+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Подключение электродвигателя звездой и треугольником

О достоинствах асинхронных двигателей спорить не приходится. Специалисты, в частности, выделяют:

  • высокую производительность;
  • надежность;
  • неприхотливость;
  • простоту конструкции;
  • умеренную стоимость ремонта и обслуживания и т.п.

Асинхронный двигатель состоит из двух основных элементов: статора и ротора. Они имеют токопроводящие обмотки, начала и концы которых выводятся в распределительную коробку и фиксируются в два ряда. Они обозначаются либо литерами С (С1, С2, С3 – начала обмоток, С4, С5, С6 – их концы), либо согласно новой маркировке: U1, V1, W1 –начала, U2, V2, W2 – концы.

Очень часто у людей, впервые имеющих дело с двигателями подобного типа, возникает вопрос: как же их лучше подключить? Существует три схемы подключения:

  • «треугольник»;
  • «звезда»;
  • комбинированная («звезда-треугольник»).

Итак, каким образом осуществляется подключение электродвигателя звездой и треугольником?

Подключение звездой

В этом случае концы обмоток статора соединяются вместе в одной точке с помощью специальной перемычки. Трехфазное напряжение подается на их начала. Таким образом, на фазной обмотке напряжение будет 220в, а линейное напряжение между двумя оставшимися фазными обмотками – 380в.

Подключение трехфазных двигателей с питающим напряжением 220/127в к стандартным однофазным сетям выполняется только по типу звезды, в противном случае агрегат быстро придет в негодность. Также именно по данной схеме подключаются все электромоторы российского производства на 380в.

В целом подключение звездой обеспечивает более мягкий запуск двигателя и плавность его работы, давая также возможность перезагрузки. Поэтому двигатели средней мощности принято запускать по данной схеме. Однако следует учесть, что в этом случае трехфазный двигатель не сможет работать на полную мощность.

Подключение треугольником

Обмотки соединяются последовательно в замкнутую ячейку, т.е. конец одной из них соединяется с началом следующей и т.д. Ряды контактов с клеммами располагаются так, чтобы они были смещены относительно друг друга (т.е. напротив вывода С6 (W2)помещается С1 (U1) и т.п.). Места соединения следует подключить к соответствующим фазам питающего напряжения. Линейное напряжение сети и напряжение на фазной обмотке равны 220в

Соединение треугольник гарантирует достижение максимальной мощности асинхронного электродвигателя (т.е. полной паспортной мощности, что в полтора раза больше, чем при соединении звездой), но при этом он подвержен большему нагреву и имеет большие значения пусковых токов. Это обусловлено конструктивными особенностями двигателей данного типа: ротор достаточно массивен и имеет большую инерционность, следовательно, когда он раскручивается, мотор работает в режиме перегрузки. Соответственно, двигатель может быстро выйти из строя. Однако если вам нужно подключить к электросети электромотор, произведенный в Европе и рассчитанный на номинальное напряжение 400/690, то это единственно правильный вариант.

Комбинированное подключение

Эту функцию используют только для двигателей с соответствующей пометкой (Δ/Y), которая обозначает, что возможны оба варианта соединения. Запуск осуществляется при подключении звездой для уменьшения пускового тока, затем после набора номинальной частоты вращения переключение на треугольник происходит в автоматическом режиме. Таким образом мы получаем максимально возможную мощность на выходе.

Использование данного способа связано со скачками токов. При переключении между схемами происходит следующее: прекращается подача тока, снижается скорость вращения ротора (иногда достаточно резко), затем восстанавливается изначальная скорость вращения.

Пусковые реле

Для того чтобы запустить электродвигатель согласно схеме «звезда-треугольник», разработано специальное оборудование. Названия могут быть разными: реле «Старт-дельта», «Пусковые реле времени» и т.п., но схема их действия всегда одинакова: после подачи напряжения на реле начинается отсчет времени разгона, включается пускатель «звезда», затем, по окончании времени разгона контакты размыкаются, пускатель выключается, замыкаются контакты, включающие пускатель «треугольник».

Подобные реле производятся в Чехии (CRM-2T, TRS2D), Австрии (РВП-3, D6DS, ВЛ-32М1), Украине (ВЛ-163), Италии (80 series, Finder). Он могут быть модульными, программируемыми, съемными, одно- или многофункциональными, механическими или цифровыми, суточными, недельными – выбор достаточно широк.

Итак, вопрос: как подключить электродвигатель звездой или треугольником — решается достаточно просто. Внимательно изучите инструкцию, прилагаемую к агрегату, обращая особое внимание на метки на бирке мотора.


Как подключить электродвигатель в сеть 220В

Как подключить электродвигатель

Приобрели электродвигатель и не знаете, как его подключить? Сейчас такой проблемы не существует, все моторы подключаются довольно легко, в клеммной коробке для этого все предусмотрено. Но если вы желаете разобраться или у вас электродвигатель старого образца эта инструкция научит вас, как правильно установить агрегат, измерить характеристики мощности и числа оборотов системы, и использовать полученные показатели.

Как подключается электродвигатель

Для электродвигателей однофазных

Вариант пусковой обмотки

1) Купите кнопку ПНВС. Вещь пригодится для объединения контактов и при их последующем перенаправлении.

2)  Определите, какой вид у каждой отдельной обмотки. Виды обмоток: пусковая, рабочая. Найдите 3-4 провода от вывода двигателя.

3) Общий выход характеризуется наибольшим сопротивлением, у пусковой обмотки показатели заметно ниже, то, что осталось – и есть рабочая обмотка.

• Перед началом работы убедитесь в исправности каждого элемента рабочей системы.

• Измерьте резистентность каждой пары обмотки.

Это вариант для 3-х проводов. «Комплект» из 4-х и более проводов проверяется попарно. В этом случае соедините рабочий и пусковой провод, затем выведите общий. Получается ситуация с 3 проводами.

4) Остались провода, с которыми нужно продолжить работу. Пусковой провод соответствует среднему контакту, остальные распределяются произвольно. На этом этапе используйте кнопку, в которой также есть 3 контакта. Крайние выходные кабели остаются для подключения силового кабеля, рабочий – для среднего контакта.

Как подключить электродвигатель с 2-мя фазами. Вариант с конденсаторным типом двигателя.

Для данного типа систем характерно, что без конденсаторов двигатель шумит, но не запускается (если использовать метод подключения пускового электродвигателя). Есть три варианта работы с конденсаторами, которые представлены ниже.

• На пусковой конденсатор – специализированный вариант для устройств тяжелого пуска.

• На рабочий конденсатор – способ для достижения максимальной результативности с использованием конденсаторов.

• На два конденсатора – самый «популярный» способ. Вспомогательная обмотка идет к конденсатору, всего 2 подключенных обмотки.

Начните работу с соединения контактов «треугольником» или «звездой». Ориентируйтесь на схему запуска с конденсаторами даже в том случае, если ваш электродвигатель с 2-мя фазами работает через одну фазу.

Как подключить трехфазный электродвигатель через однофазную сеть

Не забывайте, что подключая трехфазный двигатель к однофазной сети потеря в мощности составит порядка 30%.

Прибор с 3-мя фазами можно подключить и через одну фазу, и через конденсатор. Последовательность действий при подключении такого прибора включает более простые элементы, которые уже были описаны в случае 1-фазного, 2-фазного двигателя. Система подключается по схемам «звезда», «треугольник»; используется пусковое реле.

Как проверить электродвигатель на работоспособность

Для пользователя существует несколько вариантов, как проверить двигатель на работоспособность.

• Анализ внешнего состояния прибора. Перегрев системы связывают с потемнением краски на двигателе в средней части.

• Сверьтесь с заявленными производителем характеристиками, указанными на маркировке прибора. Не ожидайте, что двигатель выдаст большие мощности и RPM (число оборотов), чем это написано на маркировке.

• Измерьте показания с помощью мультиметра.

• Устройте прибору аппаратную диагностику.

Проверка мощности электродвигателя.

Электродвигатель сталкивается с большой нагрузкой в ходе работы отдельной или комплексной системы. Опытный пользователь знает, что любое, даже самая надежное устройство со временем дает сбой. Поэтому важно снимать показания электрической машины до нескольких раз после установки, как мощность электродвигателя, так и другие значения.

• Мощность можно определить по счетчику.

• Параметр мощности считается исходя из таблиц (понадобятся данные, например, диаметр D вала, S см/м до оси, длина мотора).

• Данные о габаритах двигателя также служат вспомогательным материалом для вычисления мощности двигателя.

• Непосредственно мощность определяют исходя из значений скорости вращения вала. Частоту умножают на k 6.28, силу и радиус системы (узнается с помощью штангенциркуля).


 Электродвигатель 220В характеристики
Тип

Электродвигатели однофазные АИРЕ 220В — электрические параметры

Масса, кг
Р, кВтU, BКПД, %cosМп/МнМmax/MнIп/InС, мкфUнc, B
3000 об/мин
АИРЕ56А20,12220620,920,41.73,26,34503,7
АИРЕ56В20,18220650,950,41,72,88,04504,0
АИРЕ56С20,25
220
630,920,41,73,512,54504,3
АИРЕ63В20,37220660,920,41,74,020,04506,3
АИРЕ71А20,55220670,920,41,74,316,02508,9
АИРЕ71В20,75220670,920,41,74,020,04509,6
АИРЕ71С21,10220680,950,41,74,030,045010,5
АИРЕ80В21,50220690,950,41,74,535,045015,1
АИРЕ80С22,20220730,950,31,74,560,045015,9
1500 об/мин
АИРЕ56А40,12220500,880,41,72,08,04503,8
АИРЕ56В40,18220550,900,41,72,210,04504,4
АИРЕ63В40,25220600,800,41,72,610,04506,2
АИРЕ71А40,37220640,900,41,73,014,04508,3
АИРЕ71В40,55220640,920,4
1,7
3,516,04509,6
АИРЕ71С40,75220660,920,41,73,525,045010,3
АИРЕ80В41,10220710,95

0,32

1,74,030,045014,1
АИРЕ80С41,50220720,950,321,74,545,045015,1
AИPE100S42,20220750,950,41,93,260,045024,4

Тип двигателя

Электродвигатели однофазные АИСЕ 220В — электрические параметры


Масса, кг
Р, кВтНоминальная частота
вращения, об/мин
КПД, %cos φМп/МнМmax/MнIн, АКонденсатор,
мкФ/В
АИСЕ56А20,092740540,910,691,80,804/4502,8
АИСЕ56В20,122760600,930,691,80,906/4503,05
АИСЕ56С20,182760600,930,691,81,408/4503,5
АИСЕ63А20,182760620,930,551,81,408/4504,1
АИСЕ63В20,252780660,930,551,81,7010/4504,5
АИСЕ63С20,372780670,930,451,652,5012/4505,25
АИСЕ71А20,372780670,930,501,652,6012/4505,6
АИСЕ71В20,552790730,950,501,83,5016/4506,95
АИСЕ71С20,752810740,970,481,84,5025/4508,15
АИСЕ80А20,752810740,980,401,84,4025/4508,5
АИСЕ80В21,12810750,980,401,86,3035/45011,0
АИСЕ80С21,52810770,980,331,88,5040/45012,75
АИСЕ90S21,52820770,980,331,728,4045/45013,7
АИСЕ90L22,22850780,980,291,812,1060/45016,7
АИСЕ100L23,02860790,990,281,816,5080/45023,1
АИСЕ56А40,061370480,920,731,750,604/4503,3
АИСЕ56В40,091370500,920,601,750,806/4503,6
АИСЕ63А40,121370520,920,601,751,308/4504,45
АИСЕ63В40,181370540,940,601,61,5012/4505,05
АИСЕ63С40,251370580,950,601,62,0014/4505,4
АИСЕ71А40,251390610,960,501,61,8014/4505,8
АИСЕ71В40,371390620,960,501,62,7016/4506,9
АИСЕ71С40,551390640,970,481,73,7020/4508,25
АИСЕ80А40,551410640,980,371,83,5025/4509,55
АИСЕ80В40,751410680,980,371,654,7030/45010,45
АИСЕ90S41,11410710,980,351,756,3040/45013,1
АИСЕ90L41,51420730,960,331,88,5045/45016,45
АИСЕ100LА42,21440770,960,321,812,9080/45022,8
АИСЕ100LB43,01440780,990,301,716,20100/45029,2
АИСЕ63А60,09900460,970,451,50,928/4504,2
АИСЕ63В60,12900460,980,451,51,1610/4505,6
АИСЕ71А60,18920570,920,451,51,4916/4506,3
АИСЕ71В60,25920590,920,451,52,0020/4507,6
АИСЕ80А60,37920630,920,351,62,7820/4509
АИСЕ80В60,55920660,930,351,63,9025/45011,6
АИСЕ90S60,75920680,950,351,65,0535/45013,5
АИСЕ90L61,1920690,950,351,67,3050/45016,2

Подключение двигателя от стиральной машины

Дата: 21.04.2015

Стиральные машины, как и любой другой вид техники со временем устаревают и выходят из строя. Мы, конечно же, можем куда-нибудь деть старую стиральную машину, или же разобрать на запчасти. Если вы пошли по последнему пути, то у вас мог остаться двигатель от стиральной машины, который может сослужить вам добрую службу.

Мотор от старой стиральной машины можно приспособить в гараже и соорудить из него электрический наждак. Для этого нужно на вал двигателя будет прикрепить наждачный камень, который будет вращаться. А вы сможете точить об него разные предметы, начиная с ножей, заканчивая топорами и лопатами. Согласитесь, вещь довольно нужная в хозяйстве. Также из двигателя можно соорудить другие устройства, которые требуют вращения, например, промышленный миксер или еще что.

Напишите в комментариях, что вы решили сделать из старого двигателя для стиральной машины, думаем многим будет это очень интересно и полезно прочитать.

Схема подключения электродвигателя современной стиральной машины

Если вы придумали, что сделать со старым мотором, то первый вопрос, который вас может тревожить, это как подключить электродвигатель от стиральной машины в сеть 220 в. И как раз на этот вопрос мы вам и поможем найти ответ в этой инструкции.

Перед тем как приступить непосредственно к подключению мотора, нужно сначала ознакомиться с электрической схемой, на которой будет все понятно.

Подключение двигателя от стиральной машины к сети 220 Вольт не должно занять у вас много времени. Для начала посмотрите на провода, которые идут от двигателя, сначала может показаться, что их достаточно много, но на самом деле, если посмотреть на вышеприведенную схему, то далеко не все нам нужны. Конкретно нас интересуют провода только ротора и статора.

Разбираемся с проводами

Если посмотреть на колодку с проводами спереди, то обычно первые два левых провода — это провода таходатчика, через них регулируются обороты двигателя стиральной машины. Они нам не нужны. На изображении они белые и перечеркнуты оранжевым крестом.

Дальше идет провода статора красный и коричневый. Мы их пометили красными стрелочками чтобы было более понятно. Следующие за ними идут два провода на щетки ротора – серый и зеленый, которые помечены синими стрелками. Все провода, на которые указаны стрелки нам понадобятся для подключения.

Для подключения мотора от стиральной машины к сети 220 В нам не потребуется пускового конденсатора, а также сам двигатель не нуждается в пусковой обмотке.

В разных моделях стиральных машин провода будут отличаться по цветам, но принцип подключения остается тот же. Вам просто нужно найти необходимые провода прозвонив их мультиметром.

Для этого переключите мультиметр на измерение сопротивления. Одним щупом касайтесь первого провода, а вторым ищите его пару.

У работающего тахогенератора в спокойном состоянии обычно сопротивление составляет 70 Ом. Эти провода вы найдете сразу и уберете их в сторону.

Остальные провода просто прозванивайте и находите им пары.

Подключаем двигатель от стиральной машины автомат

После того как мы нашли нужные нам провода осталось их соединить. Для этого делаем следующее.

Согласно схеме нужно соединить один конец обмотки статора со щеткой ротора. Для этого удобнее всего сделать перемычку и заизолировать ее.

На изображении перемычка выделена зеленым цветом.

После этого у нас остаются два провода: один конец обмотки ротора и провод, идущий на щетку. Они-то нам и нужны. Эти два конца и соединяем с сетью 220 в.

Как только вы подадите напряжение на эти провода, мотор сразу же начнет вращение. Двигатели стиральных машин довольно мощные, поэтому будьте внимательны, чтобы не возникло травм. Лучше всего мотор предварительно закрепить на ровной поверхности.

Если вы хотите сменить вращение двигателя в другую сторону, то нужно просто перекинуть перемычку на другие контакты, поменять провода щеток ротора местами. Посмотрите на схеме, как это выглядит.

Если вы все сделали правильно, то мотор начнет вращаться. Если же этого не случилось, то проверьте двигатель на работоспособность и уже после этого делайте выводы.
Подключить мотор современной стиральной машинки достаточно просто, что не скажешь о старых машинках. Здесь схема немного другая.

Подключение мотора старой стиральной машины

Подключение двигателя старой стиралки немного сложнее и потребует от вас найти нужные обмотки самим с помощью мультиметра. Для того, чтобы найти провода, прозвоните обмотки двигателя и найдите пару.

Для этого переключите мультиметр на измерение сопротивления, одним концом коснитесь первого провода, а вторым по очереди найдите его пару. Запишите или запомните сопротивление обмотки — нам это понадобится.

Дальше аналогично отыщите вторую пару проводов и зафиксируйте сопротивление. У нас получилось две обмотки с разным сопротивлением. Теперь нужно определить какая из них рабочая, а какая пусковая. Тут все просто, у рабочей обмотки сопротивление должно быть меньше чем у пусковой.

Многие считают, что для запуска такого двигателя нужен конденсатор. Это ошибка, конденсатор применяется в двигателях другого типа без пусковой обмотки. Здесь же он может сжечь мотор во время работы.

Для запуска двигателя подобного плана вам понадобится кнопка или пусковое реле. Кнопка нужна с не фиксируемым контактом и подойдет, допустим, кнопка от дверного звонка.

Теперь подключаем двигатель и кнопку по схеме: Но обмотку возбуждения (ОВ) напрямую подается 220 В. На пусковую же обмотку (ПО) нужно подать это же напряжение, только для запуска двигателя на короткий срок, и отключить ее — для этого и нужна кнопка (SB).

ОВ соединяем напрямую с сетью 220В, а ПО соединим с сетью 220 В через кнопку SB.

  • ПО – пусковая обмотка. Предназначается только для запуска двигателя и задействована в самом начале, пока двигатель не начнет вращаться.
  • ОВ – обмотка возбуждения. Это рабочая обмотка, которая постоянно находится в работе, она и вращает двигатель все время.
  • SB – кнопка с помощью которой подается напряжение на пусковую обмотку и после запуска мотора отключает ее.

После того, как вы произвели все подключение, достаточно запустить двигатель от стиральной машины. Для этого нажмите на кнопку SB и, как только двигатель начнет вращаться, отпустите ее.

Для того чтобы сделать реверс (вращения двигателя в противоположную сторону), вам нужно поменять местами контакты обмотки ПО. Тем самым мотор начнет вращение в другую сторону.

Все, теперь мотор от старой стиралки может сослужить вам в качестве нового устройства.

Перед запуском двигателя обязательно закрепите его на ровной поверхности, т. к. обороты вращения его достаточно большие.

Подключение трехфазного электродвигателя ленточного гриндера

В данном материале мы рассмотрим схемы подключения трехфазного асинхронного двигателя с возможностью подключения по двум схемам. Для наших ленточных гриндеров мы рекомендуем использовать двигатель АИР71B2Y3  (ВНИМАНИЕ!! Вам необходим двигатель cдвумя режимами работы на 220/380В).

Двигатель трехфазный асинхронный 220/380 АИР71

Данный двигатель можно подключить двумя способами.

Звезда.

Звезда (Только при наличии 3-ех фазного напряжения), данный тип подключение позволяет не использовать рабочий конденсатор для функционирования гриндера. Данный тип подключения позволяет использовать всю мощность применяемого мотора, т.е. если у Вас есть 3-ех фазное напряжение, то мы рекомендуем подключать гриндер именно таким способом.

Схема подключении двигателя представлена на Рис.1

Рис.1 Схема подключения электродвигателя – звезда

Для подключения электродвигателя таким способом необходимо три провода фаз ( в любой последовательности) подключить на колодки U1 V1 W1. (ВНИМАНИЕ!! Перемычки обмоток двигателя должны располагаться как на Рис.2,  В СЛУЧАЕ НЕВЕРНОГО ПОДКЛЮЧЕНИЯ ПЕРЕМЫЧЕК МЕЖДУ W2 U2 V2 ДВИГАТЕЛЬ СГОРИТ!!)

В случае запуска мотора в обратную сторону необходимо поменять местами любые из вводных проводов, см. Рис 2

Фото подключения двигателя звезда 380В

Треугольник

Треугольник, данный тип подключения хотя и менее производительный но его основным плюсом является возможность применения гриндера в домашних и гаражных условиях.

Данная схема подразумевает включение третьей обмотки двигателя через рабочий конденсатор

Когда я сам разбирался в этом вопросе на многих аналогичных схемах изображены два конденсатора (пусковой и рабочий разной номинальной емкости), но для двигателей малой мощности ( до 1.5кВт) вполне можно использовать только один конденсатор (рабочий). Емкости рабочего конденсатора подбирается очень просто:

Ф=P(двиг)*0.1

Т.е. для двигателя P=0.75 кВт – 80мкФ, для двигателя P=1.1кВт – 100мкФ

Схему подключения смотри  на Рис.3

Рис.3 Схема подключения электродвигателя – треугольник

Для подключения электродвигателя таким способом необходимо два провода ( в любой последовательности) подключить на колодки U1 V1  на колодку W1 мы подключаем провод через пусковой конденсатор.

ВНИМАНИЕ!! Перемычки обмоток двигателя должны располагаться как на Рис.4.

В случае запуска мотора в обратную сторону меняем два вводных провода местами, см. Рис 4

Фото подключения двигателя треугольник 220В

 

Как подключить трёхфазный электродвигатель на 380 Вольт

Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

Выбор схемы включения электродвигателя

Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.

Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.

В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.

Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу  от сети напряжением 400/690. Пример такого шильдика на картинке снизу.  Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.

На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке.  В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.

Схема подключения электродвигателя звезда треугольник

В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.

Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.

При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.

При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.

Подключение схемы звезда-треугольник

Для подключения мотора по  довольно редкой схеме  звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.

Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.

Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.

Отключение происходит пускателем К1. При повторном запуске все снова повторяется.

Схемы подключения двигателя стиральной машины


Стиральные машины, со временем, выходят из строя или морально устаревают. Как правило,
основой любой стиралки есть ее электродвигатель, который может найти свое применение и
после разборки стиралки на запчасти.

Мощность таких двигателей, как правило не меньше 200 Вт, а порой и куда больше, скорость
оборотов вала может доходить и до 11 000 оборотов в минуту что вполне может подойти для использование такого двигателя в хозяйственных или мелких промышленных нуждах.

Вот лишь несколько идей удачного применения электродвигателя от стиралки:

  • Точильный («наждачный») станок для заточки ножей и мелкого домашнего и садового инструмента.Двигатель устанавливают на прочном основание, а на вал закрепляют точильный камень или наждачный круг.
  • Вибростол для производства декоративной плитки, тротуарной плитки или других бетонных изделий где необходимо уплотнение раствора и удаление от туда воздушных пузырей. А возможно вы занимаетесь производством силиконовых форм, для этого также нужен вибростол.
  • Вибратор для усадки бетона. Самодельные конструкции которых полно в интернете, вполне могут быть реализованы с применением небольшого двигателя от стиральной машинки.
  • Бетономешалка. Вполне подойдет такой двигатель и для небольшой бетономешалки. После небольшой переделки, можно использовать и штатный бак от стиральной машинки.
  • Ручной строительный миксер. С помощью такого миксера можно замешивать штукатурные смеси, плиточный клей, бетон.
  • Газонокосилка. Отличный вариант по мощности и габаритам для газонокосилки на колесах. Подойдет любая готовая платформа на 4-х колесах с закрепленным в центре двигателем с прямым приводом на «ножы» которые будут находится снизу. Высоту газона можно регулировать посадкой, например, поднимая или опуская колеса на шарнирах по отношению к основной платформе.
  • Мельница для измельчения травы и сена или зерна. Особенно актуально для фермеров и людей занимающихся разведением домашней птицы и другой живности. Также можно делать заготовки корма на зиму.

Вариантов применения электромотора может быть очень много, суть процесса заключается в возможности вращать на высоких оборотах разные механизмы и приспособления. Но какой бы механизм сконструировать вы б не собирались, все равно вам нужно будит правильно
подключить двигатель от стиральной машинки.

Виды двигателей


В стиральных машинках разных поколений и стран производства, могут быть и разные типы
электродвигателей. Как правило это один из трех вариантов:

Асинхронный.
В основном это все трехфазные двигатели, могут быть и двухфазными но это большая редкость.
Такие двигатели просты в своей конструкции и обслуживанию, в основном все сводится к смазке подшипников. Недостатком есть большой вес и габариты при небольшом КПД.
Такие двигатели стоят в старинных, маломощных и недорогих моделях стиральных машин.

Коллекторный.
Двигатели которые пришли на смену большим и тяжелым асинхронным устройствам.
Такой двигатель может работать как от переменного так и от постоянного тока, на практике  он будет вращаться даже от автомобильного аккумулятора на 12 вольт.
Двигатель может вращаться в нужную нам сторону, для этого нужно всего лишь сменить полярность подключения щеток к обмоткам статора.
Высокая скорость вращения, плавное изменение оборотов изменением прилагаемого напряжения, небольшие размеры и большой пусковой момент — вот лишь небольшая часть преимуществ такого типа двигателей.
К недостаткам можно отнести износ коллекторного барабана и щеток и повышенный нагрев при не столь продолжительной работе. Также необходима более частая профилактика, например чистка коллектора и замена щеток.

Инверторный (бесколлекторный)
Инновационный тип двигателей с прямым приводом и небольшими габаритами при довольно не малой мощности и высоком КПД.
В конструкции двигателя все так же присутствует статор и ротор, однако количество соединительных элементов сведено к минимуму. Отсутствие элементов подверженных быстрому износу, а так же низкий уровень шума.
Такие двигателя стоят в последних моделях стиральных машин и их производство требует сравнительно больше затрат и усилий что конечно же влияет на цену.

Схемы подключения

Тип двигателя с пусковой обмоткой (старые/дешевые стиралки)


Для начала нужен тестер или мультиметр. Нужно найти две соответствующие друг другу пары выводов.
Щупами тестера, в режиме прозвонки или сопротивления, нужно отыскать два провода которые между собой прозваниваются, остальные два провода автоматически будут парой второй обмотки.

Дальше следует выяснить, где у нас пусковая, а где – рабочая обмотки. Нужно замерить их сопротивление: более высокое сопротивление укажет на пусковую обмотку (ПО), которая создает начальный крутящий момент. Более низкое сопротивление укажет нам на обмотку возбуждения (ОВ) или другими словами — рабочую обмотку, создающую магнитное поле вращения.

Вместо контактора «SB» может стоять неполярный конденсатор малой емкости (около 2-4 мкФ)
Как это обустроено в самой стиралке для удобства.

 Если же двигатель будет запускаться без нагрузки, то есть, не будит на его валу шкива с нагрузкой в момент запуска, то такой двигатель может запускаться и сам, без конденсатора и кратковременной «запитки» пусковой обмотки.

Если двигатель сильно перегревается или греется даже без нагрузки непродолжительное время, то причин может быть несколько. Возможно изношены подшипники или уменьшился зазор между статором и ротором в следствие чего они задевают друг друга. Но чаще всего причиной может быть высокая емкость конденсатора, проверить несложно — дайте поработать двигателю с отключенным пусковым конденсатором и сразу все станет ясно. При необходимости емкость конденсатора лучше уменьшить до минимума при котором он справляется с запуском электродвигателя.

В кнопке контакт «SB» строго должен быть не фиксируемым, можно попросту воспользоваться кнопкой от дверного звонка, в противном случае пусковая обмотка может сгореть.

В момент запуска кнопку «SB» зажимают до момента раскрутки вала на полную (1-2 сек.), дальше кнопка отпускается и напряжение на пусковую обмотку не подается. Если необходим реверс — нужно сменить контакты обмотки.

Иногда в такого двигателя может быть не четыре, а три провода на выходе, в таком случае  две обмотки уже соединены в средней точке между собой, как показано в схеме.
В любом случае разбирая старую стиралку, можно присмотреться как там был подключен в ней ее двигатель.

Когда возникает необходимость реализовать реверс или сменить направления вращения двигателя с пусковой обмоткой, можно подключить по следующей схеме:

Интересный момент. Если в двигателе не использовать (не задействовать) пусковую обмотку, то направление вращения может быть всевозможным (в любую из сторон) и зависить, например, от того в какую сторону провернуть вал в тот момент когда подключается напряжение.

Коллекторный тип двигателя (современные, стиралки автомат с вертикальной загрузкой)


Как правило это коллекторные двигатели без пусковой обмотки, которые не нуждаются и в пусковом конденсаторе, такие двигатели работают и от постоянного тока и от переменного.

Такой двигатель может иметь около 5 — 8 выводов на клемном устройстве, но для работы двигателя вне стиральной машинки, они нам не понадобятся. В первую очередь нужно исключить ненужные контакты тахометра. Сопротивления обмоток тахометра составляет примерно 60 — 70 Ом.

Также могут быть выведены и выводы термозащиты, которые встречаются редко, но они нам так же не понадобятся, это как правило нормально замкнутый или разомкнутый контакт с «нулевым» сопротивлением.

Дальше подключаем напряжение к одному из выводов обмотки. Второй ее вывод соединяют с
первой щеткой. Вторая щетка подключается к оставшемуся 220-вольтовому проводу. Двигатель должен заработать и вращаться в одну сторону.


Чтобы изменить направление движения двигателя, подключение щеток следует поменять местами: теперь первая будет включена в сеть, а вторая соединена с выходом обмотки.

Такой двигатель можно проверить автомобильным аккумулятором на 12 вольт, не боясь при этом «спалить» его из за того что неправильно подключили, спокойно можно и
«поэкспериментировать» и с реверсом и посмотреть как двигатель работает на малых оборотах от низкого напряжения.

Подключая к напряжению 220 вольт, имейте в виду что двигатель резко запустится с рывком,
поэтому лучше его закрепить неподвижно чтоб он не повредил и не замкнул провода.

О том как подключить трехфазные асинхронные двигатели к обычной бытовой сети 220 вольт, довольно подробно можно узнать в статье — «Подключение трехфазного двигателя»

Регулятор оборотов


Если возникает необходимость регулирования количества оборотов, можно воспользоваться
бытовым регулятором освещения (диммером).Но для этой цели нужно подбирать такой диммер который по мощности будет с запасом больше мощности двигателя, или же потребуется доработка, можно из той же стиральной машинки извлечь симистор с радиатором и впаять его на место маломощной детали в конструкции регулятора освещения. Но здесь уже нужно иметь навыки работы с электроникой.

Если же вам удастся найти специальны диммер для подобных электродвигателей то это будет
самым простым решением. Как правило их можно подыскать в точках продажа систем вентиляции и используются они для регулировки оборотов двигателей приточных и вытяжных систем вентиляции.

Схемы подключения электродвигателей к сети переменного тока 220 вольт

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Соединения выводов двигателя — базовое управление двигателем

Трехфазные двигатели используют катушки из проволоки для создания магнитных полей и вращения.

Стандартные трехфазные двигатели используют шесть отдельных катушек, по две на каждую фазу. Внутренняя конструкция и соединение этих катушек внутри двигателя предопределяются при изготовлении двигателя. Существует два класса трехфазных двигателей: звезда и треугольник.

Конфигурация «звезда» и «треугольник»

Трехфазные двигатели также сконструированы для работы с двумя разными напряжениями , поэтому катушки могут быть подключены как в высоковольтной, так и в низковольтной конфигурации.

В высоковольтной конфигурации две катушки каждой фазы соединены друг с другом по схеме серии , так что более высокое значение напряжения питания распределяется между ними поровну и через каждую обмотку проходит номинальный ток.

В низковольтной конфигурации две катушки каждой фазы соединены параллельно друг с другом, так что меньшее значение напряжения питания распределяется поровну между катушками и номинальный ток протекает через каждую обмотку.

Обратите внимание, что низковольтное соединение обязательно потребует от источника в два раза больше тока, чем высоковольтное соединение. На паспортных табличках большинства двигателей указаны два значения напряжения и тока. Пускатели двигателей и их реле перегрузки важно рассчитать с учетом ожидаемого значения тока, который должен потребляться двигателем при том напряжении, при котором он используется.

Каждая из шести отдельных катушек имеет два питающих провода, всего двенадцать выводов.В конфигурациях «звезда» и «треугольник» три из этих выводов подключаются внутри, поэтому только девять выводов выводятся из двигателя для подключения. Эти выводы пронумерованы 1–9, и как в треугольнике, так и в треугольнике следуют стандартному соглашению о нумерации: начиная с верхней части схемы с провода номер 1, нарисуйте нисходящую внутрь спираль от каждой точки соединения, поднимаясь к следующему номеру на каждом этапе .

В зависимости от внутренней конструкции двигателя, эти провода могут быть подключены одним из четырех способов: соединение звездой высокого или низкого напряжения или треугольник высокого или низкого напряжения

Иногда возникает необходимость протестировать или подтвердить конфигурацию двигателя перед окончательным подключением.Если двигатель с звездообразной обмоткой подключен как двигатель с треугольной обмоткой или наоборот, двигатель не будет работать должным образом.

Рассмотрим ситуацию: у вас есть девять выводов, идущих от двигателя, но нет никаких указаний на то, имеет ли он соединение звездой или треугольником. Используя омметр для простой проверки целостности цепи, вы можете определить тип конструкции двигателя.

Если это соединение звездой, каждый из проводов 1, 2 и 3 должен иметь соединение только с одним другим проводом (4, 5 и 6 соответственно). Все три провода без соединения с проводами 1, 2 и 3 должны иметь непрерывность друг с другом.

Соединения двигателя звездой

Если он обмотан треугольником, каждый из проводов 1, 2 и 3 должен иметь соединение с двумя другими выводами:

  • T1 имеет связь с T4 и T9
  • T2 имеет связь с T5 и T7
  • T3 имеет связь с T6 и T8
Подключение электродвигателя треугольником

Важно отметить, что эти точки представляют собой внутреннее соединение катушек электродвигателя, а не то, как они должны быть подключены к источнику напряжения.

Низковольтная звезда

В этой конфигурации каждая фаза подводится к двум катушкам, подключенным параллельно друг другу.Клеммы 4, 5 и 6 соединены вместе, чтобы создать второе нейтральное соединение.

Низковольтное соединение звездой
L1 L2 L3 Связать
1,7 2,8 3,9 4,5,6

Звезда высокого напряжения

В этой конфигурации каждая фаза подводится к двум катушкам, которые последовательно соединены друг с другом.

Высоковольтное соединение двигателя «звезда».

L1 L2 L3 Связать
1 2 3 4,7 — 5,8 — 6,9

Низковольтный Delta

В этой конфигурации каждая фаза подведена к центральному соединению двух катушек и к концевым соединениям каждой из двух других групп катушек.

Подключение низкого напряжения электродвигателя треугольником

L1 L2 L3 Связать
1,6,7 2,4,8 3,5,9 нет

Дельта высокого напряжения

В этой конфигурации каждая фаза подводится к двум катушкам, которые соединены последовательно с катушками других фаз.

Соединение высокого напряжения двигателя треугольником

L1 L2 L3 Связать
1 2, 3 4,7 — 5,8 — 6,9

Электропроводка двигателя, часть 2 | EC&M

Shermco Industries, Inc., поставщик услуг по испытаниям, техническому обслуживанию, вводу в эксплуатацию и ремонту электрооборудования со штаб-квартирой в Ирвинге, штат Техас, недавно объявила о приобретении двух специализированных предприятий по электротехнике, расположенных в Тихоокеанском северо-западном регионе США:

  • Sigma Six Solutions («Sigma Six»), сертифицированная NETA компания по тестированию и обслуживанию, базирующаяся в Оберне, Вашингтон.; и
  • Innovative Electric («Innovative»), подрядное предприятие по проектированию и строительству электрических систем, базирующееся в Эверетте, Вашингтон.

Sigma Six (с 2015 года принадлежит Penn Power Group («PPG»)) обеспечивает запуск и приемочные испытания. на новые установки, а также на ремонт, техническое обслуживание, обучение, инженерные услуги, поддержку эксплуатации и услуги по управлению проектами для критически важного энергетического оборудования и систем.


Innovative гордится своим опытом в области проектирования и электромонтажа, а также предоставляет клиентам специализированные и комплексные решения коммерческих, промышленных и связанных с автоматизацией решений проблем, включая услуги проектирования и строительства и электротехнику, на протяжении более 25 лет.Опыт и репутация компании сделали ее надежным поставщиком электрических услуг для некоторых из самых престижных и технически продвинутых корпораций Северной Америки.

«Сочетание Shermco, Innovative и Sigma Six является частью нашего стратегического плана по развитию нашего недавнего приобретения подразделения специализированных инженерных разработок Ready Engineering», — сказал Том Бартоломей, генеральный директор Shermco. «Мы решили головоломку, сразу же предложив нашим клиентам единственного ведущего поставщика на рынке, одновременно сделав Shermco доминирующим присутствием на Тихоокеанском Северо-Западе.Это захватывающая глава в истории Shermco, которая доказывает, что мы продолжим стратегически инвестировать в области, которые гарантируют нашим клиентам доступ к одному поставщику специализированных электрических услуг для удовлетворения всех их потребностей в энергосистеме, независимо от того, где в Северной Америке они работают ».

Innovative и Sigma Six, менеджеры и технические эксперты останутся в компании после приобретений.

Подключение двигателя к контроллеру двигателя

На этом этапе вы начнете с подключения двигателей к плате контроллера мотора, прежде чем подсоединить держатель батареи к контроллеру мотора.

На этом этапе вы начнете с подключения двигателей к плате контроллера мотора, прежде чем подсоединить держатель батареи к контроллеру мотора. Инструкции относятся к плате контроллера драйвера шагового двигателя постоянного тока с двойным H-мостом L298N, и они будут аналогичны для большинства плат контроллеров двигателей. Проверьте документацию к вашей плате, если вы используете другую.

Что вам понадобится

Для этого шага вам понадобятся следующие предметы:
  • Плата контроллера мотора
  • Два двигателя постоянного тока 3-6 В
  • Четыре перемычки (вилка-вилка или женщина-вилка) или провод
  • Отвертка
Вам также могут понадобиться:
  • Паяльник и припой
  • Инструмент для зачистки проводов
  • Ножницы
  • Лента
Использование паяльника поначалу может быть немного сложным, но независимо от того, новичок вы в пайке или ветеран, этот ресурс «Начало работы с пайкой» даст вам несколько быстрых советов и уловок.

Двигатели постоянного тока

Большинство двигателей постоянного тока не имеют прикрепленных к ним проводов, а это значит, что вам нужно будет прикрепить свои собственные, используя припой.
Подготовка проводов

4,5

11 отзывов

Вам понадобится два провода для каждого двигателя постоянного тока, чтобы подключить его к плате контроллера двигателя.В качестве альтернативы вы можете использовать инструменты для зачистки проводов, чтобы зачистить оба конца перемычек, чтобы обнажить оголенный провод для подключения к каждому из двигателей. Демонстрацию того, как зачистить провод с помощью приспособлений для зачистки проводов, можно увидеть в этом видео. Снимите мягкий пластиковый зажим с двигателей, чтобы можно было прикрепить провода. Вы можете использовать отвертку с плоской головкой, чтобы удалить зажим. Пропустите оголенный провод через контакт на двигателе. Верхний наконечник: Возможно, будет легче припаять провод к контакту на двигателе, если вы согнете провод после того, как он пройдет через контакт.
Пайка проводов
Включите паяльник и дождитесь, пока он нагреется. Перед использованием очистите жало паяльника; вы можете использовать влажную губку или влажную ткань, чтобы удалить все загрязнения, пока утюг горячий. Нагрейте паяльником контакт на моторе секунду-другую. Удерживая паяльник на контакте, прикоснитесь концом припоя к жало паяльника, пока припой не расплавится. Прекратите наносить припой, как только контакт и провод соединятся припоем. Подождите минуту или две, пока припой остынет, а затем осторожно попробуйте сдвинуть провод, чтобы проверить, надежно ли он прикреплен к контакту.Если провод двигается, вы можете либо повторно нагреть нанесенный припой с помощью паяльника и выровнять провод, либо нанести больше припоя на соединение. Старайтесь не касаться паяльником пластикового покрытия проводов или любого пластика между двумя контактами, иначе пластик расплавится и начнет дымиться. Дополнительные советы и рекомендации можно найти в этом руководстве по пайке. Как только провода будут надежно припаяны к моторам, обрежьте их концы ножницами. Если провода случайно коснутся металлического корпуса при включенном питании, это может привести к короткому замыканию и прекращению подачи постоянного питания на двигатель.Снова прикрепите пластиковые зажимы к моторам. Также рекомендуется обернуть конец двигателей, к которому вы прикрепили провод, изолентой, чтобы защитить соединение и помочь сохранить припой в хорошем состоянии.

Подключите моторы к плате контроллера мотора

Плата контроллера мотора обычно имеет винтовые клеммы для подключения к ней мотора. Для работы двигателя постоянного тока необходимы две винтовые клеммы, а для серводвигателя — четыре клеммы. Четыре клеммы OUT на используемой мной плате обведены зеленым кружком ниже.Двигатель постоянного тока должен использовать два провода, чтобы он мог вращаться вперед и назад. Отправка сигнала высокого уровня на один провод и сигнала низкого уровня на другой поворачивает двигатель в одном направлении, а перестановка сигналов поворачивает двигатель в другом направлении. С помощью отвертки ослабьте винты в клеммных колодках, обозначенных OUT1 , OUT2 , OUT3 и OUT4 . Если у вас другие метки, посмотрите документацию к вашей плате. Зачистите концы проводов; вы можете отрезать концы, если вам нужно.Вставьте зачищенные концы одного двигателя в клеммы OUT1 и OUT2 , а зачищенные концы второго двигателя в клеммы OUT3 и OUT4 . Затяните винты, чтобы провода надежно закрепились в клеммных колодках.

Обсуждение

Были ли у вас проблемы с подключением моторов к контроллеру мотора? Вам нужна помощь с чем-то, что не работает должным образом? Если да, дайте нам знать в комментариях ниже.

Подключение частотно-регулируемого привода к двигателю

Специалисты Gozuk VFD рекомендуют подключать двигатель к частотно-регулируемому приводу с помощью экранированных кабелей.
  • Подключите экран кабеля к потенциалу PE надлежащим образом, т.е.с хорошей проводимостью с обеих сторон.
  • Кабели двигателя должны быть физически отделены от кабелей управления и сети.
Пользователи частотно-регулируемых приводов должны соблюдать применимые ограничения, указанные в соответствующих национальных и международных директивах в отношении области применения, длины кабеля двигателя и частоты коммутации.

Подключение в треугольник или звезду в соответствии с характеристиками двигателя.

Максимальный момент затяжки: 0,5 Нм

Длина кабелей частотно-регулируемого привода без фильтра
Допустимая длина кабеля частотно-регулируемого привода без выходного фильтра

Преобразователь частоты
неэкранированный кабель
экранированный кабель
0,37 кВт… 2,2 кВт
50 м
25 м
4.0 кВт
100 м
50 м
5,5 кВт… 11,0 кВт
100 м
50 м
Указанная длина кабелей частотно-регулируемого привода не должна быть превышена, если выходной фильтр не установлен.

Длина кабеля ЧРП с выходным фильтром dU / dt
После принятия соответствующих мер можно использовать более длинные кабели частотно-регулируемого привода, например.г. использование кабелей с малой емкостью и выходных фильтров. В следующей таблице приведены рекомендуемые значения для использования выходных фильтров.
Длина кабеля ЧРП с выходным фильтром

Преобразователь частоты
неэкранированный кабель
экранированный кабель
0,37 кВт… 2,2 кВт
150 м
100 м
4.0 кВт
300 м
200 м
5,5 кВт… 11,0 кВт
300 м
200 м

Длина кабеля ЧРП с синусным фильтром
Кабели преобразователя частоты могут быть длиннее, если используются синусоидальные фильтры. Путем преобразования синусоидальных токов отфильтровываются высокочастотные участки, которые могут ограничивать длину кабеля частотно-регулируемого привода.Учитывайте падение напряжения на длине кабеля и результирующее падение напряжения на синусоидальном фильтре. Падение напряжения приводит к увеличению выходного тока. Частотно-регулируемый привод должен подходить для более высокого выходного тока. Это необходимо учитывать на этапе проектирования.
Если длина кабеля частотно-регулируемого привода превышает 300 м, обратитесь в службу поддержки производителей частотно-регулируемого привода.

Группа ПФД
В случае группового частотно-регулируемого привода (несколько двигателей в одном частотно-регулируемом приводе) общая длина должна быть разделена между отдельными двигателями в соответствии со значением, указанным в таблице.
Используйте термоконтроллер на каждом двигателе (например, резистор PTC), чтобы избежать повреждений. Групповой частотно-регулируемый привод с синхронными двигателями серверов невозможен.

Тормозной резистор
Gozuk рекомендует установить тормозной резистор на частотно-регулируемый привод, если ожидается обратная связь энергии генератора. Этим можно избежать отключений из-за перенапряжения.

Внимание!
Во время работы поверхность тормозного резистора может нагреваться до высоких температур.Поверхность может сохранять высокие температуры после эксплуатации в течение определенного времени. Не прикасайтесь к тормозному резистору во время работы или готовности частотно-регулируемого привода. Несоблюдение может привести к ожогу кожи.
Установите защитное приспособление для защиты от прикосновения или закрепите предупреждающие надписи. Не устанавливайте тормозной резистор в непосредственной близости от легковоспламеняющихся или термочувствительных материалов. Не закрывайте тормозной резистор.

Осторожно!
Gozuk рекомендует использовать переключатель температуры.Тормозные резисторы, доступные от Gozuk, с размером резистора 4 (92 Ом, 696 Вт непрерывной мощности) и выше стандартно оснащены переключателем температуры. Для резисторов типоразмера 2 и 3 (300 Ом, 213 Вт и 136 Ом, 471 Вт) температурный выключатель доступен как опция. Температурный выключатель отключает частотно-регулируемый привод от сети, если тормозной резистор перегружен.
Использование тормозных резисторов без реле температуры может привести к критическим состояниям.

Уменьшите длину кабеля

Подключение постоянного тока требует оценки мощности всей системы.Тормозной резистор работает в зависимости от включения частотно-регулируемого привода. Контактор K1 должен отключать все компоненты установки от сети.

Как подключить трехфазный двигатель

Я пытаюсь починить старую трехфазную дрель.

Из двигателя выходят 3 провода, которые подключаются к трем фазам.

Подключение его к источнику питания ничего не дает, поэтому я проверил его с помощью мультиметра и увидел, что два провода, идущие от двигателя, закорочены вместе, но не с хорошим соединением (~ 25 Ом).

Я не разбираюсь в электричестве, кроме ваших обычных знаний непрофессионала, и определенно не знаю, зачем нужны три фазы или как они используются (или, действительно, что этот термин даже означает, помимо очевидных трех проводов)

Поэтому сначала я предполагал, что это короткое замыкание — неисправность где-то внутри двигателя.

Затем, переосмыслив, я понял, что если три фазы полностью разделены и нет 0 / заземления, идущего к двигателю, то как можно замкнуть цепь?

Действительно ли это короткое замыкание неисправно? как возникает замкнутая цепь, когда единственные линии, идущие в двигатель, — это линии электропередач?

Спасибо 🙂

/ Редактировать

Учитывая полезные ответы и комментарии, я могу только предположить, что что-то внутри двигателя неисправно.Это потому, что 1) Ничего не произошло, когда он был подключен к электричеству, даже ничего плохого. 2) Мультиметр показывает, что существует только физическое соединение между одной из трех пар. Надеюсь, я смогу протестировать это дальше и завтра предоставлю фотографии. Спасибо!

/ После дополнительных испытаний

Похоже, я был введен в заблуждение, и к трехфазной розетке в стене даже не подавалось питание. Ой!

Когда на двигатель подается реальная мощность, он как бы пытается вращаться с ОЧЕНЬ сильным сопротивлением, и, в конце концов, через несколько секунд ему удается вращаться очень медленно.Становится очень жарко.

Поскольку существует только физическое соединение между одной из трех пар, я предполагаю, что это означает, что только одна из фаз действительно работает.

Возможно, я попытаюсь полностью открыть его, хотя не думаю, что у меня есть подходящие инструменты для этой работы.

Большое спасибо за ответы и пояснения, по крайней мере, у меня есть базовая информация по этому вопросу, о которой я совершенно ничего не знал два дня назад 🙂

/ Заключение

Двигатель был отправлен на ремонт, и действительно, обмотки испортились, и их пришлось переделывать.

Большое спасибо вам всем за то, что вы меня обучили 🙂

Как подключить трехфазный двигатель высокого и низкого напряжения

Трехфазный двигатель более эффективен, чем однофазный, из-за особенностей переменного тока. Когда питание двигателя подается по трем проводам, а не только по одному, и подача энергии проходит через каждый из них последовательно (отсюда, часть «А» переменного тока), это обеспечивает эффективный уровень мощности, равный √3-кратному выше (около 1.В 728 раз выше), чем у соответствующей однофазной схемы. Как вы помните, электрическая мощность — это уровень напряжения, умноженный на ток.

Трехфазный двигатель может иметь одну из двух конфигураций: Y-образный (часто пишется «звезда», как это произносится) или треугольный. Кроме того, эти двигатели имеют шесть или девять выводов. При установке с шестью выводами вы не можете выбрать, получаете ли вы систему высокого или низкого напряжения, но при установке с девятью выводами вы можете выбрать любой из них, используя любую конфигурацию.Это дает в общей сложности четыре варианта подключения.

В вашей схеме также могут использоваться программируемые логические переключатели или ПЛК.

Для справки: L1, L2 и L3 обычно черные, красные и синие соответственно. Провода двигателя (от T1 до T9) обычно в порядке: синий, белый, оранжевый, желтый, черный, серый, розовый, красный и кирпично-красный. При выполнении следующих шагов, если возможно, обратитесь к диаграмме.

Схема «звезда», низкое напряжение

Подключите 1 и 7 к L1, 2 и 8 к L2, а 3 и 9 к L3.Соедините оставшиеся выводы (4, 5 и 6) вместе.

Схема «звезда», высокое напряжение

Подключите 1 к L1, 2 к L2 и 3 к L3. Затем подключите 4 к 7, 5 к 8 и 6 к 9.

Дельта-конфигурация, низкое напряжение

Подключите 1, 6 и 7 к L1; 2, 4 и 8 к L2; и 3, 5 и 9 — L3.

Дельта-конфигурация, высокое напряжение

Подключите 1 к L1, 2 к L2 и 3 к L3. Подключите 4 к 7, 5 к 8 и 6 к 9.

Как подключить трехфазный двигатель?

При подключении трехфазного двигателя на паспортной табличке указано различное напряжение для треугольника: 380–400 В и 660–690 В для звезды. Какой вариант следует выбрать? Напряжение питания от линии к линии составляет 380-400.

Каждая обмотка статора двигателя выдерживает напряжение 380-400 В.
Таким образом, если вы подключаете двигатель (статор двигателя) по схеме треугольник, он должен быть подключен к линейному напряжению 380-400 В.

С другой стороны, если вы подключите обмотку статора вашего двигателя в Y, вы сможете подключить двигатель к линейному напряжению, которое составляет sqrt (3) x 380-400 В = 660-690. V.

Фактическая выходная мощность (для стандартного трехфазного двигателя переменного тока с короткозамкнутым ротором) определяется не самим двигателем, а нагрузкой, которую он приводит.Двигатель будет пытаться работать со скоростью, близкой к своей синхронной скорости, и передавать мощность, необходимую для ведомого оборудования, на этой скорости. Это означает, что ток, потребляемый двигателем при любом заданном напряжении, будет почти одинаковым, независимо от того, подключен ли он звездой или треугольником. Таким образом, если вы подключаете двигатель звездой и питаете его напряжением, на которое он рассчитан при подключении по схеме треугольника, ток через каждую обмотку будет в 3 раза больше, чем рассчитана на обмотку. Это снова означает, что рассеивание тепла в обмотке будет примерно в 3 раза больше, чем она рассчитана, и поэтому она сгорит, если вы загрузите двигатель с его номинальной нагрузкой.

Мы должны знать, что мощность двигателя, указанная на его паспортной табличке, в зависимости от доступной мощности панели MCC, к которой он подключен, являются важными факторами при выборе типа запуска двигателя. Примите во внимание тот факт, что при прямом пуске двигателя в треугольник (что является правильным в зависимости от напряжения вашей сети) токи могут достигать 8-кратного номинала двигателя, и если ваш MCC не способен выдерживать этот ток ( уменьшая его напряжение питания), вы можете выйти из строя с типом пуска DOL Delta.Вот почему, исходя из мощности двигателей, во избежание высоких токов во время пуска рекомендуется соединение Y / D. Ограничения пусковых токов по Y / D значительны, если сначала уменьшить ток с помощью sqrt3, потому что напряжение питания не равно 660 В (вы питаете двигатель напряжением 380-400 В), а исходный ток по Y равен sqrt3

No related posts.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *