+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Куда течет ток или где же этот чертов катод? / Хабр

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

— Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем…
Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «Аткуда» (от Анода) и «Куда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Всех с 1 апреля! Улыбайтесь, господа. Улыбайтесь!

Направление тока в проводнике, как, откуда и куда течет электрический ток.

 

 

 

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

 

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

 

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

 

 

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

 

 

 

 

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно  заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

 

 

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с  реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

 

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

 

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

 

Куда течёт электрический ток?

Современный человек отлично знаком с результатом работы тока в различных электроприборах, и редко задумывается о том, как, откуда и куда он течёт. Для тех, кто совсем немного знаком с электрикой и электроникой ответ будет прост и очевиден: от положительного полюса к отрицательному. Тем не менее, люди, которые знакомы с вопросом глубже, знают, что данное описание корректно не для всех ситуаций, что общепринятое понимание механизма несколько упрощено и на самом деле правильно ответить на подобный вопрос можно, только лишь уточнив его. Сегодня мы попытаемся рассказать читателям, как и почему возникла такая путаница.

Для начала следует вспомнить, что такое электроток. Справочники характеризуют его как направленное движение заряженных частиц. Сегодня принято считать, что в пределах цепи ток направлен от плюсового полюса источника питания к минусовому. Так работает любая техника на постоянном токе: радиоприёмники, фонарики, детские игрушки, пульты и даже те самые светодиодные светильники, которые через драйвер или трансформатор подключены к переменной сети. Вместе с тем, предполагается, что внутри самого источника питания – например, батарейки или аккумулятора – ток всё же идёт от минуса к плюсу. Почему так? Давайте разбираться.

 

 

 

Как люди запутались в двух соснах?

Сегодня науке точно известно, что направление движения электронов во многом обусловлено материалом элементов цепи. Согласитесь, это звучит немного неожиданно, однако обо всём этом нам рассказывали в школе, просто другими словами. Так, если проводник изготовлен из металла, частицами, переносящими заряд, будут выступать электроны, несущие энергию от своего, отрицательного полюса к другому, положительному. И исходя из этого оказывается, что, вопреки сказанному ранее, электроны во внешней цепи движутся от минуса к плюсу. Доказать это довольно просто. Если взять любой диод, который по своей сути допускает прохождение тока только в одном направлении, и подключить так, как сегодня принято описывать направление течения электронов, он работать на будет. Полупроводники выполняют свою функцию только тогда, когда подключаются анодом к плюсовой клемме источника. Уже на основании одного этого можно понять, что в качестве направления электротока в цепи обычно принимают противоположное реальному движению электронов.

Путаница в понятиях сложилась лишь потому, что при открытии многих электрических явлений именно неверное описание казалось исследователям логичным. Задолго до изобретения лампочек учёные пытались работать с феноменом электричества. Широко известный американский общественный и научный деятель Бенджамин Франклин стал родоначальником так называемой унитарной теории электричества. Согласно его предположениям, это самое электричество является материей, а именно, жидкостью, лишённой веса, которая способна вытекать из одной точки и перетекать в другую, со временем накапливаясь в ней. Скорее всего, именно отсюда во многих языках мира и взялось слово «ток», связанное с глаголом «течь» – ведь текут обычно именно жидкости.

Франклин утверждал, что невесомая электрожидкость присутствует во всех телах, но выраженного заряда не имеет, а потому наэлектризоваться что-либо может только в том случае, когда наблюдается её недостаток или избыток. Логично, что нехватку учёный обозначил знаком минус, а излишек –знаком плюс. Сам того не понимая, он заложил этим тезисом основу понятий положительного и отрицательного зарядов. Для Франклина всё было просто и похоже на систему сообщающихся сосудов: когда в ней начинает наблюдаться дисбаланс, электрическая жидкость в нужном количестве перетекает от тела к телу, в обоих направлениях. В целом, хорошо понятную гипотезу о движении заряда опровергнуть было сложно, потому на многие годы представление осталось именно таким.

Примерно в то же время французский исследователь и известный физик своего времени Шарль Дюфе сделал пришёл к выводу, что в действительности существует целых две разновидности электричества, каждая из которых сама по себе вписывается в объяснения Франклина, но при контакте их эффект нейтрализуется. В доработанном виде эту теорию представил шотландский физик Роберт Симмер, который взял за основу опыты предшественника и дополнил их собственными объяснениями. Название теории полностью соответствовало сути – её нарекли дуалистической.

Для многих имя Симмера совершенно незнакомо, однако его можно считать «автором» самого знаменитого школьного эксперимента с эбонитовой палочкой. Хотя подобными играми баловались ещё древние греки, объяснение явлению смог дать только он. Известно, что учёный по жизни был склонен к переохлаждению и носил сразу две пары чулок: ближе к коже – тёплые, из шерсти, а поверх них, напоказ – шёлковые. И вот однажды он заинтересовался тем, почему они странно себя ведут после снятия. Когда Симмер снимал их вместе, а потом вытягивал один из другого, то видел, что и шёлк, и шерсть немного раздуваются, а затем слипаются друг с другом. При этом если взять пару чулок из одного материала, они будут отталкиваться. Его первые эксперименты были максимально просты: в одной руке находились шерстяные чулки, а в другой – шёлковые. При сближении рук одинаковые отталкивались, а разнородные моментально слипались. Сегодня мы знаем, что то же самое можно было бы сказать о полюсах магнитов, но тогда до идеи о связи электричества и магнетизма ещё никто не подозревал.

Зато благодаря работе Симмера стало понятно, что при натирании объекта с целью электризации заряженным становится не только это тело, но и то, которое его натирает. Дуалистическая теория поясняла, что в состоянии покоя в каждом теле в некотором количестве находятся сразу две невесомые электрические жидкости, противоположные по своему заряду. При этом в целом они нейтрализуют друг друга, но при изменении взаимных пропорций возникает электризация. Хотя гипотезы Франклина и Симмера не приводили учёный мир к единому мнению, обе они с необходимой для того времени достоверностью описывали видимое положение вещей, а потому сохранялись параллельно.

 

 

 

Следующий крупный этап в процессе выяснения правды наступил в 1799-том году. Задолго до появления на улицах электрических фонарных столбов, слово «столб» стало синонимом чего-то заряженного. Всё дело в том, что открытие явления электролиза с использованием вольтова столба более наглядно показало учёным, что заряды могут одновременно двигаться взаимно противоположно. Формально это было моментом торжества теории Симмера, но из-за нехватки информации об устройстве мира многие учёные не готовы были принять всё на веру. Многих смущало то, что при проведении эксперимента с электролизом на отрицательном электроде собиралось в два раза больше пузырьков водорода, чем на положительном – кислорода. Ввиду того, что формула Н2О ещё открыта не была, представлений о строении молекулы воды никто не имел, и это отчасти вносило трещину в дуалистическую теорию.

Спустя 21 год нашёлся учёный, который был гораздо решительнее предшественников. Его звали Андре-Мари Ампер, и он предложил Парижской академии наук устранить неоднозначность, приняв одно из направлений в качестве основного. В начале его работы над данным вопросом совершить выбор предполагалось просто на основании удобства, однако уже спустя несколько поставленных опытов Ампер сумел сформулировать единое правило, по которому можно было однозначно судить о направленности воздействия магнитов на электроток. Дабы избавиться от описания двух взаимно противоположных токов и избежать повторения, учёный решил однозначно, раз и навсегда, принять за основу направление движения положительного электричества. Именно этот момент считается формальной точкой отсчёта в отношении направленности электротока.

На основании тех же исследований британский физик Джеймс Клерк Максвелл сформулировал хорошо знакомое нам со школьной скамьи правило буравчика. Оно определяло направление магнитного поля катушки и вполне устраивало учёных, поскольку считалось адекватно описывающим реальность в тех координатах, которые ранее заложил Ампер. Вместе с тем, среди исследователей было немало и тех, кто даже при уважительном отношении к предшественникам продолжал критически смотреть на ситуацию. Англичанин Майкл Фарадей признавал, что пользоваться описанными правилами удобно, однако это не означает, что в природе всё так и есть. Уже после того, как он открыл явление электромагнитной индукции, возникла необходимость определить направление индуцированного тока, и на этом этапе сугубо теоретические и условные правила других исследователей не справлялись. Российский физик немецкого происхождения Эмилий Ленц сумел дать требуемую формулировку: если проводник из металла движется вблизи магнита или тока, внутри него возникает гальванический ток, направление которого таково, что, будь провод неподвижен, он бы пришёл в движение в сторону, противоположную исходному перемещению. Несмотря на длину разъяснения правила и его сложность для понимания при первом прочтении, именно оно утвердилось в качестве доминирующего.

И даже после открытия в 1897-ом году английским физиком Джозефом Джоном Томсоном электрона, указанная условность описания направления его движения сохранилась. Пусть природа задумала, что в проводнике или в вакууме должны перемещаться лишь электроны, человечество по-прежнему в качестве базового принимает противоположное направление – от плюса к минусу. Когда в начале ХХ-го века были изобретены электронные лампы, сразу же с оборудованием стали возникать определённые трудности. Тем не менее, даже это не заставило главные мировые умы пересмотреть подход. Ещё позже, с изобретением транзисторов путаница усилилась, но на первое место продолжало выноситься условное удобство. Сейчас люди уже привыкли считать, что там, где «плюс» энергии больше, чем там, где «минус», а потому она может переходить только в одном направлении, как во всё тех же сообщающихся сосудах у Франклина.

И хотя сегодня мы уже осведомлены о том, что данная условность не соответствует фактическому положению вещей, человечество успело изготовить такое количество электротехнической продукции, что внесение корректив в устоявшиеся принципы внесёт ещё большую сумятицу. Не пострадают разве что только те изделия, для которых полярность не имеет значения – это различные клеммники и наконечники, оснащение для переменного тока, а также различные провода и кабели. Всё остальное, в том числе, и бытовая техника, в которой много узлов преобразует энергию к 12 В или 5 В постоянного тока, может оказаться неработоспособной.

Напоследок хочется сказать о том, чему не уделено внимания выше: как же простому человеку понять, разобраться и запомнить, что и где находится, какой заряд куда течёт. Да, общепринятое направление движения электротока – это лишь некая условность, оправданная историей развития электротехники, и она противоположна реальному направлению перемещения электронов в металле, но в действительности всё это совершенно не принципиально. На самом деле, чтобы не прослыть невеждой следует руководствоваться простейшими принципами. Вернёмся к тому, что такое ток по определению – это направленное движение заряженных частиц. И вот тут самое главное: не спрашивайте себя, каких именно! Потому что правильный ответ – любых. Ими могут оказаться и негативно заряженные электроны, и положительные молекулы с атомами, и ионы вещества в растворе, и свободные электроны в полупроводниках, и даже так называемые «дырки». И всё это правильно, технически корректно. А потому вывод напрашивается довольно простой – ток течёт туда, где его «не хватает», то есть высказанный ранее принцип «от большего к меньшему» в действительности справедлив, безотносительно полярности перемещаемого по проводнику заряда. Остальные нюансы просто оказываются не важны.

Каким образом течет электричество?

Электрический ток может приводит в действие машины только тогда, когда он циркулирует в цепи. Электрическая цепь — это канал, по которому течет электричество. Начинается цепь в источнике питания (например, в батарейке), к которому соединительным проводом подключен потребитель, например, лампа накаливания.

Цепь не оканчивается на потребителе, а возвращается по кольцу снова к источнику питания. Сила, поддерживающая течение электрического тока в цепи, называется электродвижущей силой, или напряжением. Так как потребители ослабляют ток в цепи, они называются сопротивлениями.

Понимание взаимосвязи между электрическим током, напряжением и сопротивлением может быть облегчено путем проведения аналогии между электрическим током и водой, текущей по каналу (рисунок вверху). Батарейка может быть представлена в виде водяного насоса, а электрический ток — в виде определенного объема воды. Аналогами двух электрических сопротивлений (двух ламп накаливания) являются два водослива в канале.

В такой модели каждый раз, когда вода (электрический ток) встречает водослив (сопротивление), она падает на более низкий уровень (меньшее напряжение). Объем воды остается неизменным, однако ее уровень (энергия) уменьшается. То же самое происходит с электрическим током. Когда электрический ток проходит через сопротивление, его энергия отводится в окружающую среду, а напряжение уменьшается.

Вычисление падения напряжения

Когда электрический ток проходит через сопротивление, например, через лампу накаливания, силовое воздействие на заряды (напряжение) уменьшается. Это уменьшение называется падением напряжения. Изменение напряжения может быть определено численно, путем умножения величины сопротивления на силу тока.

Электрический ток и поток электронов

Электроны (синие шарики) текут по направлению к положительному полюсу источника тока, т.е. навстречу электрическому току, который движется от положительного полюса к отрицательному (большая голубая стрелка). Сила тока зависит от того, сколько электронов пройдет через поперечное сечение проводника в единицу времени.

Электрический ток в параллельной цепи

В параллельной цепи электрический ток (синие стрелки), прежде чем вернуться к своему источнику (красная батарейка), разделяется на две отдельные ветви.

Вид цепи и напряжение

Последовательная цепь содержит два сопротивления (R), которые поочередно снижают напряжение (V). Падение напряжения определяется суммой сопротивлений.

В параллельной цепи электрический ток проходит по различным путям. Такое расположение сопротивлений (R) вызывает одновременное падение напряжения.

Уходит ли ток в розетку или остается в лампочке?

> Из ваших слов выходит что для наличие «тока»
> необязателен замкнутый «видимо» контур?
На микроуровне «ток» это такая же условность, как «температура». Если, допустим, в вакууме летит электрон, это можно рассматривать как ток, направленный противоположно движению этого электрона. Но когда этих электронов огромное количество, то если они вдруг начнут двигаться по незамкнутому контуру, они в том месте, где этот контур кончается, через какое-то время накопятся в таком количестве, что потекут куда-нибудь в другую сторону.

Кстати, у меня-то контур как-раз замкнутый. Я же писал:
>> Но тут батарейка берёт со своей второй клеммы
>> новую порцию электронов и перемещает их на первую клемму.
Вот так контур и замыкается.

> что такое потенциал електричества?
Ну, это просто потенциал электрического поля. Есть гравитационное поле, а есть электрическое. Такова природа. По-моему, понятнее никто не сможет объяснить.

> електричество или что там может переходить даже
> от меньшего потенциала к большему.
> Это как-то не вяжется у меня со вторым началом термодинамики:)
Может, если затрачивать на это энергию. Добровольно электрон от плюса к минусу не полетит, но его можно туда сдвинуть насильно. Например, так, как на ГЭС — механическим перемещением проводника в магнитном поле. Или так, как в батарейке — перетащить его от плюса к минусу вместе с молекулой, к которой он присоединён, а потом из этой молекулы выгнать (путём химической реакции).

> И ещё — если ток идёт от минуса к плюсу —
> то почему ВСЕГДА рисуют наоборот?
Так исторически сложилось. Когда открывали законы электричества, никто ещё не знал, какой заряд у частицы — носителя электричества, положительный или отрицательный (и существует ли вообще такая частица). Если этого не знать, то безразлично, какое направление тока выбрать положительным, а какое отрицательным. Потом открыли электрон и обнаружилось, что направление выбрано «неправильно».

Наука в Сибири | Почему принято считать, что электрический ток движется от положительного заряда к отрицательному?

Отвечает: 

старший научный сотрудник Института ядерной физики им. Г. И. Будкера СО РАН, кандидат физико-математических наук Евгений Михайлович Балдин.

 


Достоверно известно, что электрический ток — это направленное движение электронов или, в некоторых случаях, положительных или отрицательных ионов. Электричество как таковое также связано с понятием ЭДС, то есть для тока в проводнике нужна разность потенциалов. Тогда направление движения тока при движении электронов и отрицательно заряженных ионов будет от отрицательного полюса к положительному, так как одноименные заряды отталкиваются, а разноименные притягиваются. Движение же положительных ионов будет связано с движением обратным по направлению. Почему тогда официально считается, что ток идет всегда от плюса к минусу и такое же направление указывается на электрических схемах?! Преподаватели физики мне отвечали, что так сложилось исторически, но ведь в двух случаях из трех это ошибка. Так тогда как понимать?


Дело в том, что электрический ток стали изучать задолго до того, как разобрались с его «переносчиками». Наверное, первые систематические опыты с ним можно датировать 1801 годом, когда итальянский учёный Алессандро Вольта опустил в банку с кислотой две пластинки — цинковую и медную. Так возникла первая батарея — Вольтов столб, хотя, безусловно, электрические явления не были в тот период новостью. Например, в то же время Бруньятелли осуществил посеребрение, оцинкование и омеднение электродов. Позже последовали опыты Эрстеда, Ампера, Ома, Фарадея и множества других исследователей. В 1861-1862 годах английский физик Джеймс Кларк Максвелл опубликовал свои труды, которые привели к возникновению четырёх уравнений Максвелла — своеобразное обобщение  всех классических электрических и магнитных явлений. Исследования об электричестве и магнетизме стали единой классической электродинамикой. То есть на тот момент людям уже пришлось договориться о единых понятиях направления тока, но что именно выступает в проводниках в качестве переносчика зарядов, тогда известно не было.

Электроны в чистом виде были выделены только в 1869 году немецким исследователем Иоганном Вильгельом Гитторфом, когда он впервые наблюдал катодные лучи — потоки электронов, испускаемых катодом. Они используются в старых телевизорах, осциллографах, радиолампах и электронных микроскопах. Это случилось уже позже формирования уравнений Максвелла, кроме того, на осознание, что именно такое катодные лучи, то есть на собственно открытие электрона ушло ещё 28 лет, пока этим вопрос вплотную не занялся английский физик Джозеф Джон Томсон.
 

Поделись с друзьями: 

Куда направлен ток в цепи

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Электрический ток и поток электронов

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Видео

В каком направлении на самом деле течет ток?


Если вы спросите нескольких инженеров-электронщиков, техников, ученых или профессоров, как протекает ток в электрической цепи, некоторые скажут вам, что он течет от отрицательной клеммы источника питания через нагрузку к положительной клемме источника питания. Другие скажут вам прямо противоположное, что ток на самом деле течет от плюсовой стороны источника напряжения к минусу.

Кто прав? Как может так много технических профессионалов запутаться в таком простом деле, как текущий поток? Знаем ли мы вообще, в каком направлении течет ток? И действительно ли имеет значение, в каком направлении течет ток? Давайте проясним все это.

Почему это так важно?

Основным принципом любого электронного приложения является контроль тока. Подумай об этом. Разве все, что мы делаем в электронике, не предназначено для управления током каким-либо образом для получения полезных результатов, таких как телевидение, компьютеры или сотовые телефоны? Взгляните на Рисунок 1 . Эта очень простая модель представляет все электронные приложения. Мы производим вводы, которые представляют собой какой-то тип электронного сигнала, обрабатываем их определенным образом, а затем генерируем соответствующие выходные сигналы.Например, входной сигнал может поступать с микрофона. Он обрабатывается усилителем для увеличения уровня мощности. Выход приводит в движение динамик.

РИСУНОК 1. Упрощенная модель всех электронных схем и оборудования.


Теперь рассмотрим еще раз, что находится в поле с надписью «процесс» на рис. 1 . В простейшей форме это может быть всего лишь один электронный компонент, например резистор. Но это также может быть схема, такая как инструментальный усилитель, или миллионы полевых МОП-транзисторов, как в микропроцессоре Pentium.

Теперь посмотрим на Рисунок 2 . Вот еще один способ помочь вам визуализировать, что происходит во всех электрических или электронных цепях. Источник напряжения инициирует ток в нагрузке. Источником напряжения может быть батарея, генератор сигналов, источник питания, радиосигнал или сигнал от преобразователя, такого как микрофон или фотоэлемент. Нагрузка — это устройство, которое дает полезный конечный результат. Это может быть лампочка, нагревательный элемент, двигатель, соленоид или просто другая электронная схема. Теперь обратите внимание на элемент управления.Это электронный компонент или схема, контролирующая ток в нагрузке.

РИСУНОК 2. Упрощенное объяснение того, как работают все электронные схемы.


Схемы управления могут быть более сложными, например операционный усилитель или набор логических вентилей, или даже полный набор различных электронных схем. Компоненты и схемы управляют током, создаваемым начальным входом, различными способами, иногда с помощью множества различных последовательных и параллельных шагов, до тех пор, пока не будет сгенерирован соответствующий выходной сигнал.Суть в том, что генерация и управление током — это и есть вся электроника.

Зависимость условного тока от потока электронов

Ученые, инженеры, профессора колледжей и другие уже более 100 лет знают, что ток действительно перемещает электроны. Тем не менее, они продолжали использовать исходную модель протока положительно-отрицательного тока. Это стало известно как обычный ток (CCF). Сегодня эта концепция все еще широко используется и почти повсеместно преподается в научных и инженерных программах.

Только в середине 20-го века электронный поток (EF) получил широкое распространение. Это произошло в результате массового обучения техников-электронщиков во время Второй мировой войны. Армия и флот решили, что поток электронов более уместен, чем обычный поток, поэтому они разработали все свои классы и учебные материалы с использованием потока электронов. После войны поток электронов прижился и стал основным способом обучения техников в общественных колледжах, технических институтах и ​​профессиональных училищах.Почему научное, инженерное и академическое сообщества отказались перейти на электронный поток, неизвестно. Вероятно, возникло ощущение, что теория электричества всегда преподавалась с использованием традиционной модели протекания тока, и не было особой необходимости, желания или причины для изменений. Изменения — это сложно, а традиции умирают с трудом.

Что такое электрон?

Электрон — это субатомная частица, одна из нескольких различных частей атома. Атомы — это крошечные частицы, из которых состоит вся материя.Все, что мы знаем, чувствуем, видим, прикасаемся и обоняем, состоит из атомов. Атомы — это мельчайшие частицы материалов, которые мы называем элементами. Элементы — это основные строительные блоки природы. Типичные элементы — кислород, водород, углерод, медь, серебро, золото и кремний. Если вы, например, возьмете кусок меди и разделите его снова и снова, пока не получите наименьший возможный кусок, который все еще распознается как медь, то у вас будет один атом меди. Все, что не является основным элементом, состоит из двух или более элементов, объединенных в то, что мы называем соединениями.Вода — это соединение двух атомов водорода и одного атома кислорода, ну вы знаете, h3O. Соль — это соединение натрия и хлора (HCl). Самая маленькая распознаваемая частица соединения называется молекулой.

Атомы можно разделить на более мелкие части. Поскольку на самом деле никто никогда не видел атома, физики веками строили теории о том, как атом выглядит и из чего состоит. Одна популярная теория гласит, что атом состоит из центрального ядра, состоящего из крошечных частиц, называемых протонами и нейтронами.Протоны имеют положительный электрический заряд. Нейтроны, конечно, нейтральны. Вокруг ядра вращаются кольца или оболочки электронов. Электроны имеют отрицательный электрический заряд. Электронов столько же, сколько протонов, поэтому атом электрически сбалансирован или нейтрален. Число протонов в атоме — это его атомный номер, и это число определяет характеристики элемента.

На рисунке 3 показан атом меди. Есть 29 протонов и 29 электронов.Обратите внимание на внешнюю оболочку атома. Это называется валентной оболочкой, поскольку она содержит электроны, которые объединяются и реагируют с другими элементами, образуя химические связи в соединениях.

РИСУНОК 3. Атом меди.


И именно электрон или электроны во внешней валентной оболочке высвобождаются, чтобы создать ток в электрических и электронных компонентах и ​​схемах.

Как течет ток

Ток в большинстве электрических и электронных цепей — это поток электронов.Однако есть некоторые особые случаи, когда задействованы и другие частицы. Предположим, что медный провод подключен между положительной и отрицательной клеммами элемента фонарика, как показано на рисунке 4 . Избыток электронов накапливается на отрицательном выводе ячейки, в то время как на положительном выводе электронов не хватает. Это состояние вызвано химическим воздействием в клетке.

РИСУНОК 4. Электронный поток в медной проволоке.


Когда медный провод подсоединяется к ячейке, происходят две вещи.Во-первых, положительный вывод отводит валентные электроны от атомов меди в проводе. Когда атом теряет один или несколько электронов, он становится положительным ионом, потому что теперь у него больше протонов, чем электронов. Будучи положительными, ионы притягивают другие отрицательные электроны от соседних атомов, создавая цепную реакцию протекания тока.

В тот же момент отрицательный вывод ячейки отталкивает валентные электроны от соседних атомов в медной проволоке. Эти освобожденные электроны притягиваются к положительным ионам, создаваемым положительным выводом ячейки.Конечным результатом является массовое движение электронов от отрицательной клеммы батареи к положительной. Так протекает ток в проводах и кабелях, а также в большинстве электронных компонентов.

Не весь ток протекает за счет движения электронов. В некоторых случаях ток на самом деле является движением других носителей тока. Например, отверстия являются уникальными для протекания тока в определенных типах полупроводниковых материалов. Ионный поток — это метод протекания тока в плазме и электрохимических реакций в батареях.

Ток в полупроводниках

Полупроводник — это особый тип материала, удельное сопротивление или проводимость которого находится где-то между хорошими проводниками, такими как медь и алюминий, и изоляторами, такими как стекло, керамика или пластик. Полупроводники уникальны тем, что они могут иметь любую желаемую степень проводимости. Конечно, полупроводники — это материалы, из которых сделаны диоды, транзисторы и интегральные схемы.

Наиболее распространенным полупроводниковым материалом является элемент кремний (Si).Германий (Ge) — еще один полупроводниковый элемент. Существуют также полупроводниковые соединения, такие как арсенид галлия (GaAs), фосфид индия (InP) и кремний-германий (SiGe). Кремний, как и другие полупроводниковые материалы, уникален тем, что имеет четыре валентных электрона. Эта характеристика заставляет атомы кремния связываться вместе таким образом, что они разделяют свои валентные электроны. Результатом является уникальная структура кристаллической решетки, подобная той, что показана на , рис. 5, . Показаны только валентные электроны.Обратите внимание, как атомы делят свои валентные электроны с соседними атомами. В результате каждый атом думает, что на его внешней орбите находится восемь электронов. Это делает материал чрезвычайно стабильным.

РИСУНОК 5. Чистый кремний состоит из атомов, которые образуют ковалентные связи с соседними атомами, образуя структуру кристаллической решетки.


Атомы кремния образуют так называемую структуру кристаллической решетки. Все валентные электроны полностью заняты, так как они распределяются между атомами.Это означает, что в структуре кристаллической решетки чистого кремния нет электронов, доступных для электронного потока, поскольку все они заняты своими ковалентными связями. В результате полупроводники, такие как кремний в чистом виде, по сути, являются изоляторами. Конечно, если к кремнию приложить достаточно тепла или приложить высокое внешнее напряжение, некоторые электроны могут высвободиться, что вызовет протекание небольшого количества тока.

Чтобы сделать кремний проводящим, мы добавляем в него другие химические вещества. Этот процесс называется допингом.Легируя кремний химическими веществами, имеющими три или пять валентных электронов, мы можем создать кремний, в котором легко протекает ток. Рисунок 6 показывает, что происходит, когда мы добавляем в кремний мышьяк (As). Мышьяк имеет пять валентных электронов. Четыре электрона соединяются с электронами в соседних атомах кремния, как и раньше, с образованием ковалентных связей. Однако остался один лишний электрон. Этот дополнительный электрон доступен для протекания тока.

РИСУНОК 6.Полупроводниковый материал N-типа использует электроны для протекания тока.


Кремний, легированный химическими веществами, имеющими дополнительный электрон, называется полупроводником N-типа. «N» означает отрицательный, что относится к дополнительному отрицательному электрону. Когда внешнее напряжение подается на кусок полупроводникового материала N-типа, ток легко течет, поскольку несвязанные электроны притягиваются и протягиваются через кремний внешним напряжением. Если кремний сильно легирован мышьяком, доступно много свободных электронов и будет течь большой ток.Это то же самое, что сказать, что у материала очень низкое сопротивление. Если добавлено только несколько атомов мышьяка, меньше электронов доступно для протекания тока, поэтому уровень тока будет меньше при внешнем напряжении. Такой материал имеет гораздо более высокую стойкость.

Как видите, ток в полупроводниковом материале N-типа по-прежнему осуществляется электронами. Однако мы также можем легировать кремний материалом, который имеет только три валентных электрона. Это проиллюстрировано на рис. 7, , где кремний легирован атомами бора (B).

РИСУНОК 7. Полупроводниковый материал P-типа, в котором дырки являются носителями тока.


Три валентных электрона в атоме бора образуют ковалентные связи с соседними атомами кремния. Однако у одного из атомов кремния отсутствует электрон. Этот недостающий валентный электрон называется дыркой. Следовательно, дырка — это не настоящая частица, а просто вакансия в валентной оболочке структуры кристаллической решетки, которая действует как носитель тока.Эта вакансия или дыра имеет положительный заряд. Если электрон проходит рядом с отверстием, он притягивается и заполняет отверстие, завершая ковалентную связь.

Ток в этом типе полупроводникового материала протекает через отверстия. Этот тип полупроводникового материала называется материалом P-типа. P означает положительный, что относится к заряду отверстия.

Когда электрическое напряжение подается на кусок полупроводникового материала P-типа, электроны перетекают в материал с отрицательной клеммы источника напряжения и заполняют отверстия.Положительный заряд внешнего источника напряжения вытягивает электроны с внешних орбит, создавая новые дыры. Таким образом, электроны перемещаются от дырки к дырке. Электроны по-прежнему текут от отрицательного к положительному, но дырки перемещаются от положительного к отрицательному, поскольку они создаются внешним зарядом.

Ионный поток

В некоторых типах материалов, особенно в жидкостях и плазме, ток представляет собой комбинацию электронов и ионов.

На рисунке 8 показан упрощенный чертеж ячейки напряжения.Все элементы состоят из двух электродов из разных материалов, погруженных в химикат, называемый электролитом. Происходящая химическая реакция разделяет создаваемые заряды. Электроны накапливаются на одном электроде, поскольку он отдает положительные ионы, создавая отрицательный вывод, в то время как электроны вытягиваются из другого электрода, создавая положительный вывод.

РИСУНОК 8. Течение в химической ячейке.


Когда вы подключаете внешнюю нагрузку к этой батарее, электроны текут от отрицательной пластины через нагрузку к положительному электроду.Внутри ячейки электроны текут от положительного к отрицательному, а положительные ионы — от отрицательного к положительному.

Жизнь в отрицании

Итак, почему мы продолжаем увековечивать миф об обычном потоке тока (CCF), когда мы уже сто лет знаем, что ток в большинстве электрических и электронных цепей является потоком электронов (EF)? Я уже много лет задаю этот вопрос своим коллегам и другим специалистам в сфере промышленности и науки. Несмотря на то, что поток электронов — это реальность, все инженерные школы настаивают на преподавании CCF.Если вы служили в вооруженных силах или поднялись по служебной лестнице в качестве технического специалиста, скорее всего, вы научились и предпочитаете поток электронов.

То, как вы выучили его в школе, вы обычно используете, когда разрабатываете, анализируете, устраняете неполадки или преподаете в реальном мире.

Действительно ли это имеет значение?

Как вы, возможно, знаете, на самом деле не имеет значения, какое направление тока вы используете для анализа схемы и проектирования, работает в любом случае. Фактически, эта проблема затрагивает только DC, который течет только в одном направлении.В переменном токе электроны текут в обоих направлениях, перемещаясь вперед и назад с рабочей частотой. Но если на самом деле не имеет значения, в каком направлении мы движемся, то почему бы нам не пойти на уступки истине и не положить конец этой чепухе раз и навсегда?

В заключение

Если вы когда-нибудь захотите завязать оживленный разговор или даже поспорить, попробуйте поднять эту тему в группе технических специалистов. Вы просто можете быть удивлены накалом чувств и ханжеством с обеих сторон.Я делал это много раз, и меня до сих пор поражает эмоциональная реакция, которую вызывает этот вопрос.

Я пришел к выводу, что концепция CCF никогда не будет оставлена. Это в некоторой степени похоже на принуждение всех нас перейти на метрическую систему измерения с использованием метров и Цельсия, а не футов и Фаренгейта, с которыми мы более знакомы и привыкли. С этого момента обучение CCF будет продолжено. Я пришел к выводу, что все это — одна из странных причуд электроники. NV


ИСТОРИЧЕСКАЯ СПРАВКА

Ранние исследователи электричества сначала открыли концепцию напряжения и полярности, а позже определили ток как движение зарядов.Термин «напряжение» означает энергию, которая заставляет ток течь. Первоначально напряжение создавалось статическими средствами, такими как трение или молния. Позже химические элементы и батареи использовались для создания постоянного заряда или напряжения. Затем были разработаны механические генераторы.

Заряды относятся к некоему физическому объекту, который движется, когда на него действует сила напряжения. Конечно, еще в 18 веке те, кто работал над электрическими проектами, толком не знали, что это за заряды.Насколько они знали, заряды могли быть микроминиатюрными фиолетовыми кубиками внутри провода или другого проводника. Что они действительно знали, так это то, что напряжение заставляло заряды двигаться. В целях анализа и обсуждения они произвольно предположили, что заряды были положительными и перетекали с положительного на отрицательный. Это ключевой момент. Они действительно не знали направления тока, поэтому предположили, что происходит. И, как оказалось, не угадали. Нет ничего плохого в том, чтобы ошибаться, поскольку ученые часто выдвигают одну гипотезу, а позже обнаруживают, что истина — это что-то другое.Большая ошибка состоит в том, что неверная гипотеза сохраняется и преподается как истина.

В конце 19 века было окончательно установлено, что обсуждаемые заряды на самом деле были электронами, а ток на самом деле был электронами, текущими от отрицательного вывода источника напряжения через цепь к положительной стороне источника напряжения. Британский физик Джозеф Дж. Томсон сделал это открытие в 1897 году. Наконец-то правда была доказана и открыта.


Корпус для обычного протекания тока.

  1. Традиционно.
  2. Большинство инженеров и некоторых технических специалистов узнали это таким образом.
  3. Очень сложно изменить такие вещи, как учебники по инженерии и условные обозначения (стрелки на диодах и транзисторах указывают в направлении CCF).
  4. Человеческая природа не терпит перемен.
  5. CCF стал стандартом де-факто.

Корпус для электронного потока.

  1. Это правда.
  2. Работу электронных устройств легче объяснить и изучить с помощью электронного потока.
  3. Почему бы не стандартизировать то, что есть на самом деле?

КАК ДЕЙСТВИТЕЛЬНО течет ток?

Если вы ИП, вы определенно знаете ответ на этот вопрос или, по крайней мере, думаете, что знаете. Если вы сказали положительное на отрицательное, вы ошиблись. Затем вы вспоминаете, что электрический ток — это заряд электронов, движущихся в проводнике, и они меняют свое состояние с отрицательного на положительный. Конечно, это правильный ответ. Так почему же все обычно ошибаются? Просто потому, что так их учили в колледже.Кажется, это универсальное соглашение, но я не могу понять, почему колледжи не учат истине? Но тогда вы задаетесь вопросом, должны ли мы действительно заботиться? И почему я вообще об этом говорю? Думаю, это просто мой интерес.

Как профессор электроники, когда-то полный рабочий день, а теперь адъюнкт, я учу, что ток — это поток электронов, а затем переключаюсь на преподавание положительного или отрицательного потока, что, по мнению большинства колледжей и университетов, является правильным способом преподавания того, как работают схемы и как разработать и проанализировать их.В большинстве учебников текущие стрелки показаны от положительного к отрицательному. Это почему? С тех пор, как я начал преподавать, я снова и снова задаю этот вопрос профессорам, которых встречаю. Все говорят одно и то же по-разному. Например: «Так я и выучил». Или «Все учебники так показывают». Или «Это традиция». Некоторые даже говорят, что эту концепцию легче понять или что на всех символах диодов и транзисторов используются стрелки, указывающие в эту сторону. Я вообще этого не вижу. Неужели я такой тупой? Для меня все эти усилия просто увековечивают миф.Почему бы не научить истине? Скажите это любому профессору колледжа, и вы получите аргумент на всю жизнь. Я никогда не видел такой страсти к такой теме. Я люблю поднимать этот вопрос на собраниях преподавателей время от времени, просто чтобы стать свидетелем хаоса.

Я полагаю, что традиция — это большая часть этого. В самом начале пионеры в области электротехники действительно не знали, в каком направлении течет ток или какой ток на самом деле. Некоторые визуализировали это как сок или жидкость. Другие думали, что это какая-то неоткрытая частица.Но все они, казалось, пришли к единому мнению, от положительного к отрицательному. Это стало известно как обычный ток. Затем в 1897 году британский физик Томпсон обнаружил, что поток тока на самом деле представляет собой электроны, когда он проводил некоторые исследования на ЭЛТ. Тем не менее, даже когда правда стала известна, все придерживались старой модели. Профессора привыкли к такому обучению, писались книги, устанавливались стандарты, а остальное уже история. Конец истории.

Я пришел в инжиниринг по маршруту техников.Я изучал электронику в технической школе, и меня учили, что ток — это поток электронов, и весь анализ цепей проводился таким образом. Даже учебники для технических специалистов показали истинную правду от отрицательного к положительному течению. Все еще делаю. И военные также учит отрицательное течению. Во время преподавания я все еще перехожу из негативного в позитивный режим, хотя колледжи по-прежнему настаивают на том, чтобы мы делали упор на традиционный поток. Я никогда не считал это препятствием. На самом деле, что же такого сложного, что профессор не может преподавать и то, и другое? Студенты определенно достаточно умны, чтобы уловить разницу.Зачем скрывать правду, избегать ее или высмеивать, как это часто бывает в академических кругах?

Одна причудливая вещь, которая меня действительно беспокоит, — это то, что многие издатели учебников на самом деле тратят деньги на создание двух версий своих текстов, одну с обычным потоком, а другую с электронным потоком. Если они не поймут правильное направление, профессора не примут книгу. Глупо, а? Но таков путь академического мира. Не хотелось бы, чтобы его поймали на том, что он учит «неправильный» путь тока.

В конце концов, я думаю, это действительно не имеет значения.Кого это волнует, когда мы проектируем в наши дни? Даже расширенный сетевой анализ с помощью ячеистых или узловых решений выполняется с помощью программного обеспечения, где, как и в прошлом, вам приходилось действительно обращать внимание на то, как вы рисовали стрелки.

Не проблема. Почему я вообще это обсуждаю? Кого-нибудь действительно волнует?

Условный ток относительно потока электронов

Условный ток относительно потока электронов © 2015 Chris E. ChaulkVTR1R2R3ITIT

Нажмите кнопку вверху.

Обычный ток предполагает, что ток течет от положительной клеммы, через цепь к отрицательной клемме источника.Это было условием, выбранным при открытии электричества. Они были не правы!

Электронный поток — это то, что происходит на самом деле, и электроны текут из отрицательной клеммы через цепь в положительную клемму источника.

Используются как обычный ток, так и поток электронов. Многие учебники доступны в обоих форматах.


Floyd, 1989, Принципы электрических цепей , 5-е издание, Версия для обычных токов.


Floyd, 1990, Принципы электрических цепей , 4-е издание, версия для электронного потока.

На самом деле, не имеет значения, в каком направлении протекает ток, если он используется последовательно . Направление тока не влияет на его действия.

Как правило, программа Electron Flow используется в программах средней школы по физике и двухгодичных программах для технических специалистов.

Но трехлетние технологические и университетские инженерные программы используют обычный ток.Определенные символы (например, диоды и транзисторы) и правила (например, правила правой руки) были созданы с использованием обычного тока. Переход от обычного тока к электронному потоку вызовет некоторую путаницу для старых и новых студентов, и возникнут ошибки, поэтому традиционный ток был сохранен, чтобы не было путаницы с теми, кто уже обучался с обычным током. Две системы могут показаться сбивающими с толку, но пока их использование единообразно, на самом деле это не так!

Вы должны понимать, какое соглашение используется, потому что правила меняются.Бывший. Правила правой руки в обычном токе становятся правилами левой руки в электронном потоке. Пример

На протяжении всего курса используется обычный ток. Поэтому всегда предполагайте, что ток течет через положительный вывод источника.

ELTK1100

электричество — ток течет обратно к источнику через землю?

Слово «Земля» иногда вводит в заблуждение. Я думаю (если я правильно понял смысл вашего вопроса), это более правильно назвать «Защитной Землей».В домашних источниках электроэнергии одна сторона источника питания «привязана» к тому же потенциалу, что и цепь защитного заземления . Последний представляет собой просто систему проводников, проходящих через третий контакт заземления на розетке, которые привязывают любую проводящую поверхность электрического прибора к одной (называемой «нейтралью») стороне источника питания. Другая сторона предложения называется «активной».

Если в приборе происходит сбой, так что активный элемент касается проводящего корпуса прибора (скажем, тостера), возникает опасная ситуация, поскольку любой, кто прикоснется к прибору, может получить поражение электрическим током.Однако, если корпус подключен к цепи защитного заземления, существует резервный путь обратно к нейтрали источника питания. Это приводит к высокому току в резервном тракте и, возможно, к перегоранию предохранителя в цепи питания.

Более современным и безопасным способом достижения этой защиты является защита от утечки на землю — система, которая обнаруживает с помощью порожденной законом Ампера «магнитодвижущей силы MMF)», когда ток через активный элемент отличается от тока через нейтраль. В этой системе как активные, так и нейтральные линии проходят через ферроманетический сердечник в форме тора.Если ток в одном из них не совпадает с током в другом (, т. Е. , ток, идущий в прибор через активный элемент, не такой же величины, но точно не совпадает по фазе с током, выходящим через нейтраль), то существует ненулевое значение $ \ oint \ vec {H} \ cdot {\ rm d} \ vec {\ ell} $ («магнитодвижущая сила») вокруг сердечника и, таким образом, магнитное поле переменного тока через чувствительную катушку, намотанную на тор. По закону Фарадея в сенсорной катушке возникает ЭДС, которая размыкает автоматический выключатель. Эти устройства могут быть изготовлены очень дешево и чрезвычайно эффективны — они отключаются в течение миллисекунд, если обнаруживается дисбаланс, превышающий обычно $ 50 {\ rm \ mu A} $.

Наконец, электрический ток может, как правило, течь без обратного пути через механизмы тока смещения и емкости. См. Мой ответ на вопрос «Требуется ли для переменного тока полная цепь?» для подробностей.

Наконец, были некоторые действительно причудливые, действительно однопроводные системы передачи энергии, о которых думали в прошлом, где одна линия работает как волновод и не требует обратного пути. См. Вики-страницу о Линии Губо для подробностей.

DK Science & Technology: Circuits

Электрический ток течет по петле, питая лампочки или другие электрические КОМПОНЕНТЫ. Петля представляет собой электрическую цепь. Схема состоит из различных компонентов, связанных между собой проводами. Ток передается по цепи источником питания, например АККУМУЛЯТОРНОЙ БАТАРЕЕЙ.

Таблица 26. ОПРЕДЕЛЕНИЯ ЦЕПИ

Напряжение — энергия, отданная каждой единице заряда, протекающей в цепи
Текущий протекающий электрический заряд точка в цепи каждую секунду
Мощность — это количество электроэнергии, которое цепь использует каждую секунду

ЧТО ТАКОЕ ЭЛЕКТРИЧЕСКИЙ ТОК?

Электрический ток — это поток электрического заряда (обычно в форме электронов) через вещество.Вещество или проводник, по которому протекает электрический ток, часто представляет собой металлическую проволоку, хотя ток также может протекать через некоторые газы, жидкости и другие материалы.

КОГДА ПРОХОДИТ ТОК В КОНТУРЕ?

Ток протекает только тогда, когда цепь замкнута — когда в ней нет промежутков. В замкнутой цепи электроны текут от отрицательной клеммы (соединения) на источнике питания через соединительные провода и компоненты, такие как лампочки, и обратно к положительной клемме.

ЧТО ДЕЛАЕТ ТЕКУЩИЙ ПОТОК В КОНТУРЕ?

Когда провод подсоединяется к клеммам батареи, электроны перетекают с отрицательного полюса на положительный. В отличие от (противоположных) зарядов притягиваются, подобные (одинаковые) заряды отталкиваются. Электроны имеют отрицательный заряд — они отталкиваются от отрицательного и притягиваются к положительному.

Аккумулятор — это компактный, легко транспортируемый источник электроэнергии. Когда батарея подключена к цепи, она обеспечивает энергию, которая движет электроны в токе.Батареи содержат химические вещества, которые вместе реагируют, разделяя положительный и отрицательный заряды.

ЧТО ВНУТРИ АККУМУЛЯТОРА?

Батарея состоит из одной или нескольких секций или ячеек. Внутри каждой ячейки два химически активных материала, называемых электродами, разделены жидкостью или пастой, называемой электролитом. Маленькие батарейки могут иметь только одну ячейку. Большие мощные батареи могут иметь шесть ячеек.

КАК РАБОТАЕТ АККУМУЛЯТОРНАЯ БАТАРЕЯ?

Внутри ячейки электролит реагирует с электродами, заставляя электроны перемещаться через электролит от одного электрода к другому.Один электрод получает отрицательный заряд, а другой — положительный. Два электрода — это положительный и отрицательный выводы.

Различные объекты, составляющие схему, называются компонентами. Схема должна иметь источник питания, например аккумулятор, а ток течет по проводнику, например по проводу. Лампы, зуммеры и двигатели — это компоненты, которые преобразуют электричество в свет, звук и движение.

Батарея и другие компоненты искусственного кардиостимулятора посылают электрические импульсы по проводам в сердце пациента, чтобы оно продолжало устойчиво биться.Кардиостимулятор вводится, когда сердце само по себе не бьется устойчиво.

Материал, хорошо проводящий ток, называется проводником. Металлы являются хорошими проводниками, потому что атомы металлов легко выпускают электроны, переносящие ток. Серебро и медь — лучшие проводники, и большинство электрических проводов сделано из меди. Во избежание поражения электрическим током провода покрывают изолятором.

Некоторые материалы плохо переносят ток. Говорят, что они сопротивляются (противодействуют) току.Материалы, которые делают это, называются изоляторами. Пластик, стекло, резина и керамика — хорошие изоляторы. Изоляторы используются для покрытия проводов и компонентов для предотвращения поражения электрическим током и предотвращения протекания токов.

Выключатели похожи на ворота, которые контролируют поток электричества в цепи. Когда переключатель разомкнут, он создает разрыв в цепи, и ток не течет. Когда он замкнут, он замыкает цепь, и через нее течет ток. Переключатели используются в параллельных цепях для включения и выключения различных частей цепи.

КАК ПОСТАВЛЯЕТСЯ ЭЛЕКТРИЧЕСТВО?

Большая часть электроэнергии, которую мы используем в наших домах и на работе, вырабатывается машинами на электростанциях, называемыми генераторами. Генераторы посылают электрический ток через огромную сеть цепей и проводов в дома, офисы и другие здания.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с вашим системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Как электричество проходит по проводам

Хотя электричество стало неотъемлемой частью нашей жизни, а жизнь без него немыслима, некоторые из нас до сих пор не понимают, как все это работает.Эта статья призвана помочь нам понять, как электричество проходит по проводам в наши дома и на предприятия для потребления.

Открытие электричества сильно повлияло на мир вокруг нас. В настоящее время у нас есть огромные сети и другие источники энергии, которые вырабатывают электроэнергию для потребления в наших домах и офисах. Однако наука, лежащая в основе производства, и то, как электричество проходит по проводам, остается для многих загадкой.

Электричество — это могущественная сила, которая естественным образом существует на этой планете.Все мы время от времени полагаемся на электричество. Некоторые полагаются на электроэнергию так же, как воду и пищу.

Давайте подумаем минутку; Какой была бы жизнь без электричества, которое можно было бы использовать для телефонов, любимых телешоу, видеоигр и других гаджетов?

Бесспорно, электричество — это сила, которая существует, чтобы позволить нам наслаждаться жизнью различными способами.

Что ж, хотя бы узнать, как работает электричество, было бы здорово, поскольку у нас будет возможность наслаждаться этим с твердым пониманием.

Кроме того, если мы поймем некоторые принципы и то, как электричество проходит по проводам, мы устраним многочисленные риски, связанные с электричеством.

Итак, как мы можем определить электричество?

Для большинства людей электричество воспринимается как загадочная сила, которая всплывает всякий раз, когда мы щелкаем выключателем или подключаем кабели к розетке. Я уверен, что если бы у всех нас была возможность поговорить об электричестве так, как мы его воспринимаем, у нас в конечном итоге были бы корзины, полные веселых ответов.

Тем не менее, лучшая часть этого состоит в том, что эти корзины откроют невероятную силу воображения, которую может постичь наш разум.

Именно благодаря этой прекрасной силе некоторые великие умы смогли открыть электричество с 17 века.

Такие, как Уильям Гилберт, Бен Франклин, Алессандро Вольта, Майкл Фарадей и Никола Тесла, среди многих, являются героями в открытии электричества и преобразовании его в то, что мы имеем сегодня.

Электричество — это поток электрического заряда в замкнутой цепи.Хотя мы можем рассматривать механику, лежащую в основе генерации и потока электричества, как сложную, основы того, как потоки электричества, довольно легко понять.

Поэтому давайте определим некоторые термины, используемые в связи с электричеством.

Что такое цепь?

Термин «цепь» происходит от слова «круг»; следовательно, мы можем думать об этом как о цикле. Цепь — это путь, по которому электричество течет от источника и обратно к источнику.

Говоря о цепях, они могут быть как разомкнутыми, так и замкнутыми.

При разомкнутой цепи это означает, что где-то в контуре есть отключение и электричество не может течь.

При замкнутом контуре круг замыкается; таким образом, электричество может течь. Этот принцип лежит в основе электрических выключателей.

См. Также : Почему мой счет за электричество такой высокий?

Что такое электроны?

Атом — это наименьшая составляющая единица элемента, которая может существовать, но в каждом атоме есть три частицы.Эти три частицы включают электроны, протоны и нейтроны.

Электроны несут отрицательный электромагнитный заряд и обладают уникальными характеристиками, поскольку они могут переходить от одного атома к другому.

Способность электрона отделяться от одного атома и перемещаться к соседнему атому — вот что делает его самой важной частицей, когда дело касается электричества.

Это движение электронов от одного атома к другому создает электрический ток. Постоянный поток электронов в цепи определяет ток в проводе.Узнайте, как вычислить потенциальную энергию, чтобы понять электроны и энергию.

Что сейчас?

Электрический ток определяется как поток электронов в цепи. Этот ток возникает в результате непрерывного перехода отрицательно заряженных электронов от одного атома к другому. Стандартная единица измерения электрического тока — Ампер (А).

Электрический ток существует в двух формах: постоянный ток (DC) и переменный ток (AC). Физика этих двух может быть немного сложной, но фундаментальная разница между ними зависит от того, как течет ток.

Тип электрического тока влияет на то, как электричество проходит по проводам. Электрический ток в постоянном токе имеет тенденцию течь в одном направлении, тогда как в переменном ток совершенно противоположен, поскольку он меняет направление.

Что такое напряжение?

Напряжение означает давление электронов в цепи. В некоторых случаях напряжение также может называться электродвижущей силой.

Напряжение измеряется в вольтах (В), а обычные цепи, установленные в наших домах и офисах, обычно составляют 120 или 240 вольт.Большинство осветительных приборов питаются от 120 вольт, в то время как большие приборы используют 240 вольт.

Что такое сопротивление?

Что касается электричества, сопротивление — это электрическая величина, которая измеряет сопротивление материала протеканию электрического тока. Сопротивление также влияет на то, как электричество проходит по проводам. Кабель с низким сопротивлением имеет высокий поток электронов, а кабель с высоким сопротивлением — низкий поток электронов.

Сопротивление измеряется в Ом, и слишком большое сопротивление в цепи может вызвать перегрузку, которая потенциально может привести к пожару.Причина в том, что сопротивление генерирует некоторое количество тепла в цепи. На этом принципе основана работа лампы накаливания.

Теперь, когда мы понимаем некоторые из основных терминов в области электричества, давайте глубже погрузимся в процесс производства электричества, а также попробуем посмотреть, как электричество распространяется на большей глубине.

Как проходит электричество

Чтобы электричество протекало в любом материале, этот материал должен хорошо проводить электричество.Хорошие проводники легко пропускают поток электронов из одной точки в другую. Во-вторых, электрические проводники электричества обладают относительно низким сопротивлением электрическому току по сравнению с плохими проводниками (электрическими изоляторами).

Плохие проводники электричества обладают высоким сопротивлением потоку электронов, что препятствует прохождению электрического тока из одной точки в другую.

Электрические провода изготавливаются с использованием электрических проводников и изолированы плохим проводником.В большинстве случаев медь является наиболее используемым металлом при производстве проводов.

Медь

имеет наименьшее удельное сопротивление, что делает ее лучшим вариантом, так как она также помогает снизить потери энергии.

Откуда начинается электричество

Важно учитывать, что для прохождения электронов по проводам цепи должен присутствовать сетевой генератор. Энергетический генератор — это, по сути, турбина, которая вращает огромные катушки металлических проводов в массивных магнитах.

Еще в 1931 году Майкл Фарадей открыл, как создавать электрические заряды.Когда электрический проводник вращается в магнитном поле, он производит электрические заряды.

Открытие Фарадея до сих пор используется в современных турбинах, а также в генераторах, работающих от воды, пара или ветра. Металлические катушки вращаются вокруг магнитного поля, запуская поток электронов.

Если мы можем использовать аналогию с водяным насосом, насос не создает воду, а, скорее, способствует ее потоку. То же самое и с генераторами; они не вырабатывают электричество, но способствуют прохождению электронов по проводу.

Вращающиеся катушки проводов пересекают электромагнитные поля, генерируя электрический ток внутри кабеля. Однако вращение может быть спроектировано для выработки переменного или постоянного тока.

Также важно отметить, что для некоторых источников электроэнергии могут не потребоваться турбины, такие как солнечная панель, вырабатывающая постоянный ток.

См. Также : Обзор предоплаченной электроэнергии

Как электричество проходит по проводам

Как обсуждалось ранее, по проводам физически проходит не электричество, а скорее отрицательно заряженные электроны.Эти электроны, которые прыгают от одного атома к другому, не связаны прочно и могут свободно перемещаться. Мы также можем называть их свободными электронами.

Эти свободные электроны часто отскакивают и колеблются при комнатной температуре, поскольку температура высока, то есть по сравнению с абсолютным нулем. Сила от турбин стремится стабилизировать эти электроны, поскольку они медленно дрейфуют в одном направлении.

Для переменного тока электроны медленно дрейфуют в одном направлении около 0.02 секунды, а затем откат назад на 0,02 секунды.

Учитывая, что электроны дрейфуют медленно, можно задаться вопросом, как быстро движется электричество? Электрическая энергия распространяется в виде электромагнитных волн со скоростью света 3 * 108 метров в секунду.

Скорость электричества довольно высока, хотя электроны движутся довольно медленно.

Электрическое поле создает силу, которая заставляет эти электроны медленно дрейфовать. Сила этого электрического поля — это то, что мы называем электродвижущей силой или, предпочтительно, напряжением.

С другой стороны, медленное движение электронов в проводе приводит к возникновению электрического тока. Давайте позаимствуем идею воды, текущей по трубе, чтобы помочь нам лучше понять, как электричество проходит по проводам.

Хотя поток воды в трубе не является идеальной аналогией, он поможет создать мысленный образ. В нашей аналогии вода будет представлять электроны, а трубопровод — провод.

Напряжение можно сравнить с давлением воды в трубе, а ток — с количеством воды, протекающей по той же трубе.

См. По теме : Интересные факты об электроэнергии

Что такое трансмиссия?

Что касается того, как электричество проходит по проводам, то передача — это транспортировка электричества от источника к точке потребления. Если подумать об электрической сети, это значительная сеть, предназначенная для передачи электроэнергии.

Как правило, электроэнергия от электростанций передается по линиям электропередачи на подстанции. С подстанций напряжение понижается и передается по распределительным линиям в наши дома.

Линии электропередачи питаются электричеством высокого напряжения, поскольку высокое напряжение минимизирует потери в линиях. Около 6% мощности, поступающей на линии электропередачи, теряется из-за сопротивления проводов. Важно отметить, что электрические провода также оказывают некоторое сопротивление электрическому току.

Сопротивление четко определяет, как передача и напряжение работают вместе. Закон Ома гласит: «Электрический ток прямо пропорционален напряжению, а ток обратно пропорционален сопротивлению.”

После увеличения напряжения электрический ток увеличивается, что минимизирует потери мощности во время передачи.

Некоторые из факторов, увеличивающих сопротивление провода, включают:

  • Температура: чем холоднее провод, тем меньше сопротивление, чем у более теплых проводов.
  • Площадь поперечного сечения: толстые провода имеют меньшее сопротивление и наоборот.
  • Длина провода: более короткие провода будут испытывать меньшее сопротивление, а более длинные провода — большее сопротивление.
  • Материал, из которого изготовлена ​​проволока, также определяет ее сопротивление.

См. Также : Способы экономии энергии, которые следует учитывать

Заключение о том, как электричество проходит по проводам

То, как электричество проходит по проводам, не является магией. Процесс тоже несложный для понимания, это довольно простая наука. Электрический ток — это просто поток электронов в цепи.

Например, для того, чтобы лампочка загорелась, когда вы нажимаете этот выключатель дома, электричество течет от электростанций по линиям к лампе, а затем, наконец, обратно к источнику питания.

Теперь вы знаете, как все это работает? Оставьте нам свой комментарий ниже.

Связанные ресурсы

Green Coast — это сообщество по возобновляемым источникам энергии, деятельность которого направлена ​​исключительно на то, чтобы помочь людям лучше понять технологии возобновляемых источников энергии и окружающую среду.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *