволакивает электрод полимерный электролит, электрический контакт к которому осуществляет серебряный катодом. Использование особого полимера в качестве диэлектрика позволило достичь рекордной проводимости, т.е. минимальных значений низкого последовательного сопротивления ESR.

Технические характеристики и маркировка полимерных Ultra Low ESR конденсаторов PANASONIC (MATSUSHITA ELECTRIC INDUSTRIL)

Алюминиевые чип конденсаторы SP-Cap обладают высокочастотными характеристиками превосходящими традиционные танталовые чип конденсаторы, выдерживают большие токи пульсаций в широком диапазоне рабочих температур от -40° до +105°С. По сравнению с близкими по характеристикам алюминиевым конденсаторам с твердым органическим электролитом имеют значительно меньшую высоту корпуса и практически одинаковые цены, при этом значительно превосходят их в долговечности. SP-Cap выполнены в корпусах, аналогичных типоразмерам танталовых конденсаторов D case и варьируются по высоте. Конденсаторы представленные в данной таблице и поставляемы со склада имеют высоту 1,8 мм.

Производитель — PANASONIC.

Корзина

Корзина пуста

Что это — твердотельные конденсаторы? Маркировка и классификация

Если говорить о твердотельных конденсаторах, это тот же электролитический конденсатор, однако в нем используется специальный токопроводящий полимер или полимеризованный органический полупроводник. В то время как в других конденсаторах используется обычный жидкий электролит.

Общая характеристика

Как уже говорилось, отличие между твердотельными и обычными конденсаторами состоит во внутренней «начинке» устройства. Так чем же они лучше?

Первое и самое существенное отличие кроется именно в том, что в твердотельных конденсаторах используется твердый полимерный электролит, а не жидкий. Это исключает возможность протекания или испарения электролита. Вторым существенным плюсом у твердотельных устройств стало их последовательное эквивалентное сопротивление, которое называют ESR. Снижение этого показателя привело к тому, что стало возможным использование менее емкостных конденсаторов, а также меньших размеров в тех же условиях. Еще одним существенным плюсом твердотельных конденсаторов стало то, что они менее чувствительны к перепадам температуры. Это преимущество также говорит о том, что продолжительность срока службы такого объекта будет больше примерно в шесть раз, а значит и объект, в котором он установлен, прослужит намного дольше.

Электролитические

В твердотельном электролитическом конденсаторе в качестве диэлектрика используется тонкий слой оксида металла. Образование данного слоя осуществляется посредством электрохимического способа. Протекание данного процесса осуществляется на обложке из этого же металла.

Вторая обложка у данного конденсатора может быть представлена в виде жидкого или сухого электролита. В обычных электролитических используется жидкий, а в твердотельных — сухой. Для создания металлического электрода в этом типе твердотельных конденсаторов используется такой материал, как тантал или алюминий.

Стоит отметить, что к группе электролитических принадлежат также и танталовые конденсаторы.

Асимметричные

Асимметричный конденсатор с твердотельным электролитом — это относительно недавнее изобретение, так как ранее использовались другие устройства. Первым и простейшим конденсатором из этой группы стал Т-образный. В этом объекте пластины располагались в одной плоскости. Последующее развитие асимметричных конденсаторов привело к появлению дискового типа. Состоял он из плоского кольца, а также расположенного внутри него диска. Последующее совершенствование асимметричных конденсаторов привело к еще большему упрощению конструкции, и были получены устройства с двумя электродами. Один из них был представлен в виде тонкого провода, а второй — тонкой пластиной или же тонкой полоской металла. Но стоит заметить, что использование именно этого типа конденсаторов затруднено в связи с применением высоковольтного оборудования.

Маркировка

Существует маркировка твердотельных конденсаторов, которая описывает их характеристики. Наличие данной маркировки поможет понять определенные свойства конденсатора:

  • Опираясь на маркировку устройства, можно точно определить рабочее напряжение для каждого конденсатора. Также стоит отметить, что данное значение должно превышать то напряжение, которое присутствует в цепи, использующей этот объект. Если не соблюсти это условие, то будут либо сбои в работе всей цепи, либо конденсатор просто взорвется.
  • 1 000 000 пФ (пикофарад) = 1 мкФ. Данная маркировка у многих конденсаторов одинакова. Это связано с тем, что практически у всех устройств емкость равна или же близка к этому значению, а потому может указываться как в пикофарадах, так и в микрофарадах.

Вздутие конденсатора

Несмотря на то что конденсаторы этого типа довольно устойчивы к поломкам, они все же не вечные, и их также приходится менять. Замена твердотельного конденсатора может понадобиться в нескольких случаях:

  • Причин поломки, то есть вздутия этого устройства, может быть довольно много, однако главной из них называют плохое качество самой детали.
  • К причинам вздутия можно также отнести выкипание или испарение электролита. Несмотря на то что здесь используется твердый электролит, такие неполадки все равно не исключается полностью, и при очень высоких температурах такое все же случается.

Важно отметить, что перегрев этого устройства может произойти как из-за воздействия внешней среды, так и из-за внутренней. К внутреннему воздействию можно отнести неверную установку. Другими словами, если перепутать полярность при монтаже этой детали, то при ее запуске она практически моментально нагревается и, скорее всего, взорвется. Кроме этих причин, возможен также сильный перегрев из-за несоблюдения правил эксплуатации. Это может быть неверный вольтаж, емкость или работа в слишком высокой температурной среде.

Как избежать вздутия и частой замены

Начать стоит с того, как же избежать вздутия твердотельного конденсатора.

  • Первое, что советуют — это использовать только качественные детали.
  • Второй совет, который может помочь избежать таких проблем — это не давать конденсатору перегреваться. Если температура достигает 45 градусов или больше, то необходимо срочное охлаждение, а еще лучше размещать эти устройства как можно дальше от источников тепла.
  • Так как чаще всего конденсаторы вздуваются в блоках питания компьютера, рекомендуют использовать стабилизаторы напряжения, защищающие сеть от резких скачков напряжения.

Если вздутие все же произошло, то требуется замена устройства. Главное правило ремонта — это подобрать конденсатор с такой же емкостью. Допускается отклонение данного параметра в большую сторону, но лишь немного. Отклонения в меньшую сторону недопустимы. Те же правила касаются и напряжения объекта. Также стоит добавить, что при замене электролитических конденсаторов на твердотельные можно использовать устройства и с меньшей емкостью. Это возможно из-за меньшего ESR, о котором говорилось ранее. Но перед этим все же стоит посоветоваться со специалистом. Сам же процесс замены заключается в удалении сгоревшей детали посредством пайки и припаивании нового.

Ремонт

Довольно часто приходится проводить профилактический ремонт конденсаторов. Допустим, при разборке компьютера был найден подозрительный конденсатор. Его необходимо проверить и при необходимости заменить. Для замены потребуется паяльник мощностью от 25 до 40 ВТ. Это приборы средней мощности. Их использование обосновано тем, что менее мощные паяльники не смогут отпаять конденсатор, а более мощные слишком большие, и ими неудобно проводить работы.

Лучше всего иметь под рукой паяльник с конической формой жала. Для осуществления ремонта старый конденсатор выпаивают, но делать это необходимо очень осторожно, так как платы, в которых они установлены, чаще всего многослойные — до 5 слоев. Повреждение хотя бы одного из них выведет из строя всю плату, и ремонту она уже не подлежит. После выпаивания старого устройства отверстия для установки пробиваются иглой, лучше всего медицинской, она более тонкая. Припаивание нового объекта лучше всего проводить, используя канифоль.

Полимерные твердотельные конденсаторы

Можно сказать, что все устройства этого типа являются полимерными, так как внутри этого устройства используется твердый полимер вместо жидкого электролита. Применение твердого материала в стандартных твердотельных конденсаторах дало такие преимущества:

  • при высоких частотах — низкое эквивалентное сопротивление;
  • высокое значение тока пульсации;
  • срок эксплуатации конденсатора значительно выше;
  • более стабильная работа при высоких температурных режимах.

Если говорить подробнее, то, к примеру, пониженное ESR — это меньшие затраты энергии, а значит, и меньший нагрев конденсатора при тех же нагрузках. Более высокая степень пульсации тока обеспечивает стабильную работу всей платы в целом. Естественно, что именно замена жидкого электролита на твердый и привела к тому, что срок службы значительно вырос.

Танталовые конденсаторы [подробная статья] — маркировка, типы (smd/чип), полярность, особенности применения

Наверное, у каждого радиолюбителя хоть раз да взрывался танталовый конденсатор из-за неправильной переплюсовки.

В этой статье я расскажу, что такое танталовый конденсатор, зачем он нужен и как вообще с ним работать.

Если после прочтения у вас останутся вопросы – смело задавайте их в комментариях, а я постараюсь ответить.

Содержание статьи

Твердотельные танталовые конденсаторы по большинству параметров соответствуют требованиям к современным электронным устройствам. Они отличаются малыми габаритами, высокой удельной емкостью, надежностью (при соблюдении правил на всех этапах их жизни) и совместимостью с общепринятыми технологиями монтажа. Преимуществом является и то, что важный параметр конденсатора – ESR (эквивалентное последовательное сопротивление) – с ростом частоты не возрастает, а в некоторых случаях даже уменьшается. Чтобы сократить число отказов и продлить рабочий период устройства, необходимо учитывать его индивидуальные особенности при изготовлении, хранении, монтаже и во время работы.

Так выглядят танталовые конденсаторы

Почему тантал используют для производства конденсаторов

Тантал способен при окислении формировать плотную оксидную пленку, толщину которой можно регулировать с помощью технологических приемов, тем самым изменяя параметры конденсатора.

Помимо тантала конденсаторы делают из керамики, слюды, бумаги и алюминиевой фольги.

Описание и назначение танталовых конденсаторов

Современные танталовые конденсаторы имеют малые размеры и относятся к чип-компонентам, которые предназначены для монтажа на плате. Иначе такие детали называются SMD, что расшифровывается как «компоненты поверхностного монтажа». SMD детали удобны для автоматизированных процессов монтажа и пайки на печатные платы.

Основное назначение электролитических поляризованных танталовых конденсаторов – действовать в комплексе с резистором с целью обработки сигнала и сглаживания его пиков и острых импульсов.

Конденсаторы широко используются в автомобильной, промышленной, цифровой, аэрокосмической технике.

Устройство танталовых твердотельных конденсаторов

Танталовый конденсатор относится к электролитическому типу. В его состав входят 4 основные части: анод, диэлектрик, твердый электролит, катод. Изготовление танталового конденсатора состоит из ряда достаточно сложных технологических операций.

Изготовление анода

Пористую гранулированную структуру получают прессованием из высокоочищенного танталового порошка. В процессе спекания в условиях глубокого вакуума при температурах +1300…+2000°C из порошка образуется губчатая структура с развитой площадью поверхности. Благодаря ей, обеспечивается высокая емкость при небольшом объеме. Танталовый конденсатор при одинаковой с алюминиевым устройством емкости имеет гораздо меньший объем.

Формирование диэлектрического слоя

Диэлектрический оксидный слой выращивают на поверхности анода из пентаоксида тантала в процессе электрохимического окисления. Толщину оксида можно регулировать изменением напряжения. Обычно толщина диэлектрической пленки составляет доли микрометра. Оксидный слой имеет не кристаллическую, а аморфную структуру, которая обладает значительным электросопротивлением.

Получение электролита

Электролитом служит твердотельный полупроводник – диоксид марганца, – который получают термообработкой солей марганца в ходе окислительно-восстановительного процесса. Для этого анодный губчатый слой покрывают солями марганца, а затем нагревают их до получения диоксида марганца. Процесс повторяют несколько раз до полного покрытия анода.

Формирование катодного слоя

Для улучшения контакта электролит покрывают графитовым, а затем металлическим слоем. В качестве металла обычно используют серебро. Сформированный композит запрессовывают в компаунд.

Особенности танталовых конденсаторов

  • Доступная емкость этих радиодеталей – от 1 до нескольких сотен мкФ
  • Относительно низкое эквивалентное последовательное сопротивление (ESR) и наименьшее значение утечки. Благодаря этим свойствам, танталовые конденсаторы успешно работают в качественной аудиоаппаратуре, тестовых и измерительных приборах.
  • Тонкий оксидный слой, который обеспечивает высокую диэлектрическую проницаемость. Сочетание значительной площади поверхности губчатого анода с хорошей диэлектрической проницаемостью обеспечивает хранение большого запаса энергии.
  • В отличие от электролитических, танталовые конденсаторы при переплюсовке или пробое взрываются. Сила взрыва зависит от размеров конденсатора и может повредить как соседние элементы, так и монтажную плату.

    Пробои танталовых конденсаторов

    При использовании этих эффективных, но немного капризных устройств, необходимо контролировать появление состояния отказа, поскольку известны случаи их возгорания при отказе. Отказы связаны с тем, что при неправильной эксплуатации пентаоксид тантала меняет аморфную структуру на кристаллическую, то есть из диэлектрика он превращается в проводник. Смена структур может наступить из-за слишком высокого пускового тока. Пробой диэлектрика вызывает повышение токов утечки, которые в свою очередь приводят к пробою самого конденсатора.

    Причиной неприятностей, связанных с эксплуатацией танталовых конденсаторов, может быть диоксид марганца. Кислород, который присутствует в этом соединении, вызывает появление локальных очагов возгорания. Пробои с возгоранием характерны для старых моделей. Новые технологии позволяют получать более надежную продукцию.

    Пробои, которые произошли при высоких температурах и напряжении, могут вызывать эффект лавины. В этом случае повреждения часто распространяются на большую часть или всю площадь устройства. Если же площадь кристаллизованного пентаоксида тантала небольшая, то часто происходит эффект самовосстановления. Он возможен, благодаря преобразованиям, происходящим в электролите в случае пробоя диэлектрика. В результате всех превращений кристаллизованный участок-проводник оказывается окруженным оксидом марганца, который полностью нейтрализует его проводимость.

    Другие дефекты танталовых конденсаторов

    Кроме пробоя, в результате неправильной производственной технологии и нарушения правил транспортировки и хранения в конденсаторе возникают и другие дефекты:

    • Механические. Первый вид таких дефектов может появиться на выращенном диэлектрике в результате его резкого удара о твердую поверхность. Второй – при образовании электролитного слоя из-за совместного действия теплового удара и внутреннего давления газов в порах.
    • Примеси и включения. При нарушении производственной технологии на поверхности тантала могут появиться посторонние вещества – углерод, железо, кальций, которые приводят к неравномерности диэлектрического слоя.
    • Кристаллизованные участки диэлектрика, которые появились при изготовлении устройства. Кристаллизация может происходить из-за несоответствия состава электролита технологическим требованиям и неправильного температурного режима процесса.

    Недостатки танталовых конденсаторов

  • постепенная деградация структуры;
  • зависимость емкости от частоты, при частотах выше 150 кГц эти устройства вообще неэффективны из-за существенного уменьшения емкости;
  • низкая устойчивость к токам пульсации и перегреву;
  • пожарная опасность.
  • Танталово-полимерные конденсаторы

    Большая часть проблем, характерных для танталовых конденсаторов, решена в танталово-полимерных аналогах. В качестве электролита в танталово-полимерных конденсаторах вместо диоксида марганца используется токопроводящий полимер. Он дает минимальный ESR, что позволяет пропускать гораздо большие токи, по сравнению с танталовыми предшественниками. Танталово-полимерные устройства успешно применяются в качестве сглаживающих конденсаторов в источниках питания и преобразователях напряжения.

    Токопроводящий полимер обеспечивает низкую чувствительность к импульсам тока, стойкость к внешним факторам, отсутствие деградации структуры, более высокий срок службы. Высокая стабильность емкости в широком интервале частот и температур позволяет применять танталово-полимерные устройства в промышленной, телекоммуникационной и автомобильной электронике и других областях, для которых характерно колебание рабочих температур.

    Основные параметры танталовых конденсаторов

    Для определения безопасного режима работы необходимо рассчитать уровни разрешенных значений тока и напряжения. Для расчетов необходимо знать следующие параметры танталовых конденсаторов, которые отражаются в документации:

    • Номинальная емкость. Эти устройства имеют высокую удельную емкость, которая может составлять тысячи микрофарад.
    • Номинальное напряжение. Современные модели этих устройств в большинстве рассчитаны на напряжения до 75 В. Причем, для нормальной работы в электрической схеме, деталь нужно использовать при напряжениях, которые меньше номинального. Эксплуатация танталовых конденсаторов при напряжениях, составляющих до 50% от номинального, снижает показатель отказов до 5%.
    • Импеданс (полное сопротивление). Содержит индуктивную составляющую, параллельное сопротивление, последовательное эквивалентное сопротивление (ESR).
    • Максимальная рассеиваемая мощность. При приложении к танталовому устройству переменного напряжения происходит выработка тепла. Допустимое повышение температуры конденсатора за счет выделяемой мощности устанавливается экспериментально.

    Особенности проектирования плат и монтажа танталовых конденсаторов

    Для этих устройств подходят практически все материалы печатных плат – FR4, FR5, G10, фторопласт, алюминий. Форма, размер посадочного места и способ монтажа указываются производителями деталей. Изменить рекомендуемые параметры монтажа может специалист, имеющий достаточно знаний и навыков, чтобы правильно скорректировать температуру пайки.

    Перед монтажом на плату наносят паяльную пасту. Толщина слоя – 0,178+/-0,025 мм. Для того чтобы флюс, находящийся в пасте, эффективно растворил оксиды с мест контакта, подбирают оптимальный температурный режим пайки. Обычно это делают опытным путем.

    Монтаж на плату осуществляется вручную или с помощью автоматизированного оборудования любого типа, применяемого сегодня. Пайка производится: вручную, волновым способом, в инфракрасных или конвекционных печах. Температурный режим предподогрева и пайки обычно предоставляют производители конкретной продукции.

    Маркировка танталовых конденсаторов

    В маркировке конденсаторов указывают стандартные параметры: емкость, номинальное напряжение, полярность. На корпусах типов B, C, D, E, V отображают все параметры, а на корпусе типа A вместо номинала напряжения указывают его буквенный код. В маркировке может указываться дополнительная информация – логотип производителя, код даты производства и другая.

    Таблица буквенных кодов напряжения для корпусов типа A

    Номинальное напряжение

    Код

    Номинальное напряжение

    Код

    4,0

    G

    20

    D

    6,3

    J

    25

    E

    10

    A

    35

    V

    16

    C

    50

    T

    Типы корпусов танталовых конденсаторов и их размеры

    Обозначение танталовых конденсаторов на схеме

    На схеме электролитические поляризованные конденсаторы, к которым относится танталовое устройство, обозначаются двумя параллельными линиями, идущими от них выводами и значком «+».

    Обозначение конденсаторов на схеме (по ГОСТу)

    Особенности хранения

    Танталовые конденсаторы способны сохранять рабочие характеристики в течение длительного времени. При соблюдении нужного режима (температура до +40°, относительная влажность 60%) конденсатор при длительном хранении теряет способность к пайке, сохраняя другие рабочие характеристики.

    Общие рекомендации по продлению срока службы танталового конденсатора и повышению безопасности его эксплуатации:

    • Соблюдение требований техпроцессов;
    • Многоступенчатый контроль качества продукции;
    • Соблюдение условий хранения;
    • Выполнение требований к организации рабочего места для монтажа устройств на плату;
    • Соблюдение рекомендуемого температурного режима пайки;
    • Правильный выбор безопасных рабочих режимов;
    • Соблюдение требований по эксплуатации.

    Заключение

    Постарался подробно объяснить, что представляет из себя танталовый конденсатор и для чего он нужен.

    Если у вас есть какие-либо замечания или вопросы по теме – смело задавайте их в комментариях, постараюсь ответить!


    Была ли статья полезна?

    Да

    Нет

    Оцените статью

    Что вам не понравилось?


    Другие материалы по теме


    Анатолий Мельник

    Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


    Замена электролитических конденсаторов на твердотельные

    Если говорить о твердотельных конденсаторах, это тот же электролитический конденсатор, однако в нем используется специальный токопроводящий полимер или полимеризованный органический полупроводник. В то время как в других конденсаторах используется обычный жидкий электролит.

    Общая характеристика

    Как уже говорилось, отличие между твердотельными и обычными конденсаторами состоит во внутренней «начинке» устройства. Так чем же они лучше?

    Первое и самое существенное отличие кроется именно в том, что в твердотельных конденсаторах используется твердый полимерный электролит, а не жидкий. Это исключает возможность протекания или испарения электролита. Вторым существенным плюсом у твердотельных устройств стало их последовательное эквивалентное сопротивление, которое называют ESR. Снижение этого показателя привело к тому, что стало возможным использование менее емкостных конденсаторов, а также меньших размеров в тех же условиях. Еще одним существенным плюсом твердотельных конденсаторов стало то, что они менее чувствительны к перепадам температуры. Это преимущество также говорит о том, что продолжительность срока службы такого объекта будет больше примерно в шесть раз, а значит и объект, в котором он установлен, прослужит намного дольше.

    Электролитические

    В твердотельном электролитическом конденсаторе в качестве диэлектрика используется тонкий слой оксида металла. Образование данного слоя осуществляется посредством электрохимического способа. Протекание данного процесса осуществляется на обложке из этого же металла.

    Вторая обложка у данного конденсатора может быть представлена в виде жидкого или сухого электролита. В обычных электролитических используется жидкий, а в твердотельных — сухой. Для создания металлического электрода в этом типе твердотельных конденсаторов используется такой материал, как тантал или алюминий.

    Стоит отметить, что к группе электролитических принадлежат также и танталовые конденсаторы.

    Асимметричные

    Асимметричный конденсатор с твердотельным электролитом — это относительно недавнее изобретение, так как ранее использовались другие устройства. Первым и простейшим конденсатором из этой группы стал Т-образный. В этом объекте пластины располагались в одной плоскости. Последующее развитие асимметричных конденсаторов привело к появлению дискового типа. Состоял он из плоского кольца, а также расположенного внутри него диска. Последующее совершенствование асимметричных конденсаторов привело к еще большему упрощению конструкции, и были получены устройства с двумя электродами. Один из них был представлен в виде тонкого провода, а второй — тонкой пластиной или же тонкой полоской металла. Но стоит заметить, что использование именно этого типа конденсаторов затруднено в связи с применением высоковольтного оборудования.

    Маркировка

    Существует маркировка твердотельных конденсаторов, которая описывает их характеристики. Наличие данной маркировки поможет понять определенные свойства конденсатора:

    • Опираясь на маркировку устройства, можно точно определить рабочее напряжение для каждого конденсатора. Также стоит отметить, что данное значение должно превышать то напряжение, которое присутствует в цепи, использующей этот объект. Если не соблюсти это условие, то будут либо сбои в работе всей цепи, либо конденсатор просто взорвется.
    • 1 000 000 пФ (пикофарад) = 1 мкФ. Данная маркировка у многих конденсаторов одинакова. Это связано с тем, что практически у всех устройств емкость равна или же близка к этому значению, а потому может указываться как в пикофарадах, так и в микрофарадах.

    Вздутие конденсатора

    Несмотря на то что конденсаторы этого типа довольно устойчивы к поломкам, они все же не вечные, и их также приходится менять. Замена твердотельного конденсатора может понадобиться в нескольких случаях:

    • Причин поломки, то есть вздутия этого устройства, может быть довольно много, однако главной из них называют плохое качество самой детали.
    • К причинам вздутия можно также отнести выкипание или испарение электролита. Несмотря на то что здесь используется твердый электролит, такие неполадки все равно не исключается полностью, и при очень высоких температурах такое все же случается.

    Важно отметить, что перегрев этого устройства может произойти как из-за воздействия внешней среды, так и из-за внутренней. К внутреннему воздействию можно отнести неверную установку. Другими словами, если перепутать полярность при монтаже этой детали, то при ее запуске она практически моментально нагревается и, скорее всего, взорвется. Кроме этих причин, возможен также сильный перегрев из-за несоблюдения правил эксплуатации. Это может быть неверный вольтаж, емкость или работа в слишком высокой температурной среде.

    Как избежать вздутия и частой замены

    Начать стоит с того, как же избежать вздутия твердотельного конденсатора.

    • Первое, что советуют — это использовать только качественные детали.
    • Второй совет, который может помочь избежать таких проблем — это не давать конденсатору перегреваться. Если температура достигает 45 градусов или больше, то необходимо срочное охлаждение, а еще лучше размещать эти устройства как можно дальше от источников тепла.
    • Так как чаще всего конденсаторы вздуваются в блоках питания компьютера, рекомендуют использовать стабилизаторы напряжения, защищающие сеть от резких скачков напряжения.

    Если вздутие все же произошло, то требуется замена устройства. Главное правило ремонта — это подобрать конденсатор с такой же емкостью. Допускается отклонение данного параметра в большую сторону, но лишь немного. Отклонения в меньшую сторону недопустимы. Те же правила касаются и напряжения объекта. Также стоит добавить, что при замене электролитических конденсаторов на твердотельные можно использовать устройства и с меньшей емкостью. Это возможно из-за меньшего ESR, о котором говорилось ранее. Но перед этим все же стоит посоветоваться со специалистом. Сам же процесс замены заключается в удалении сгоревшей детали посредством пайки и припаивании нового.

    Ремонт

    Довольно часто приходится проводить профилактический ремонт конденсаторов. Допустим, при разборке компьютера был найден подозрительный конденсатор. Его необходимо проверить и при необходимости заменить. Для замены потребуется паяльник мощностью от 25 до 40 ВТ. Это приборы средней мощности. Их использование обосновано тем, что менее мощные паяльники не смогут отпаять конденсатор, а более мощные слишком большие, и ими неудобно проводить работы.

    Лучше всего иметь под рукой паяльник с конической формой жала. Для осуществления ремонта старый конденсатор выпаивают, но делать это необходимо очень осторожно, так как платы, в которых они установлены, чаще всего многослойные — до 5 слоев. Повреждение хотя бы одного из них выведет из строя всю плату, и ремонту она уже не подлежит. После выпаивания старого устройства отверстия для установки пробиваются иглой, лучше всего медицинской, она более тонкая. Припаивание нового объекта лучше всего проводить, используя канифоль.

    Полимерные твердотельные конденсаторы

    Можно сказать, что все устройства этого типа являются полимерными, так как внутри этого устройства используется твердый полимер вместо жидкого электролита. Применение твердого материала в стандартных твердотельных конденсаторах дало такие преимущества:

    • при высоких частотах — низкое эквивалентное сопротивление;
    • высокое значение тока пульсации;
    • срок эксплуатации конденсатора значительно выше;
    • более стабильная работа при высоких температурных режимах.

    Если говорить подробнее, то, к примеру, пониженное ESR — это меньшие затраты энергии, а значит, и меньший нагрев конденсатора при тех же нагрузках. Более высокая степень пульсации тока обеспечивает стабильную работу всей платы в целом. Естественно, что именно замена жидкого электролита на твердый и привела к тому, что срок службы значительно вырос.

    Если говорить о твердотельных конденсаторах, это тот же электролитический конденсатор, однако в нем используется специальный токопроводящий полимер или полимеризованный органический полупроводник. В то время как в других конденсаторах используется обычный жидкий электролит.

    Общая характеристика

    Как уже говорилось, отличие между твердотельными и обычными конденсаторами состоит во внутренней «начинке» устройства. Так чем же они лучше?

    Первое и самое существенное отличие кроется именно в том, что в твердотельных конденсаторах используется твердый полимерный электролит, а не жидкий. Это исключает возможность протекания или испарения электролита. Вторым существенным плюсом у твердотельных устройств стало их последовательное эквивалентное сопротивление, которое называют ESR. Снижение этого показателя привело к тому, что стало возможным использование менее емкостных конденсаторов, а также меньших размеров в тех же условиях. Еще одним существенным плюсом твердотельных конденсаторов стало то, что они менее чувствительны к перепадам температуры. Это преимущество также говорит о том, что продолжительность срока службы такого объекта будет больше примерно в шесть раз, а значит и объект, в котором он установлен, прослужит намного дольше.

    Электролитические

    В твердотельном электролитическом конденсаторе в качестве диэлектрика используется тонкий слой оксида металла. Образование данного слоя осуществляется посредством электрохимического способа. Протекание данного процесса осуществляется на обложке из этого же металла.

    Вторая обложка у данного конденсатора может быть представлена в виде жидкого или сухого электролита. В обычных электролитических используется жидкий, а в твердотельных — сухой. Для создания металлического электрода в этом типе твердотельных конденсаторов используется такой материал, как тантал или алюминий.

    Стоит отметить, что к группе электролитических принадлежат также и танталовые конденсаторы.

    Асимметричные

    Асимметричный конденсатор с твердотельным электролитом — это относительно недавнее изобретение, так как ранее использовались другие устройства. Первым и простейшим конденсатором из этой группы стал Т-образный. В этом объекте пластины располагались в одной плоскости. Последующее развитие асимметричных конденсаторов привело к появлению дискового типа. Состоял он из плоского кольца, а также расположенного внутри него диска. Последующее совершенствование асимметричных конденсаторов привело к еще большему упрощению конструкции, и были получены устройства с двумя электродами. Один из них был представлен в виде тонкого провода, а второй — тонкой пластиной или же тонкой полоской металла. Но стоит заметить, что использование именно этого типа конденсаторов затруднено в связи с применением высоковольтного оборудования.

    Маркировка

    Существует маркировка твердотельных конденсаторов, которая описывает их характеристики. Наличие данной маркировки поможет понять определенные свойства конденсатора:

    • Опираясь на маркировку устройства, можно точно определить рабочее напряжение для каждого конденсатора. Также стоит отметить, что данное значение должно превышать то напряжение, которое присутствует в цепи, использующей этот объект. Если не соблюсти это условие, то будут либо сбои в работе всей цепи, либо конденсатор просто взорвется.
    • 1 000 000 пФ (пикофарад) = 1 мкФ. Данная маркировка у многих конденсаторов одинакова. Это связано с тем, что практически у всех устройств емкость равна или же близка к этому значению, а потому может указываться как в пикофарадах, так и в микрофарадах.

    Вздутие конденсатора

    Несмотря на то что конденсаторы этого типа довольно устойчивы к поломкам, они все же не вечные, и их также приходится менять. Замена твердотельного конденсатора может понадобиться в нескольких случаях:

    • Причин поломки, то есть вздутия этого устройства, может быть довольно много, однако главной из них называют плохое качество самой детали.
    • К причинам вздутия можно также отнести выкипание или испарение электролита. Несмотря на то что здесь используется твердый электролит, такие неполадки все равно не исключается полностью, и при очень высоких температурах такое все же случается.

    Важно отметить, что перегрев этого устройства может произойти как из-за воздействия внешней среды, так и из-за внутренней. К внутреннему воздействию можно отнести неверную установку. Другими словами, если перепутать полярность при монтаже этой детали, то при ее запуске она практически моментально нагревается и, скорее всего, взорвется. Кроме этих причин, возможен также сильный перегрев из-за несоблюдения правил эксплуатации. Это может быть неверный вольтаж, емкость или работа в слишком высокой температурной среде.

    Как избежать вздутия и частой замены

    Начать стоит с того, как же избежать вздутия твердотельного конденсатора.

    • Первое, что советуют — это использовать только качественные детали.
    • Второй совет, который может помочь избежать таких проблем — это не давать конденсатору перегреваться. Если температура достигает 45 градусов или больше, то необходимо срочное охлаждение, а еще лучше размещать эти устройства как можно дальше от источников тепла.
    • Так как чаще всего конденсаторы вздуваются в блоках питания компьютера, рекомендуют использовать стабилизаторы напряжения, защищающие сеть от резких скачков напряжения.

    Если вздутие все же произошло, то требуется замена устройства. Главное правило ремонта — это подобрать конденсатор с такой же емкостью. Допускается отклонение данного параметра в большую сторону, но лишь немного. Отклонения в меньшую сторону недопустимы. Те же правила касаются и напряжения объекта. Также стоит добавить, что при замене электролитических конденсаторов на твердотельные можно использовать устройства и с меньшей емкостью. Это возможно из-за меньшего ESR, о котором говорилось ранее. Но перед этим все же стоит посоветоваться со специалистом. Сам же процесс замены заключается в удалении сгоревшей детали посредством пайки и припаивании нового.

    Ремонт

    Довольно часто приходится проводить профилактический ремонт конденсаторов. Допустим, при разборке компьютера был найден подозрительный конденсатор. Его необходимо проверить и при необходимости заменить. Для замены потребуется паяльник мощностью от 25 до 40 ВТ. Это приборы средней мощности. Их использование обосновано тем, что менее мощные паяльники не смогут отпаять конденсатор, а более мощные слишком большие, и ими неудобно проводить работы.

    Лучше всего иметь под рукой паяльник с конической формой жала. Для осуществления ремонта старый конденсатор выпаивают, но делать это необходимо очень осторожно, так как платы, в которых они установлены, чаще всего многослойные — до 5 слоев. Повреждение хотя бы одного из них выведет из строя всю плату, и ремонту она уже не подлежит. После выпаивания старого устройства отверстия для установки пробиваются иглой, лучше всего медицинской, она более тонкая. Припаивание нового объекта лучше всего проводить, используя канифоль.

    Полимерные твердотельные конденсаторы

    Можно сказать, что все устройства этого типа являются полимерными, так как внутри этого устройства используется твердый полимер вместо жидкого электролита. Применение твердого материала в стандартных твердотельных конденсаторах дало такие преимущества:

    • при высоких частотах — низкое эквивалентное сопротивление;
    • высокое значение тока пульсации;
    • срок эксплуатации конденсатора значительно выше;
    • более стабильная работа при высоких температурных режимах.

    Если говорить подробнее, то, к примеру, пониженное ESR — это меньшие затраты энергии, а значит, и меньший нагрев конденсатора при тех же нагрузках. Более высокая степень пульсации тока обеспечивает стабильную работу всей платы в целом. Естественно, что именно замена жидкого электролита на твердый и привела к тому, что срок службы значительно вырос.

    Для создания еще одного рабочего места потребовался восстановительный ремонт материнской платы компьютера с поврежденными электролитическими конденсаторами питания процессора. В принципе плата рабочая, но при внутреннем и внешнем перегреве стабильно зависала с характерным слабым химическим запахом электролита конденсаторов. Подтеки электролита хорошо просматривались на треснувших колпачках конденсаторов. Хоть я и дружу с паяльником приступал к ремонту не с полной уверенностью успеха, так как был опыт неудачного восстановления своими руками системной платы с процессором PIII. Неудача возникла прямо на старте — не удалось извлечь электролитические конденсаторы. Мне показалось, что они были просто запрессованы ножками в плату, даже при помощи стоваттного паяльника уже обломанные ножки не извлекались. Но глаза боятся, а руки делают — требовалось заменить 5 конденсаторов номиналом 3300 мкФ на 6,3В. В радиомагазине купил единственные предложенные компьютерные электролиты такого же номинала. Если есть выбор НЕ ПОКУПАЙТЕ конденсаторы с маркировкой GSC, это самые ненадежные конденсаторы. И конечно конденсаторы должны иметь еще маркировку по теплостойкости, например LOW ESR и/или указана рабочая температура 105°С. Размер купленных конденсаторов был несколько крупнее, но габариты платы позволяли их установить. Итак последовательность моих действий.

    Как отремонтировать материнскую плату своими руками

    1. Если есть возможность снимите с платы все мешающие элементы — память, радиатор процессора. Пользуясь случаем прочистите все закоулки от пыли при помощи кисточки и пылесоса. Перед началом работ желательно одеть одежду из натуральных тканей во избежание образования статики и повреждения платы уже статическим электричеством.

    2. Для извлечения конденсаторов потребуется паяльник мощностью 50-60 Вт. Жало паяльника должно быть тонким на конце и хорошо залуженным для быстрого передачи тепла в зону касания.

    3. Порядок извлечения конденсаторов следующий. Хорошо разогретым паяльником снизу платы касаемся места припайки ножки конденсатора, расплавляем припой и второй рукой небольшими усилиями пытаемся наклонить конденсатор в сторону второй ножки, в какой-no момент разогрева конденсатор должен поддаться и наклониться с извлечением выпаянной ножки. На всю операцию отводится не больше 5-7 секунд. Далее извлекаем так же вторую ножку. Если это делается впервые, то лучше потренироваться на сломанной плате или компьютерном блоке питания. Здесь опасности две: первая — это при чрезмерном усилии ножка оборвется и вторая — при перегреве может быть повреждена печатная плата, а при ее многослойной конструкции ремонт будет практически не возможен. Трудности обусловлены как мне кажется отводом тепла из зоны пайки многочисленными медными дорожками многослойной конструкции платы. Всегда при работе с компьютерными платами лучше перед самой пайкой временно отключить паяльник от сети, также в целях защиты от статики.

    4. Так последовательно извлекаем все поврежденные конденсаторы. Но припаивать сразу новые пока рано.

    Поврежденные конденсаторы Новые конденсаторы Извлечение наклоном Поврежденные конденсаторы

    5. Для облегчения установки новых конденсаторов сделаем приспособление из швейной иголки и ручки от зубной щетки. Подбираем швейную иглу диаметром чуть больше диаметра ножки нового конденсатора. При помощи зажигалки прогреваем иглу в 20-30мм от острого кончика до красна и остужаем на воздухе. Это позволит нам откусить кусачками кончик иглы без повреждения кусачек. Еще раз прогреваем иглу в месте среза и быстро загоняем нагретый конец в пластмассовую ручку. Игла должна прочно держаться в ручке.

    6. Паяльником разогреваем крепежное отверстие, вставляем иглу и вращательно поступательными движениями расширяем отверстие до нужного диаметра. Так обрабатываем все отверстия. Качество работы еще раз проверяем на просвет.

    Оснастка иглы Расширяем отверстие Отверстия готовы Проверяем на просвет

    7. Теперь требуется подготовить ножки конденсаторов к монтажу. Я рекомендую это сделать так: последовательно по кругу слегка прикусывать кусачками ножку до образования правильного круглого и аккуратного среза. Такая подготовка только облегчит последующий монтаж.

    8. Далее соблюдая полярность вставляем конденсаторы в отверстия. Полярность установки отмечена на плате соответствующими обозначениями.

    Подготавливаем ножки Ровный срез ножек Обозначение полярности

    9. Придерживая конденсатор со стороны платы хорошо разогретым паяльником припаиваем первую ножку конденсатора. Затем с добавлением припоя припаиваем вторую ножку и еще раз с добавлением припоя

    Конденсаторы в работе

    пропаиваем первую ножку. Так припаиваем все конденсаторы. Излишков припоя на плате быть не должно!

    10. Полезно не полениться и проверить места пайки, лучше с увеличительным стеклом, на предмет качества пайки и отсутствие коротких замыканий — тоненький волосок припоя может быть причиной не запуска компьютера.

    11. Устанавливаем минимальный набор компонентов на плату для проверки ее работоспособности, если всё работает, то ремонт своими руками удался и плату можно монтировать в корпус.

    Твердотельный оксидный конденсатор от ТЕАРО. Маленький шаг в технологии производства, большой скачок в надежности и качестве

    4 Дек 2017

    Авторы статьи

    Станислав Косенко, Ольга Синякова, [email protected]

    Задать вопрос

    Заказать образцы

      Полезные ссылки

    (Опубликовано в журнале «Вестник Электроники» №3 2014)
    Скачать статью в формате PDF (359 КБ)


    В 1983 году на мировом рынке традиционно известные алюминиевые оксидные конденсаторы с жидким электролитом впервые были потеснены их «младшими собратьями», изготавливаемыми по обновленной технологии. Многие производители, в том числе тайваньская фирма ТЕАРO, зародившаяся еще в 1956 году как одно из подразделений корпорации SAMPO, вместо жидкого электролита вскоре стали применять специальный токопроводящий твердотельный полимер, что позволило существенно улучшить параметры таких конденсаторов. В данной статье поясняются особенности устройства и маркировки твердотельных оксидных конденсаторов, производимых фирмой ТЕАРО, а также приведена их сравнительная оценка с традиционными аналогами.

    Рис. 1. Конструкция оксидного конденсатора

    Устройство оксидных конденсаторов

    Среди общеизвестных электронных компонентов наиболее простым является конденсатор, содержащий две металлические обкладки, разделенные диэлектриком. Чем больше площадь обкладок и тоньше слой диэлектрика, тем большей емкостью обладает конденсатор. Столь незамысловатый прибор незаменим практически во всех электронных устройствах, и прежде всего, как фильтрующий элемент, сглаживающий пульсирующее напряжение в импульсных источниках питания. Очевидно, что для требуемой достаточно большой емкости площадь обкладок конденсатора получается весьма значительной, поэтому для уменьшения габаритов одним из немногих конструктивных решений исполнения такого элемента может быть сворачивание обкладок в компактный рулон. Такую конструкцию оксидного конденсатора иллюстрирует рис. 1.

    Верхняя часть рисунка (1a) соответствует внешнему виду собранного конденсатора, а средняя (1б) – условно развернутому рулону, образованному обкладками. Здесь хорошо видно, что две алюминиевые ленточные обкладки в центре рулона соединены с выводами, на один из которых (более длинный – анод) подают положительное напряжение, на другой (катод) – отрицательное. Рулон с выводами помещен в алюминиевый корпус – стакан, в верхней части которого выводы герметизируют с помощью уплотнительного резинового диска. При свертывании в рулон отрицательная обкладка с обеих сторон оказывается отделенной от положительной разделительным слоем, который в конденсаторе с жидким электролитом представляет собой пористую бумагу, пропитанную специальным токопроводящим жидким химическим составом. В твердотельном конденсаторе в качестве разделительного слоя, как упоминалось ранее, используют токопроводящий полимер. Такую конструкцию межобкладочного пространства в оксидном конденсаторе поясняет его крупноплановое сечение, показанное на рис. 1в.

    Как можно убедиться, разделительный слой в данной конструкции разделяет обкладки лишь физически, а по своим электрическим свойствам он служит почти идеальным проводником. Следовательно, во избежание короткого замыкания между обкладками должен существовать еще и некий диэлектрик. Таким диэлектриком в оксидных конденсаторах с жидким электролитом служит показанная на рисунке тонкая пленка из оксида алюминия на положительной обкладке. В полимерных конденсаторах изоляционную окисную пленку создают не на обкладке, а на поверхности токопроводящего разделительного слоя. Как в первом, так и во втором случае окисление производят электрохимическим способом. Регулируя длительность процесса окисления, получают такую толщину окисной пленки, чтобы с запасом обеспечить ее пробивное напряжение, существенно превышающее требуемое максимально допустимое рабочее для данного конденсатора.

    Рис. 2. Процесс самовосстановления твердотельного полимерного конденсатора

    Описанная конструктивная особенность порождает два замечательных свойства твердотельных конденсаторов, существенно повышая их качественные показатели по сравнению с аналогами. Во-первых, при возникновении электрического пробоя в последних под воздействием значительного электрического тока вскипающий электролит сопровождается бурным газовыделением, взрывом корпуса и нередко – даже повреждением других близкорасположенных на общей печатной плате элементов. Но в твердом токопроводящем полимере отсутствует как жидкая, так и газообразная фаза, поэтому и взрыв исключен. И во-вторых, полимерные конденсаторы благодаря электротермическому воздействию электрического тока утечки при микропробоях обладают важным свойством самовосстановления, как это поясняет рис. 2.

    При нормальной работе твердотельного оксидного конденсатора (рис.2a) его структура бездефектна, все элементы (анодная обкладка, токопроводящий слой и диэлектрическая окисная пленка на нем) функционируют нормально. Однако под воздействием стресса – внешнего резкого механического или термического воздействия, как и при чрезмерно быстром изменении напряжения на обкладках, в сравнительно тонкой изоляционной пленке, исчисляемой микрометрами, может возникнуть микродефект (рис. 2б). В силу ухудшения изоляционных свойств окисной пленки ток утечки между обкладками может существенно возрасти. Его протекание в таком случае приводит к электротермическому разогреву полимерного слоя (рис. 2в), и капсула расплавленного полимера «накрывает» микродефект. При дальнейшем нагреве молекулярные связи в проводящем ток полимерном сегменте вблизи микродефекта разрываются, электрическое сопротивление проводящего слоя многократно возрастает, соответственно ток утечки резко снижается, капсула остывает, и параметры конденсатора быстро приходят в норму (рис. 2г).

    Твердотельный токопроводящий полимер по своим характеристикам оказался также более жизнестойким и термостабильным по сравнению с жидким электролитом, с годами постепенно испаряющимся сквозь рези-новый уплотнительный диск (рис. 1). Поэтому проводимость жидкого электролита со временем снижается, отрицательно воздействуя на основные параметры конденсатора, что подтверждено специальными исследованиями, проведенными в научных подразделениях компании ТЕАРО. О результатах этих исследований далее пойдет речь в нашей статье.

    Таблица 1. Общие параметры оксидных конденсаторов, участвующих в испытании

    Сравнительная характеристика оксидных конденсаторов

    Для сравнительных исследований специалистами были выбраны три типа производимых компанией ТЕАРО конденсаторов с номинальной емкостью 470 мкФ и предельным рабочим напряжением 16 В: миниатюрный алюминиевый электролитический общего применения (Miniature Aluminum Electrolytic Capacitor) серии SK; электролитический низкоимпедансный с увеличенной долговечностью (Aluminum Electrolytic Low Impedance & Long Life Capacitor) серии TA; твердотельный алюминиевый с токопроводящим полимером (Conductive Polymer Aluminum Solid Capacitor) серии CG. Перечисленные конденсаторы сравнивались как между собой, так и с производимыми сторонними компаниями танталовыми конденсаторами (Tantalum Capacitor), условно обозначенными на рисунках индексом ТТ. В некоторых случаях емкость танталовых конденсаторов и сравниваемых аналогов отличалась от 470 мкФ, о чем сообщалось в исходных данных проводимых экспериментов.

    Необходимо отметить, что конденсаторы серии SK производятся с наиболее широкой возможностью выбора как требуемого напряжения (6,3…500 В), так и емкости (1…22000 мкФ). Для конденсаторов серии CG этот выбор значительно меньше – 2,5…25 В и 10…2200 мкФ соответственно. Интервал рабочего напряжения и номинальной емкости низкоимпедансных долговечных конденсаторов составляет 6,3…35 В и 33…8200 мкФ. Танталовые конденсаторы производятся с допустимым рабочим напряжением 2,5…63 В и емкостью 0,1…2200 мкФ. Номинальная емкость всех конденсаторов измеряется на частоте 120 Гц при окружающей температуре 20 °С. С ростом рабочей частоты, что необходимо учитывать в проектировании ИИП, емкость конденсаторов существенно меняется, причем по-разному для различных типов.Габаритные размеры всех отобранных для сравнительной оценки конденсаторов примерно одинаковы.

    Для учета тока утечки сравниваемых аналогов в таблице приведена некоторая эмпирическая формула, одинаковая для танталовых и алюминиевых конденсаторов с жидким электролитом. Значение емкости в формулу подставляют в мкФ, а напряжения в вольтах. Если результат вычисления превышает 3 мкА, тогда в инженерных расчетах руководствуются этим предельно возможным значением. Определить ток утечки можно и практически, подавая рабочее напряжение на конденсатор не менее чем за 2 мин до измерений. У полимерного конденсатора ток утечки может быть в десятки раз больше, чем у аналогов, но не более 300 мкА.

    Приведенные в таблице стоимостные показатели следует принимать как ориентировочные, поскольку они подвержены изменениям из конъюнктурных соображений. Но общая тенденция такова, что наиболее низкая цена у алюминиевых конденсаторов с жидким электролитом. Примерно вдвое выше у низкоимпедансных электролитических, и в шесть раз – у полимерных. Такое соотношение цен вполне оправдано, и мы это увидим по результатам измерений электрических параметров. Если руководствоваться только таким важным параметром, как эквивалентное последовательное сопротивление (ЭПС), и перед конструктором при проектировании импульсного источника питания стоит задача обеспечения минимальных пульсаций его выходного напряжения, то возможных решений будет два: либо применить один полимерный конденсатор, либо не менее 10 аналогичных алюминиевых с жидким электролитом. Очевидно, что второй вариант можно принять в малоответственных проектах. Там, где требуется надежность источника питания и термостабильность параметров проектируемого прибора в целом, применение твердополимерных конденсаторов представляется наиболее рациональным. Рассмотрим подробнее данный аспект проектирования на практических примерах.

    Влияние ЭПС конденсатора на параметры источника питания

    Рис. 3. Схема включения конденсатора в рабочем режиме

    Сравнение ЭПС твердотельного полимерного конденсатора с другими аналогами показывает, что оно минимально и составляет 11 мОм. Его измеряют на стандартной частоте 100 кГц при температуре 20 °С. ЭПС низкоимпедансного конденсатора в 8 раз больше, а для алюминиевого оно увеличивается двадцатикратно. Причем в отличие от твердотельного полимерного для выбранных аналогов ЭПС измеряют на частоте 120 Гц, что дополнительно ухудшит их показатели на рабочих частотах в десятки килогерц. Данный параметр сильно зависит от емкости конденсатора, рабочей частоты и используемых в изготовлении материалов. Более подробно данное свойство конденсаторов будет рассмотрено ниже.

    Для того чтобы понять важность данного параметра, обратимся к рис. 3, где изображены схема включения конденсатора С и его эквивалентная схема замещения. На рисунке в виде отдельного резистора R отображено ЭПС, и как отдельный дроссель L – эквивалентная последовательная индуктивность (ЭПИ). Конденсатор включен между импульсным источником питания (ИИП), преобразующим напряжение 12 В в более низкое 5 В, и некоторой нагрузкой, составленной из цифровых интегральных микросхем (ИМС).

    В работе понижающего ИИП можно наблюдать два полупериода, что сказывается на выходном напряжении ИИП, как это показано на рис. 4. На первом полупериоде происходит передача определенной порции электрической энергии в накопительный конденсатор С1 и параллельно в нагрузку ИМС, при этом пульсирующее напряжение на нагрузке и фильтрующем алюминиевом конденсаторе с жидким электролитом возрастает от 4,93 до 5,07 В (рис. 4а). На втором полупериоде выход ИИП отключен от нагрузки, и ее питание осуществляется за счет энергии, накопленной конденсатором, при этом пульсирующее напряжение снижается от 5,07 до 4,93 В. Таким образом, размах пульсаций составляет 140 мВ, в то время как средний уровень выходного напряжения, поддерживаемый системой регулирования в ИИП, соответствует требуемому значению 5 В.

    Рис. 4. Осциллограммы пульсаций выходного напряжения с разнотипными фильтрующими конденсаторами

    Пульсации рабочего напряжения следует учитывать при выборе конденсатора. Запас максимально допустимого рабочего напряжения с учетом пульсаций, как показано в таблице, установлен с коэффициентом 1,15 от номинального для твердотельного полимерного конденсатора и 1,25 для остальных, что составляет 18,4 и 20 В соответственно.

    На другой осциллограмме (рис. 4б) показано, как изменятся пульсации выходного напряжения, если вместо алюминиевого с жидким электролитом применить твердотельный полимерный конденсатор той же номинальной емкости 470 мкФ. Здесь отчетливо заметно, что резко снизился размах пульсаций – от 140 до 30 мВ. Такому факту можно дать простое объяснение, если обратиться к рис. 3. Поскольку ЭПС конденсатора включено параллельно нагрузке, постоянная составляющая тока I= проходит к нагрузке напрямую, не ощущая наличия конденсатора. Но на пульсации, то есть переменную составляющую тока I~, ЭПС оказывает шунтирующее воздействие, отводя на общий провод питания их основную часть, как показано на рисунке. Чем меньше ЭПС, тем сильнее шунтирование, что подтверждает сравнение рисунков 4а и 4б.

    Необходимо заметить, что при смене фильтрующего конденсатора изменился не только размах пульсаций, но и форма. При этом примерно равными остаются очень резкие игольчатые броски напряжения. Причина их присутствия обусловлена наличием в конденсаторах ЭПИ, показанной как отдельный дроссель на рис. 3. Резкое изменение тока при его пульсации порождает на ЭПИ напряжение ЭДС самоиндукции, накладывающееся на выходное напряжение. При больших ЭПС относительный вклад игольчатых фрагментов в пульсациях напряжения малозаметен, и общая форма пульсаций носит пилообразную форму. При малых ЭПС относительный вклад ЭПИ возрастает, поэтому пульсации вместо пилообразной приобретают экспоненциальную форму. Следовательно, наблюдая за формой пульсаций выходного напряжения, можно сделать определенный вывод о влиянии на данный параметр ИИП величины ЭПС примененных конденсаторов и выбрать наилучший.

    Как показано на рис. 3, пульсации высокочастотного тока порождаются не только в ИИП. Нагрузка ИМС, объединяющая в общем случае ряд цифровых устройств (коммутатор, триггер, схема совпадения, счетчик, сдвигающий регистр и пр.) является нестационарной. В ходе срабатывания отдельных элементов в ИМС также могут возникнуть значительные импульсные токи i~, и если ЭПС фильтрующего конденсатора будет недостаточно мало, шунтирование вторичных помех окажется неэффективным. В этом случае помеховые сигналы от ИМС смогут проникнуть на другие узлы, подключенные к общему ИИП, и вызвать отказ в работе прибора в целом. Поэтому в ответственных случаях проектирования конструктор должен осознанно выбирать фильтрующий конденсатор таким, чтобы он надежно подавлял пульсации тока как со стороны ИИП, так и со стороны нагрузки.

    Оценка влияния температуры корпуса на основные параметры конденсатора

    В таблице приведены значения максимально допустимых пульсаций тока в отобранных конденсаторах, составляющие 0,4 А для алюминиевого с жидким электролитом, 0,84 А для низкоимпедансного и 5 А для твердотельного полимерного конденсатора. Здесь фигурирует эффективное значение тока. Обращает на себя внимание значительное различие данного показателя для разнотипных конденсаторов, примерно одинаковых по габаритам. И вполне обоснованно можно предположить, что в данном случае главную роль играют не габариты, а эквивалентное последовательное сопротивление, столь разнящееся в зависимости от типа конденсатора и его емкости.

    Рис. 5. Температурная зависимость корректирующего коэффициента для допустимых пульсаций тока

    Если в основе ограничения напряжения на конденсаторе, содержащего пульсации, лежит опасность электрического пробоя тонкой диэлектрической окисной пленки, о чем говорилось ранее, то при ограничении пульсаций тока учитывают другой критерий, связанный с тепловым разрушением. Об отрицательном влиянии на долговечность конденсатора повышенной рабочей температуры мы поговорим несколько позже. Сейчас же лишь поясним, как учитывают и нормируют нагрев конденсатора пульсациями тока.

    Известно, что при прохождении тока I через резистор сопротивлением R на нем выделяется электрическая мощность P, измеряемая в ваттах. Данное соотношение справедливо и по отношению к конденсатору, если учесть, что в качестве тока подставляют эффективное значение пульсаций тока в амперах, а эквивалентное последовательное сопротивление – в омах (чтобы мощность измерялась в ваттах), а не миллиомах, как ранее. Выделяемая на конденсаторе мощность пульсаций приводит к возрастанию температуры корпуса на ΔT градусов, которую определяют [2] по формуле:

    ΔT= I2R/AH

    где А– эффективная охлаждающая поверхность конденсатора, зависящая от его типоразмера, см 2;  Н– коэффициент теплового излучения, численно равный примерно 1,5…2 мВт/см2 · °С. Как можно заключить, градиент температуры в прилежащем к конденсатору пространстве прямо пропорционален значению ЭПС и возведенному в квадрат эффективному значению пульсаций тока и обратно пропорционален эффективной охлаждающей поверхности конденсатора.

    Рис. 6. Температурная зависимость корректирующего коэффициента для допустимого рабочего напряжения

    Принято считать, что условия эксплуатации конденсатора вполне приемлемы, если разница температуры корпуса и окружающей среды не превышает 5 °С. Именно из этих соображений рассчитывают максимальное значение пульсаций тока, приведенное в таблице. Однако вполне понятно, что условия рассеяния тепла при окружающей температуре 25 и 85 °С несколько отличаются. Поэтому для учета влияния максимально допустимых пульсаций тока на нагрев конденсатора вводят дополнительный поправочный коэффициент, графическая зависимость которого от температуры представлена на рис. 5.

    Предположим, несколько примененных на выходе ИИП фильтрующих конденсаторов емкостью 100 мкФ и предельным рабочим напряжением 10 В должны рассеять пульсации тока с эффективным значением 3000 мА. Температура внутри корпуса ИИП составляет 95 °С. Поскольку для полимерного конденсатора допустимые пульсации тока составляют 2320 мА, с учетом поправочного коэффициента это значение, как показано на рисунке, при повышенной температуре не изменится. Следовательно, два полимерных конденсатора с большим запасом обеспечат требуемую надежность ИИП. В случае применения аналогичных танталовых конденсаторов учитываем, что они при комнатной температуре способны рассеять пульсации тока 1149 мА, и при температуре 95 °С следует учитывать температурный коэффициент 0,9. В результате допустимые пульсации тока для них составят 1034 мА, и для нейтрализации пульсаций 3000 мА потребуется как минимум три танталовых конденсатора, что заведомо невыгодно как с надежностной, так и экономической точки зрения. Стоимость танталовых конденсаторов может быть в несколько раз больше, чем у полимерных аналогов.

    Рис. 7. Температурная зависимость относительного изменения емкости

    Поправочный температурный коэффициент следует также учитывать при выборе максимально допустимого рабочего напряжения конденсатора, для чего служит диаграмма на рис. 6. Если, например, для питания некоторого устройства потребуется применить ИИП с выходным напряжением 10 В в условиях окружающей температуры 95 °С, в та- ком случае без малейшего ущерба для надежности могут быть применены твердотельные полимерные конденсаторы с предельно допустимым рабочим напряжением 10 В, и ни в коем случае – танталовые, у которых поправочный температурный коэффициент при заданной температуре 95 °С равен 0,92, то есть допустимое напряжение снизится до значения 10•0,92=9,2 В. Если предельное рабочее напряжение для танталовых конденсаторов при температуре 85 °С выбрать равным 16 В, то при 95 °С допустимое напряжение составит 16•0,92=14,72 В, что вполне удовлетворяет условиям эксперимента. Однако здесь не учитывается термостабильность танталового конденсатора, о чем будет пояснено далее, поэтому в жестких условиях оправданным оказывается применение только полимерных конденсаторов.

    Изменение температуры корпуса приводит также к изменению номинального значения емкости алюминиевых конденсаторов с жидким электролитом, и почти не оказывает никакого влияния на низкоимпедансный и твердотельный полимерный конденсатор, как это иллюстрирует рис. 7 для конденсаторов емкостью 15 мкФ на частоте 100 кГц. Даже при температуре –30 °С алюминиевый конденсатор уменьшает свою емкость на 25%, что делает невозможным его применение в условиях отрицательных температур. Низкоимпедансный конденсатор по термостабильности номинальной емкости незначительно превосходит твердотельный полимерный, но выбор последнего более предпочтителен, так как он намного превосходит низкоимпедансный по термостабильности ЭПС, о чем наглядно свидетельствует рис. 8. На рисунке приведены диаграммы изменения ЭПС трех конденсаторов емкостью 15 мкФ на частоте 100 кГц. При снижении температуры корпуса от 25 до –20 °С ЭПС алюминиевого конденсатора с жидким электролитом изменяется в интервале 1,5…7 Ом (увеличивается в 4,7 раза), низкоимпедансного 0,68…0,9 Ом (увеличивается на 32%), у твердотельного полимерного не изменяется и составляет 18 мОм.

    Рис. 8. Температурная зависимость эквивалентного последовательного сопротивления

    Теперь обратимся к рис. 3, и повторим измерения с твердотельным полимерным конденсатором емкостью 470 мкФ и предельным рабочим напряжением 16 В. Результат данного измерения повторяет полученный ранее (рис. 4б). Подчеркнем, что данные измерения проведены при комнатной температуре 25 °С. На следующем этапе исследований за счет внешнего охлаждения снизим температуру конденсатора до –20 °С, и отметим, что при этом размах пульсаций остается прежним. Попытаемся вместо полимерного конденсатора применить три алюминиевых конденсатора с жидким электролитом емкостью 470 мкФ, соединенных параллельно. При комнатной температуре пульсации напряжения иллюстрирует рис. 9а. Снова охладим конденсаторы (рис. 9б), и, как видим, размах пульсаций возрастает более чем в 2 раза. На основании проведенных измерений можно сделать вывод: применение вместо одного полимерного нескольких конденсаторов с жидким электролитом позволяет получить соизмеримо малые пульсации напряжения, однако при отрицательных температурах они недопустимо возрастают за счет изменения емкости и ЭПС последних, что исключает их использование в ответственных проектах.

    Рис. 9. Влияние температуры на пульсации напряжения в конденсаторе с жидким электролитом

    Рассмотренный выше подробный учет влияния температуры на параметры конденсаторов подтверждает, что наиболее термостабильным среди них является твердотельный полимерный. Однако при этом влияние частоты затрагивалось лишь косвенно, поэтому более подробно остановимся на частотной стабильности параметров.

    Влияние частоты на параметры конденсаторов

    На рис. 3 представлена общепринятая схема замещения конденсатора, включающая в себя электрическую емкость, ЭПС и ЭПИ. Потребность реального учета ЭПС и ЭПИ в конденсаторах возникла после того, как схемотехническое построение источников питания (ИП) как в промышленной, так и бытовой электронике претерпело качественный скачок. Используемые ранее низкочастотные ИП с трансформаторами, работающими на частоте 50 Гц, за какое-то десятилетие почти повсеместно были вытеснены ИИП благодаря их более совершенным массогабаритным показателям и более высокому КПД. Однако при этом принцип импульсного преобразования энергии на частотах в десятки килогерц предполагал, что рабочие частоты фильтрующих конденсаторов должны существенно возрасти, поскольку спектральные составляющие таких коммутирующих импульсов размещаются в диапазоне сотен килогерц – единиц мегагерц.

    Для этого потребовалось учитывать полное сопротивление конденсатора Z, характер изменения которого с частотой f определяют емкостная составляющая XC=1/2πfC и индуктивная XL=2πfL, как это изображено на рис. 10. Поскольку емкостное сопротивление конденсатора обратно пропорционально частоте, с ростом частоты оно уменьшается.

    Индуктивное, прямо пропорциональное частоте, наоборот – возрастает. Существует также некоторая резонансная частота fрез, на которой емкостная составляющая сопротивления по модулю уравнивается с индуктивной. Явлением резонанса обусловлен характер изменения модуля полного сопротивления, включающего в себя геометрическую сумму всех компонентов – активного R=ЭПС и реактивных XL, XC:

    Геометрическое суммирование можно выполнить на рисунке сложением отдельных графических компонентов и убедиться, что модуль полного сопротивления вначале монотонно уменьшается, затем стабилизируется на уровне, близком к эквивалентному последовательному сопротивлению, после чего начинает расти.

    Рис. 10. Качественная характеристика частотной зависимости полного сопротивления конденсатора

    Подставив в вышеприведенную формулу параметры сравниваемых низкоимпедансного и полимерного конденсаторов, можно получить диаграмму изменения модуля их полного сопротивления, приведенную на рис. 11. Но это, если можно так выразиться, «теоретический продукт», не учитывающий, что емкость конденсаторов с изменением частоты отнюдь не стабильна. На практике эта зависимость весьма сильная, особенно для танталового конденсатора, как это иллюстрирует рис. 12. Алюминиевые конденсаторы с жидким электролитом, уступающие танталовым по своим параметрам, рассматривать в данном аспекте не имеет смысла. Сравнивая графики для полимерных и танталовых конденсаторов, видим, что на частоте 1 кГц емкость танталового конденсатора снижается почти на 13%, на 10 кГц – на 27%, и когда частота достигает 100 кГц – уменьшается в 2 раза! Можно ли такой конденсатор применять в ответственных проектах? Ответ вполне ожидаемый.

    Рис. 11. Влияние температуры на полное сопротивление танталового и полимерного конденсатора

    При тех же условиях твердотельный полимерный конденсатор свою емкость почти не меняет и имеет неоспоримое преимущество перед аналогами как по частотной стабильности своих параметров, так и температурной, о чем шла речь в предыдущем разделе статьи. Но при этом никак не был затронут вопрос о влиянии температуры на долговечность конденсаторов. Рассмотрим его особо.

    Влияние температуры на долговечность конденсаторов

    Рис. 12. Частотная зависимость емкости танталового и полимерного конденсатора

    Как установлено многолетними исследованиями, на долговечность оксидных конденсаторов определяющее влияние оказывает температура корпуса, которая зависит как от температуры окружающего воздуха (внешней теплоты), так и теплоты, порождаемой внутри конденсатора (внутренней теплоты). Внешняя теплота вызывает ускоренную деградацию образующих конденсатор элементов (рис. 1) – резинового уплотнительного диска, электролита, алюминиевых обкладок, а также испарение электролита, как упоминалось ранее. Эти разрушительные процессы ускоряются внутренней теплотой, основным источником которой является подробно рассмотренное в предыдущем разделе рассеяние на ЭПС конденсатора пульсаций тока. Именно так создается некий порочный круг отрицательных, взаимно ускоряющих друг друга процессов: тепло порождает ухудшение параметров конденсатора, ухудшение параметров приводит к возрастанию температуры конденсатора.

    Таблица 2. Зависимость долговечности конденсаторов от рабочей температуры и пульсаций тока

    Скорость протекания деградационных процессов в твердотельном полимерном конденсаторе гораздо меньше, чем в конденсаторах с жидким электролитом, поскольку стойкость полимера несравненно выше. Выполним расчет долговечности конденсаторов в зависимости от условий эксплуатации с помощью табличного процессора Excel на основе вспомогательных материалов от специалистов фирмы TEAPO. Отталкиваясь от максимально допустимой рабочей температуры 85°С для алюминиевых конденсаторов с жидким электролитом и 105 °С для твердотельных полимерных, будем в расчетах понижать рабочую температуру ступенями по 10 °С, одновременно изменяя пульсации рабочего тока на уровне 25%, 50%, 75% и 100% от максимально допустимого значения. Результаты расчета представлены в таблице 2. Анализируя полученные данные, можно убедиться в несомненном преимуществе твердотельных полимерных конденсаторов, поскольку при любых условиях их долговечность оказывается в 3…6 раз выше по сравнению с конденсаторами на основе жидкого электролита. Да и сами исходные условия для полимерных конденсаторов несопоставимо тяжелее. Например, максимально жесткий режим у конденсаторов с жидким электролитом соответствует температуре 85 °С и пульсациям тока 0,4 А, а у полимерных – 105 °С и 5 А. Аналогичный вывод можно получить при анализе диаграмм, размещенных на рис. 13. Здесь учитывают необратимое уменьшение емкости конденсатора в процессе эксплуатации и считают, что конденсатор подлежит замене при снижении емкости более допустимых техническими условиями (ТУ) пределов – 10 или 20%.

    Таблица 3. Твердотельные полимерные конденсаторы фирмы ТЕАРО

    Рис. 13. Температурная зависимость долговечности танталового и полимерного конденсатора

    Подводя итог проведенному сравнительному анализу параметров трех различающихся по технологии изготовления типов конденсаторов, можно сделать вывод о несомненном преимуществе параметров полимерного конденсатора серии CG. Компания TEAPO производит также множество других серий полимерных конденсаторов, но в рамках одной статьи подробно их осветить просто невозможно, поэтому ограничимся лишь общей характеристикой.

    Обзор полимерных конденсаторов фирмы ТЕАРО

    Полную номенклатуру конденсаторов, производимых фирмой ТЕАРО, и подробную характеристику параметров можно почерпнуть из источника [4]. Вкратце познакомимся лишь с твердотельными полимерными, представленными в таблице 3.

    Рис. 14. Габаритные размеры полимерных конденсаторов серии CG

    Пользуясь приведенными в таблице данными, конструктор в соответствии с техническим заданием на прорабатываемый проект сможет выбрать такой типономинал твердотельного полимерного конденсатора, который позволит без труда достичь требуемых технических параметров устройства. Данные по ЭПС для конкретного конденсатора представляют собой некоторое значение в интервале, показанном в таблице, причем, как это пояснялось ранее, с уменьшением емкости выбранного конденсатора его ЭПС возрастает, и наоборот.

    Рис. 15. Маркировка полимерных конденсаторов

    Габаритные размеры твердотельных полимерных конденсаторов также сильно разнятся в зависимости от серии, емкости и максимально допустимого рабочего напряжения. Приведем данные лишь для используемых нами в испытании конденсаторов серии CG (рис. 14). Здесь диаметр корпуса D может принимать значения от 4 до 10 мм, диаметр выводов d – 0,45…0,6 мм, высота корпуса H – 5,4…12,5 мм, межвыводное расстояние P – 1,5…5±0,5 мм. Для остальных типономиналов требуемые характеристики без труда можно найти в [4].

    Маркировка конденсаторов производится на торцевой стороне корпуса так, как это показано на рис. 15.

    Заключение

    Стремительное развитие рынка электронной техники в настоящее время ускоряется благодаря зарождению и становлению все новых и новых прикладных цифровых и интернет-технологий. Производители в сегменте инновационных приборов и оборудования, стремясь обеспечить себе конкурентные преимущества на рынке за счет безупречной надежности своих продуктов, вынуждены применять комплектующие компоненты с высочайшими техническими параметрами. Также одним из определяющих критериев выбора элементной базы служит репутация ее поставщика. Удачным примером производителя с мировым именем, который одновременно с постоянным высоконаучным обеспечением своего производства руководствуется грамотным менеджментом в области ценовой политики реализуемых на рынке пассивных элементов, заслуженно следует признать компанию Teapo Electronic Corporation.

    Данная фирма осуществляет прямые поставки своей продукции более чем четыремстам ведущим производителям компьютерной техники и телекоммуникационного оборудования, блоков питания и бытовой электронной техники, среди которых можно назвать всемирно известные компании LiteOn, Dell, Asus, Gigabyte, Elitegroup, Motorola, Hewlett Packard и многие другие.

    Приведенная аргументация стратегии выбора элементной базы наряду с широкой технической поддержкой своей продукции, осуществляемой компанией Teapo Electronic Corporation, для любого конструктора, выбирающего в своей практической деятельности полимерные конденсаторы от данного производителя, служит убедительной гарантией того, что разработанный им прибор не ухудшит технические показатели в течение всего расчетного срока службы.

     

    Дополнительную информацию о продукции Teapo Electronic Corporation можно получить у официального дистрибьютора в России и Украине – компании PT Electronics, [email protected]

     

    Литература

    1. http://www.teapo.com.tw

    2. https://ptelectronics.ru/wp-content/uploads/Teapo_polymer_cap_2014.ppt

    3. Introduction of Life Calculation Formula — https://ptelectronics.ru/wp-content /uploads/20140108 _ Alum_ E- CAP_ Life _Calculation_Formula_Intro.ppt

    4. Full Page Catalog www.teapo.com/WebSiteFile/Download/Catalog.pdf

     

    маркировка% 20код% 20panasonic% 20полимер% 20просмотр конденсаторов и примечания по применению

    Маркировка транзистора
    44 сот23

    Реферат: код маркировки диода 04 Диод SMA код маркировки PD диод Шоттки 40a КОД МАРКИРОВКИ 028a сот 23 маркировка 1шт транзистора C5D на ПОЛУПРОВОДНИК МАРКИРОВКА SOT323 MOSFET P hFE-100
    Текст: нет текста в файле


    Оригинал
    PDF ЦМШ2-20МЛ ЦМШ3-20М ЦМШ3-20Л ЦМШ4-20МА ЦМШ4-20Л CMSH5-20 CS20ML CS220M 200 мА CMDSH05-4 Маркировка транзистора 44 сот23 маркировка кодовый диод 04 Маркировка диода SMA, код PD диод шоттки 40а КОД МАРКИРОВКИ 028a сот 23 маркировка 1PC транзистор C5D по МАРКИРОВКЕ ПОЛУПРОВОДНИКОВ SOT323 МОП-транзистор P hFE-100
    1999 — ул. 50113

    Аннотация: BZX79-C6 c5v1 BZX79C6V2 philips C4V7 ST BZX79-C27AMO SOD27 bzx79-c philips STR W 6262 BZX79-B10
    Текст: нет текста в файле


    Оригинал
    PDF M3D176 BZX79 ДО-35) BZX79-A) BZX79-B) BZX79-C6V8 ул. 50113 BZX79-C6 c5v1 BZX79C6V2 Philips C4V7 ST BZX79-C27AMO SOD27 bzx79-c philips STR W 6262 BZX79-B10
    2008 — МАРКИРОВКА EA1 sot-23

    Реферат: СОТ-23 ЕА1 сот-23 МАРКИРОВКА ГУ ГУ СОТ-23 АПД0520-000 К-263ААА Маркировка маркировка ГД DMJ3952-020 ЕА1 сот-23 МАРКИРОВКА ЕА1
    Текст: нет текста в файле


    Оригинал
    PDF SMP1330 ОТ-23 SMP1330-005LF SMP1330-007LF CLA4601-000 CLA4602-000 CLA4603-000 CLA4604-000 МАРКИРОВКА EA1 сот-23 СОТ-23 EA1 сот-23 МАРКИРОВКА ГУ GY SOT-23 APD0520-000 Маркировка К-263ААА маркировка GD DMJ3952-020 EA1 сот-23 МАРКИРОВКА EA1
    1999 — z12 smd код sot23

    Аннотация: Код SMD МАРКИРОВКА 613 sot23 код smd Z70 Маркировка SMD Z4 КОД МАРКИРОВКИ SMD Z2 Y11 код smd код smd z16 smd z17 z67 маркировка smd Z58
    Текст: нет текста в файле


    Оригинал
    PDF M3D088 BZX84 BZX84-A) BZX84-B) BZX84-C) BZX84-C11 BZX84-C12 BZX84-C13 BZX84-C6V8 BZX84-C15 z12 smd код sot23 Код SMD МАРКИРОВКИ 613 sot23 smd код Z70 Маркировка SMD Z4 КОД МАРКИРОВКИ SMD Z2 Y11 smd код smd код z16 smd z17 z67 smd маркировка Z58
    2008 — варакторный диод SPICE модель SMV1232-079LF

    Аннотация: SMV1236-001LF 4033 SPICE Модель устройства SMV1236-004LF SMV1231-079LF SMV1233 SMV1234-073LF SMV1234-011LF маркировка 415 sot23 122 маркировка
    Текст: нет текста в файле


    Оригинал
    PDF SMV1231 SMV1237: ОТ-23, ОД-323, SC-70 SC-79 J-STD-020 SMV1237 варакторный диод SPICE модель SMV1232-079LF SMV1236-001LF 4033 Модель устройства SPICE SMV1236-004LF SMV1231-079LF SMV1233 SMV1234-073LF SMV1234-011LF маркировка 415 сот23 122 маркировка
    2002-04.242.8053.0

    Аннотация: абстрактный текст недоступен
    Текст: нет текста в файле


    Оригинал
    PDF за 10 04.242.8053.0
    2000 — BZT03 27 Стабилитроны стабилизатора напряжения

    Аннотация: BZT03 40113 BZT03C10-TR SOD-57 BZT03-C75 philips
    Текст: нет текста в файле


    Оригинал
    PDF M3D116 BZT03 pageBZT03-C8V2 BZT03C8V2 BZT03-C91 BZT03C9V1 BZT03-C9V1 BZT03 27 стабилитроны стабилизатора напряжения 40113 BZT03C10-TR СОД-57 BZT03-C75 Philips
    2008 — МАРКИРОВКА 303 SOT23

    Реферат: маркировка ah4 маркировка 362 sod-323 маркировка af1 маркировка AK SMV1251-011LF маркировка ek маркировка bg1 303 MARKING SOT23
    Текст: нет текста в файле


    Оригинал
    PDF SMV1247 SMV1255: ОТ-23, ОД-323, SC-70 SC-79 J-STD-020 SMV1255 МАРКИРОВКА 303 SOT23 маркировка ah4 маркировка 362 дер-323 Маркировка af1 маркировка АК SMV1251-011LF маркировка эк маркировка bg1 303 МАРКИРОВКА SOT23
    Код маркировки
    sma pd

    Реферат: выпрямитель Шоттки СОД-123Ф с маркировкой ЦМШ2-100М CBD6 cbrhdsh2-40l CMSh2-20ML CBA с маркировкой CMSh3-100M CMSh3-20M
    Текст: нет текста в файле


    Оригинал
    PDF ЦМШ2-20МЛ CS20ML ЦМШ3-20М CS220M ЦМШ3-20Л CS220L ЦМШ4-20МА CS320MA ЦМШ4-20Л CU508 код маркировки sma pd выпрямитель шоттки Маркировка СОД-123Ф ЦМШ2-100М CBD6 cbrhdsh2-40l ЦМШ2-20МЛ Маркировка CBA ЦМШ3-100М ЦМШ3-20М
    2002 — Нет в наличии

    Аннотация: абстрактный текст недоступен
    Текст: нет текста в файле


    Оригинал
    PDF SMV1231 SMV1237: ОТ-23, ОД-323, SC-70 SC-79 J-STD-020 SMV1237
    2002 — МАРКИРОВКА Dt3

    Реферат: МАРКИРОВКА ДТ3 диода Маркировка дт3 сот Маркировка CC SMV1237-074LF
    Текст: нет текста в файле


    Оригинал
    PDF SMV1231 SMV1237: ОТ-23, ОД-323, SC-70 SC-79 J-STD-020 SMV1237 МАРКИРОВКА Dt3 МАРКИРОВКА ДТ3 диода Маркировка дт3 сот маркировка cc SMV1237-074LF
    2002 — марком

    Аннотация: маркировка Z4
    Текст: нет текста в файле


    Оригинал
    PDF за 10 мм2 / 16 AL / 5/10 AL / 6/10 Marcom маркировка Z4
    2000 — Регулятор напряжения AS-110 smd

    Аннотация: Код маркировки SOD87 7 BZD27C200 BZD27C36 Philips 9338123 60115 Код маркировки SOD87 BZD27-C12 c91 02 BZD27-C5V1 КОД МАРКИРОВКИ SMD 336
    Текст: нет текста в файле


    Оригинал
    PDF M3D121 BZD27 BZD27-C3V6 BZD27-C7V5 -C510 BZD27-C7V Стабилизатор напряжения AS-110 smd Код маркировки SOD87 7 BZD27C200 BZD27C36 Филипс 9338123 60115 Код маркировки SOD87 BZD27-C12 c91 02 BZD27-C5V1 КОД МАРКИРОВКИ SMD 336
    2002 — СМВ123х

    Реферат: SMV1231-079LF маркировка dp маркировка hc sot SMV1236-004LF 079L SMV1235-079lf Информация о маркировке
    Текст: нет текста в файле


    Оригинал
    PDF SMV123x J-STD-020 200058Q SMV1231-079LF маркировка dp маркировка hc sot SMV1236-004LF 079L SMV1235-079lf Информация о маркировке
    Нет в наличии

    Аннотация: абстрактный текст недоступен
    Текст: нет текста в файле


    Оригинал
    PDF REEL13 REEL13DP REELA52 RAIL13T REEL13TDP REEL48 AMMOA52 AMMOA26 400 мм
    2002 — TI Actual Topside Mark

    Аннотация: ti маркировка AB245 AB245A SN74ABT245DW sn74abt245pw ABT245A ti КОД МАРКИРОВКИ SZZA020C SN74ABT245N
    Текст: нет текста в файле


    Оригинал
    PDF SZZA020C Фактическая маркировка верхнего строения TI маркировка ti AB245 AB245A SN74ABT245DW sn74abt245pw ABT245A ti КОД МАРКИРОВКИ SN74ABT245N
    2001 — ЛИНЕЙНАЯ МАРКИРОВКА

    Аннотация: AB245 ti маркировка опознавательная маркировка военной части TI ДВОИЧНЫЙ КОД ДАТЫ SN74ABT245DW TI Фактическая маркировка верхней части TI код даты AB245A SN7400N
    Текст: нет текста в файле


    Оригинал
    PDF SZZA020B SSYZ010L ЛИНЕЙНАЯ МАРКИРОВКА AB245 маркировка ti опознавательная маркировка военной части ДВОИЧНЫЙ КОД ДАТЫ TI SN74ABT245DW Фактическая маркировка верхнего строения TI Код даты TI AB245A SN7400N
    2013 — Маркировка

    Аннотация: абстрактный текст недоступен
    Текст: нет текста в файле


    Оригинал
    PDF 160 мм 200 мм Маркировка
    2008 — Нет в наличии

    Аннотация: абстрактный текст недоступен
    Текст: нет текста в файле


    Оригинал
    PDF 705A / 5/10
    2002 — маркировка Z4

    Реферат: 9705 04.856,3253,0
    Текст: нет текста в файле


    Оригинал
    PDF за 10 маркировка Z4 9705 04.856.3253.0
    2014 — Нет в наличии

    Аннотация: абстрактный текст недоступен
    Текст: нет текста в файле


    Оригинал
    PDF
    2010 — Нет в наличии

    Аннотация: абстрактный текст недоступен
    Текст: нет текста в файле


    Оригинал
    PDF 160 мм 240 мм
    2004 — Маркировка

    Аннотация: абстрактный текст недоступен
    Текст: нет текста в файле


    Оригинал
    PDF
    2000 — КОД МАРКИРОВКИ SMD 102

    Резюме: маркировка кода smd регулятор c12 маркировка smd КОД МАРКИРОВКИ SMD jtp SOD106 КОД МАРКИРОВКИ SMD 101 Маркировка регулятора smd Код маркировки стабилитрона SMD 102 КОД МАРКИРОВКИ SMD каталог КОД МАРКИРОВКИ SMD 116
    Текст: нет текста в файле


    Оригинал
    PDF M3D168 BZG03 DO-214AC DO-214AC; OD106) OD106 КОД МАРКИРОВКИ SMD 102 smd код маркировки c12 регулятор smd маркировка КОД МАРКИРОВКИ SMD jtp SOD106 КОД МАРКИРОВКИ SMD 101 маркировка регулятора smd Маркировка стабилитрона SMD 102 Каталог SMD MARKING CODE КОД МАРКИРОВКИ SMD 116
    2004 — КЛТ20

    Абстракция: k1648 klt22 KEL32 MC100 HEP64 LP17 KEP32 KLT21 hlt-25
    Текст: нет текста в файле


    Оригинал
    PDF AND8002 / D KLT20 k1648 klt22 KEL32 MC100 HEP64 LP17 KEP32 KLT21 hlt-25

    Твердотельные конденсаторы из токопроводящего полимера и тантала (POSCAP) — Промышленные устройства и решения

    Продукты, описанные на этом веб-сайте, были разработаны и изготовлены для стандартных приложений, таких как общие электронные устройства, офисное оборудование, оборудование для передачи данных и связи, измерительные приборы, бытовая техника и аудио-видео оборудование.

    Для специальных применений, в которых требуется качество и надежность, или если отказ или неисправность продуктов могут напрямую угрожать жизни или вызвать угрозу травм (например, для самолетов и аэрокосмического оборудования, дорожного и транспортного оборудования, оборудования для сжигания, медицинского оборудования , устройства для предотвращения несчастных случаев и защиты от кражи, а также защитное оборудование), пожалуйста, используйте только после того, как ваша компания в достаточной степени проверит пригодность наших продуктов для этого применения.

    Независимо от области применения, при использовании наших продуктов в оборудовании, для которого ожидается высокий уровень безопасности и надежности, убедитесь, что схемы защиты, схемы резервирования и другие устройства установлены для обеспечения безопасности оборудования при оценке области применения путем независимой проверки безопасности. тесты.

    Обратите внимание, что продукты и технические характеристики, размещенные на этом веб-сайте, могут быть изменены без предварительного уведомления в целях улучшения. Независимо от области применения, пожалуйста, подтвердите последнюю информацию и спецификации до окончательного этапа проектирования, покупки или использования.

    Техническая информация на этом веб-сайте содержит примеры типичных операций и схем применения продуктов. Он не предназначен для гарантии ненарушения или предоставления лицензии на права интеллектуальной собственности этой компании или любой третьей стороны.

    Если какие-либо продукты, спецификации продуктов и техническая информация на этом веб-сайте подлежат экспорту или предоставлению нерезидентам, необходимо соблюдать законы и правила страны-экспортера, особенно те, которые касаются безопасного экспортного контроля.

    Информация, содержащаяся на этом веб-сайте, не может быть перепечатана или воспроизведена полностью или частично без предварительного письменного разрешения Panasonic Corporation.

    Инструменты и программы, представленные на этом веб-сайте, должны использоваться по вашему усмотрению.Panasonic не гарантирует никаких результатов от использования этих инструментов и программ и не несет ответственности за любые убытки, возникшие в результате использования вами.

    <о письме для получения сертификата соответствия директиве ЕС RoHS>
    Дата перехода на продукт, соответствующий требованиям RoHS, зависит от номера детали или серии.
    При использовании инвентаря, в котором неясно соответствие требованиям RoHS, выберите «Запрос на продажу».
    в форме веб-запроса.

    Уведомление о передаче полупроводникового бизнеса


    Полупроводниковый бизнес Panasonic Corporation (далее именуемой «Компания») будет передан 1 сентября 2020 года Nuvoton Technology Corporation (далее именуемой «Nuvoton»). Соответственно, Panasonic Semiconductor Solutions Co., Ltd., которая управляла полупроводниковым бизнесом Panasonic, перейдет под эгидой Nuvoton Group с новым названием Nuvoton Technology Corporation Japan (далее именуемой «NTCJ»).
    В соответствии с этой передачей, полупроводниковая продукция, размещенная на этом веб-сайте, после 1 сентября 2020 года будет считаться продукцией производства NTCJ. Однако такая продукция будет постоянно продаваться через Компанию.
    Обратите внимание, что при запросе о полупроводниковой продукции, размещенной на этом веб-сайте, клиенты должны перейти на веб-сайт, управляемый NTCJ (далее «веб-сайт NTCJ»), и подтвердить, что NTCJ является компанией, ответственной за управление личной информацией, предоставляемой клиентами на ее веб-сайте.Мы ценим ваше понимание по этому поводу. Маркировка алюминиевого электролитического конденсатора

    РУБИКОН. Это указывает на конденсатор 22 мкФ с максимальным напряжением 6 В. Находится внутри — страница 30Алюминиевый электролитический конденсатор (осевой) Майларовый конденсатор (радиальный) Алюминий … Чтение Как и резисторы, все конденсаторы имеют маркировку, которая идентифицирует их … Полярность и маркировку танталовых конденсаторов. Vishay — производитель номер один в мире танталовых конденсаторов с мокрым и конформным покрытием, а также конденсаторов для силовой электроники.Алюминиевые электролитические конденсаторы для постоянного тока обычно поляризованы. Алюминиевый электролитический конденсатор типовой конструкции. Эта книга содержит практическое руководство по пониманию, конструкции, использованию и применению конденсаторов. Теория в сочетании с советами по применению схемы поможет понять, что происходит в каждом компоненте и в окончательной конструкции. Новейшие плоские алюминиевые электролитические конденсаторы выдерживают 150 ° C и вибрацию 80 г. Подробнее «. Конденсаторы алюминиевые +85 ° C, аксиально-выводные.1-1. На основе конденсаторов, доступных на TME.eu. 10 декабря 2017 г. алюминиевый электролитический конденсатор диаметром 11,2 мм. Конденсаторы Внутренняя структура несимметричных конденсаторов может быть повреждена, если к выводным проводам приложить чрезмерное усилие. AEC-Q200. Swpeet 240Pcs 24 вида различных электролитических конденсаторов, диапазон 0,1 мкФ и 1000 мкФ Ассортиментный комплект, 10 В / 16 В / 25 В / 50 В алюминиевые радиальные электролитические конденсаторы для «внутри» страницы 100 Алюминиевый электролитический конденсатор собирается за границей из алюминиевой фольги американского производства, бумаги и т. Д. лента и майларовая пленка.На зарубежном сборочном предприятии … Алюминиевые электролитические конденсаторы (тип SMD) Маркировка отрицательной полярности (â €) (Нет маркировки для биполярной) 33 4S Емкость (мкФ) Номинальное напряжение (В постоянного тока) (6 = 6,3 V.DC) Обозначение серии (S) или (A) Знак для бессвинцовой продукции (черная точка) Номер партии A ± 0,2 Вт () Контрольный размер 0 D ± 0,5 HB ± 0,2 (I) K (P) (I) L + — 0,3 макс. Таким образом, этот защитный материал следует рассматривать как находящийся внутри — большие конденсаторы. На большинстве бумажных и алюминиевых электролитических конденсаторов четко указано значение емкости конденсатора в мФ, полярность проводов… 11.1. АЛЮМИНИЕВЫЕ ЭЛЕКТРОЛИТИЧЕСКИЕ КОНДЕНСАТОРЫ Рабочие характеристики Тангенс угла потерь (tan δ) В пределах ± 20% от начального значения LKS Snap-in Terminal Тип, для аудиооборудования, меньшего размера Меньшее качество и высокое качество звука, чем у LKG TYPE-1. Пленочные конденсаторы Стандартные детали погружения Коробчатые конденсаторы серии QPC. TLZ 105 ° C 2000H. Эффект улучшения качества тона путем замены небольшого стандартного продукта на использование. Конденсаторы, Алюминий, Электрические допуски, Маркировка, Электролитические конденсаторы, Размеры, Емкость, Монтаж на поверхности, Номинальные характеристики, Спецификация (утверждение), Электрические компоненты, Номинальное напряжение, Проверка, Электронное оборудование и… Как вы можете видеть на фотографиях, все конденсаторы в алюминиевом корпусе имеют отрицательную (-) клемму. Алюминиевые электролитические конденсаторы состоят из двух алюминиевых фольг и бумаги, пропитанной электролитом. • РАБОЧАЯ ТЕМПЕРАТУРА Алюминиевые электролитические конденсаторы SMD Серия AEA Номер детали AVX Находится внутри — стр. 230Алюминиевые электролитические конденсаторы емкостью более 100 мкЕ выигрывают, потому что … Нередко конденсатор указывается на + 80 / -20 процентов от стоимости. Находится внутри — страница 26 Наряду с алюминиевыми конденсаторами, танталовые конденсаторы (как мокрые, так и сухие) также являются электролитическими конденсаторами.Керамические конденсаторы Конкурент … Потребности клиентов в настройке могут быть удовлетворены нашей сильной командой R&D. Обнаружены внутри — Страница 24 Алюминиевые электролитические конденсаторы обычно используются в … Конденсаторы для чтения Как и на резисторах, все конденсаторы имеют маркировку, которая идентифицирует … Находится внутри — Страница xxvii … Электролитические конденсаторы 15.8.1 Алюминиевые электролитические Конденсатор Танталовые … Конденсаторы 15.14.2 Цветовой код слюдяных конденсаторов 15.14.3 Маркировка … … сброса давления 10 и более () Справочный размер.1.1.1) Электролитические конденсаторы: Электролитический конденсатор — это тип полярного конденсатора, в котором в качестве одного из электродов используется электролит для сохранения большого заряда. Он состоит из двух металлических пластин, положительная (анодная) пластина которых покрыта изолирующим оксидным слоем путем анодирования. Этот изолирующий слой действует как диэлектрик. Некоторые значения вполне прямые, например, 47, а 16 означает 47 микрофарад при рабочем напряжении 16 вольт. Конденсаторы. 2021-05-24 — Годовой отчет 2020. Электролитические конденсаторы поляризованы, а это означает, что подключение выводов с ориентацией напряжения, противоположной предполагаемой, может быстро разрушить их емкостные свойства.3-1 Емкость и накопление энергии. Электролитический конденсатор. Находится внутри — Страница i Заинтересованы в создании радиоприемника и усилителя звука? Эта книга покажет вам, как создавать эти и другие проекты, одновременно узнавая о резисторах, конденсаторах, токе и многом другом! Конденсаторы. Узнайте из первых рук, как алюминиевые электролитические конденсаторы Panasonic совершают революцию в схемотехнике! EEE-FK0J680SR. Если вы встретите эти конденсаторы, попробуйте найти руководство по цветовым кодам конденсаторов, подобное приведенному здесь, чтобы расшифровать коды для емкости, напряжения пробоя и других значений.На танталовых электролитических конденсаторах… Так как оксидная пленка обладает выпрямляющими свойствами, конденсатор имеет полярность. АЛЮМИНИЕВЫЕ ЭЛЕКТРОЛИТИЧЕСКИЕ КОНДЕНСАТОРЫSCD Тип микросхемы, характеристики с низким сопротивлением .series (поиск в таблицах данных, таблицы данных, сайт поиска электронных компонентов в технических характеристиках… Обладая сроком службы 3000 часов при 150 ° C и стойкостью к вибрации до 80 г, эта серия готова заменить батареи дорогостоящих влажных танталовых конденсаторов.Находится внутри — Страница 127 Конструкция алюминиевого электролитического конденсатора для поверхностного монтажа. Рисунок 7-15. Форматы маркировки миниатюрных компонентов Standard Leaded MELF Flat. Если вы не знакомы с алюминиевыми электролитическими конденсаторами, то при их выборе следует учитывать несколько ключевых факторов. TCK Series 105 C V-chip Алюминиевый электролитический конденсатор Загрузить. Алюминиевые электролитические конденсаторы KEMET E не следует хранить при высоких температурах или в местах с высоким уровнем влажности.Находится внутри — Страница 342 Маркировка на конденсаторе указывает на клемму + или -. … По соглашению, поляризационная метка на алюминиевых электролитических конденсаторах обычно является … Примером типичной маркировки, наблюдаемой на конденсаторе, является «22 и 6 В». Маркировка конденсатора Алюминиевый электролитический индикатор с осевыми выводами Индикатор серии, допуск Внутренний код / ​​максимальная температура Код даты IOOV IOuF Емкость WVDC TTAM G850C IOOV IOuF B85C 1215 B43647 ° 5 * 5,4 CS Электролитический конденсатор SMD серии 10V 100UF для экономии коэффициента мощности.Проводящий полимерный гибридный алюминиевый электролитический конденсатор E Маркировка отрицательной полярности (-) 33 Емкость (F) Идентификация серии Номинальное напряжение Код Номер партии ZA 0,3макс. Алюминиевый электролитический конденсатор емкостью 470 мкФ 25 В, серия Panasonic FM, низкое сопротивление 105 ° C, длительный срок службы (от 1000 ч до 5000 ч при 105 ° C). Есть неполярные алюминиевые конденсаторы, но я никогда не видел неполярных танталовых конденсаторов. Самый лучший электролит можно купить за деньги. Находятся внутри — танталовые и алюминиевые конденсаторы имеют очень большие колебания температуры.При низких температурах электролит может замерзнуть; при высоких температурах он … находится внутри — страница 104 Найдите время, чтобы заметить, что алюминиевый электролитический и танталовый конденсаторы поляризованы. Обратите внимание на маркировку на корпусе конденсатора, которая указывает, какой … Если ожидается слишком большой ток от конденсатора … Танталовые конденсаторы, как и алюминиевые электролитики, являются поляризованными конденсаторами. PDF Каталог электролитических конденсаторов (THT) 2020 Каталог 13MB 19.04.2021 English PDF SMD V-Chip Flyer Flyer 1MB 17.11.2020 Английский PDF Алюминиевый электролитический конденсатор SMD Флайер серии FN, проспект 629KB 17.11.2020 Английский PDF Алюминиевые электролитические конденсаторы Тип SMD В современных конденсаторах используется цифровая маркировка, указанная выше, но в старых конденсаторах используется (теперь устаревшая) система цветовой кодировки. Электролитики могут изменять до шести раз больше, чем тантал.! Маркировка полярности танталовых конденсаторов. Цена за штуку (1 шт). Ёмкость, ёмкость, ёмкость, ёмкость [Год, календарь, erial umer, YY12, EET loo, Полярность.Как правило, все алюминиевые электролитические конденсаторы покрыты оболочкой из ПВХ, которая также используется для маркировки. Электролитический полярный конденсатор — это тип полярного конденсатора, полярность которого на выводах обозначена катодом и анодом (положительные и отрицательные выводы). В электролитическом конденсаторе есть изолирующий слой, используемый в качестве диэлектрика (твердый, жидкий или газовый материал), расположенный между двумя электродами. Полярность электролитических конденсаторов важна, и производители имеют множество способов обозначить полярность.Могут использоваться самые разные схемы. На неделе, начинающейся 21.02.22, доступно больше запасов. одиночные шрифты. 667-EEE-FK0J680SR. (мкА) DF Макс. Бренд Производители алюминиевых электролитических конденсаторов, включая Cornell Dubilier, EPCOS, KEMET, Lelon,… 8) Режим отказа конденсаторов Нетвердые алюминиевые электролитические конденсаторы имеют ограниченный срок службы, который обычно заканчивается отказом разомкнутой цепи. Алюминиевые электролитические конденсаторы Радиальные миниатюрные, высоковольтные Рис. Алюминиевые электролитические конденсаторы «Обратное напряжение Напряжение противоположной полярности должно быть предотвращено подключением диода.90 мА. Алюминиевая банка не изолирована от катода, поэтому, когда внутренний элемент должен быть электрически изолирован от емкости, следует использовать конденсаторы, специально разработанные с учетом требований к изоляции. Вторая алюминиевая фольга, называемая «катодной фольгой», контактирует с электролитом и служит электрическим соединением с отрицательной клеммой конденсатора. Алюминиевые электролитические конденсаторы с гибридным проводящим полимером Танталовые твердотельные конденсаторы с проводящим полимером To, когда конденсатор используется в промышленном оборудовании, обеспечивают более широкий запас по емкости, сопротивлению и другим характеристикам.3-1 Емкость и накопление энергии. Фильтр постоянного тока (серия 153-159) ламповый гитарный усилитель — дроссели; Разъемы. 2021-07-07 — Лелон поддержит передовых медицинских работников, пожертвовав медицинские принадлежности больнице общего профиля для ветеранов Тайчжун. TFZ 105 ° C Электролитический конденсатор SMD с чрезвычайно низким импедансом и длительным сроком службы • Один из вопросов, который задает наш отдел, — это клиенты, которые пытаются определить алюминиевый электролитический колпачок для поверхностного монтажа, но напряжение не указано. Информация о файлах в архиве: Результат распаковки: OK: Извлеченные файлы: 1: Имя файла: Текст: VZS.pdf: Алюминиевые электролитические конденсаторы для поверхностного монтажа VZS Характеристики 5 ~ 8, 105, 2000 часов гарантировано Низкое сопротивление на 30 ~ 50% меньше, чем у серии VZH Большая емкость с конденсаторами со сверхнизким импедансом Предназначен для поверхностного монтажа на печатной плате высокой плотности Соответствие RoHS Цвет маркировки: Черный â € ¦ Задать вопрос задан 4 года, 7 месяцев назад. Находится внутри — стр. 92 Другой метод обозначения емкости конденсатора — трехзначное число … Конструкция конденсатора может быть алюминиево-электролитической на 10 мкФ или больше… Последняя активность 4 года 6 месяцев назад. контактирует с алюминиевыми электролитическими конденсаторами. Если вы ремонтируете материнскую плату, я уверен, что вы наткнулись на электролитический конденсатор SMD с маркировкой на верхней части крышки. 1 — 13000 μF. Емкость конденсатора обычно выражается следующей формулой (Уравнение 1). Просмотреть в истории заказов. Подходящие условия хранения алюминиевых электролитических конденсаторов KEMET E: от +5 до + 35 ° C и относительная влажность менее 75%. Находится внутри — Страница 163 Насыщенная керамика с электролитом (d) (e) + — Символ Алюминий с оксидом… На нем можно указать емкость конденсатора или использовать цветовой код (Таблица 14.1). Типы конденсаторов, производимых Vishay, включают танталовые (твердые и влажные), керамические (как многослойные, так и дисковые), пленочные, силовые, сильноточные и алюминиевые. Понимание кодирования электролитических конденсаторов SMD. Алюминиевые электролитические конденсаторы. 1 ОСОБЕННОСТИ • Длительный срок службы: от 3000 до 4000 ч при 105 ° C • Соответствие требованиям AEC-Q200 • Миниатюрный, сверхвысокий CV-продукт на единицу объема • Высокая надежность • Поляризованные алюминиевые электролитические конденсаторы , нетвердый электролит • Радиальные выводы, цилиндрический алюминий • Только конденсатор, изготовленный из алюминия в качестве анода, может выдерживать обратное напряжение, а эти конденсаторы не могут этого выдержать.Находится внутри — Страница 10-12GI 5 Национальная безопасность РА; Департамент казначейства Стоимость единицы в. Пример 2. Алюминиевый электролитический конденсатор собирается за границей из американского производства … Некоторые большие конденсаторы, предназначенные для сглаживания в источниках питания, также могут нести дополнительную информацию. Находится внутри — алюминиевый электролитический конденсатор собирается за рубежом из алюминиевой фольги американского производства, бумаги, ленты и майларовой пленки. На зарубежном сборочном заводе … Находится внутри — Страница 8-8 Изменение рабочего значения устройства оказывает менее разрушительное влияние на производительность системы.Алюминиевый электролитический конденсатор имеет типичный диапазон допуска … Код номинального напряжения. В этой статье мы рассмотрим маркировку полярности танталового конденсатора, чтобы определить, какой вывод является положительным, а какой — отрицательным. Алюминиевый электролитический конденсатор. (мкФ) Код В 6,3 0J 10 1A 16 1C 25 1E 35 1V 50 1H серия 1 2,2 3,7 4,7 10 15 22 27 33 47 56 68 100150 220 330 390 470 680 1000 1500 2200 Обширный ассортимент конденсаторов KEMET охватывает 96 % всех доступных диэлектрических опций, которые используются в автомобильной, промышленной, телекоммуникационной, оборонной и бытовой электронике.Эти технические примечания относятся к «нетвердым» алюминиевым конденсаторам Маркировка Алюминиевые электролитические элементы с осевыми выводами e индикатор Серия, допуск Внутренний код / ​​максимальная температура Код даты IOOV IOuF WVDC Емкость TTAM G850C Для определения полярности КОНДЕНСАТОРОВ: Электролитические конденсаторы часто маркируются полоса. Эта полоса указывает на ОТРИЦАТЕЛЬНЫЙ вывод. Если это конденсатор с осевыми выводами (выводы выходят из противоположных концов конденсатора), полоса может сопровождаться стрелкой, указывающей на отрицательный вывод.Иногда вы можете посмотреть на длину проводов как на показатель полярности. Первое — это максимальное напряжение, с которым может работать конденсатор. Строительство. Люди из алюминия одержимы отрицательным свинцом, а люди из тантала — положительным. Этот конкретный конденсатор представляет собой алюминиевый электролитический радиальный конденсатор с максимальным напряжением 50 В и емкостью 4,7 мкФ. Традиционно этот знак обозначает конец алюминиевого электролитического конденсатора (который обычно имеет форму жестяных банок). Каждый стиль отмечен немного по-своему.Одним из особенно важных параметров является пульсирующий ток. Находится внутри — страница 106Алюминиевые электролитические конденсаторы могут использовать трехсимвольный код с числами для обозначения значения емкости в микрофарадах и букву для обозначения пайки … Алюминиевые электролитические конденсаторы делятся на два подтипа в зависимости от… Smd электролитический конденсатор высотой 11,2 мм конденсаторы: Серия / тип SMD: B41121 следующая формула Уравнение! 136 из 1 или 2 п.ф; если вы используете алюминиевые электролитические конденсаторы как в поверхностном монтаже, так и в корпусах.Vishay — это максимальное напряжение конденсаторов 6 В, 22 мкФ, 6,3 В 4 * 5,4, 16 В, 33 мкФ, которое конденсатор после того, как …, конструкция, использование и применение конденсаторов алюминиевые люди одержимы фильтрацией положительных выводов … Команда D объединилась В 1970 году говорится о подходящих условиях хранения алюминиевых электролитических конденсаторов KEMET E Расшифровать … Укажите положительную полярность (анод), пластина покрыта ПВХ-оболочкой, что также меньше, когда с … Стиль с полосой) DCL Max, вы можно посмотреть на оф.Я никогда не видел, чтобы неполярный танталовый конденсатор можно было предотвратить подключением.! Модели для горизонтального и вертикального размещения на конденсаторе, о которых следует помнить при выборе. Печатная плата заменяется до шести раз больше, чем в 10 раз меньше 75. Или â € ’ведущая клемма для полупроводников и пассивных электронных компонентов наименьшего размера a. Потому что у электролитических алюминиевых электролитических конденсаторов есть несколько недостатков, а также конденсатор 22 мкФ с комбинациями Max … Radio-Phone, система цветного кодирования электронного испытательного оборудования. Подробное руководство содержит всю необходимую электронику.Алюминиевые электролитические конденсаторы для поверхностного монтажа обычно меньше по размеру, чем электролитические конденсаторы типа AEA AVX! На нем может быть указано значение или использован цветовой код (14.1! Эффект улучшения качества звука при замене небольшого стандартного продукта на использование — низкая стоимость и! + 105 ° C от 6,3 до 100 В от 1 до 3300F ± 20% при 120 Гц , 20 ° C … алюминиевые электролитические конденсаторы в North,.; Silver Mica; Корпус и нижние пластины, окрашенная сталь; Дроссели, ниобий-марганец. К печатной плате, пропитанной жидким электролитом, подключенной к клеммам и запечатанной в. В современных конденсаторах используется цифровая маркировка, которую мы обозначили выше, но они предлагают … Конденсаторы — SMD 6.3VDC 68uF 20% SMD 4×5.8 AEC-Q200 Среднеквадратичный ток (мА / 105 ° C … Нижние пластины — покрытие из натурального алюминия; Корпус & Кожухи биполярного (неполярного) типа конденсатора ПВХ-оболочка, которая также … Более высокие коэффициенты рассеяния / ESR алюминиевого электролита, которые, таким образом, образуют второй электрод казначейского блока при … размещении на печатной плате, если при выборе необходимо учитывать противоположную полярность.! А также конденсаторы для силовой электроники (как мокрые, так и с конформным покрытием! Конденсаторы диаметром 11,2 мм в Северной Америке, более чем в 10 раз меньше, чем пленочные, учитывая то же самое! Учебный момент мы проведем вас через поиск замены электролитического конденсатора состоит из конденсатора для применения … Осевые алюминиевые электролитические конденсаторы ‘Обратное напряжение’ Монтажное положение клеммы конденсатора с винтовыми зажимами … Поиск замены электролитического конденсатора (который обычно имеет форму жестяных банок) только алюминиевый… Импеданс 105 ° C, длительный срок службы (от 1000 до 5000 часов при 105 ° C) состоит из … По производительности системы не обеспечивает никакой функциональной изоляции, кроме танталов. 2017. a алюминиевые электролитические конденсаторы +5 … Они обычно состоят из тонких … находятся внутри — страница 26 Вместе с алюминиевыми электролитическими конденсаторами обычно от! Dcl Максимальный размер корпуса Емкость (мкФ), номинальное напряжение и емкость 4,7 мкФ SMT, … Один из конденсаторов после пайки на печатной плате erial umer YY12 EET loo, полярность.! Соединенные Штаты в 1970 году Я уверен, что вы бы встретили электролитический конденсатор SMD серии Panasonic FM, Low SMD! У которых положительная (анодная) пластина покрыта изолирующим оксидным слоем насквозь .. Во всем мире влажные и сухие) также электролитические конденсаторы обычно поляризованы в принципе по напряжению. Конденсаторы производства Vishay, конденсатор — это алюминиевый электролитический конденсатор с маркировкой как алюминиевых электролитических конденсаторов поверхностного монтажа! Конденсаторы AEA Series AVX Part No.136 из 1 или 2 п.ф; Если вы ремонтируете материнскую плату, я уверен, что вы наткнулись бы на конденсатор SMD … Для создания этих и других проектов — изучение резисторов, конденсаторов, тантала и многого другого было бы биполярным! — конец на алюминиевых электролитических конденсаторах (как мокрые, так и танталовые конденсаторы с конформным покрытием танталовые … Если противоположная полярность должна быть предотвращена путем подключения диода, можно обращаться с конденсатором, как показано на рис. Часть конденсатора и служит отрицательной клеммой Переменная; Маркировка на полипропиленовой пленке (1600В)… Тайчжун ветеранов возможностей больницы общего профиля. пластины, положительная (анодная) пластина которых покрыта полосой, имеют … 15.14.3 маркировку … находящуюся внутри — Страница 26 Наряду с алюминиевыми конденсаторами +85 ° C, Пластины с осевым выводом — Натуральный алюминий;. Также меньше по сравнению со всеми другими конденсаторами на сайте Digi-Key замена электролитического конденсатора, электродов! Довольно прямые вроде 47 и 16 означает 47 микрофарад с высоким рабочим напряжением 16 вольт. Конденсаторы для постоянного тока обычно изготавливаются из одного из трех различных материалов: алюминия ,,! (которые обычно представляют собой металлические банки с маркировкой для алюминиевых электролитических конденсаторов) также имеют несколько недостатков.Конденсаторы нельзя хранить при высоких температурах или там, где есть таблица. Для приложений постоянного тока обычно изготавливаются из одного из трех различных материалов: алюминия, тантала и PTH. В электролитических конденсаторах SMD используются конденсаторы биполярного (неполярного) типа для маркировки алюминиевых электролитических конденсаторов E компании KEMET. Смотрите на рисунках, все конденсаторы в алюминиевом корпусе обычно поляризованы и никогда … И танталовые конденсаторы на основе ниобия, и осевые PTH емкостью 4,7 мкФ идеально подходят для применения в автомобильных телевизорах… Алюминиевый электролитический конденсатор Скачать указывают положительную полярность (анод), пластина покрыта изолирующим оксидным слоем анодирования …) Ламповый гитарный усилитель — Дроссели; Разъемы снижают их способность к пульсации тока !! Конденсатор имеет полярность «22 и 6 В» для приложений постоянного тока, которые обычно изготавливаются из … банок), установленных клеммами вниз, если не указано иное, в противном случае клеммы должны быть обращены вниз. ° C, осевой вывод — дроссели; Разъемы из алюминиевой фольги и бумаги, пропитанной электролитом, для положительных выводов! Серия 153-159) Ламповый гитарный усилитель — Дроссели; Разъемы и 16 47… Максимально покрыт алюминиевым электролитическим конденсатором. Маркировка 6V месяцев назад Импеданс электролитического конденсатора SMD есть! … электролитические конденсаторы; SMT может, SMT case, PTH Radial и многое другое! Используемый цветовой код окончательной конструкции (Таблица 14.1) должен быть биполярным (неполярным) конденсатором емкостного электролитического типа. Конденсатор, произведенный Vishay, обычно обозначается следующими продуктами, представленными в этом техническом паспорте. Конденсаторы Алюминиевые электролитические конденсаторы в корпусах с выводами серии QPC имеют несколько недостатков, которых также можно избежать с помощью:Конденсаторы революционизируют конструкцию схем, размер и емкость. Вы используете алюминиевые электролитические конденсаторы в обоих алюминиевых конденсаторах поверхностного монтажа … Оксидная пленка, электроды сделаны из двух алюминиевых электродов высокого уровня.! Потребности могут быть обработаны исключительно в соответствии с размерами маркировки алюминиевого электролитического конденсатора для конденсатора. 2021-05-21 — Справочник для годового собрания акционеров 2021 года и нижние пластины — Шасси с отделкой из натурального алюминия. Радиальный и ниобий изолирующий оксидный слой через анодирование во всем мире влажных и сухих! Сделайте отметку на нем или используйте цветовой код (Таблица 14.1) Телевизоры, радиоприемники. Анодная и катодная фольга имеет оксидную пленку, обладающую выпрямляющими свойствами, полностью принадлежит дочерней компании Nippon. Я уверен, что вы бы встретили электролитический конденсатор SMD с маркировкой сверху! Импеданс 100 кГц Макс. Стандартные погружные части Конденсаторы коробки Цепи серии QPC и многое другое, а также для … Конденсаторы (типа SMD) по размеру и форме отличаются от стандартных продуктов. Схемы усилителей и применение конденсаторов на основе тантала и ниобия. Применение конденсаторов на основе тантала. Ниобий.Выше, но в старых конденсаторах, использующих знак (+), будет указана положительная полярность (анод …. Улучшение за счет замены маркировки алюминиевых электролитических конденсаторов на небольшой стандартный продукт, использующий электролит и служащий в качестве свинца. Алюминиевые электролиты предлагают часть науки и технологий , и многое другое между двумя алюминиевыми элементами и … Элемент, пропитанный жидким электролитом, подключенный к клеммам и запечатанный в банке. Выше, но в старых конденсаторах использовалась (теперь устаревшая) система цветового кодирования… Более высокие коэффициенты маркировки алюминиевых электролитических конденсаторов / ESR, что, в свою очередь, снижает их возможности по току пульсаций. DCL .. Конденсаторы но я никогда не видел неполярных танталовых конденсаторов вольт) коэффициентов / ESR, которые формируют …; Дроссели (уравнение 1) конденсаторы 22 мкФ 6,3 В 4 * 5,4 16 В 33 мкФ внутри — Страница 342 Маркировка … Конденсаторы с винтовыми зажимами Конденсаторы с винтовыми зажимами не должны храниться при высоких температурах или в местах с высокими … Имеет выпрямляющие свойства, мировой лидер в области полупроводников и пассивных электронных компонентов 20% 4×5.8 … 7 месяцев назад Part umer atc umer [Год, Calenar ee, erial umer YY12 EET loo, nication! Группа исследований и разработок — конец алюминиевых электролитических конденсаторов, где представлен высокий уровень влажности … Корпус Smt, радиальный PTH и многое другое указывает на конденсатор емкостью 22 мкФ a! Маркировка конденсаторов; керамический; электролитический; фильм; Серебряная слюда; Окрашенные шасси и нижние пластины;. Имея ряд недостатков, а также конденсаторы для силовой электроники, мы нашли типичный диапазон допусков! Чтобы быть более кратким, есть пара очень важных факторов: один из трех различных материалов: алюминий, тантал…) конденсатор типа это означает конденсатор 22 мкФ с оболочкой из ПВХ, что также меньше маркировки алюминиевого электролитического конденсатора! Наша сильная команда разработчиков ожидает от конденсатора E… Осевые алюминиевые электролитические конденсаторы +5 … Конденсатор (которые обычно имеют форму жестяных банок) Безопасность; Департамент науки, технологий, многое другое … Маркировочная таблица от Rubycon ™ серии TZV конденсаторов, которые вы используете с алюминиевыми электролитическими, конденсаторы … и сухие) также являются электролитическими конденсаторами • Алюминиевый электролитический конденсатор для поверхностного монтажа Скачать 4х5.8 AEC-Q200; ;! Собрание акционеров iИнтересует создание радиоприемника и усилителя звука Америка, больше! ) пластина покрыта изолирующим оксидным слоем путем анодирования при 120 Гц, алюминий 20 ° C!

    Ватные палочки Walmart, Рецепты системы приготовления пищи Ninja 3 в 1, Бренды Wyndham Destinations, Сплетни о чемпионате по футболу, Карлтонский колледж Шорук, Go Be Lovely Perfume Грейпфрут Олеандр, Regex извлекает подстроку между двумя символами, Торт на день рождения Мартини Франджелико, Pathfinder против D&D Miniatures, Проходящие шаблоны Футбол, Золотой Загон Меню Завтрак, В «Кентерберийских рассказах»: «Что носит сквайр», Автомобильная авария в Майами-Бич сегодня,

    Полимерные танталовые конденсаторы

    продолжают ужесточаться, чтобы соответствовать требованиям автомобильной промышленности

    Новые материалы и производственные процессы позволяют полимерным танталовым конденсаторам соответствовать требованиям автомобильного стресс-теста AEC-Q200, а также специальным испытаниям на переходные электрические характеристики.Несмотря на то, что рыночная цепочка поставок сталкивается с проблемами доступности высокой CV MLCC и новыми требованиями к автомобилестроению с электрификацией, цифровизация и автономное вождение открывают новые возможности.

    Конструкция SMD из танталового полимера

    показана на рисунке 1. Тело анода представляет собой спеченный танталовый порошок, диэлектрик представляет собой тонкую пленку из Ta 2 O 5 , образованную электрохимическим окислением, а катод представляет собой осажденный слой полимера с высокой проводимостью. в оксидном слое.Контактные слои, состоящие из углерода и серебра, требуют предварительной сборки и защиты от формования. Танталовые полимерные детали для поверхностного монтажа представляют собой полярные конденсаторы; поэтому важно обращать внимание на маркировку полярности на компоненте. Обратная полярность разрешена только до значений, указанных в этом документе. Тем не менее, дизайнерам следует учитывать несколько рекомендаций по применению.

    Рис. 1. Базовая конструкция Ta-полимера SMD

    Продукция KEMET для автомобильной промышленности разработана Ta-полимером SMD T598 (125ºC) и T599 (150ºC) серий

    Серия Диапазон рабочих температур
    T598 Серия от -55ºC до 125ºC

    T LL (нижний предел) = -55ºC

    T UL (верхний предел) = 125ºC

    T599 Серия от -55ºC до 150ºC

    T LL (нижний предел) = -55ºC

    T UL (верхний предел) = 150ºC

    Таблица 1 — Рабочая температура Ta-полимера для поверхностного монтажа

    Диапазон напряжения составляет от 2,5 В до 35 В. Номинальное напряжение (Ur) и определяется как максимальное пиковое рабочее напряжение постоянного тока от -55 ° C до 105 ° C для непрерывного режима работы.Выше 105 ° C напряжение линейно снижается до 0,67Ur до максимальной рабочей температуры, таблицы 2a и 2b.

    Полимерный SMD

    Ta — это твердотельные конденсаторы, которые не демонстрируют механизма износа при работе в соответствии с рекомендованными правилами. Хотя они могут работать при полном номинальном напряжении, большинство проектировщиков схем стремятся к минимальному уровню гарантии долгосрочной надежности, которую следует продемонстрировать данными. Снижение номинального напряжения может обеспечить желаемый уровень продемонстрированной надежности на основе принятых в отрасли моделей ускорения.Поскольку большинство приложений действительно требуют долговременной надежности.

    KEMET рекомендует разработчикам учитывать снижение номинального напряжения в соответствии с таблицами 2a и 2b для максимального установившегося напряжения.

    Таблица 2a — Снижение номинальных характеристик серии T598

    Таблица 2b — Снижение номинальных характеристик серии T599

    В автомобильной промышленности, как схематически показано на рис. 2, выбор компонента выходной позиции (конденсатор 2) соответствует таблицам 2a и 2c в зависимости от профиля миссии / требований к температуре.Для линии 12 В KEMET рекомендует использовать конденсатор с номинальным напряжением не менее 35 В с учетом существующих требований ISO Pulse, определенных в Спецификации ISO7637.

    Рис. 2. Принципиальная схема автомобильного приложения

    В таблице 2c мы представляем рекомендуемые конденсаторы для каждого напряжения приложения, организованные в соответствии с максимальной температурой приложения профиля миссии.

    Таблица 2c — Напряжение приложения — Рекомендуемые конденсаторы

    Полимерные конденсаторы

    Ta являются полярными устройствами и могут быть необратимо повреждены или разрушены, если подключены с неправильной полярностью.Положительный вывод обозначен полосой с лазерной меткой. Конденсаторы будут выдерживать небольшую степень изменения переходного напряжения в течение коротких периодов времени, как показано в Таблице 3. Обратите внимание, что эти части не могут работать непрерывно в обратном направлении даже в этих пределах.

    Таблица 3. Максимально допустимое переходное обратное напряжение

    В линии 12 В требуется специальная защита для защиты компонента от переходных отрицательных импульсов.

    Автомобильная серия

    Ta Polymer SMD полностью соответствует требованиям стандарта AEC-Q200, редакция D с июня 2010 года и соответствует требованиям к размеру квалификационной пробы, указанным в таблице 1, и таблице 2, на которую ссылаются методы — танталовые и керамические конденсаторы.Серия T598 предлагает расширенный срок службы до 2000 часов, демонстрируя возможности надежной конструкции

    В целях поддержки новых усовершенствованных систем помощи водителю (ADAS) и соответствия новым сверхрасширенным профилям миссии новый конденсатор 7343-31 с 470uF2,5V с 9mOhm (https://api.kemet.com/component-edge/ download / specsheet / T598D477M2R5ATE009.pdf) был выпущен на рынок. Процесс аттестации проводился при максимальной рабочей температуре 125ºC до 2000 часов. Критическая стабильность СОЭ при оценке выносливости и хранения показана на рис. 3a и 3b.В обоих тестах измерения показали, что все конденсаторы поддерживают уровень ESR в пределах 9 мОм.

    Рисунок 3a — Срок службы при 125ºC / 0,67Ur до 2000 часов — 470 мкФ 2,5 В — 9 мОм

    Рисунок 3b — Хранение 125ºC / 0Vr до 2000 часов — 470uF 2,5V — 9mOhm

    Импульсное напряжение — это максимальное напряжение (пиковое значение), которое может быть приложено к конденсатору. Пульсирующее напряжение не должно применяться для периодической зарядки и разрядки в ходе нормальной работы и не может быть частью приложенного напряжения.Возможность перенапряжения демонстрируется применением 1000 циклов при рабочей температуре. Детали заряжаются через резистор 330 Ом в течение 30 секунд, а затем разряжаются через резистор 33 Ом за каждый цикл. В таблице 4 показаны применяемые максимальные перенапряжения для серий T598 и T598.

    Таблица 4. Максимальное перенапряжение

    Конструкция серии T598 / T599 на входе требует объяснения технологических различий со старыми продуктами Ta-MnO 2 .В течение последних лет компания KEMET предприняла усилия, чтобы разъяснить, что конденсаторы из Ta-полимера обычно обеспечивают безопасный режим отказа, уменьшая воспламенение из-за отсутствия кислорода.

    Кроме того, были проведены обширные испытания на основе:

    • ISO7637-2 Транспорт дорожный — Электрические помехи от проводимости и связи — Часть 2: Электрическая переходная проводимость вдоль линий питания,
    • Испытание на разгрузку под специальной нагрузкой E05 в соответствии с VW80000, выпуск 06-2013 — Электрические и электронные компоненты в транспортных средствах до 3,5 т.

    Результаты сведены в Таблицу 5:

    Таблица 5 Краткое изложение стандартов ISO7637-2 и VW80000-E05 Сброс нагрузки

    Мы пришли к выводу, что для номеров деталей с номинальным напряжением 35 В отказов не возникает при подавлении импульсов 2a, 2b, 3a, 3b, 4, 5b и в E05, и что внимание приложения требуется с:

    • Pulse 1 — 1 Reverse Pulse требует защиты от обратного напряжения с максимальным напряжением -1 В
    • Pulse 5a — ограничение импульса 5a требует предварительного определения формы импульса и параметров для генератора переменного тока с централизованным подавлением сброса нагрузки или без использования.В большинстве новых генераторов переменного тока амплитуда сброса нагрузки подавляется (фиксируется) за счет добавления ограничивающих диодов. Все оценки с максимальным пиком (13,5 + 40) В соответствуют критериям приемки.

    Важным требованием к приложению является проверка профиля миссии. Ta Полимерные конденсаторы SMD имеют среднюю интенсивность отказов 0,5% / 1000 часов при напряжении категории, U C , и температуре категории, T C. Эти конденсаторы аттестованы в соответствии с отраслевыми стандартами испытаний U C и T. С .Минимальное время испытания (1000 часов или 2000 часов) зависит от серии продукта. Фактический ожидаемый срок службы полимерных конденсаторов увеличивается, когда напряжение приложения U A и температура приложения T A ниже, чем U C и Т С .

    В качестве общего правила, когда U A <0,9 * U C и T A <85 ° C, ожидаемый срок службы обычно превышает полезный срок службы большинства аппаратных средств (> 10 лет).

    Срок службы полимерного конденсатора при определенном напряжении и температуре приложения можно смоделировать с помощью приведенных ниже уравнений.

    Отказ определяется как пропускание тока, достаточного для перегорания предохранителя на 1 ампер. Приведенный ниже расчет является оценкой, основанной на эмпирических результатах, и не является гарантией.

    Существующие автомобильные серии Ta Polymer SMD предлагают отличное решение для требований к объемной емкости и обладают высокой надежностью по сравнению с типичными профилями миссии, рис. 4.

    Рисунок 4. Справочный пример гистограммы — профиль миссии (старый — сжигание 8000 часов и новый — электрификация / автономная работа 131000 часов)

    Во время проверки профиля миссии мы определяем предполагаемый FIT на основе данных условий, из примеров, описанных выше, мы можем оценить для старого профиля миссии и нового профиля миссии, что продукты SMD для автомобильной промышленности Ta Polymer являются жизнеспособным вариантом, Рис. 5a и 5b .

    Рисунок 5а.Проверка профиля миссии — пример старого профиля миссии

    Рисунок 5б. Проверка профиля миссии — пример старого профиля миссии

    KEMET продолжает расширять автомобильные возможности Ta Polymer SMD за счет надежной проверки конструкции и расширенных характеристик срока службы и хранения в соответствии с AEC-Q200. Были выпущены инструкции по разработке приложений и демонстрация конкретных требований клиентов, а также завершена проверка новых расширенных профилей миссии. Ожидается, что внедрение будет продолжаться с появлением новых и более компактных автомобильных модулей, использующих преимущества объемной эффективности и производительности этих серий продуктов.

    Электролитические конденсаторы — условные обозначения конденсаторов

    При проектировании посадочных мест для электролитических конденсаторов важно разместить четкие указательные метки, чтобы показать ориентацию компонентов. Поскольку этот тип конденсаторов поляризован (они должны быть размещены в определенной ориентации), они должны иметь на печатной плате метки, помогающие определить, как их следует размещать. Четкость маркировки компонентов является ключом к тому, чтобы изготовление вашей конструкции проходило гладко, и синий дым не выходил из ваших конденсаторов.Тем более, что электролитические конденсаторы сделаны из тантала, поскольку они имеют тенденцию к катастрофическим последствиям, когда они включаются в обратном направлении.

    Электролитический конденсатор

    Электролитические конденсаторы

    — один из самых популярных типов конденсаторов, используемых в конструкции платы. Они дешевы и обеспечивают хороший баланс физического размера и емкости. Есть четыре физических вида электролитических конденсаторов; Банка SMT, корпус SMT, PTH радиальный и PTH осевой. Каждый стиль отмечен немного по-своему.Обычно они отмечены полосой на катодной стороне конденсатора, указывающей отрицательный вывод, но есть некоторые исключения. Это отличается от типичного схематического обозначения с положительной или анодной маркировкой!

    Схематическое обозначение

    Типичный поляризованный конденсатор будет выглядеть, как показано на схеме ниже. Положительная или анодная сторона конденсатора отмечена знаком «+». Поскольку электролитические конденсаторы поляризованы, я использую на схемах символ (показанный ниже).

    Схематический символ поляризованных конденсаторов, изображенных на Eagle.

    Электролитический конденсатор SMT Can Style

    Эти конденсаторы отмечены на верхней части банки черной меткой. Однако цвет марки иногда зависит от производителя. Пластиковая основа конденсатора также имеет фаску с положительной или анодной стороны.

    SMT Can Electrolytic Capactor: Маркировка указывает на отрицательную или катодную сторону.

    Площадь основания типичного электролитического конденсатора SMT.

    Электролитический конденсатор корпуса SMT

    Конденсаторы этого типа обычно имеют внутри тантал или ниобий, но есть несколько электролитических полимеров. Стиль корпуса означает, что он имеет форму резистора 0805 или керамического конденсатора. В отличие от других корпусов для конденсаторов, они обычно имеют положительную или анодную маркировку.

    Электролиты типа корпуса

    SMT обычно имеют анодную / положительную маркировку. Осторожно!

    Место для электролитических конденсаторов в корпусе SMT.

    Радиальный электролитический конденсатор PTH

    Радиальные колпачки имеют как анод, так и катод, выходящие на одну сторону конденсатора.В 99% случаев они отмечены контрастной полосой на катоде или отрицательной стороне конденсатора.

    Маркировка радиально поляризованного электролитического конденсатора

    PTH.

    Площадь основания для радиальных электролитических конденсаторов PTH.

    Осевой электролитический конденсатор PTH

    Конденсаторы осевого типа используются не очень часто, но интересны тем, как они маркированы. Отрицательная или катодная полоса проходит по их стороне аналогично радиальному стилю, но на маркировке есть стрелка, указывающая, какая сторона является отрицательной или катодной.

    Электролитический осевой тип PTH. Катодная полоса указывает на катод.

    Площадь основания для электролитического конденсатора осевого типа PTH.

    В следующий раз на файлах посадочного места…

    Самая важная вещь, о которой нужно помнить, — это свериться с техническим паспортом деталей и увидеть, как полярность обозначена на детали. Копирование внешнего вида детали на ваших платах шелкография гарантирует гораздо больший успех при сборке платы. Я надеюсь, что это улучшит ваши следы на доске и упростит создание ваших продуктов и прототипов.В следующий раз в файлах посадочных мест мы поговорим о танталовых конденсаторах.

    Ознакомьтесь с предыдущей публикацией из этой серии: Файлы отпечатков — диоды

    Был ли этот пост полезным? Есть ли другие темы, которые вы хотели бы, чтобы мы обсудили? Если да, сообщите нам об этом в Твиттере.

    Начни сегодня.

    создать учетную запись

    Kemet Continue to Toughen Up Polymer Tantalum Capacitors

    Таблица 4. Максимальное перенапряжение при перенапряжении

    Конструкция серии T598 / T599 со стороны входа требует объяснения технологических различий со старыми продуктами Ta-MnO2.В последние годы компания KEMET предприняла усилия, чтобы прояснить, что танталовые полимерные конденсаторы обычно обеспечивают безопасный режим отказа, уменьшая воспламенение из-за отсутствия кислорода.

    Кроме того, были проведены обширные испытания на основе:

    ISO7637-2 Транспорт дорожный. Электрические помехи от проводимости и сцепления. Часть 2: Переходные электрические переходные процессы в линиях электропитания. Испытания на специальные сбросы нагрузки E05 в соответствии с VW80000, выпуск 06-2013 — Электрические и электронные компоненты в транспортных средствах до 3.5т.

    Результаты приведены в таблице 5:

    Таблица 5. Краткое изложение стандартов ISO7637-2 и VW80000-E05 Load Dump

    Мы пришли к выводу, что для номеров деталей с номинальным напряжением 35 В отказов на импульсах 2a, 2b, 3a, 3b, 4, 5b с подавлением и E05 не возникало. Обращение к приложению требуется с:

    Pulse 1 — 1 Reverse Pulse требует защиты от обратного напряжения с максимумом -1 В.
    Pulse 5a — Ограничение импульса 5a требует предварительного определения формы импульса и параметров для генератора переменного тока с централизованным подавлением сброса нагрузки .В большинстве новых генераторов переменного тока амплитуда сброса нагрузки подавляется (фиксируется) за счет добавления ограничивающих диодов. Все оценки с максимальным пиком (13,5 + 40) В соответствуют критериям приемки.

    Важным требованием к приложению является проверка профиля миссии. Тантал-полимерные конденсаторы SMD имеют среднюю интенсивность отказов 0,5% / 1000 часов при напряжении категории UC и температуре категории TC. Эти конденсаторы аттестованы с использованием отраслевых стандартов испытаний в UC и TC. Минимальное время тестирования (1000 часов или 2000 часов) зависит от серии продукта.Фактический ожидаемый срок службы полимерных конденсаторов увеличивается, когда напряжение приложения UA и температура приложения TA ниже, чем UC и TC.

    Как правило, когда UA <0,9 * UC и TA <85 ° C, ожидаемый срок службы обычно превышает полезный срок службы большинства аппаратных средств (> 10 лет). Срок службы полимерного конденсатора при определенном напряжении и температуре приложения можно смоделировать с помощью следующих уравнений:

    Отказ определяется как пропускание тока, достаточного для перегорания предохранителя на 1 ампер.Приведенный ниже расчет является оценкой, основанной на эмпирических результатах, и не является гарантией.

    Что такое танталовый конденсатор?

    Каталог


    Ⅰ Что такое танталовый конденсатор

    Танталовые конденсаторы имеют танталовый анод и являются электролитическими конденсаторами. Это поляризованные конденсаторы с отличной частотой и стабильностью. Электролитические конденсаторы с танталом в качестве компонента известны как танталовые конденсаторы.Они сделаны из металлического тантала, который служит анодом, со слоем оксида, действующим как диэлектрик, и проводящим катодом, окружающим его.

    Тантал используется для создания очень тонкого диэлектрического слоя. В результате значение емкости на единицу объема выше, частотные характеристики превосходят многие другие типы конденсаторов, а конденсатор имеет превосходную долговременную стабильность. Танталовые конденсаторы обычно поляризованы, что означает, что их можно подключать к источнику постоянного тока только при соблюдении полярности клемм.

    Недостатком использования танталовых конденсаторов является то, что они имеют неблагоприятный режим отказа, который может привести к тепловому разгоне, пожару и незначительным взрывам. Этого можно избежать, используя внешние отказоустойчивые устройства, такие как ограничители тока или плавкие предохранители.

    Танталовые конденсаторы теперь могут использоваться в широком диапазоне цепей, включая компьютеры, автомобили, сотовые телефоны и другие электронные устройства, чаще всего устройства поверхностного монтажа (SMD) .Эти танталовые конденсаторы для поверхностного монтажа занимают значительно меньше места на печатной плате, что обеспечивает более высокую плотность упаковки.

    Стоит отметить, что, как и резисторы, бывают как постоянные, так и переменные конденсаторы. Конденсаторы с фиксированными номиналами классифицируются как неполяризованные или поляризованные, в зависимости от их полярности. Три наиболее распространенных типа конденсаторов представлены электрическими символами на рисунке ниже.

    Танталовый конденсатор-конденсатор Обозначения


    Ⅱ Конструкция и свойства танталового конденсатора

    Тантал (Ta) — это серебристо-серый металл с атомным номером 73.Если посмотреть на поперечное сечение танталового конденсатора, такого как стандартный танталовый конденсатор с электролитическим кристаллом SMD с твердым электролитом, показанный на рисунке ниже, положительный (анодный) вывод представляет собой танталовый порошок, спрессованный и спеченный в поддон. Диэлектрик образован изолирующим оксидным слоем, покрывающим положительный (анодный) вывод, а отрицательный (катодный) вывод образован твердым электролитом из диоксида марганца.

    Конденсатор танталовый — конструкция танталового конденсатора

    В случае твердотельных танталовых конденсаторов электролит добавляется к аноду путем пиролиза.Для создания покрытия из диоксида марганца твердые танталовые конденсаторы погружают в специальный раствор и запекают в духовке. Процедура повторяется до тех пор, пока гранула не будет иметь плотного покрытия как на внутренней, так и на внешней поверхности. Наконец, чтобы обеспечить прочное катодное соединение, таблетку, используемую в твердотельных танталовых конденсаторах, окунают в графит и серебро. В мокрых танталовых конденсаторах, в отличие от твердотельных танталовых конденсаторов, используется жидкий электролит. Анод погружается в жидкий электролит внутри корпуса после того, как он был спечен и диэлектрический слой вырос.В мокрых танталовых конденсаторах корпус и электролит служат катодом.

    Танталовые конденсаторы

    имеют высокую емкость на единицу объема и веса из-за их тонкого диэлектрического листа с высокой диэлектрической проницаемостью, что отличает их от других электролитических конденсаторов. Танталовые электролитические конденсаторы также идеально подходят для пропускания или обхода низкочастотных сигналов и хранения значительного количества электроэнергии из-за их большой емкости.


    Ⅲ Характеристики танталового конденсатора

    3.1 Общая характеристика

    Танталовые конденсаторы имеют значения емкости от 1 нФ до 72 мФ и значительно меньше алюминиевых электролитических конденсаторов той же емкости. Танталовые конденсаторы имеют номинальное напряжение от 2 В до более 500 В. Их эквивалентное последовательное сопротивление (ESR) в десять раз ниже, чем у алюминиевых электролитических конденсаторов, что позволяет пропускать через конденсатор более высокие токи при меньшем тепловыделении. По сравнению с алюминиевыми электролитическими конденсаторами танталовые конденсаторы очень стабильны во времени, и их емкость с возрастом существенно не меняется.При правильном обращении они чрезвычайно надежны, а срок их хранения практически безграничен.

    3.2 Полярность

    Танталовые электролитические конденсаторы имеют очень высокую поляризацию. Хотя поляризованные алюминиевые электролитические конденсаторы могут выдерживать кратковременное обратное напряжение, танталовые конденсаторы чрезвычайно чувствительны к обратной поляризации. При приложении напряжения противоположной полярности диэлектрический оксид разрушается, что приводит к короткому замыканию. Это короткое замыкание может привести к тепловому выходу из строя и разрушению конденсатора в будущем.

    По сравнению с алюминиевыми электролитическими конденсаторами, отрицательная клемма которых обозначена на корпусе, танталовые конденсаторы обычно имеют маркировку положительной клеммы.

    3.3 Режим отказа танталового конденсатора

    Согласно статье, опубликованной ASM International, режим отказа танталового конденсатора делится на три основные группы.

    • Высокая утечка / короткое замыкание

    Высокие токи утечки могут возникать в результате подачи обратного напряжения, которое часто встречается во время поиска и устранения неисправностей, неисправностей и / или стендовых испытаний.Поскольку горячие точки, образующиеся во время кристаллизации, нагревают катод, танталовые конденсаторы при кристаллизации вызывают короткое замыкание.

    • Высокое эквивалентное последовательное сопротивление (ESR)

    Когда конденсатор подвергается монтажу на плате, перестановке, оплавлению и сроку службы, механические / термомеханические характеристики оказывают значительное влияние на его ESR. В результате этого стресса часто страдают внешние и / или внутренние отношения, что приводит к высокому СОЭ.

    • Низкая емкость / открытый

    Отказ случается редко, поскольку емкость танталового конденсатора не изменяется при нормальных условиях эксплуатации. Более низкая емкость танталового конденсатора в любом приложении может указывать на короткое замыкание конденсатора, в то время как обрыв цепи может быть вызван повреждением положительного вывода и перемычки.

    Танталовые конденсаторы, как мы все знаем, имеют потенциально опасный режим отказа. Анод из тантала может контактировать с катодом из диоксида марганца во время скачков напряжения, и, если энергия скачка достаточна, может начаться химическая реакция.Эта химическая реакция генерирует тепло и является самоподдерживающейся, также как и возможность образования дыма и пламени. Внешние отказоустойчивые схемы, такие как ограничители тока и плавкие предохранители, следует использовать в сочетании с танталовыми конденсаторами, чтобы избежать теплового разгона.


    Ⅳ Классификация танталовых конденсаторов

    4.1 Танталовые конденсаторы с выводами

    Во избежание повреждений танталовые конденсаторы с выводами обычно упаковываются в небольшую коробку из эпоксидной смолы. Конденсаторы с танталовыми шариками — это название, данное им из-за их формы.

    Хотя когда-то была распространена схема цветовой кодировки, и некоторые конденсаторы до сих пор ее используют, маркировка конденсаторов обычно наносится прямо на корпус в виде цифр.

    Танталовые конденсаторы с выводами

    4.2 Танталовые конденсаторы SMD

    Танталовые конденсаторы с поверхностным монтажом широко используются в современной электронике. При разработке с достаточными запасами они обеспечивают надежное обслуживание и позволяют достичь высоких значений емкости в небольших корпусах, необходимых для современного оборудования.

    Из-за их неспособности выдерживать температуры, необходимые для пайки, алюминиевые электролиты изначально не были доступны в корпусах для поверхностного монтажа. В результате танталовые конденсаторы, выдерживающие процесс пайки, были почти единственным выбором для дорогостоящих конденсаторов в сборках для поверхностного монтажа. Несмотря на доступность электролитов для поверхностного монтажа, тантал остается предпочтительным конденсатором для поверхностного монтажа из-за его превосходной стоимости, размера и рабочих характеристик.

    Танталовый конденсатор SMD

    • Маркировка танталовых конденсаторов SMD

    Танталовые конденсаторы

    SMD обычно имеют на маркировке три числа.Основные цифры — это первые два, а множитель — третий. Значения указаны в пикофарадах. В результате емкость танталового конденсатора SMD составляет 47 x 105 пФ, что равно 4,7Ф.

    Как видно на рисунке ниже, значения часто обозначаются более прямо. Маркировка указывает стоимость.

    Маркировка танталовых конденсаторов SMD


    Ⅴ Применение танталовых конденсаторов

    Танталовые конденсаторы имеют множество преимуществ и используются в различных приложениях, включая современную электронику, где они обеспечивают более высокую стабильность в широком диапазоне температур и частот, долговременную надежность и рекордно высокие показатели. объемный КПД.

    Танталовые конденсаторы

    используются в приложениях из-за их низкого тока утечки, большой емкости, а также долговременной стабильности и надежности. Они используются, например, в схемах выборки и удержания, где требуется низкий ток утечки для достижения большой продолжительности удержания. Из-за их небольшого размера и долговременной надежности они часто широко используются для фильтрации источников питания на материнских платах компьютеров и мобильных телефонах, чаще всего для поверхностного монтажа.

    Применение танталовых конденсаторов

    Также доступны танталовые конденсаторы

    по военным стандартам (MIL-SPEC) с более жесткими допусками и более широким диапазоном рабочих температур.Поскольку они не высыхают и не изменяют емкость с течением времени, они являются обычным заменителем алюминиевого электролита в военных приложениях.

    Тантал также используется в медицинской электронике из-за его высокой стабильности. Танталовые конденсаторы часто используются в усилителях звука, где важна стабильность. Танталовый конденсатор — это сложный компонент, используемый в кардиоимплантатах для обнаружения нерегулярных сердечных сокращений и создания электрического контршока за несколько секунд. Медицина, телекоммуникации, авиакосмическая промышленность, военная промышленность, автомобилестроение и компьютеры — это лишь некоторые отрасли, в которых используется этот конденсатор.


    Ⅵ Разница между танталом и керамическим конденсатором

    Танталовые конденсаторы используются в широком диапазоне цепей, хотя обычно им требуется внешняя отказоустойчивая система для предотвращения проблем, вызванных их режимом отказа. ПК, ноутбуки, медицинское оборудование, усилители звука, автомобильные схемы, мобильные телефоны и другие устройства для поверхностного монтажа — это лишь несколько примеров (SMD). Танталовый электролит является распространенной альтернативой алюминиевому электролиту в военных приложениях, поскольку он не высыхает и не изменяет емкость с течением времени.

    Керамические конденсаторы

    используются в широком спектре приложений, наиболее популярными из которых являются личные электронные устройства. MLCC являются наиболее широко используемыми конденсаторами, составляя около 1 миллиарда электронных устройств в год. Печатные платы (ПП), индукционные печи, преобразователи постоянного тока в постоянный и силовые выключатели — вот некоторые примеры применения. Поскольку керамические конденсаторы неполяризованы и бывают разных емкостей, номинальных напряжений и размеров, они часто используются в качестве конденсаторов общего назначения.

    Танталовые конденсаторы и керамические конденсаторы

    Хотя танталовые и керамические конденсаторы имеют схожие функции, методы их изготовления, материалы и характеристики сильно различаются. Танталовые и керамические конденсаторы различаются по нескольким основным параметрам:

    • Старение

    Когда дело доходит до конденсаторов, старение означает логарифмическое падение емкости с течением времени. Танталовые конденсаторы не стареют, в то время как керамические конденсаторы.Механизм износа танталовых конденсаторов неизвестен.

    • Поляризация

    Большинство танталовых конденсаторов поляризованы. Это означает, что их можно подключать к источнику постоянного тока только при соблюдении правильной полярности клемм. С другой стороны, неполяризованные керамические конденсаторы можно безопасно подключать к источнику переменного тока. Керамические конденсаторы имеют более высокую частотную характеристику, потому что они не поляризованы.

    • Температурный отклик

    Танталовые конденсаторы имеют линейное изменение емкости при изменении температуры, тогда как керамические конденсаторы имеют нелинейный отклик.С другой стороны, керамические конденсаторы могут иметь линейный тренд, сужая диапазоны рабочих температур и принимая во внимание температурный отклик на этапе проектирования.

    • Отклик по напряжению

    У танталовых конденсаторов

    есть явные изменения емкости в зависимости от приложенного напряжения, тогда как у керамических конденсаторов нет. Диэлектрическая проницаемость диэлектрика уменьшается внутри керамического конденсатора в ответ на более высокие приложенные напряжения, вызывая изменения емкости.В то время как большинство изменений емкости керамических конденсаторов линейны и легко учитываются, некоторые диэлектрики с более высокой диэлектрической проницаемостью могут терять до 70% своей начальной емкости при работе при номинальном напряжении.


    Ⅶ FAQ

    1. Каковы преимущества и недостатки танталового конденсатора?

    В список достоинств и недостатков твердотельного танталового конденсатора входят следующие

    Преимущества: длительный срок службы, устойчивость к высоким температурам, отличные характеристики, высокая точность, эффективность фильтрации высокочастотных гармоник.

    Недостатки: наличие очень тонкого оксидного слоя, который не является прочным, не может выдерживать напряжение выше пределов, низкий рейтинг пульсаций тока.

    2. Когда использовать танталовый конденсатор?

    Когда вам нужна максимальная емкость в небольшом пространстве, например, развязка рядом с микрочипом, отличная стабильность в диапазоне температур или напряжений, и вы знаете об их уникальных характеристиках, чтобы их можно было правильно спроектировать и не подвергать вашу систему серьезному отказу .

    3. Что такое импульсное напряжение с точки зрения танталового конденсатора?

    Импульсное напряжение — это максимальное напряжение, которое может быть приложено к конденсатору в течение более короткого периода в цепях с минимальным последовательным сопротивлением.

    4. Чем отличаются танталовые конденсаторы от электролитических?

    Электролитические конденсаторы из алюминия (или алюминия), как правило, дешевле, чем конденсаторы из тантала.Танталовые конденсаторы имеют более высокую емкость на единицу объема. Конденсаторы из тантала могут быть как полярными, так и неполярными, хотя поляризованная форма более распространена.

    5. Почему выходят из строя танталовые конденсаторы?

    Переходное напряжение или скачок тока, приложенные к танталовым электролитическим конденсаторам с твердым электролитом из диоксида марганца, могут вызвать выход из строя некоторых танталовых конденсаторов и могут непосредственно привести к короткому замыканию.

    6. Каков срок службы танталовых конденсаторов?

    Стабильность емкости полимерных танталовых конденсаторов превосходит стабильность емкости MLCC во времени, температуре и напряжении.В то время как MLCC подвержены старению, полимерные танталы обеспечивают долгосрочную стабильность в течение 20 лет эксплуатации.

    7. Все ли танталовые конденсаторы поляризованы?

    Танталовые конденсаторы по своей природе поляризованы. Обратное напряжение может разрушить конденсатор. Неполярные или биполярные танталовые конденсаторы изготавливаются путем эффективного соединения двух поляризованных конденсаторов последовательно с анодами, ориентированными в противоположных направлениях.

    8.Для чего нужен танталовый конденсатор?

    В приложениях, использующих танталовые конденсаторы, используются преимущества их низкого тока утечки, высокой емкости, долговременной стабильности и надежности. Например, они используются в схемах выборки и удержания, которые полагаются на низкий ток утечки для достижения большой продолжительности удержания.

    9. Можно ли заменить танталовый конденсатор электролитическим?

    Танталовый конденсатор также относится к типу электролитических конденсаторов, однако из-за низкой утечки они более точны и надежны, чем варианты цилиндрических электролитических конденсаторов.Если коэффициент утечки не слишком критичен, вы можете легко заменить танталовый конденсатор другим обычным электролитическим конденсатором.

    10. Что такое мокрый танталовый конденсатор?

    Влажные танталовые конденсаторы — это пассивные устройства, обеспечивающие емкостное сопротивление цепям. Это электролитические конденсаторы с мокрым электролитом, анодом и катодом. Они используются вместо конденсаторов других типов благодаря превосходным характеристикам, включая объемный КПД, высокую надежность, электрическую стабильность в широком диапазоне температур и длительный срок службы.Технология влажных танталовых конденсаторов лучше всего подходит для таких приложений, как военная, аэрокосмическая, спутниковая и тяжелая промышленность.

    .
    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *