+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Урок 8. переменный электрический ток — Физика — 11 класс

Физика, 11 класс

Урок 8. Переменный электрический ток

Перечень вопросов, рассматриваемых на уроке:

1) Свойства переменного тока;

2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;

3) Особенности переменного электрического тока на участке цепи с резистором;

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

𝒾 — мгновенное значение силы тока;

m— амплитудное значение силы тока.

– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:

При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.

Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um — амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

XL= ωL

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение.

  В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

P=IU cosφ

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt.

Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Найти: T.

Решение:

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону

Согласно данным нашей задачи:

Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:

Ответ: T = 0,08 c.

2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Дано:

ν=50 Гц,

R=1 кОм=1000 Ом,

C=1 мкФ=10-6 Ф,

U=220 В.

Найти: Im

Решение:

Напишем закон Ома для переменного тока:

I=U/Z

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:

Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:

то после вычислений получаем Im ≈0,09 Ом.

Ответ: Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

 Физические величины

    Физические приборы

Сила тока

Омметр

Напряжение

Вольтметр

Сопротивление

Амперметр

Мощность

Ваттметр

Правильный ответ:

 Физические величины

    Физические приборы

Сила тока

Амперметр

Напряжение

Вольтметр

Сопротивление

Омметр

Мощность

Ваттметр

Переменный электрический ток, действующее напряжение, сила тока.

Мощность тока. Курсы по физике

Тестирование онлайн

  • Переменный ток. Основные понятия

  • Переменный ток

Генератор переменного тока

Устройство, предназначенное для превращения механической энергии в энергию переменного тока, называется генератором переменного тока. В основу работы генератора положено явление электромагнитной индукции.

Рамка вращается в магнитном поле. Поскольку магнитный поток, пронизывающий рамку, изменяется с течением времени, то в ней возникает индуцированная ЭДС:

Ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное.

Основными частями генератора переменного тока являются: индуктор, якорь, коллектор, статор, ротор.

а) устройство ротора; б) работа генератора переменного тока

Переменный ток

Переменный ток изменяется с течением времени по гармоническому закону.

Действующим (эффективным) значением переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделил бы такое же количество теплоты, что и данный переменный ток.

Мощность переменного тока

Мощность в цепи переменного тока изменяется с течением времени. Поэтому введено понятие мгновенной мощности (мощность в некоторый момент времени) и средней мощности (мощность за длительный промежуток времени).

Рассмотрим цепь переменного тока, состоящую из последовательно соединенных резистора, катушки индуктивности и конденсатора, подключенных к источнику переменного напряжения.

Явление резкого увеличения амплитуды переменного тока в такой цепи получило название резонанса напряжений. Частота, при которой наблюдается резонанс, называется резонансной частотой.

Резонансная частота равна частоте свободных колебаний контура.

7 «Б»

Урок

1/1

  Что изучает физика. Физические термины. Наблюдения и опыты. § 1 — 3, Л № 5, 12
2/2   Физические величины. Измерение физических величин. Погрешность и точность измерений § 4, 5, упр.1
3/3   Определение цены деления измерительного прибора § 4, 5
4/4   Физика и техника § 6,
    Первоначальные сведения о строении вещества  
5/1   Строение вещества. Молекулы § 7, 8
6/2   Определение размеров малых тел § 7, 8
7/3   Движение молекул. Диффузия в газах, жидкостях и твердых телах § 9,
8/4   Взаимодействие молекул

9/5

  Три состояния вещества § 11, 12
10/6   Повторение. Контрольная работа №1 «Первоначальные сведения о строении вещества» § 12
     

Переменный электрический ток.

Резистор в цепи переменного тока

В идеальном колебательном контуре, то есть в контуре без активного сопротивления, возникающие электромагнитные колебания могут существовать бесконечно долго. Однако в реальных контурах всегда имеется нагрузка, обладающее сопротивлением. Поэтому часть энергии контура всегда превращается во внутреннюю энергию проводников. Проще говоря, реальные электромагнитные колебания в контуре являются затухающими. Для того чтобы они были незатухающими, необходимо компенсировались потери энергии при каждом полном колебании в контуре.

Давайте с вами вспомним, что для механических колебаний это достигалось путём воздействия внешней периодической силы. В результате в системе возникали вынужденные колебания. Аналогично этому вынужденные электромагнитные колебания в колебательном контуре происходят под действием внешней периодически изменяющейся ЭДС или внешнего изменяющегося напряжения. При этом напряжение в цепи и сила тока изменяются как по знаку, так и по модулю.

Ток, сила и направление которого периодически меняются, называется переменным.

В настоящее время основная часть электроэнергии в мире вырабатывается с помощью электромеханических индукционных генераторов переменного тока, создающими синусоидальное напряжение.

Индукционным генератором переменного тока называется устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

Как следует из названия устройства, принцип действия такого генератора основан на явлении электромагнитной индукции. Основными частями индукционного генератора переменного тока являются:

индуктор — это постоянный магнит или электромагнит, который создаёт магнитное поле;

якорь — это обмотка, в которой индуцируется переменная ЭДС;

и колле́ктор — это контактные кольца и скользящие по ним контактные пластины (щётки). С помощью коллектора ток снимается или подводится к вращающимся частям.

Давайте рассмотрим принцип действия простейшего индукционного генератора на примере проводящей рамки с током, вращающейся в однородном магнитном поле с постоянной угловой скоростью.

Пусть в начальный момент времени угол между нормалью к плоскости рамки и линиями индукции магнитного поля равен нулю. Так как рамка вращается с постоянной угловой скоростью, то данный угол будет меняться с течением времени по линейному закону:

Тогда будет меняться и магнитный поток через поверхность, ограниченную плоскостью рамки:

Поскольку магнитный поток, пронизывающий рамку, изменяется со временем, то в ней согласно закону Фарадея индуцируется ЭДС индукции, равная первой производной магнитного потока по времени, взятой с обратным знаком:

 

Произведение величин, стоящих перед функцией синуса есть ничто иное, как амплитудное значение ЭДС индукции:

Отсюда следует, что изменение ЭДС индукции в контуре со временем происходит по закону синуса:

Это достаточно легко проверить, если подключить выводы вращающейся рамки к осциллографу. Нетрудно увидеть, что временная развёртка представляет собой синусоиду.

Если к выводам рамки подключить нагрузку с достаточно большим сопротивлением (намного большим, чем сопротивление рамки), то по ней будет проходить переменный ток.

По закону Ома для полной цепи его сила будет также изменяться по синусоидальному закону:

Анализируя последние два выражения, мы можем сделать вывод, что в цепи, содержащей, кроме рамки, только сопротивление, колебания напряжения и колебания силы тока совпадают по фазе, одновременно достигая максимумов и минимумов.

Однако в общем случае (например, когда в цепи присутствует конденсатор, или катушка, или то и другое одновременно) колебания силы тока в цепи и напряжения будут происходить с одинаковой частотой, но не будут совпадать по фазе:

Ещё раз обратим ваше внимание на то, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остаётся неизменным в течение следующего полуоборота.

Промежуток времени, в течение которого ЭДС совершает одно полное колебание, называется периодом переменного тока.

А число полных колебаний за одну секунду называется частотой тока.

В электрических сетях большинства стран мира (в том числе и в России) стандартная частота переменного тока равна 50 Гц. Продолжительность периода такого тока составляет всего 0,02 с. Такая частота переменного тока была выбрана с участием известного немецкого электротехника польско-русского происхождения Михаила Осиповича Доливо-Добровольского.

Однако, например, в США, Канаде и некоторых других странах по рекомендации известного сербского учёного Николы Тесла, стандартная частота переменного тока равна 60 Гц.

Мы рассмотрели на схеме принцип работы генератора переменного тока. Однако такой тип генераторов (с неподвижной магнитной системой и вращающимся якорем) используется достаточно редко. Дело в том, что при помощи подвижных контактов практически невозможно отводить от генератора ток высокого напряжения из-за сильного искрения в контактах. Поэтому почти во всех индукционных генераторах переменного тока якорь, в котором индуцируется ЭДС, устанавливают неподвижно, а вращаться заставляют индуктор.

Вращающаяся часть генератора называется ротором. Он располагается внутри неподвижной стальной станины цилиндрической формы, называемой статором. Во внутренней части статора имеются специальные пазы, в которые укладывается медный провод в виде витков. При вращении ротора в этих витках и индуцируется переменный ток.

Ротор также имеет сложную форму и представляет собой стальной сердечник с навитой на него обмоткой. По обмотке пропускается постоянный ток, который подводится через щётки и кольца от постороннего источника постоянного тока. Создаваемое этим током магнитное поле вращается вместе с ротором. При этом силовые линии поля будут пересекать проводники, вложенные в пазы статора, и индуцировать в них ЭДС.

Современные мощные генераторы вырабатывают напряжение до 15—20 кВ, а их коэффициент полезного действия может достигать 97—98 %.

Теперь давайте рассмотрим некоторые новые закономерности, которые возникают в электрической цепи при её подключении к источнику переменного тока. Итак, пусть источник создаёт переменно напряжение, изменяющееся со временем по закону синуса:

По закону Ома для участка цепи, содержащим только сопротивление, сила тока во всей цепи будет также изменяться по гармоническому закону:

Максимальные величины напряжения и силы тока называются амплитудными значениями напряжения и силы тока соответственно.

А значения напряжения и силы тока в любой момент времени называются мгновенными.

Зная их, можно рассчитать мгновенную мощность переменного тока, которая, в отличие от цепей постоянного тока, изменяется с течением времени:

Под средней за период мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду.

С учётом зависимости силы тока от времени перепишем выражение для мгновенной мощности на резисторе в цепи переменного тока:

Поскольку мгновенная мощность изменяется со временем, то использовать эту величину на практике в качестве характеристики длительно протекающих процессов очень неудобно. Давайте перепишем нашу формулу для мощности немного по-другому (воспользовавшись знаниями из математики):

Как видим, в полученном уравнении первое слагаемое не зависит от времени. А второе слагаемое — это переменная составляющая, являющаяся функцией двойного угла. Её среднее значение за период (или время, кратное периоду) равно нулю, поскольку половину периода косинус принимает положительные значения, а вторую — отрицательные. Поэтому среднее значение мощности переменного тока за время, большее чем период колебаний, можно найти как половину произведения амплитудных значений силы тока и напряжения, или половину произведения квадрата амплитудного значения силы тока и сопротивления:

Таким образом, сопротивление играет двоякую роль в цепи переменного тока. Во-первых, оно ограничивает силу тока. А во-вторых, на активном сопротивлении происходит безвозвратное превращение электроэнергии в другие виды (в частности, во внутреннюю).

Выражение для средней мощности позволяет ввести действующие или эффективные значения силы тока и напряжения, которые используются в качестве основных характеристик переменного тока.

Действующее значение силы переменного тока равно силе такого постоянного тока, который, проходя в электрической цепи по активному сопротивлению, выделяет за промежуток времени, кратный периоду колебаний, такое же количество теплоты, что и данный переменный ток.

Оно численно равно квадратному корню из среднего за период значения квадрата силы переменного тока:

Аналогично можно ввести действующее значение для напряжения и ЭДС:

Амперметры и вольтметры регистрируют именно действующие значения силы тока и напряжения.

Для закрепления материала, решим с вами одну небольшую задачу. Квадратная рамка площадью 500 см2 вращается в однородном магнитном поле с индукцией 10 мТл вокруг оси, лежащей в плоскости рамки и перпендикулярной полю, совершая 25 оборотов в секунду. Определите действующее значение силы тока в рамке, если её сопротивление равно 5 Ом.

В заключение урока отметим, что закон Ома для участка цепи переменного тока, содержащего только резистор, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока вследствие того, что их колебания совпадают по фазе.

Таким образом, резисторы оказывают сопротивление как постоянному, так и переменному току, при этом в обоих случаях в них происходит превращение электрической энергии в энергию теплового движения частиц. Вследствие этого сопротивление резисторов получило название активного или омического сопротивления.

Понятие о переменном токе — Основы электроники

До сих пор мы рассматривали электрический ток, направ­ление и сила которого оставались постоянными, т. е. не изме­нялись с течением времени. Такой ток мы называли постоян­ным. При постоянном токе электроны движутся по проводнику все время в одном и том же направлении (если не считать хаотического теплового движения электронов), причем количе­ство движущихся электронов и скорость, их движения все время остаются постоянными.

Условное графическое изображение постоянного тока при­ведено на рисунке 1.

Рисунок 1. График переменного тока.

Переменный ток отличается от постоянного тем, что он периодически изменяет свое направление, т. е. течет по про­воднику то в одну, то в другую сторону.

Переменный ток можно получить при помощи очень про­стой схемы, изображенной на рисунке 2а. При каждом передви­жении переключателя изменяется лишь направление тока в цепи, сила же тока при этом остается все время неизменной.

Рисунок 2. Простейший способ получения переменного тока а) и его график б).

Графическое изображение переменного тока, полученного таким способом, приведено на рисунке 2б, где ток, протекающий по проводнику в одном направлении, отложен над горизонтальной осью времени, а ток обратного направления — под осью времени.

Рассмотрим другой, белее распространенный случай пере­менного тока, когда изменяется не только направление тока, но и его сила.

Представим себе проводник, согнутый в виде рамки и вра­щающийся в равномерном магнитном поле (рисунок 3).

Рисунок 3. Рамка вращающаяся в равномерном магнитном поле.

При вращении рамки магнитный поток, охватываемый ею, будет изменяться, следовательно, в рамке возникнет ЭДС индук­ции. В этом случае форма ЭДС индукции возникающей в рамке, а при подключению нагрузки к ней и форма переменного электрического тока текущего по цепи будет иметь вид показанный на рисунке 4, то есть изменение переменного тока будет осуществляться по закону синиуса.

Рисунок 4. График синусоидального переменного тока.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Проектируем электрику вместе: Постоянный и переменный ток

Постоянный ток (DC).. Свободные электроны.. Направление электрического тока.. Переменный ток (AC).. Преимущества переменного тока.. Трансформатор напряжения (тока).. Постоянный ток

Электрическим током называется направленное движение носителей электрического заряда (в проводниках – это свободные электроны) под действием электрического поля.
Если полярность источника электрической энергии не меняется, то направление движения электронов в проводнике остается неизменным все время, когда цепь замкнута.

В такой цепи электроны выходят из отрицательного полюса (минус источника) и двигаются к положительному полюсу (плюс источника)  – одноименные заряды отталкиваются, противоположные — притягиваются.


Такое, неизменное по направлению движение носителей электрического заряда под действием электрического поля называется постоянным током.
Общим обозначением для любого источника постоянного тока (напряжения) является символ батареи (рис. 1).

Рис. 1. Постоянный ток (Direct Current — DC)

Важно напомнить, что в физике за направление электрического тока принимают направление движения положительных зарядов (от плюса источника к минусу), т. е. противоположное истинному направлению. Причины такого несоответствия были рассмотрены здесь.


Рис. 2. Постоянный ток не меняет своего направления во времени, хотя величина его может меняться.  

Этот тип электрического тока  используется в большинстве игрушек, в многочисленных электронных приборах (телефоны, смартфоны, плеера, ноутбуки и т. д.), в автомобильной электронике и других устройствах, использующих аккумуляторы и выпрямители переменного тока.
                             

  Переменный ток

Электрический ток может протекать  в электрической цепи двумя разными способами.
При наличии постоянного источника электрической энергии мы имеем в такой цепи постоянный ток.

Если полярность источника электрической энергии периодически меняется, то мы имеем в такой цепи переменный ток (рис. 3). В этом случае направление электрического поля в проводнике меняется с частотой сети, а свободные электроны совершают колебательные движения относительно некоторого положения равновесия. При этом свободные электроны не движутся ни в одну, ни в другую сторону, но под действием переменного электрического поля (изменяющегося по синусоидальному закону) они совершают колебания в полном соответствии с изменениями электрического поля.


Рис. 3. Переменный ток (Alternating Current — AC)  
          

                                                                       

Таким образом, переменный ток — это ток, который с определенной периодичностью (50 или 60 раз в секунду — в зависимости от электрической системы, принятой в стране) меняет направление движения и величину (рис. 4).
У нас в России в бытовой сети используется стандарт переменного напряжения и тока  — 220 В, 50 Гц в отличие от США, где переменный ток в розетках меняет свое направление 60 раз в секунду (60 Гц). Под эти параметры сети рассчитаны все бытовые потребители (светильники, электродвигатели пылесосов и холодильников, стиральные машины и др. ). Многие бытовые электроприборы работают на постоянном токе при напряжении в 5-12 вольт, однако из сети они получают переменный ток, а затем внутри электроприборов переменный ток с помощью выпрямительных устройств преобразуется в постоянный, если в этом есть необходимость.


Рис. 4. В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком.

В чем преимущества переменного тока?

Можно спросить, а зачем нужен такой ток, в чем его преимущество?
Действительно, в некоторых случаях переменный ток (AC) не имеет никакого практического преимущества по сравнению с постоянным током (DC).
В тех случаях, когда электроэнергия используется для рассеивания энергии в виде тепла, полярность или направление тока не имеет значения до тех пор, пока существует достаточное напряжение и ток в нагрузке для получения требуемого тепла (рассеиваемой мощности).

Вместе с тем, на переменном токе можно построить электрические генераторы и двигатели, которые будут более простыми и более надежными, чем на постоянном токе.
Но главное, переменный ток наилучшим образом подходит для передачи электроэнергии на дальние расстояния.
Это становится возможным при использовании такого устройства, как трансформатор (рис. 5).



Рис. 5. Трансформатор «преобразует» переменное напряжение и ток.

В простейшем случае трансформатор представляет собой две индуктивные катушки, расположенные на общем сердечнике.
Если мы активируем одну катушку переменным током, то за счет эффекта взаимной индукции в другой катушке также будет создаваться напряжение переменного тока. Если количество витков W2 > W1, то и напряжение U2 > U1. И наоборот.

Способность трансформатора легко увеличивать или уменьшать напряжение переменного тока простым изменением числа витков вторичной обмотки дает переменному току непревзойденное преимущество в области распределения электроэнергии (рис. 6).

Рис. 6

При помощи трансформатора низкое напряжение вначале преобразуется в высокое напряжение, после чего его можно передавать на любые расстояния (при меньших значениях тока, меньшем диаметре проводов, с меньшими тепловыми потерями энергии).
У потребителей происходит обратное преобразование тока высокого напряжения – в переменный ток низкого напряжения.

Похожие статьи: 1. Взаимодействие электрических зарядов. Закон Кулона
                              2. Направление электрического тока
                              3. Что такое электрический ток?
                              4. Проводники и изоляторы. Полупроводники
                              5. О скорости распространения электрического тока
                              6. Электрический ток в жидкостях 
                              7. Проводимость в газах
                              8. Электрический ток в вакууме
                              9. О проводимости полупроводников
  

Конспект открытого урока по физике в 9 классе «Переменный электрический ток»

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ДРУЖБИНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА»

КАЯКЕНТСКОГО РАЙОНА РД

«Утверждаю»

Директор школы:_____________И.Г.Гасаналиев

Открытый урок

по физике в 9 классе по теме:

Подготовила и провела:

учитель физики МБОУ «Дружбинская СОШ»
Чанкаева Рахима Гаджиевна

2018 год.

Тема урока: «Переменный электрический ток»

Тип урока: изучение нового материала

Задачи урока:

  • Повторение, обобщение и углубление знаний об электромагнитных колебаниях.

  • Проверить качество и прочность усвоения материала по изученным темам, уровень осмысления и обобщения.

  • Развивать умение наблюдать, сравнивать и сопоставлять изучаемые явления, выделять общие признаки.

  • Научить объяснять явления природы, зная законы физики.

  • Развитие коммуникативных способностей учащихся.

  • Воспитывать познавательный интерес, любознательность, активность, аккуратность при выполнении заданий, интерес к изучаемому предмету.

Цели урока:

Образовательная: сформировать у учащихся представление о переменном токе. Рассмотреть основные особенности активного сопротивления. Раскрыть основные понятия темы.

Развивающая: развивать у учащихся умение применять полученные знания о переменном токе в практическом применении в быту, технике и на производственной практике; развивать интерес к знаниям, способность анализировать, обобщать, выделять главное.

Воспитательная: привить уважение к науке. Воспитывать у учащихся чувство требовательности к себе, дисциплинированность. Расширить рамки окружающего мира учащихся.

ХОД УРОКА

1.Организационный момент (объявление темы, задач и целей урока, психологическая подготовка учащихся к уроку).

Этот урок посвящён вынужденным электромагнитным колебаниям и переменному электрическому току. Вы узнаете,

— каким образом можно получить переменную ЭДС;

— какие соотношения существуют между силой тока и напряжением в цепях переменного тока;

— в чём разница между действующими и амплитудными значениями силы тока и напряжения.

2.Актуализация опорных знаний

1) Вопросы для фронтального опроса:

  • Какие колебания называются электромагнитными?

  • В каком устройстве создаются электромагнитные колебания?

  • Из каких частей состоит колебательный контур?

  • От каких величин зависит частота и период колебаний в контуре?

  • Как будут меняться колебания в реальном контуре с течением времени?

  • Что приводит к затуханию колебаний?

3. Объяснение нового материала

1) Переменный ток

В электростатических машинах, гальванических элементах, аккумуляторах ЭДС с течением времени не меняла своего направления. В такой цепи ток шёл всё время, не меняя ни величины, ни направления и поэтому назывался постоянным.

Электрическая энергия обладает неоспоримым преимуществом перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие формы: механическую, внутреннюю, энергию света и т.д. На практике можно увидеть множество различных устройств, в которых электрическая энергия превращается в другие виды энергии. Примерами такого оборудования являются: картофелечистка, электромясорубка, хлеборезка…

Всё это оборудование и многое другое включается в цепь, в которой протекает переменный электрический ток.

Переменный ток генерируется на электростанциях. Происходит рождение переменной ЭДС, которая многократно и непрерывно меняет свою величину и направление. Это происходит в генераторах – это машины, в которых ЭДС возникает в результате явления электромагнитной индукции.

Переменный ток имеет преимущество перед постоянным: напряжение и силу тока можно в очень широких пределах преобразовывать, трансформировать почти без потерь энергии.

Так что же представляет собой переменный электрический ток?

Электрический ток, изменяющийся во времени, называют переменным.

Переменный электрический ток вырабатывается в генераторах переменного тока, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется механическим двигателем, использующим тепловую, гидравлическую или атомную энергию.

Простейшей моделью такого генератора служит проволочный виток, который вращается в однородном магнитном поле.


Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции: Ф = BS cos α

При равномерном вращении рамки угол а увеличивается прямо пропорционально времени: α = ωt,

где — угловая скорость вращения рамки.

Поток магнитной индукции меняется по гармоническому закону: Ф = BS cos ωt

Здесь величина ω играет уже роль циклической частоты.

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «-» скорости изменения потока магнитной индукции, т. е. производной потока магнитной индукции по времени:

Ф = B∙S∙cos α = B∙S∙cos ωt

e = – Ф = – B∙S∙(cos ωt) = B∙S∙ω∙sin ωt = εm∙sin ωt,

где εm = B∙S∙ω – амплитуда ЭДС индукции.

Если к рамке подключить колебательный контур,  то угловая скорость ω вращения рамки определит  частоту ω колебаний значений ЭДС, напряжения на paзличныx участках цепи и силы тока.

Мы будем изучать в дальнейшем вынужденные электрические колебания, происходящие в цепях под действием напряжения, меняющегося с циклической частотой ω по закону синуса или косинуса:

u =  Um ∙ sin ωt или u =  Um cos ωt

где Um— амплитуда напряжения, т. е. максимальное по модулю значение напряжения.

Если напряжение меняется с циклической частотой ω, то и сила тока в цепи будет меняться с той же частотой. Но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока і в любой момент времени (мгновенное значение силы тока) определяется по формуле:

i= Im∙sin (ωt + φc)

Здесь Im — амплитуда силы тока, т. е. максимальное по модулю значение силы тока, а φc — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

В промышленных цепях переменного тока сила тока и напряжение меняются гармонически с частотой v = 50 Гц. Переменное напряжение на концах цепи создается генераторами на электростанциях.

Рассмотрим принцип действия генератора: возьмем рамку, состоящую из n витков, и соединим ее с гальванометром с помощью колец и скользящих по ним контактов (щеток). Когда рамка вращается в магнитном поле постоянного магнита, то стрелка гальванометра совершает колебания около положения равновесия. Это означает, что в цепи появился переменный ток. Этот опыт моделирует работу генератора переменного тока. Конструкция и действие реального генератора, используемого в промышленности, значительно сложнее.

2) Активное сопротивление

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R. Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением.

Сопротивление R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от  генератора.

Эта энергия превращается во внутреннюю энергию проводников — они  нагреваются.   Будем  считать, что напряжение на зажимах цепи меняется по гармоническому закону: u =  Um sin ωt

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значения силы тока можно применить закон Ома:

Из этой формулы следует, что колебания силы тока на резисторе совпадают по фазе с колебаниями напряжения. Амплитуда силы тока определяется равенством

Мощность в цепи с резистором

В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.

Как правило, нам нужно бывает знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найти среднюю мощность за один период. Под средней за период, мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

P = I2R.

На протяжении очень малого интервала времени переменный ток можно считать практически постоянным. Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой P = i2R



Среднее значение мощности за период

График зависимости мгновенной мощности от времени изображен на рисунке

График изменения мгновенной мощности с течением времени

Несмотря на то что мощность переменного тока непрерывно меняется, ее среднее значение за любой период одинаково.

Приравниваем выражения для средней мощности переменного тока и мощности постоянного тока:





Выразим силу тока I: Эту величину называют действующим значением силы переменного тока.

Действующее значение силы переменного тока равно силе такого постоянного тока, который выделяет в проводнике ту же мощность, что и переменный ток за то же время.

Действующее значение переменного напряжения определяется аналогично действующему значению силы тока: — эту величину называют действующим значением напряжения переменного тока.

Действующее значение напряжения в осветительной сети равно 220 В, а амплитудное значение напряжения при этом составляет

С учетом предыдущих формул можно выразить среднюю мощность переменного тока: Рср = IU

Амперметры и вольтметры переменного тока обычно градуируют по действующим значениям силы тока и напряжения.

4.Закрепление и обобщение нового материала.

Итак, что же сегодня мы с вами выяснили на уроке:

— что представляет собой переменный электрический ток переменный электрический ток?

— на каком явлении основано получение переменной ЭДС в цепи?

— чему равна разность фаз колебаний силы тока и напряжения на активном сопротивлении?

— как соотносятся действующие значения переменного тока и напряжения со значениями постоянного тока и напряжения?

— как определяется мощность в цепи переменного тока?

Решение задачи:

5. Подведение итогов урока. (Выставление оценок и их комментарий)

6.Задание на дом: § 31,

Что такое переменный ток (AC)? | Базовая теория переменного тока

Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), которое представляет собой электричество, текущее в постоянном направлении и / или имеющее напряжение с постоянной полярностью.

DC — это вид электричества, производимого батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.

Переменный ток против постоянного

Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества.Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную на противоположные с течением времени.

Либо как полярность переключения напряжения, либо как направление переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):

Постоянный и переменный ток

В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.

Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер. Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током.

В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеют значения, пока на нагрузку подается достаточное напряжение и ток, чтобы произвести желаемое тепло (рассеивание мощности). Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью.

Чтобы объяснить, почему это так, необходимы некоторые базовые знания об AC.

Генераторы переменного тока

Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных катушек с проволокой с вращением вала, то в соответствии с законом электромагнитной индукции Фарадея на катушках с проволокой будет создаваться переменное напряжение.

Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока : Рисунок ниже

Работа генератора

Обратите внимание на то, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита.

При подключении к нагрузке эта реверсивная полярность напряжения создает реверсивное направление тока в цепи. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.

Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока.

В генераторе постоянного тока катушка с проводом установлена ​​на валу, где магнит находится на генераторе переменного тока, и электрические соединения выполнены с этой вращающейся катушкой через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу.

Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:

Работа генератора постоянного тока

Генератор, показанный выше, будет производить два импульса напряжения на один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, периодически контактирующих с щетками.

Схема, показанная выше, немного упрощена, чем то, что вы видите в реальной жизни.

Проблемы, связанные с замыканием и разрывом электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью. Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше.

Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.

Двигатели переменного тока

Преимущества переменного тока перед постоянным током с точки зрения конструкции генератора также отражены в электродвигателях.

В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками проволоки, двигатели переменного тока этого не делают. Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки провода для вращения вращающегося магнита. вокруг его вала, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).

Трансформаторы

Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока имеют тенденцию быть проще, чем генераторы постоянного тока и двигатели постоянного тока. Эта относительная простота означает большую надежность и более низкую стоимость производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть.

Существует эффект электромагнетизма, известный как взаимной индукции , при котором две или более катушки провода размещены так, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой. Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке. При использовании в таком виде это устройство известно как трансформатор :

.

Трансформатор «преобразует» переменное напряжение и ток.

Основное значение трансформатора — его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обесточенной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки.

Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки, умноженный на соотношение первичных и вторичных витков. Эта взаимосвязь имеет очень близкую механическую аналогию, в которой крутящий момент и скорость используются для представления напряжения и тока соответственно:

Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.

Если передаточное число обмоток изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «увеличивает» напряжение от уровня источника до более высокого уровня на нагрузке:

Редукторная передача увеличивает крутящий момент и снижает скорость.Повышающий трансформатор увеличивает напряжение и уменьшает ток.

Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже.

При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток. для промышленности, бизнеса или потребительского использования.

Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.

Трансформаторная технология сделала возможным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистему для чего угодно, кроме использования на близком расстоянии (не более нескольких миль).

Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током.Поскольку явление взаимной индуктивности зависит от изменяющихся магнитных полей, а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.

Конечно, постоянный ток может прерываться (генерироваться импульсами) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но импульсный постоянный ток не так уж отличается от переменного тока.

Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.

ОБЗОР:

  • DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
  • AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление, соответственно.
  • Электромеханические генераторы переменного тока
  • , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока.
  • Конструкция двигателя
  • переменного и постоянного тока очень точно соответствует принципам конструкции генератора.
  • Трансформатор представляет собой пару взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой. Часто количество витков в каждой катушке устанавливается так, чтобы создать увеличение или уменьшение напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
  • Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
  • Вторичный ток = первичный ток (первичные витки / вторичные витки)

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Что такое переменный ток?

ОСНОВНЫЕ ЗНАНИЯ — ПЕРЕМЕННЫЙ ТОК Что такое переменный ток?

Автор / Редактор: Люк Джеймс / Erika Granath

Переменный ток (AC) — это электрический ток, который периодически меняет свое направление, в отличие от постоянного тока (DC), который течет только в одном направлении, которое не может меняться спорадически.

Связанные компании

Переменный ток (AC) — это электрический ток, который периодически меняет направление, в отличие от постоянного тока (DC), который течет только в одном направлении.

Большинство студентов, изучающих электротехнику и смежные предметы, начинают свое обучение с изучения постоянного тока (DC). Это потому, что большая часть цифровой электроники, которую построят эти студенты, будет использовать постоянный ток. Тем не менее, важно понимать переменные токи (AC) и их концепции, потому что он имеет множество полезных свойств и вариантов использования.

Как вырабатываются переменные токи

Переменный ток (зеленая кривая). Горизонтальная ось измеряет время; по вертикали, току или напряжению.

(Источник: Public Domain)

Хотя постоянный ток, однонаправленный поток электрического заряда, возможно, является одной из самых простых концепций электротехники, это не единственный «тип» используемого электричества. И переменный, и постоянный ток описывают типы тока, протекающего в цепи. Многие источники электричества, в первую очередь электромеханические генераторы, вырабатывают переменный ток с напряжениями, которые меняют полярность, меняя полярность с положительной на отрицательную с течением времени. Генератор также может использоваться для преднамеренной генерации переменного тока.

В генераторе переменного тока проволочная петля быстро раскручивается внутри магнитного поля. Это создает электрический ток по проводу. Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются. Этот ток может периодически менять направление, и напряжение в цепи переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Переменный ток бывает нескольких форм, если напряжение и ток переменные.Если цепь переменного тока подключена к осциллографу и ее напряжение отображается в зависимости от времени, вы, вероятно, увидите несколько различных форм сигналов, таких как синусоидальный, квадратный и треугольный — синусоидальный сигнал является наиболее распространенной формой сигнала, а переменный ток в большинстве зданий, подключенных к электросети. имеют колебательное напряжение в форме синусоиды.

Применение переменного тока

Переменный ток чаще всего используется в зданиях, подключенных к электросети, таких как дома и офисы. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно легко.При высоком напряжении более 110 кВ при передаче энергии теряется меньше энергии. При более высоких напряжениях генерируются более низкие токи, а более низкие токи выделяют меньше тепла в линии электропередачи из-за более низкого уровня сопротивления. Следовательно, это означает меньшие потери энергии в виде тепла. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

Переменный ток можно легко преобразовать в высокое напряжение и из него с помощью трансформаторов.

(Источник: Science ABC)

Переменный ток также отлично подходит для использования в электродвигателях, потому что двигатели и генераторы — это одно и то же устройство.Единственная разница между генератором и двигателем заключается в том, что двигатель преобразует электрическую энергию в механическую. Эти двигатели используются во всех видах бытовой техники, например, в холодильниках, стиральных и посудомоечных машинах. Хотя генераторы и двигатели великолепны, наиболее полезное применение переменного тока — это, пожалуй, трансформаторы.

Эффект электромагнетизма (известный как «взаимная индукция»), когда две или более катушек провода размещаются так, что изменяющееся магнитное поле в одной катушке индуцирует напряжение в другой, можно использовать для создания устройства, называемого трансформатором. .Если есть две взаимно индуктивные катушки и одна питается переменным током, переменное напряжение будет создано в другой катушке.

Вот где переменный ток становится очень полезным.

Основное применение трансформатора — это повышение или понижение напряжения с катушки с питанием на катушку без питания. Это обеспечивает переменному току преимущество перед постоянным током в области распределения мощности, потому что, как упоминалось выше, передача электроэнергии на большие расстояния намного эффективнее при более высоких повышенных напряжениях и меньших пониженных токах.Прежде чем попасть в розетки, напряжение снова понижается, а ток снова повышается.

Этот тип трансформаторной техники сделал распределение электроэнергии на большие расстояния эффективным и практичным. Без трансформаторов было бы слишком дорого строить энергосистемы в их нынешнем виде на большие расстояния. А поскольку взаимная индуктивность зависит от изменения магнитных полей, трансформаторы работают только с переменным током.

(ID: 46380228)

Переменный ток — Energy Education

Переменный ток (AC) — это тип электрического тока, вырабатываемого подавляющим большинством электростанций и используемого в большинстве систем распределения электроэнергии.Переменный ток дешевле генерировать и имеет меньше потерь энергии, чем постоянный ток при передаче электроэнергии на большие расстояния. [1] Хотя для очень больших расстояний (более 1000 км) постоянный ток часто может быть лучше. В отличие от постоянного тока направление и сила переменного тока меняются много раз в секунду.

Недвижимость

Рис. 1. Анимация из моделирования [2] переменного тока PhET, которое было значительно замедлено.См. Для сравнения постоянный ток.

Переменный ток меняет направление потока заряда (60 раз в секунду в Северной Америке (60 Гц) и 50 раз в секунду в Европе (50 Гц)). Обычно это вызвано синусоидально изменяющимися током и напряжением, которые меняют направление, создавая периодическое движение вперед и назад для тока (см. Рисунок 1). Несмотря на то, что этот ток течет вперед и назад много раз в секунду, энергия по-прежнему непрерывно течет от электростанции к электронным устройствам.{2} R [/ math]

Мощность, передаваемая по линии, однако, имеет другое выражение:

[математика] P_ {передано} = IV [/ математика]

Как видно из первого уравнения, мощность, потерянная при передаче, пропорциональна квадрату тока через провод. Следовательно, предпочтительно минимизировать ток через провод, чтобы уменьшить потери энергии. Конечно, минимизация сопротивления также уменьшит потери энергии, но ток оказывает гораздо большее влияние на количество потерянной энергии из-за того, что его значение возводится в квадрат. Второе уравнение показывает, что если напряжение увеличивается, ток уменьшается эквивалентно для передачи той же мощности. Следовательно, напряжение в линиях передачи очень высокое, что снижает ток, что, в свою очередь, сводит к минимуму потери энергии при передаче. Вот почему переменный ток предпочтительнее постоянного тока для передачи электричества, поскольку намного дешевле изменить напряжение переменного тока.Однако существует предел, при котором больше не выгодно использовать переменный ток по сравнению с постоянным током (см. Передача HVDC).

Использование и преимущества

Большинство устройств (например, большие заводские динамо-машины), которые напрямую подключены к электросети, работают на переменном токе, а электрические розетки в домах и коммерческих помещениях также подают переменный ток. Устройства, которым требуется постоянный ток, например ноутбуки, обычно имеют адаптер переменного тока, который преобразует переменный ток в постоянный. [5]

Переменный ток является предпочтительным во всем мире, поскольку он имеет много явных преимуществ по сравнению с постоянным током. Для полной разбивки различий между ними см. AC vs DC. Некоторые преимущества включают: [6]

  • Дешевое и эффективное повышение напряжения с помощью трансформаторов. Как объяснялось выше, это позволяет осуществлять энергоэффективную передачу электроэнергии по линиям электропередач. Эта эффективная передача экономит энергетическим компаниям и потребителям много денег и помогает уменьшить загрязнение, поскольку электростанциям не нужно компенсировать потерю электроэнергии за счет большего количества топлива.
  • Низкие затраты на техническое обслуживание высокоскоростных двигателей переменного тока.
  • Легко отключить ток (например, с помощью автоматического выключателя), поскольку ток естественным образом стремится к нулю каждые 1/2 цикла. Например, автоматический выключатель может отключать примерно 1/20 постоянного тока от переменного тока.

Phet Simulation

Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета, которая исследует, как работает переменный ток.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Сравнение переменного и постоянного тока

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения.Таким образом, после установления тока он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока.Примеры включают коммерческую и бытовую энергетику, которая обслуживает так много наших потребностей. На рисунке 1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рис. 1. (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (б) График зависимости напряжения и тока от времени для сети переменного тока 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления.Частоты и пиковое напряжение источников переменного тока сильно различаются.

Рис. 2. Разность потенциалов V между клеммами источника переменного напряжения колеблется, как показано. Математическое выражение для V дается как [латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex].

На рисунке 2 показана схема простой схемы с источником переменного напряжения. Напряжение между клеммами колеблется, как показано на рисунке: переменное напряжение определяется как

.

[латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex],

, где В — напряжение в момент времени t , В 0 — пиковое напряжение, а f — частота в герцах.Для этой простой цепи сопротивления I = V / R , поэтому переменного тока равно

.

[латекс] I = {I} _ {0} \ sin 2 \ pi {ft} \\ [/ latex],

, где I — ток в момент времени t , а I 0 = V 0 / R — пиковый ток. В этом примере считается, что напряжение и ток находятся в фазе, как показано на Рисунке 1 (b).

Ток в резисторе меняется взад и вперед, как управляющее напряжение, поскольку I = V / R .Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и тускнеет 120 раз в секунду, когда ток постоянно проходит через ноль. { 2} \ text {2} \ pi {ft} \\ [/ latex], как показано на рисунке 3.

Установление соединений: домашний эксперимент — AC / DC Lights

Помашите рукой между лицом и люминесцентной лампой. Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .

Рис. 3. Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до I 0 V 0 .Средняя мощность (1/2) I 0 V 0 .

Чаще всего нас беспокоит средняя мощность, а не ее колебания — например, 60-ваттная лампочка в вашей настольной лампе потребляет в среднем 60 Вт. Как показано на рисунке 3, средняя мощность P средн. составляет

[латекс] {P} _ {\ text {ave}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex].

Это видно из графика, поскольку области выше и ниже линии (1/2) I 0 V 0 равны, но это также можно доказать с помощью тригонометрических тождеств. Точно так же мы определяем средний или действующего значения тока I среднеквадратического значения и среднее значение напряжения или действующее значение В среднеквадратичное значение , равное, соответственно,

[латекс] {I} _ {\ text {rms}} = \ frac {{I} _ {0}} {\ sqrt {2}} \\ [/ latex]

и

[латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex].

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее значение (или среднее значение) и извлекается квадратный корень.Это полезно для переменного тока, так как среднее значение равно нулю. Сейчас,

P среднеквадратичное значение = I среднеквадратичное значение V среднеквадратичное значение ,

, что дает

[латекс] {P} _ {\ text {ave}} = \ frac {{I} _ {0}} {\ sqrt {2}} \ cdot \ frac {{V} _ {0}} {\ sqrt {2}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex],

, как указано выше. Стандартной практикой является указание I среднеквадратичного значения , V среднеквадратичного значения и P , среднее значение , а не пиковые значения.Например, напряжение в большинстве домашних хозяйств составляет 120 В переменного тока, что означает, что В среднеквадратичного значения составляет 120 В. Обычный автоматический выключатель на 10 А прервет длительное отключение I среднеквадратичного значения более чем на 10 А. Ваш 1,0-кВт микроволновая печь потребляет P пр. = 1,0 кВт и т. д. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи. Подводя итог, при работе с переменным током закон Ома и уравнения для мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения.{2} R \\ [/ латекс].

Пример 1. Пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети 120 В переменного тока? (b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Стратегия

Нам говорят, что В среднеквадратичное значение составляет 120 В, а P среднеквадратичное значение составляет 60,0 Вт. Мы можем использовать [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex], чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение для (a)

Решение уравнения [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex] для пикового напряжения В 0 и замена известного значения на V rms дает

[латекс] {V} _ {0} = \ sqrt {2} {V} _ {\ text {rms}} = 1,414 (120 \ text {V}) = 170 \ text {V} \\ [/ latex ]

Обсуждение для (а)

Это означает, что напряжение переменного тока изменяется от 170 В до –170 В и обратно 60 раз в секунду. Эквивалентное постоянное напряжение составляет 120 В.

Решение для (b)

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,

[латекс] {P} _ {0} = {I} _ {0} {V} _ {0} = \ text {2} \ left (\ frac {1} {2} {I} _ {0} {V} _ {0} \ right) = \ text {2} {P} _ {\ text {ave}} \\ [/ latex].

Мы знаем, что средняя мощность 60,0 Вт, поэтому

P 0 = 2 (60,0 Вт) = 120 Вт.

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

переменного и постоянного тока | Электричество переменного и постоянного тока

Переменный ток, переменный ток и постоянный ток, постоянный ток — это две формы электрического тока, каждая из которых имеет свои преимущества и недостатки. Выбор переменного или постоянного тока зависит от применения и свойств переменного и постоянного тока.


Учебное пособие по электрическому току Включает:
Что такое электрический ток Текущая единица — Ампер ПЕРЕМЕННЫЙ ТОК


Одним из основных различий в типе протекания тока в цепи является то, является ли ток переменным током, переменным или постоянным, постоянным.

Электричество переменного и постоянного тока широко используются в электрических и электронных схемах, каждая из которых используется для разных целей.

И переменный, и постоянный ток имеют свои особенности и дают разные преимущества, которые можно использовать в разных ситуациях.

Что такое постоянный ток, DC

Поскольку название подразумевает постоянный ток, постоянный ток — это форма электричества, которая течет в одном направлении — прямое, и это дало ему название.

Постоянный ток в базовой схеме

Характеристика постоянного тока, DC может быть отображена на графике.Здесь видно, что ток может быть либо положительным, либо отрицательным.

График, показывающий атрибуты постоянного тока

Применения постоянный ток, постоянный ток

Постоянный ток, DC используется во многих областях:

  • Батареи: Батареи, как неперезаряжаемые, так и перезаряжаемые, могут питать только постоянный ток. Аккумуляторные батареи также нуждаются в подзарядке постоянным током.
  • Электронное оборудование: Все оборудование, такое как компьютеры, радио, мобильные телефоны, и фактически все электронное оборудование использует постоянный ток для питания электронных схем.Биполярные транзисторы, полевые транзисторы и интегральные схемы, в которых используются эти компоненты, нуждаются в постоянном токе для питания их и будут повреждены при обратной полярности. Хотя многие из этих элементов питаются от сети переменного тока, внутри устройства есть блок, называемый источником питания, который преобразует входящий переменный ток в постоянный ток с правильным напряжением (-ями) внутри электронного элемента.
  • Некоторое электрическое оборудование: Хотя во многих электрооборудовании используется переменный ток, в некоторых используется постоянный ток.
  • Панели солнечных батарей: Панели солнечных батарей, используемые для выработки электроэнергии, вырабатывают постоянный ток непосредственно от самих солнечных панелей. При использовании с сетью переменного тока для подачи в сеть или подачи местного питания переменного тока для источников переменного тока требуется блок, известный как инвертор, для обеспечения постоянного тока, постоянного тока от солнечных панелей для преобразования в переменный ток.

Что такое переменный ток, AC

Переменный ток, переменный ток отличается от постоянного тока.Как следует из названия, он течет сначала в одном направлении, а затем в другом.

График, поясняющий переменный ток

На приведенном выше графике показана форма волны тока, изменяющаяся как синусоида, при этом ток сначала движется в одном направлении, а затем в другом.

Чаще всего наблюдаются колебания напряжения. Опять же, для переменного сигнала напряжение будет изменяться в положительную и отрицательную сторону.

Как для тока, так и для напряжения видно, что форма волны меняется, становясь в этом примере сначала положительной, а затем отрицательной.

Напряжение для синусоидального сигнала переменного тока

Синусоидальный сигнал легко представить и понять, но большое количество других сигналов также может представлять собой переменный сигнал с переменным током.

Есть несколько важных моментов относительно чередующихся сигналов. Первый — это период времени для сигнала. Это время от точки в одном цикле формы волны до идентичной пинты в следующем цикле. Часто пик легче всего увидеть, как показано, но можно взять любую точку — например, когда определенное напряжение достигается в заданном направлении — это может быть точка срабатывания напряжения и т. Д.Нулевые переходы — еще одна возможность, которую легко идентифицировать.

Еще одна особенность переменного сигнала — его частота. Это количество раз, когда заданная точка формы сигнала видна в течение секунды, и измеряется в герцах, Гц, где 1 Гц — это один цикл в секунду. Показанный пример имеет частоту 3 Гц, так как в течение секунды наблюдаются три цикла.

В качестве других примеров частота электросети составляет 50 или 60 Гц в зависимости от страны. В Европе и многих других странах используется 50 Гц, тогда как в Северной Америке, странах Карибского бассейна и некоторых странах Южной Америки используется 60 Гц.

Приложения переменного тока

Переменный ток обычно используется для распределения энергии. Его преимущество состоит в том, что его можно легко преобразовать в другие напряжения с помощью простого трансформатора — трансформаторы не работают с постоянным током.

Если мощность распределяется при высоком напряжении, потери намного ниже. Возьмем, к примеру, источник питания 250 В с током 4 А и сопротивлением провода 1 Ом. В качестве мощности, Вт = вольт x ампер, передаваемая мощность составляет 1000 Вт.Потери мощности составляют I 2 x R = 16 Вт.

При передаче электроэнергии высокого напряжения используется переменный ток

Если линия напряжения передает 4 А, но имеет напряжение 250 000 вольт, т. Е. 250 кВ, и линия передает 4 А, тогда потери мощности остаются такими же, но в целом Система передачи несет 1 МВт, а 16 Вт — это почти незначительные потери.

Именно по этой причине для передачи энергии используются высокие напряжения, которые затем снижаются до относительно безопасного уровня для использования в жилых и коммерческих помещениях.

Ввиду того, что в системе питания используется переменный ток, он также используется в двигателях, для отопления и во многих других изделиях без необходимости его преобразования в постоянный ток.

переменного тока и постоянного тока

Во многих областях может быть принято решение о выборе переменного или постоянного тока, а также о том, какая форма питания лучше всего подходит для данного приложения.

Переменный ток, переменный ток и постоянный ток, постоянный ток имеют свои преимущества и недостатки, но это означает, что есть возможность выбрать лучший вариант для любого конкретного использования или применения.Переменный ток, переменный ток, как правило, используется для распределения электроэнергии, поэтому сетевые розетки в наших домах и на работе обеспечивают переменный ток для питания всего необходимого, но постоянный ток более широко используется для самих плат электроники и для многих другие приложения.

Источники как переменного, так и постоянного тока широко используются в электротехнической и электронной промышленности, причем каждый в своей области.

И переменный, и постоянный ток могут обеспечивать передачу электроэнергии, но с немного разными преимуществами.

Дополнительные основные понятия:
Напряжение Текущий Сопротивление Емкость Мощность Трансформеры Радиочастотный шум Децибел, дБ Q, добротность
Вернуться в меню «Основные понятия». . .

Как это работает Jameco Electronics

Автор: Меган Тунг

Переменный ток (AC) — это когда электрический заряд периодически меняет направление. Для сравнения, постоянный ток (DC) — это когда электрический заряд течет только в одном направлении.В США направление тока меняется на противоположное с частотой 60 Гц (циклов в секунду). Наиболее распространенная форма волны переменного тока — синусоидальная волна; хотя прямоугольные и треугольные волны — это другие формы сигналов для переменного тока.


Особый тип электрического генератора, называемый генератором переменного тока, предназначен для выработки переменного тока. Генератор работает так: вращающиеся магниты, известные как ротор, и проводник, намотанный катушками на железный сердечник, называемый статором. Когда статор совершает полный оборот, в статоре индуцируется электродвижущая сила в виде тока, создавая переменное напряжение.Электропитание переменного тока используется для подачи питания в дома, офисные здания и т. Д. Электропитание переменного тока также может использоваться для питания электродвигателей, таких как посудомоечные машины и холодильники.
Генерация и транспортировка переменного тока на большие расстояния относительно просты. Энергетические компании посылают очень высокое напряжение, чтобы передавать электроэнергию на большие расстояния. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов. Несколько трансформаторов используются для безопасной передачи нужного количества электроэнергии переменного тока от электростанций в дома.

Во-первых, электричество вырабатывается огромными генераторами с помощью ветра, угля, природного газа или воды. Затем переменный ток проходит через трансформаторы, чтобы увеличить напряжение, чтобы энергия передавалась на большие расстояния. Электрический заряд протекает по высоковольтным линиям электропередачи. Затем он достигает подстанции, где напряжение понижается, чтобы его можно было отправить по линиям электропередачи меньшего размера. Заряд проходит по распределительным линиям в район, где трансформаторы меньшего размера снова снижают напряжение, чтобы сделать электроэнергию безопасной для использования в домах.Затем мощность подключается к дому, где она проходит через счетчик, который измеряет, сколько энергии использует дом. Ток проходит через сервисную панель, где автоматические выключатели / предохранители защищают провода от перегрузки. Затем электричество проходит по проводам к розеткам и переключается в доме.


Для некоторых устройств потребуется адаптер переменного тока, который будет использовать другой трансформатор для преобразования электрических токов, поступающих от электрической розетки, в более низкий переменный ток, который может использовать электронное устройство.Количество трансформаторов, через которые должен пройти ток, зависит от максимальной силы тока, которую может выдержать электронное устройство.

Вам также может быть интересно прочитать: Как работает трансформатор


Меган Тунг проходит летнюю стажировку в Jameco Electronics , посещает Калифорнийский университет в Санта-Барбаре (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.

Кредиты на фото: Солнечные школы

AC, DC и электрические сигналы

AC, DC и электрические сигналы | Клуб электроники

AC | DC | Свойства сигнала | RMS

Следующая страница: Осциллографы (CRO)

См. Также: Диоды | Блоки питания

AC означает переменный ток, а DC означает постоянный ток.Переменный и постоянный ток также используются при обозначении напряжений и электрических сигналов. которые не токи! Например: источник питания 12 В переменного тока имеет переменное напряжение. (который заставит течь переменный ток).

Электрический сигнал — это напряжение или ток, передающий информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.


Переменный ток (AC)

Переменный ток (AC) течет в одну сторону, затем в другую, постоянно меняя направление.

Напряжение переменного тока постоянно меняется с положительного (+) на отрицательное (-).

Скорость изменения направления называется частотой переменного тока и измеряется в герц (Гц) — количество циклов в прямом и обратном направлении циклов в секунду .

Электроэнергия в Великобритании имеет частоту 50 Гц.

См. Ниже более подробную информацию о свойствах сигнала.

Источник переменного тока подходит для питания некоторых устройств, таких как лампы и обогреватели, но почти все электронные схемы требуют постоянного источника постоянного тока (см. ниже).


Переменный ток от источника питания
Эта форма называется синусоидой .


Этот треугольный сигнал является переменным током, потому что он меняет
между положительным (+) и отрицательным (-).


Постоянный ток (DC)

Постоянный ток (DC) всегда течет в одном направлении, но может увеличиваться и уменьшаться.

Напряжение постоянного тока всегда положительное (или всегда отрицательное), но оно может увеличиваться и уменьшаться.

Электронным схемам обычно требуется постоянный источник питания постоянного тока , который имеет одно значение. или источник питания smooth DC , который имеет лишь небольшую вариацию, называемую пульсацией .

Элементы, батареи и регулируемые источники питания обеспечивают устойчивый постоянный ток , который идеально подходит для электронных схем.

Блоки питания содержат трансформатор, преобразующий питание от сети переменного тока до безопасного низкого напряжения переменного тока. Затем переменный ток преобразуется в постоянный ток мостовой выпрямитель, но выход изменяет постоянный ток , что не подходит для электронных схем.

Некоторые источники питания включают конденсатор для обеспечения smooth DC , который подходит для менее чувствительных электронных схем, в том числе большинство проектов на этом сайте.

Лампы, обогреватели и двигатели будут работать от любого источника постоянного тока.

Дополнительную информацию см. На странице источников питания.

Источники питания также описаны на веб-сайте Electronics in Meccano.


Постоянный ток
от батареи или регулируемого источника питания,
идеально подходит для электронных схем.


Smooth DC
от сглаженного источника питания,
это подходит для некоторой электроники.


Изменение постоянного тока
от источника питания без сглаживания,
это не подходит для электроники.



Свойства электрических сигналов

Электрический сигнал — это напряжение или ток, передающий информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.

График «напряжение-время» ниже показывает различные свойства электрического сигнала. Помимо свойств, отмеченных на графике, есть частота что является количеством циклов в секунду.

На диаграмме показан синусоидальный сигнал , но свойства применимы к любому сигналу. с постоянно повторяющейся формой.

  • Амплитуда — это максимальное напряжение, достигаемое сигналом. Измеряется в В , В .
  • Пиковое напряжение — другое название амплитуды.
  • Пиковое напряжение в два раза больше пикового напряжения (амплитуды). При считывании осциллограммы обычно измеряют пиковое напряжение.
  • Период времени — это время, необходимое сигналу для завершения одного цикла. Он измеряется в секундах (с) , но периоды времени обычно короткие, поэтому часто используются миллисекунды (мс) и микросекунды (мкс).
    1 мс = 0,001 с и 1 мкс = 0,000001 с.
  • Частота — это количество циклов в секунду.Он измеряется в герцах (Гц) , но частоты имеют тенденцию быть высокими, поэтому часто используются килогерцы (кГц) и мегагерцы (МГц).
    1 кГц = 1000 Гц и 1 МГц = 1000000 Гц.

Частота и период времени

Частота и период времени противоположны друг другу:

частота = 1
период времени

и

период времени = 1
частота

Электросеть в Великобритании имеет частоту 50 Гц поэтому он имеет период времени 1 / 50 = 0.02с = 20 мс .


Среднеквадратические значения (RMS)

Значение переменного напряжения непрерывно изменяется от нуля до положительного пика через от нуля до отрицательного пика и снова обратно к нулю. Очевидно, что большую часть времени оно меньше пикового напряжения, так что это не лучшая мера его реального эффекта.

Вместо этого мы используем среднеквадратичное напряжение RMS ) что составляет 0,7 от пикового напряжения (пиковое напряжение В ):

и

Эти уравнения также применимы к , текущий .

Важно отметить, что эти уравнения верны только для синусоидальных волн (наиболее распространенного типа переменного тока), потому что Коэффициенты 0,7 и 1,4 — это разные значения для других форм.

Действующее значение — эффективное значение переменного напряжения или текущий. Это эквивалентное постоянное значение постоянного тока, которое дает такой же эффект.

Например, лампа, подключенная к источнику питания 6V RMS AC , будет гореть с той же яркостью. при подключении к источнику постоянного тока 6 В постоянного тока .Тем не менее, лампа будет тусклее, если подключена к сети 6 В переменного тока с пиковым напряжением питания, потому что его среднеквадратичное значение составляет всего 4,2 В (это эквивалентно постоянному 4,2 В постоянного тока).

Возможно, вам будет полезно думать о среднеквадратичном значении как о некотором среднем значении, но, пожалуйста, помните что это НЕ в среднем! Фактически, среднее напряжение (или ток) типичного сигнала переменного тока равен нулю, потому что положительная и отрицательная части полностью компенсируются.

Что показывают измерители переменного тока, это среднеквадратичное или пиковое напряжение?
Вольтметры и амперметры переменного тока

показывают среднеквадратичное значение напряжения или тока.

Что на самом деле означает «6 В переменного тока», это среднеквадратичное или пиковое напряжение?

Если имеется в виду пиковое значение, оно должно быть четко указано, в противном случае предположим, что это значение RMS . В повседневном использовании напряжение переменного тока (и токи) всегда задается как среднеквадратичных значений , потому что это позволяет провести разумное сравнение с постоянными напряжениями (и токами) постоянного тока, например, от батареи.

Например, «питание 6 В переменного тока» означает 6 В RMS, пиковое напряжение составляет 8,4 В. Электроснабжение Великобритании 230 В переменного тока, это означает 230 В RMS, поэтому пиковое напряжение сети составляет около 320 В.

Итак, что на самом деле означает среднеквадратичное значение (RMS)?

Сначала возведите все значения в квадрат, затем найдите среднее (среднее) этих квадратов за полный цикл и найдите квадратный корень из этого среднего. Это значение RMS. Смущенный? Не обращайте внимания на математику (она выглядит сложнее, чем есть на самом деле), просто примите что среднеквадратичные значения напряжения и тока являются гораздо более полезной величиной, чем пиковые значения.


Следующая страница: Осциллографы (CRO) | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *