+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Применение переменного электрического тока. Переменный электрический ток

Нажать Класс

Рассказать ВК

Уважаемые посетители сайта!!!

Все изложенное в рубрике «электротехника», — дается для Вас в более простой, доступной форме обучения. Если вникать в теоретические основы электротехники , то переходить на такое обучение нужно не спонтанно, а постепенно.

Допустим, читаем формулировку правила: «Магнитный поток сквозь поверхность S равен линейному интегралу векторного потенциала по замкнутому контуру, ограничивающему эту поверхность». Данное правило дает понятие об углубленном познании магнитного поля постоянных токов , такой курс обучения проходят в высших технических учебных заведениях. Конечно-же, нужно стремиться к высшему познанию таких вещей, но для человека, которому допустим нужно починить электроплиту либо какой нибудь электроприбор, такие познания в общем-то просто ни к чему.

Полагаю, что если человек зашел на сайт, — ему нужно получить конечный результат такого продукта — полезной информации. В частности, для данной темы речь пойдет о способах

получения электрического тока .

Получение переменного тока

Переменный ток вырабатывают генераторы, электрические машины , — как их принято называть в электротехнике. Следует не забывать и о том, что в зависимости от их применения генераторы бывают как переменного так и постоянного тока. В зависимости от их устройства, генераторы вырабатывают:

  • трехфазный ток с выходным напряжением 380 Вольт;
  • однофазный ток с выходным напряжением 220 Вольт.

Где именно могут применяться трехфазные генераторы? Да допустим для питания трехфазной тепловой пушки на 6 кВт 380 В для обогрева складского помещения.

Тогда где-же могут применяться однофазные генераторы? Однофазные генераторы как и трехфазные, применяются допустим в больнице — при аварийном отключении электроэнергии.

Генератору, как нам известно, необходимо придать механическое вращение якоря. Каким образом можно придать якорю генератора механическое вращение? Такими источниками служат двигатели внутреннего сгорания:

  • газовые;
  • бензиновые;
  • дизельные

и другие источники, чтобы привести якорь генератора в движение. Другими источниками получения электрической энергии являются:

  • ветряные электростанции;
  • водяные электростанции;
  • турбинные электростанции.

На рисунке показано схематическое изображение устройства генератора переменного тока \рис.1\. Рамку в этом примере можно представить как якорь, состоящий из одного витка провода. Рамка обозначена сторонами А, Б, В, Г. Два проводника \А и Б\ при вращении рамки, пересекают магнитные силовые линии постоянного магнита С, Ю. При пересечении проводниками силовых линий, в проводниках наводится электродвижущая сила — ЭДС. ЭДС двух проводников по своему значению противоположны друг другу в тот момент, когда они пересекают эти силовые линии.

Величина ЭДС \ри.3\, протекающего тока в рамке, будет зависить:

    от векличины магнитной индукции постоянного магнита \ N, S\;

    длины проводника;

    скорости пересечения проводником магнитных силовых линий

и угла наклона проводника \рис.4\ по отношению к силовым линиям постоянного магнита \sin угла альфа между направлением движения проводника и направлением магнитных силовых линий поля\.


При вращении рамки в магнитном поле, в ней наводится ЭДС двух противоположных значений и ток, как мы можем заметить на графике \рис.5\ получается пульсирующим. Один период Т состоит из двух противоположных пульсаций тока, верхний полупериод — положительный и нижний полупериод — отрицательный. Полупериод обозначен на графике как 1/2 Т.

Поэтому, ток в этом примере рассматривается как:

    пульсирующий;

    синусоидальный

либо как еще его называют — переменный ток .

Получение постоянного тока

Постоянный ток мы получаем от следующих источников, это:

  • первичные источники \обыкновенные, простые батарейки\;
  • электрохимические аккумуляторы;
  • генераторы постоянного тока.

Принцип устройства электрохимических аккумуляторов изображен на рисунке 6. Электрохимические аккумуляторы могут быть возвращены в первоначальное свое состояние под воздействием электрического тока — в процессе их зарядки либо подзарядки.

Первичные источники \элементы\, разнообразные типы батареек \рис.7\, — не могут быть возвращены в свое первоначальное состояние в процессе их зарядки электрическим током, то-есть, такие источники по истечению своего срока эксплуатации подлежат только утилизации.

Различие между генератором переменного тока и генератором постоянного тока состоит в том, что в генераторе постоянного тока размещено большее количество витков в пазах якоря \по сравнению с генератором переменного тока\, а так-же, укреплено четное количество главных и добавочных полюсов на внутренней станине генератора.

Следующий рисунок из себя представляет схему подключения нагрузки к генератору постоянного тока \рис.8\, ток в данной цепи замыкается через нагрузку.


На графике \рис.9\ показаны пульсации тока, выдаваемые генератором постоянного тока. По сравнению с генератором переменного тока, данные пульсации выглядят более сглаженно.

Применение постоянного тока


автомобильный генератор

устройство автомобильного генератора

электростанция для сварки постоянным током

Электроэнергия в современном мире существует в двух видах. Одна её ипостась – постоянный ток, а вторая – переменный. Разница между ними принципиальная и то, что доступно одному виду электричества, недоступно другому. Так, постоянный ток известен людям очень давно, а переменный был поставлен человеком на службу цивилизации буквально сегодня по историческим меркам. Данная статья посвящена рассмотрению различий и мест применения электроэнергии с постоянной и переменной составляющей.

Постоянный ток, его происхождение и применение

С источниками постоянного тока мы сталкиваемся ежесекундно. Когда вы читаете эту стат

les74.ru

Основные понятия об электрических цепях переменного тока

ЭЛЕКТРИЧЕСКИЕ цепи переменного тока

Урок 5

Тема урока: Получение переменного тока. Основные понятия и определения, изображение переменного тока

Цель урока: формирование знаний по теме, воспитывать познавательный интерес; расширять кругозор учащихся; развивать мышление и память.

Теоретическая часть

Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рисунке показана схема устройства (модель) простейшего генератора переменного тока.

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Магнит создает между своими полюсами равномерное магнитное поле, в котором плотность магнитных силовых линий в любой части поля одинаковая. Вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС.

Стороны в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой. В этом можно убедиться, если использовать для определения направления ЭДС известное как

правило правой руки.

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению. ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи. Используя явление электромагнитной индукции, можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Графическое изображение переменного тока

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени (или угол поворота рамки), а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

Полученная волнообразная кривая называется синусоидой, а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными.

Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.

Переменный ток характеризуется периодом, амплитудой и частотой.

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока. Общепринятые обозначения амплитуд тока, ЭДС и напряжения — Im, Em и Um.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением (i, u, е соответственно).

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f. Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода f = 1/T. Частота переменного тока измеряется единицей, называемой герцем.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту.

Круговая частота обозначается буквой ω, измеряется в радианах и связана с частотой соотношением

ω = 2πf

В общем виде в момент времени t=0 мгновенное значение переменных величин можно записать в виде:

i = Im sin ωt ,

u = Um sin ωt,

е = Еmsin ωt.

При этом начальный период времени t=0 совпадает с нулевыми значениями функций. Но в общем случае на оси времени можно выбрать любой момент отсчета, тогда формулы мгновенных значений будут иметь вид:

i = Im sin(ωt + φi),

u = Um sin(ωt +φu),

е = Еm sin(ωt +φе),

где φi,φu,φе – начальный фазовый угол или начальная фаза.

Временно́й сдвиг между максимальными значениями в разных витках определяется разностью фаз:

Если для синусоидальных величин разность фаз равна ±π, то они противоположны по фазе, если начальные фазы одинаковые и их разность равна 0, то это означает. Что они совпадают по фазе.

При расчетах цепей переменного тока, а также при электрических измерениях неудобно пользоваться мгновенными или амплитудными значениями токов и напряжений из-за емких расчетов. Для этих целей ввели понятие действующих значений тока, напряжения.

Действующее значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

Электрические приборы показывают действующие значения переменных величин, которые обозначаются прописными буквами без индексов (I, U, Е).

; ;

Вопросы для самопроверки:

— Объясните понятие «переменный ток».

— Что такое амплитуда переменного тока?

— Что такое частота тока? Единицы измерения частоты?

— Что такое угловая частота? Единицы измерения угловой частоты?

— Что такое разность фаз?

— В чем разница между действующими и амплитудными значениями синусоидальных величин?

— Запишите и расшифруйте математическое выражение мгновенного синусоидального тока.

— Запишите и расшифруйте математическое выражение мгновенного синусоидального напряжения.

Практическая часть:

Пример 1. Определите угловую частоту, если частота сети равна 50Гц? 60Гц? 1кГц?

Пример 2. Амперметр показывает значение 10А. Определите амплитудное (максимальное) значение тока и запишите мгновенное значение тока (фазовый угол равен нулю).

Пример 3. Мгновенное значение напряжение равно u=282sin(ωt-47). Определить действующее значение и начальную фазу напряжения.

Урок 6

Тема урока: Элементы электрической цепи синусоидального тока.

Цель урока: расширение и обобщение знаний по теме, применение теоретических знаний на практике; развитие памяти и логики.

Теоретическая часть

На любом участке цепи переменного тока одновременно осуществляются необратимые процессы преобразования электрической энергии в другие виды и проявляется действие переменного электромагнитного поля.

При решении большинства электротехнических задач вводят допущения, которые позволяют раздельно учитывать каждое из явлений и упрощают задачу расчета электрических цепей переменного тока.

  1. Цепь с идеальным резистивным элементом.

Рассмотрим, например, процессы, происходящие в обыкновенной лампе накаливания, включенной в сеть переменного тока. Между отдельными витками нити накаливания существует электрическая емкость, и нить обладает определенной индуктивностью, но они незначительны. Поэтому считают, что С=0 и L=0. В этом случае при анализе электрической цепи лампу называют идеальным резистивным элементом цепи с сопротивлением R.

Величина сопротивления переменному току больше, чем сопротивлению постоянному току, за счет неравномерного распределения тока в проводе (поверхностный эффект). Поэтому в отличие от сопротивления постоянному току сопротивление в цепи переменного тока называют активным сопротивлением. Активное сопротивление измеряется в омах.

Если напряжение u = Umsinωt),подключить к сопротивлению R, то через него протекает ток

Это показывает, что напряжение на сопротивлении и ток, протекающий через него, совпадают по фазе: .

Напряжение, совпадающее по фазе с током, называют активным напряжением и обозначают Ua.

  1. Цепь с идеальным индуктивным элементом.

Примером идеального индуктивного элемента может служить индуктивная катушка. Электрическая энергия, выделяемая в катушке за счет нагрева провода обмотки, как правило, невелика, как и межвитковая емкость, и во многих практических случаях ими можно пренебречь (R=0, C=0). При принятых допущениях индуктивную катушку называют идеальным индуктивным элементом цепи или L-элементом.

Параметром идеального индуктивного элемента является индуктивность L, а энергетические процессы в нем определяются только явлениями, происходящими в магнитном поле.

Индуктивность — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур. На электрических схемах используют условные графические обозначения катушек индуктивностей, примеры которых приведены на рисунке.

Условные графические обозначения индуктивностей:

а – обозначение катушки индуктивности; б – с магнитодиэлектрическим сердечником;

в – с ферромагнитным сердечником

При прохождении электрического тока по катушке, ток создаст переменный магнитный поток Ф. Силовые линии этого потока, пересекая витки катушки, будут индуктировать в ней э.д.с. самоиндукции. По закону электромагнитной индукции

eL=

Так как в цепи, куда включена индуктивность L, отсутствует активное сопротивление (рассматривается идеальная катушка индуктивности), то по второму закону Кирхгофа u+eL=0, т. е. u = -eL Следовательно, напряжение источника всегда равно по величине и противо-положно по направлению э. д. с. самоиндукции.

Если в формулу подставить значение тока и продифференцировать, то получим:

Обозначим величину ωL· равной амплитуде напряжения Um. Тогда по закону Ома

Величину называют индуктивным сопротивлением, измеряют в Омах и обозначают

Так как , то начальную фазу напряжения можно представить как φ u= φ i+ 90 и, следовательно,

Выведенное соотношение показывает, что если в катушке протекает синусоидальный ток, то напряжение также имеет синусоидальный характер, но при этом оно опережает ток на четверть периода (90).

  1. Цепь с идеальным емкостным элементом

Конденсатор – элемент электрической цепи, предназначенный для использования его ёмкости. В конденсаторе накапливается энергия электрического поля. Свойство элемента запасать электрический заряд характеризует ёмкость (С). Этот параметр является коэффициентом пропорциональности между зарядом q (Кл) и прикладываемым напряжением u (В).

q = C·u,

При изменении напряжения на конденсаторе изменяется заряд и возникает электрический ток

Идеализированный конденсатор обладает только ёмкостью С (R=0, L=0).

Рассмотрим электрические процессы в цепи с идеальным ёмкостным элементом. Пусть напряжение источника изменяется по закону u = Um·sinωt, (φu = 0).

В цепи возникает ток

 Из полученного выражения видно, что начальная фаза тока φi = . Угол сдвига фаз между напряжением и током составляет

Следовательно, синусоида напряжения на емкости отстаёт от синусоиды тока на угол 90. На практике, если в электрической цепи напряжение отстаёт по фазе от тока, говорят об ёмкостном характере нагрузки.

Амплитуда тока будет равна Im = ω·C·Um=.

Величину называют ёмкостным сопротивлением конденсатора и измеряют в Омах 

Xc=1/ ω•C =1/2πfC.

Итак, в цепях переменного тока выделяют следующие виды сопротивлений:

— активное (активным называют сопротивление резистора). Единицей измерения сопротивления является Ом. Сопротивление резистора не зависит от частоты сети.

— реактивное (индуктивное XL и емкостное ХС). Единицей измерения индуктивного и емкостного сопротивления также является Ом. Величина индуктивного сопротивления линейно зависит от частоты. А величина ёмкостного сопротивления обратнопропорциональна частоте сети. В цепях со смешанным соединением нагрузки (активной, индуктивной, ёмкостной) реактивным сопротивлением цепи называют величину

X = XL — XC.

Для того, чтобы найти общее сопротивление электрической цепи со смешанным соединением нагрузки используют понятие полного сопротивления цепи, которое определяется как

Вопросы для самопроверки:

— Объясните физический смысл активного сопротивления проводника переменному току по сравнению с сопротивлением проводника постоянному току?

— Что такое индуктивность катушки? От чего она зависит?

— Что понимается под действующим значением переменного синусоидального тока? Как его рассчитать через амплитудное значение тока?

— Опишите физические явления, наблюдаемые в резисторе в цепи переменного синусоидального тока?

— Запишите математическую связь между мгновенным напряжением, мгновенным током и активным сопротивлением?

— Запишите математические выражения мгновенного напряжения и тока на активном сопротивлении, приняв начальную фазу напряжения φ=45.

— Что понимается под углом сдвига фаз? Чему он равен на участке цепи с резистором? индуктивностью? ёмкостью?

— Как рассчитать индуктивное сопротивление идеальной катушки?

— Запишите математическое выражение мгновенного напряжения на индуктивном сопротивлении, приняв начальную фазу тока φ=45.

— Объясните физический смысл ёмкостного сопротивления. Как рассчитать ёмкостное сопротивление идеального конденсатора?

— Чему равен угол сдвига фаз в ёмкости?

— Что понимается под термином реактивное сопротивление? Как его определить?

— Как в сети переменного тока определяется полное сопротивление?

Практическая часть:

Пример 1. В цепи переменного тока к резистору подведено напряжение u=141sin(t-30)В. Сопротивление идеального резистора равно 100 Ом. Определить амплитуду и начальную фазу тока; записать мгновенное и действующее значение тока.

Пример 2. К идеальной катушке подведено напряжение u=141sin(t+73)В. Частота тока в сети равна 50Гц. Индуктивность катушки равна 12,7 мГн. Определить индуктивное сопротивление катушки, амплитуду и начальную фазу тока; записать мгновенное и действующее значение тока.

Пример 3. К идеальному конденсатору подведено напряжение u=282sin(t+30)В. Частота тока в сети равна 50Гц. Ёмкость конденсатора равна 159мкФ. Определить ёмкостное сопротивление конденсатора, амплитуду и начальную фазу тока; записать мгновенное и действующее значение тока.

Урок 7

Тема урока: Неразветвленные цепи переменного тока. Мощность цепи синусоидального тока. Коэффициент мощности.

Цель урока: получение практического навыка расчета элементов цепи переменного тока; расширение знаний о физических явлениях в реальной катушке и реальном конденсаторе.

Теоретическая часть

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и ёмкостное сопротивление.

1. Цепь с активно-индуктивным сопротивлением.

Фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока.

Полное сопротивление цепи с активным сопротивлением и индуктивностью

а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений

Произведем геометрическое сложение радиусов-векторов UL и UR. Результирующий вектор UAB будет являеться гипотенузой прямоугольного треугольника. Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление. Разделим обе части уравнение на

Извлекая квадратный корень из обеих частей этого равенства, получим,

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений

2. Цепь с активно-ёмкостным сопротивлением.

Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений.

Полное сопротивление цепи с активным сопротивлением и емкостью

а) — схема цепи; б) — треугольник сопротивлений.

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его

В общем случае, когда цепь содержит все три вида сопротивлений, сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

Полное сопротивление цепи содержащей R, L и C

а) — схема цепи; б) — треугольник сопротивлений.

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений преобладает.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

3. Параллельное соединение активного и реактивного элемента

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно, нужно сначала вычислить проводимость каждой из параллельных ветвей.

Полное сопротивление цепи при параллельном соединении активного и реактивных элементов

а) — параллельное соединение R и L; б) — параллельное соединение R и C.

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

откуда:

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С :

Мощность цепи синусоидального тока

Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток.

Пусть мгновенные напряжение и ток определяются по формулам:

Тогда

Среднее арифметическое значение мощности за период называют активной мощностью и обозначают буквой P.

Эта мощность измеряется в ваттах и характеризует необратимое преобразование электрической энергии в другой вид энергии, например, в тепловую, световую и механическую энергию.

Возьмем реактивный элемент (индуктивность или емкость). Активная мощность в этом элементе , так как напряжение и ток в индуктивности или емкости различаются по фазе на 90. В реактивных элементах не происходит нагрева элементов. Происходит обратимый процесс в виде обмена электрической энергией между источником и приемником. Для качественной оценки интенсивности обмена энергией вводится понятие реактивной мощности Q.

Реактивная мощность, измеряемая в вольтамперах реактивных (Вар), расходуется на создание магнитного поля в индуктивности или электрического поля в емкости. Энергия, накопленная в емкости или в индуктивности, периодически возвращается источнику питания.

Полная мощность, измеряемая в вольтамперах, равна произведению действующих значений напряжения и тока:

, ВА

В соответствии с формулой , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу , более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

Коэффициент мощности и его экономическое значение

Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Значения коэффициента мощности электрических установок переменного тока различны. Электрические лампы обладают, главным образом, активным сопротивлением, поэтому при их включении сдвиг фаз между током и напряжением практически отсутствует. Следовательно, для осветительной нагрузки коэффициент мощности можно считать равным единице. Коэффициент мощности для двигателей переменного тока зависит от нагрузки. При номинальной расчетной нагрузке двигателя cosφ = 0,8-0,9, а у крупных двигателей даже выше. При недогрузке двигателей коэффициент мощности их резко снижается (при холостом ходе cosφ = 0,25-0,3).

Коэффициент мощности учитывают при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Коэффициент мощности повышают различными способами. Основной из них — включение параллельно приемникам электрической энергии специальных устройств, называемых компенсаторами. В качестве последних чаще всего используют батареи конденсаторов.

Практическая часть

Задача. Катушка с активным сопротивлением R1=200 Ом и индуктивностью L=0,24 Гн соединена параллельно с конденсатором, активным сопротивлением R2=70 Ом и емкостью С=8*10-6Ф и подключена к источнику переменного тока с частотой f=200 Гц и амплитудным значением напряжения Um=300 В. Определить действующее значение токов в каждой ветке и общее значение тока в цепи, полное сопротивление цепи, полную, активную и реактивную мощности. Построить векторную диаграмму тока и напряжения.

infourok.ru

§46. Получение переменного тока

В промышленности в основном применяют синусоидальный переменный ток, который в отличие от постоянного каждое мгновение изменяет свое значение и периодически направление. Для получения такого тока используют источники электрической энергии, создающие переменную э. д. с, периодически изменяющуюся по величине и направлению; такие источники называются генераторами переменного тока.

Принцип получения переменного тока. Простейшим генератором переменного тока может служить виток, вращающийся в равномерном магнитном поле (рис. 168, а). Пользуясь правилом правой руки, легко определить, что в процессе вращения витка направление э. д.с. е, индуцированной в рабочих участках 1 и 2 витка, непрерывно изменяется (показано стрелками), следовательно, изменяется и направление проходящего по замкнутой цепи тока i.

По закону электромагнитной индукции э. д. с, индуцируемая в витке при вращении его с окружной скоростью ? в магнитном поле с индукцией В,

e = 2lB? sin?,

где

2l — длина двух рабочих частей витка, находящихся в магнитном поле;

? — угол между направлением силовых магнитных линий и направлением движения витка в рассматриваемый момент времени (направлением вектора скорости ?).

При вращении витка с угловой скоростью ? угол ? = ?t, следовательно,

e = 2lBv sin ?t.

Переменный угол ? t называется фазой э. д. с. Величина 2lB ? представляет собой максимальное значение э. д. с. е, которое она принимает при ?t = 90° (когда плоскость витка перпендикулярна силовым магнитным линиям). Обозначив его Eт получим:

е = Ет sin ?t.

Полученная зависимость изменения э. д. с. е от угла ?t или от времени t графически изображается синусоидой (рис. 168,б). Э. д. с, токи и напряжения, изменяющие свои значения и направления по закону синусоиды, называются синусоидальными. Ось, по которой откладывают углы ? t, можно рассматривать как ось времени t.

Рассмотрим несколько отдельных положений витка. В момент времени, соответствующий углу ?t1 (см. рис. 168, а), когда виток находится в горизонтальном положении, его рабочие участки как бы скользят вдоль силовых магнитных линий, не пересекая их; поэтому в этот момент э. д. с. в них не индуцируется (точка 1 на рис. 168,б). При дальнейшем повороте витка стороны его начнут пересекать магнитные силовые линии. По мере увеличения угла поворота увеличивается и число силовых линий, пересекаемых сторонами витка в единицу времени, и соответственно возрастает индуцированная в витке э. д. с е.

В момент времени, соответствующий углу ?t2, виток пересекает наибольшее число силовых магнитных линий, так как его рабочие участки 1 и 2 движутся перпендикулярно силовым линиям магнитного поля; в этот момент э. д. с. е достигает своего максимального значения Ет (точка 2 на графике). При дальнейшем вращении витка число пересекаемых силовых линий уменьшается и соответственно уменьшается индуцированная в витке э. д. с. В момент времени, соответствующий углу рабочие участки витка опять как бы скользят вдоль магнитных силовых линий, в результате чего э. д. с. е будет равна нулю (точка 3). Затем рабочие участки 1 и 2 витка вновь начинают пересекать магнитные силовые линии, но уже в другом направлении, поэтому в витке появляется э. д. с. противоположного направления. В момент времени, соответствующий углу ?t4. при вертикальном расположении витка э. д. с. в достигает максимального значения — Ет (точка 4), затем она уменьшается, и в момент времени, соответствующий ?t5, снова становится равной нулю (точка 5). При дальнейшем движении витка с каждым

Рис. 168. Индуцирование синусоидальной э. д. с. (а) и кривая ее изменения (б)

новым оборотом описанный выше процесс индуцирования э. д. с. будет повторяться.

В современных генераторах переменного тока магниты или электромагниты, создающие магнитное поле, обычно располагаются на вращающейся части машины — роторе, а витки, в которых индуцируется переменная э. д. с,— на неподвижной части генератора — статоре. Однако с точки зрения принципа действия генератора переменного тока безразлично, на какой части машины — роторе или статоре — расположены витки, в которых индуцируется переменная э. д. с.

Работа приемников электрической энергии при переменном токе. Если подключить к генератору переменного тока электрическую лампу (см. рис. 168, а), то нить ее будет периодически накаляться и остывать. Однако если частота изменений переменного тока достаточно велика, то нить лампы не будет успевать охлаждаться и глаз человека не будет улавливать изменений ее накала. Такие же условия имеют место и при работе электродвигателей переменного тока; такой двигатель при работе получает от источника импульсы переменного тока, следующие один за другим с большой частотой, и его ротор будет вращаться с постоянной частотой.

electrono.ru

Переменный (синусоидальный) ток и основные характеризующие его величины.

Переменный ток (англ. alternating current — AC) — электрический токкоторый с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Рисунок 1

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с-1)

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

electrikam.com

Электрические цепи переменного тока

Электрическая энергия почти во всех случаях производится, распределяется и потребляется в виде энергии переменного тока.

Широкое применение переменного тока в различных областях техники объясняется легкостью его получения и преобразования, а также простотой устройства генераторов и двигателей переменного тока, надежностью их работы и удобством эксплуатации.

Переменный ток, меняет свое значение и направление, определенное число раз в секунду. При переменном токе электроны движутся вдоль провода сначала в одном направлении, затем на мгновение останавливаются, далее движутся в обратную сторону, опять останавливаются и снова повторяют движение вперед и назад. То есть электроны совершают в проводе колебательное движение. Вследствие своей малой скорости движения (Vэл= 10-4м/с = 0,1 мм/с) электроныпри таких колебаниях успевают сделать лишь небольшие перемещения вдоль провода.

Наиболее часто встречается, так называемый синусоидальный переменный ток. Изменение электрических величин (силы тока, напряжения, ЭДС) со временем показывает плавная кривая линия, называемая синусоидой).

Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются со временем по синусоидальному закону, называются цепями синусоидального тока. Иногда их называют просто цепями переменного тока.

Для переменного тока была выбрана синусоидальная форма, так как она обеспечивает более экономичные производство, передачу, распределение и использование электрической энергии.

Кроме того, именно синусоидальная форма электрических величин остается неизменной во всех участках сколь угодно сложной электрической цепи, то есть индуктивные и емкостные элементы, входящие в состав электрических цепей не изменяют синусоидальной формы тока и напряжения.

Электрические цепи переменного тока по сравнению с цепями постоянного тока имеют ряд особенностей. Эти особенности определяются:

  • во-первых, тем, что в состав цепей переменного тока входят новые элементы: трансформаторы, конденсаторы, катушки индуктивности;

  • во-вторых, тем, что переменные токи и напряжения в этих элементах порождают переменные электрические и магнитные поля, которые в свою очередь приводят к возникновению явления самоиндукции, взаимной индукции и токов смещения.

Все это оказывает существенное влияние на протекающие электрической цепи процессы. Анализ процессов в цепях усложняется.

Для цепи переменного синусоидального тока большое значение имеет частота f. От частоты зависит влияние емкостей и индуктивностей на процессы в цепи.

Особенности цепей синусоидального тока обуславливают ряд новых, специфических для этих цепей явлений: сдвиг фаз, явление резонанса, появление реактивных мощностей.

Коэффициент мощности.

На современных промышленных предприятиях большинство потребителей электрической энергии переменного тока представляют собой активно-индуктивную нагрузку в виде асинхронных электродвигателей, силовых трансформаторов, сварочных трансформаторов, преобразователей и так далее. В такой нагрузке в результате протекания переменного тока индуктируются ЭДСсамоиндукции, обуславливающие сдвиг по фазе между током и напряжением. Этот сдвиг по фазе обычно увеличивается, аcos уменьшается при малой нагрузке. Например, еслиcos двигателей переменного тока при полной нагрузке составляет 0,75 — 0,8, то при малой нагрузке он уменьшается до 0,2 — 0,4.

Если мощность, потребляемая всеми приемниками в данных цепях, является вполне определенной, то при неизменном напряжении на зажимах приемника их ток: I = P / (Ucos )

С уменьшением cos ток нагрузки электростанций и подстанций будет увеличиваться при одной и той же отдаваемой мощности.

Вместе с тем электрические генераторы, трансформаторы и линии электропередачи рассчитываются на определенное напряжение и ток. Увеличение тока потребителя при снижении cosне должно превышать определенных пределов, так как питающие их генераторы рассчитываются на определенную номинальную мощностьSном = Uном Iном, вследствие чего они не должны оказаться перегруженными. Для того чтобы ток генератора не превышал номинального значения при сниженииcos потребителя, необходимо снижать его активную мощность. Таким образом, понижениеcos потребителей вызывает неполное использование мощности синхронных генераторов, трансформаторов и линий электропередачи. Они бесполезно загружаются за счет индуктивного реактивного тока.

cos, характеризующий использование установленной мощности, часто называют коэффициентом мощности.

Коэффициентом мощности определяют как отношение активной мощности к полной:

cos = P/S.

(2.71)

2.25 Коэффициент мощности (Адрес Блок 4) Коэффициентом мощности определяют как отношение активной мощности к полной:cos = P/S. Коэффициент мощности показывает, какая часть электрической энергии необратимо преобразуется в другие виды энергии и, в частности, используется на выполнение полезной работы.

Коэффициент мощности (2.25)показывает, какая часть электрической энергии необратимо преобразуется в другие виды энергии и, в частности, используется на выполнение полезной работы. Нормальным считаетсяcos 0,85 — 0,9. При низком коэффициенте мощности на предприятия, потребляющие электроэнергию, накладывается штраф, при высоком — предприятия премируются.

Для улучшения коэффициента мощности проводится ряд мероприятий:

2.заменяются двигатели переменного тока, нагруженные относительно мало, двигателями меньшей мощности;

2.включаются параллельно приемникам конденсаторы.

studfile.net

Переменный электрический ток.

Лекция №5

Переменным называется ток, изменение которого по величине и направлению повторяется периодически через равные промежутки времени Т.

В области производства, передачи и распределения электрической энергии переменный ток имеет по сравнению с постоянным, два основных преимущества:

1) возможность (при помощи трансформаторов) просто и экономично повышать и понижать напряжение, это имеет решающее значение для передачи энергии на большие расстояния.

2) большую простоту устройств электродвигателей, а следовательно, и их меньшую стоимость.

Значение переменной величины (тока, напряжения, ЭДС) в любой момент времени t называется мгновенным значением и обозначается строчными буквами (ток i, напряжение u, ЭДС – е).

Наибольшее из мгновенных значений периодически изменяющихся токов, напряжений или ЭДС, называются максимальными или амплитудными значениями и обозначаются прописными буквами с индексом «м» (Iм, Uм).

Наименьший промежуток времени, по прошествии которого мгновенные значения переменной величины (ток, напряжение, ЭДС) повторяется в той же последовательности, называется периодом Т, а совокупность изменений, происходящих в течение периода, — циклом.

Величина обратная периоду называется частотой и обозначается буквой f.

, т.е. частота – число периодов за 1 секунду.

Единица частоты 1/сек – называется герц (Гц). Более крупные единицы частоты – килогерц (кГц) и мегагерц (МГц).

Стандартная (техническая)

50 Гц

Частота для промышленных установок Европе, Японии и Америки

60 Гц

Получение переменного синусоидального тока.

Переменные токи и напряжения в технике стремятся получить по простейшему периодическому закону – синусоидальному. Т. к. синусоида – единственная периодическая функция, имеющая подобную себе производную, в результате чего во всех звеньях электрической цепи форма кривых напряжений и токов получается одинаковой, чем значительно упрощаются расчеты.

Для получения токов промышленной частоты служат генераторы переменного тока в основе работы которых лежит закон электромагнитной индукции, согласно которому при движении замкнутого контура в магнитном поле в нем возникает ток.

Схема простейшего генератора переменного тока

Генераторы переменного тока большой мощности, рассчитанные на напряжения 3 – 15 кв, выполняются с неподвижной обмоткой на статоре машины и вращающимся электромагнитом-ротором. При такой конструкции легче надежно изолировать провода неподвижной обмотки и проще отвести ток во внешнюю цепь.

Одному обороту ротора двухполюсного генератора соответствует один период переменной ЭДС, наведенной на его обмотке.

Если ротор делает n оборотов в минуту, то частота индуктированной ЭДС

.

Т.к. при этом угловая скорость генератора , то между ней и частотой, наведенной ЭДС существует соотношение.

Фаза. Сдвиг фаз.

Предположим, что генератор имеет на якоре два одинаковых витка, сдвинутых в пространстве. При вращении якоря в витках наводятся ЭДС одинаковой частоты и с одинаковыми амплитудами, т.к. витки вращаются с одинаковой скоростью в одном и том же магнитном поле. Но вследствие сдвига витков в пространстве ЭДС достигают амплитудных знамений неодновременно.

Если в момент начала отсчета времени (t=0) виток 1 расположен относительно нейтральной плоскости под углом , а виток 2 под углом. То наведенная в первом витке ЭДС:,

а во втором:

В момент отсчета времени:

Электрические углы иопределяющие значения ЭДС в начальный момент времени, называетсяначальными фазами.

Разность начальных фаз двух синусоидальных величин одной частоты называется углом сдвига фаз.

Та величина, у которой нулевые значения (после которых она принимает положительные значения), или положительные амплитудные значения достигаются раньше, чем у другой, считается опережающей по фазе, а та у которой те же значения достигаются позже – отстающей по фазе.

Если две синусоидальные величины одновременно достигают своих амплитудных и нулевых значений, то говорят, что величины совпадают по фазе . Если угол сдвига фаз синусоидальных величин равен 1800, то говорят, что они изменяются впротивофазе.

studfile.net

Формула расчета периода переменных и постоянных токов в электротехнике

Изобретение электричества поставило человечество на новую грань развития. Технический прогресс опирался на два направления движения с использованием электроэнергии. В одном случае применялся постоянный ток, во втором – переменный. Внедрение источников электричества и электропотребителей вылилось в столетнюю войну между приверженцами двух видов энергии. В конце концов, победу одержали те, кто продвигал идею повсеместного использования её переменного вида.

Синусоида переменного электричества в системе координат

Общее понятие о переменном токе

В отличие от постоянного движения электронов в одном направлении, переменный ток меняет как направление, так и значение несколько раз за единицу времени. Изменения происходят по гармоническому закону. Если наблюдать подобный сигнал с помощью осциллографа, можно увидеть картинку в виде синусоиды.

Относительно оси ординат OY ток меняет своё направление с положительного на отрицательное и делает это периодически. Поэтому его мгновенное значение в первой позиции считается положительным, во второй – отрицательным.

Важно! Так как переменный ток – это алгебраическая величина, то говорить о его знаке заряда можно только для конкретного мгновенного значения, смотря, в каком направлении он протекает в этот момент.

Сигнал на экране осциллографа

Периодический переменный ток

Тот, который, изменяясь, успевает вернуться к своему исходному значению через одинаковые временные интервалы и при этом проходит весь цикл своих преобразований, называется периодическим. Его можно проследить на синусоиде, изображённой на экране осциллографа.

Период и амплитуда синусоидального колебания

Видно, что через одинаковые интервалы времени график повторяется без перемен. Эти интервалы обозначаются буквой Т и называются периодами. Частота, с которой в единицу времени укладывается определённое количество подобных периодов, – это частота тока переменного значения.

Её можно вычислить по формуле частоты переменного тока:

f = 1/T,

где:

  • f – частота, Гц;
  • T – период, с.

Частота равна количеству периодов в секунду и имеет единицу измерения 1 герц (Гц).

Внимание! Единица частоты в системе СИ носит имя Генриха Герца. 1 герц (Гц, Hz) = 1 с-1. К ней применимы кратные и дольные, выраженные стандартными приставками СИ, единицы.

Стандарты частоты

Для того чтобы обеспечить согласование работы источников переменного электричества, систем передач, приём и работу электропотребителей, применяются стандарты частоты. Используемая частота в электротехнике некоторых стран:

  • 50 Гц – страны бывшего СССР, Прибалтики, страны Европы, Австралия, КНДР и другие;
  • 60 Гц – стандарт, принятый в США, Канаде, Доминиканской республике, Тайвани, на Каймановых островах, Кубе, Коста-Рике, Южной Корее и ещё в некоторых странах.

В Японии используются обе частоты. Восточные регионы (Токио, Сендай, Кавасаки) используют частоту 50 Гц. Западные области (Киото, Хиросима, Нагоя, Окинава) применяют частоту 60 Гц.

К сведению. Железнодорожная инфраструктура Австрии, Норвегии, Германии, Швейцарии и Швеции по сей день применяет частоту 16,6 Гц.

Переменный синусоидальный ток

Это тот ток, который периодически меняется во времени, и его изменения подчиняются закону синусоиды. Это элементарное движение электрических зарядов, потому дальнейшему разложению на простые токи оно не подлежит.

Вид формулы такого переменного тока:

i = Im*sinωt,

где:

  • Im – амплитуда;
  • sinωt – фаза синусоидального тока, рад.

Здесь ω = const, называется угловой частотой переменного электричества, причём угол ωt находится в прямой временной зависимости.

Зная частоту f исходного тока, можно вычислить его угловую частоту, применив выражение:

ω = 2πf = 2π/Т.

Тут 2π это выраженное в радианах значение центрального угла окружности:

  • Т = 2 π радиан = 3600;
  • Т/2 = π = 1800;
  • Т/4 = π/2 = 900.

Если выразить 1 рад в градусах, то он будет равен 57°17′.

Синусоидальное переменное движение электронов

Многофазный переменный ток

Для запуска и работы многих промышленных устройств и электрооборудования требуется не одна фаза, а несколько. В связи с этим рассматривают такие понятия, как двухфазный и трёхфазный переменные токи.

Трёхфазный ток

Этот вид электричества применяют в трёхфазной системе, в которую включены три однофазные цепи. Цепи имеют ЭДС переменной природы одной и той же частоты. Эти ЭДС сдвинуты по фазе относительно друг друга на ϕ = Т/3 = 2π/3. Такую систему называют трёхфазным током, а цепь – фазой.

Выработка, преобразование, доставка и потребление переменного электрического тока в основном происходят по трёхфазной системе электроснабжения.

Трёхфазный переменный ток

Двухфазный ток

Ещё в 1888 году Никола Тесла выполнил описание того, как можно на практике применить двухфазную сеть, и предложил разработанную им конструкцию двухфазного двигателя. Такие сети начали применять в начале 20 века. Они состояли из двух контуров.

Там напряжения контуров сдвигались по фазе на 900. Каждая фаза включала в себя два провода, у двухфазных генераторов было по два ротора, также конструктивно развёрнутые на угол 900.

Важно! Такие сети позволяли производить мягкий пуск двухфазных электродвигателей, практически с нулевого момента вращения. В то время как для запуска однофазного асинхронного двигателя требуется дополнительная пусковая обмотка или система запуска.

График двухфазного напряжения и схематический рисунок двухфазного генератора

Действующее значение синусоидального тока

Под действующим значением понимают его эффективность. Она равна такому значению постоянного тока, который выполнит ту же работу, что и переменный, за один период времени. Под работой здесь подразумевают его тепловую или электродинамическую направленность. Удобнее всего использовать среднеквадратичное значение переменного электричества.

Тогда действующее значение для синусоидального тока определяют по формуле:

I =  * Im ≈ 0,707* Im,

где Im – величина амплитуды тока.

Действующее значение тока

Генерирование переменного тока

Кроме стандартных генераторов, для производства переменного тока применяются инверторы и фазорасщепители.

Инвертор

Это устройство, с помощью которого из постоянного тока получают его переменный вид. В процессе этого величина выходного напряжения тоже меняется. Схема устройства представляет собой электронный генератор синусоидального импульсного напряжения периодического характера. Есть варианты инверторов, работающих с дискретным сигналом. Инверторы применяют для автономного питания оборудования от аккумуляторов постоянного напряжения.

Инвертор 12/220 В, мощностью 1500 Вт

Фазорасщепитель

Ещё один способ получить несколько фаз из какого-либо сигнала – это выполнить его расщепление на несколько фаз. Это делается с помощью фазорасщепителя. Принудительная обработка сигналов цифрового или аналогового формата используется, как в радиоэлектронике, так и в силовой электротехнике.

Для электроснабжения трёхфазных асинхронных двигателей применяют выполненный на их же базе фазорасщепитель. Для этого обмотки трёхфазного двигателя соединяют не «звездой», а иначе. Две катушки присоединяют между собой последовательно, третью – подключают к средней точке второй обмотки. Двигатель запускают, как однофазный, после разгона в его третьей обмотке наводится ЭДС.

Интересно. В случае расщепления фаз подобным методом сдвиг фаз между 2 и 3 обмоткой составляет не 1200, как должно быть в идеале, а 900.

Сети переменного тока

По назначению и применению эти сети можно классифицировать следующим образом:

  • общие системы: питание объектов промышленного, транспортного, сельскохозяйственного и бытового назначения;
  • автономные сети: снабжение передвижных и стационарных автономных субъектов.

Общие сети переменного трёхфазного тока построены по четырёхпроводной схеме, где три провода – это «фаза», четвёртый – «ноль». Трансформаторные подстанции построены по схеме с глухо заземлённой нейтралью. Передача на дальние расстояния производится при высоком напряжении, которое затем понижается на подстанциях до напряжения 0,4 кВ и раздаётся потребителям.

Бытовые объекты подключаются по однофазной схеме. В этом случае требуются два провода: «фазный» и «нулевой».

Определение частоты и периода

Частота электрического тока – это величина физическая, она определяет количество колебаний за 1 секунду. Время, за которое происходит одно целое колебание, называется периодом.

Взаимосвязь частоты и работы электрооборудования

Частота тока – это один из параметров электроэнергии, который влияет на стабильную работу электроустановок и оборудования. При поставке энергии потребителю этот параметр строго контролируется, так же, как и напряжение.

Нить взаимосвязи выражается формулой номинального количества оборотов в минуту для вращающихся машин. КПД (коэффициент полезного действия) заложен в самой конструкции агрегатов. Он максимален при:

n = 60f/p,

где:

  • n – количество об./мин.;
  • f – частота;
  • p – количество пар полюсов.

Количество оборотов турбины генераторов напрямую связано с частотой вырабатываемого переменного тока, полученная частота отвечает за оптимальный режим вращения электродвигателя потребителя. При снижении частоты в сети обороты машины снижаются автоматически. Происходит перегрузка на валу, и страдает двигатель.

В то же время технологическая линия, в которую он передаёт энергию вращения, также терпит изменения в работе:

  • изменяется скорость движения конвейера, что влечёт за собой сбой технологического процесса и брак в итоге;
  • снижаются мощность и частота вращения насосов, вентиляторов, что приводит к нестабильной работе систем, в которых они установлены;
  • снижение частоты в энергосистеме на 1% приводит к падению общей мощности на нагрузке до 2%.

Для контроля этого важного электрического параметра применяют частотомеры.

Внимание! Снижение частоты на 10-15% вызывает падение производительности механизмов даже на самой электростанции до нуля. При частоте тока в сети 50 Гц (критической величиной являются 45 Гц) происходит лавинный спад.

Частотомер

Это прибор, предназначенный для измерения частоты и отображения полученного результата на экран. Для контроля в электросетях применяют приборы непосредственной оценки синусоидальных колебаний аналоговой конструкции.

Различают по методу установки:

  • стационарные;
  • щитовые;
  • переносные.

Частотомеры в современном исполнении имеют цифровое отображение результатов на электронном дисплее.

Токи высокой частоты

ТВЧ – такова их аббревиатура, используются для плавки металлов, закалки поверхности металлических изделий. ТВЧ – это токи, имеющие частоту более 10 кГц. В индукционных печах используют ТВЧ, помещая проводник внутрь обмотки, через которую пропускают ТВЧ. Под их воздействием возникающие в проводнике вихревые токи разогревают его. Регулируя силу ТВЧ, контролируют температуру и скорость нагрева.

Интересно. Расплавляемый металл может быть подвешен в вакууме с помощью магнитного поля. Для него не нужен тигель (специальный ковш для нагрева). Так получают очень чистые вещества.

Плюсы использования ТВЧ в разных случаях:

  • быстрый нагрев при ковке и прокате металла;
  • оптимальный температурный режим для пайки или сварки деталей;
  • расплав даже очень тугоплавких сплавов;
  • приготовление пищи в микроволновых печах;
  • дарсонвализация в медицине.

Получают ТВЧ с помощью установок, включающих в свой состав колебательный контур, или электромашинных генераторов. У статора и ротора генераторов на сторонах, обращённых друг другу, нанесены зубцы. Их взаимное движение порождает пульсацию магнитного поля. Частота на выходе тем больше, чем больше произведение числа зубцов ротора на частоту его вращения.

Период пульсаций и частота

Частота переменного тока может иметь другое название – пульсация. Периодом пульсации называют время единичной пульсации.

Интенсивность циклов

Для электросети с частотой 50 Гц период пульсации составит:

Т = 1/50 = 0,02 с.

При необходимости, зная эту зависимость, можно по времени цикла вычислить частоту.

Опасность разночастотных зарядов

Как постоянный, так и переменный ток при определённых значениях представляет опасность для человека. До 500 В разница в безопасности находится в соотношении 1:3 (42 В постоянного к 120 В переменного).

При значениях выше 500 В это соотношение выравнивается, причём константное электричество вызывает ожоги и электролизацию кожных покровов, изменяющееся – судороги, фибрилляцию и смерть. Тут уже частота пульсации имеет большое значение. Самый опасный интервал частот – от 40 до 60 Гц. Далее с повышением частоты риск поражения уменьшается.

Влияние частоты на пороговый ток

Частота переменного электричества – важный параметр. Она влияет не только на работу электроустановок потребителей, но и на человеческий организм. Изменяя частоту электрических колебаний, можно менять технологические процессы на производстве и качество вырабатываемой энергии.

Видео

amperof.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *