+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Осциллограф. Устройство и принцип работы. Органы управления.

Содержание

Назначение, устройство и описание осциллографа

Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: «Какой самый главный прибор на вашем рабочем месте?» Ответ будет однозначным: «Конечно, осциллограф!». И это действительно так.

Конечно, невозможно обойтись без мультиметра. Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.

Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.

Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы. Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.

Осциллограф – это своего рода телевизор, который показывает электрические сигналы.

Как работает осциллограф?

Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.

Блок-схема осциллографа

На схеме не показаны только два блока питания: высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный

калибратор, который служит для настройки осциллографа и подготовки его к работе.

Исследуемый сигнал подаётся на вход «Y» канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел. Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление. Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.

В комплект любого осциллографа входят делители 1 : 10 и 1 : 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1 : 10.

Внешний делитель осциллографа

Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.

С выхода входного делителя сигнал поступает на предварительный усилитель. Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины «Y» и обеспечивает отклонение луча по вертикали.

Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины «X

» ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление («Время/дел»), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).

Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени. Переключатель синхронизации имеет следующие положения:

  • Синхронизация от исследуемого сигнала.

  • Синхронизация от сети.

  • Синхронизация от внешнего источника.

Первый вариант наиболее удобный и он используется чаще всего.

Осциллограф С1-94.

Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.

В отличие от своих более «навороченных» собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.

Лицевая панель осциллографа С1-94

Справа от экрана сверху вниз.

  • Ручка: «Фокус».

    Ручка регулировки "Фокус"

  • Ручка «Яркость».

    Ручка регулировки "Яркость"

    Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.

  • Кнопка «Сеть». Кнопка включения прибора.

    Кнопка включения

  • Кнопка установки времени развёртки. Грубое переключение коэффициентов развёртки. Можно установить миллисекунды (ms) и микросекунды (μs). Напомним, что 1 ms = 1000 μs. Подробнее о сокращённой записи численных величин.

    Кнопка "мс/мкс"

  • Кнопка режима «Ждущ-Авт».

    Кнопка "Ждущ-Авт"

    Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.

  • Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.

    Выбор полярности запускающего импульса

  • Кнопка установки синхронизации «Внутр-Внешн

    ».

    Кнопка "Внутр-Внешн"

    Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.

    Вход внешнего синхросигнала

  • Кнопка выбора «Открытого» и «Закрытого» входа.

    Кнопка переключения "открытого" и "закрытого" входа

    Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем «Переменный и постоянный». Этот режим называется «Открытым», так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.

    При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей. В большинстве случаев лучше выбирать «закрытый» вход (~). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.

  • Клемма «корпус» служит для заземления корпуса прибора. Это делается в целях безопасности. В условиях домашней мастерской порой нет возможности заземлить корпус прибора. Поэтому приходится работать без заземления. При этом важно помнить, что во включенном состоянии на корпусе осциллографа может быть потенциал напряжения. При касании корпуса может «дёрнуть». Особенно опасно дотрагиваться одной рукой до корпуса осциллографа, а другой рукой до батарей отопления или других работающих электроприборов. В таком случае опасный потенциал с корпуса пройдёт через ваше тело («рука» — «рука») и вы получите электрический удар! Поэтому при работе осциллографа без заземления желательно не дотрагиваться до

    металлических частей корпуса. Это правило справедливо и для прочих электроприборов с металлическим корпусом.

  • По центру лицевой панели переключатель «развёртка» — Время/дел. Именно этот переключатель управляет работой генератора развёртки.

    Переключатель "Развёртка"

  • Чуть ниже располагается переключатель входного делителя (аттенюатора) — V/дел. Как уже говорилось, при исследовании сигнала с неизвестной амплитудой, необходимо выставить максимально возможное значение V/дел. Так для осциллографа С1-94 нужно установить переключатель в положение 5 (5V/дел.). В таком случае одна клетка на координатной сетке экрана будет равна 5-ти вольтам. Если ко входу «Y» осциллографа подключить делитель с коэффициентом деления 1 к 10 (1 : 10), то одна клетка будет равна 50-ти вольтам (5V/дел. * 10 = 50V/дел.).

    Переключатель входного делителя (аттенюатора)

Также на панели осциллографа имеются:

  • Ручка «Перемещение луча по горизонтали».

    Ручка "Регулировка луча по горизонтали"

    Она служит для корректировки положения луча в горизонтальном направлении. Если покрутить данную ручку, то изображение развёртки будет смешатся либо вправо, либо влево.

  • Также есть и ручка «Перемещение луча по вертикали».

    Ручка "Регулировка луча по вертикали"

    С помощью её можно отрегулировать положение развёртки на экране по вертикали.

    Ручки «Перемещение луча по горизонтали» и «Перемещение луча по вертикали» служат исключительно для настройки комфортного отображения осциллограммы сигнала на экране. Они никак не влияют на настройку работы самого осциллографа.

  • А вот ручка «Уровень синхронизации» необходима для того, чтобы «остановить» осциллограмму сигнала на экране.

    Ручка "Уровень"

    Поворотом этой ручки добиваются того, чтобы изображение сигнала «застыло», а не «убегало». Иногда, чтобы поймать изображение с помощью ручки «Уровень» приходится изменить время развёртки переключателем Время/дел.

  • Входной разъём «Y» , к которому подключается измерительный щуп или внешний делитель выглядит так.

    Входной разъём осциллографа

    Внизу указываются параметры входа, а именно входное сопротивление (1 MΩ) и входная ёмкость (40pF). Чем выше входное сопротивление измерительного прибора, тем лучше. Таким образом при измерении прибор не шунтирует элементы тестируемой схемы и не вносит искажений в измеряемый сигнал. Входная ёмкость прежде всего влияет на возможность исследования высокочастотных сигналов.

В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.

Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много. Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно. Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как выбрать цифровой осциллограф в 2020 г. [Руководство]

Для тех, кто занимается разработкой, изготовлением или ремонтом электронного оборудования, основным рабочим прибором всегда был, есть и будет (мы очень на это надеемся 🙂 ) цифровой осциллограф.

Данное руководство посвящено ответу на вопрос: «как выбрать цифровой осциллограф?».

Оглавление:

  1. Критерии выбора цифрового осциллографа
    1. Полоса пропускания
    2. Время нарастания
    3. Согласованные пробники
    4. Количество каналов
    5. Частота дискретизации
    6. Система запуска
    7. Длина записи
    8. Навигация и анализ
    9. Поддержка приложений
    10. Простое управление
    11. Интерфейсы подключения
    12. Самое главное требования при выборе осциллографа
    13. Примеры цифровых осциллографов
    14. Задать вопрос / оставить комментарий

Прежде чем понять, как правильно выбрать цифровой осциллограф, стоит понимать, что он из себя представляет и зачем он Вам нужен.

Цифровой запоминающий осциллограф:

  • Захватывает, сохраняет и отображает сигналы
  • Отображает высокоскоростные периодические или непериодические сигналы, поступающие на входной канал
  • Измеряет частоту сигнала, искажения, вносимые неисправным компонентом, уровень шумов, изменение шума во времени и множество других параметров

Осциллограф какой бы марки вы не выбрали ( Tektronix, Rohde & Schwarz, Keysight) должен не только соответствовать характеру вашей работы, но и:

  • Точно регистрировать сигналы
  • Обладать функциями, расширяющими ваши возможности и позволяющими сэкономить время
  • Иметь гарантированные технические характеристики, подтвержденные документально

Точность. Вы должны точно знать, какие сигналы собираетесь исследовать: звуковые сигналы и аналоговые сигналы датчиков или импульсы и ступеньки (цифровые сигналы). Если вы работаете с цифровыми сигналами, то будете ли вы измерять длительность перепадов, или вас интересуют лишь примерные временные соотношения? Будете ли вы использовать осциллограф для измерения характеристик разрабатываемой схемы, или в основном он нужен вам для отладки? В любом случае изначально точный захват сигнала важнее любой последующей обработки – ваши решения должны опираться на точную исходную информацию, которую затем вы всегда сможете обработать на ПК.

Возможности.  Следует учитывать не только те схемы, которые вы разрабатываете сегодня, но и те, что будете создавать завтра. Высококачественный осциллограф с широкими возможностями верно прослужит вам долгие годы.

Гарантированные характеристики цифровых осциллографов.  Убедитесь, что все характеристики, связанные с необходимыми видами измерений, отмечены в техническом описании, как «гарантированные». Если значения параметров указаны, как «типовые», они являются статистической характеристикой и не могут использоваться для выполнения достоверных измерений в соответствии с общепринятыми стандартами качества. Ниже будут перечислены основные параметры цифровых осциллографов.

Какие бывают типы цифровых осциллографов? Ёлка в вашем осциллографе 🙂

Критерии выбора цифрового осциллографа

1.Полоса пропускания цифрового осциллографа

Системная полоса пропускания цифрового осциллографа определяет главную способность цифрового запоминающего осциллографа измерять аналоговый сигнал – максимальный диапазон частот, в котором обеспечивается точное измерение.


Что необходимо учитывать

  • Осциллографы начального уровня обычно обладают максимальной полосой пропускания 100 МГц. Они могут точно (в пределах 2 %) показывать амплитуду синусоидальных сигналов частотой до 20 МГц
  • Для цифровых сигналов осциллограф должен захватывать основную, третью и пятую гармоники, иначе в осциллограмме будут отсутствовать важные детали. Поэтому для достижения погрешности не более ±2 % полоса пропускания осциллографа с учетом пробника должна, как минимум, в 5 раз превышать максимальную полосу сигнала – «правило пятикратного превышения». Это необходимо и для точного измерения амплитуды
  • Поэтому для высокоскоростных цифровых сигналов, сигналов последовательных шин, видеосигналов и других сложных сигналов может потребоваться осциллограф с полосой пропускания 500 МГц и выше
Как выбрать цифровой осциллограф? Определение полосы пропусканияКак выбрать цифровой осциллограф? Определение полосы пропускания

Рис 1. Полоса пропускания определяется как полоса частот, в пределах которой входной синусоидальный сигнал ослабляется осциллографом не более чем до 70,7 % или по уровню –3 дБ (по уровню половинной мощности), как показано на данном рисунке для осциллографа с полосой пропускания 1 ГГц.

При выборе осциллографа — это один из главных факторов.

2. Время нарастания цифрового осциллографа

При работе с аналоговыми схемами основным критерием пригодности осциллографа является полоса пропускания. При исследовании импульсных или многоуровневых сигналов с крутыми фронтами наиболее важно, насколько точно осциллограф измеряет длительность фронта.


Что необходимо учитывать

  • Чем меньше время нарастания осциллографа, тем точнее он может передать тонкие детали быстрых перепадов. Кроме того, этот параметр важен для точного измерения времени
  • Время нарастания определяется, как k/(Полоса пропускания), где k лежит в диапазоне от 0,35 (для осциллографов с полосой <1 ГГц) до 0,40 –0,45 (>1 ГГц)
  • Аналогично полосе пропускания, время нарастания осциллографа должно быть в 5 раз меньше минимальной длительности фронта исследуемого сигнала. Например, для измерения фронта длительностью 4 нс, время нарастания осциллографа должно быть не более 800 пс. Примечание. Как и для полосы пропускания, соблюдение этого простого правила возможно не всегда
  • Для измерения сигналов ТТЛ и КМОП может потребоваться время нарастания 300-400 пс
Характеристики цифровых осциллографов (время нарастания)Характеристики цифровых осциллографов (время нарастания)

Рис 2. Ваш осциллограф должен быть достаточно быстродействующим для точного захвата быстрых переходных процессов.

3. Согласованные пробники

Точные измерения начинаются с наконечника пробника. Полоса пропускания пробника должна соответствовать полосе пропускания осциллографа (с учетом «правила пятикратного превышения»), и при этом пробник не должен создавать излишнюю нагрузку на цепи тестируемого устройства.


Что необходимо учитывать

  • При подключении пробника к тестируемому устройству он становится составной частью измеряемой цепи, внося в нее свое сопротивление, емкость и индуктивность, которые способны повлиять на результаты измерения. Для минимизации такого влияния лучше использовать пробники и осциллографы одного производителя, образующие интегрированное решение
  • Важную роль играет нагрузка на исследуемую цепь. Активная нагрузка стандартного пассивного пробника обычно имеет приемлемое значение 10 МОм и выше. А вот его емкостная нагрузка 10, 12 или даже 15 пФ может создавать серьезные проблемы для измерения на высоких частотах
  • Выбирая осциллограф среднего ценового диапазона, обращайте внимание, чтобы пробники имели входную емкость не более 10 пФ. Лучшие пассивные пробники обладают полосой пропускания 1 ГГц и входной емкостью менее 4 пФ ( Например, Tektronix TPP1000)
Как пользоваться цифровым осциллографов вместе с пробникомКак пользоваться цифровым осциллографов вместе с пробником

Рис 3. Выбирая пробник, подготовьте ответы на следующие вопросы. Что вы планируете измерять – напряжение, ток или и то, и другое? Какова частота исследуемого сигнала? Велика ли амплитуда? Высокое или низкое выходное сопротивление имеет тестируемое устройство? Нужны ли вам дифференциальные измерения? Выбор пробников зависит от того, с какими устройствами и сигналами вы собираетесь работать.

Поэтому, задача не только в том, как выбрать цифровой осциллограф, но и как пользоваться осциллографом.

Используйте несколько пробников. Для начала выберите пассивные пробники с широкой полосой пропускания и малой входной емкостью. Активные несимметричные пробники имеют полосу пропускания от 1-4 ГГц, а дифференциальные – до 20 ГГц и выше. Добавив токовый пробник, вы сможете использовать осциллограф для расчета и отображения мгновенной мощности, активной мощности, полной мощности и фазы. Высоковольтные пробники могут измерять напряжения до 40 кВ пикового значения. Специальные пробники включают логические, оптические, тепловые и др.

4. Сколько нужно каналов для выбора осциллографа?

Цифровые осциллографы оцифровывают сигнал, поступающий на входные аналоговые каналы, а затем сохраняют и отображают полученные значения. Обычно, чем больше каналов, тем лучше, хотя дополнительные каналы увеличивают цену прибора.


Что необходимо учитывать

  • Сколько каналов выбрать – 2, 4, 8 или 16 – зависит от вашего приложения. Два или четыре аналоговых канала позволят измерять и сравнивать временные характеристики сигналов аналоговых устройств, тогда как отладка цифровой системы, использующей параллельную передачу данных, может потребовать 8 или 16 дополнительных каналов, а возможно и больше. Например, осциллограф MSO58 имеет 8 аналоговых или 64 цифровых канала
  • Осциллографы смешанных сигналов предлагают дополнительные цифровые каналы ( цифровой вход осциллографа), которые отображают только два логических уровня и могут представлять их в виде сигнала шины. Комбинированные осциллографы ( например, MDO4104С) имеют отдельный РЧ вход для выполнения высокочастотных измерений в частотной области
  • Какую модель бы вы ни выбрали, все каналы должны обладать достаточным диапазоном частот, линейностью, точностью усиления, равномерностью АЧХ и стойкостью к статическому разряду
  • Некоторые приборы в целях экономии используют общую для нескольких каналов систему дискретизации. Будьте осторожны – в этом случае частота дискретизации может снижаться в зависимости от числа используемых каналов
  • Изолированные каналы упрощают измерения с гальванической развязкой. В отличие от осциллографов с несимметричным входом, «общие» проводники входных каналов могут быть изолированы друг от друга и от «земли». Например, серия осциллографов Tektronix TPS2000B или Rohde & Schwarz Scope Rider
Осциллографы MDO сочетают в себе аналоговые, цифровые и РЧ каналыОсциллографы MDO сочетают в себе аналоговые, цифровые и РЧ каналы

Рис 4. Комбинированные осциллографы (MDO) не только предлагают аналоговые и цифровые каналы, как и осциллографы смешанных сигналов (MSO), но и имеют отдельный РЧ вход, сигнал которого можно анализировать в частотной области.

5. Частота дискретизации цифрового осциллографа

Частота дискретизации осциллографа подобна частоте кадров видеокамеры. Она определяет количество мелких деталей сигнала, которые может захватить и отобразить осциллограф.

Что необходимо учитывать

  • Частота дискретизации (число выборок в секунду) показывает, насколько часто осциллограф делает выборки сигнала. Как и ранее, рекомендуется придерживаться «правила пятикратного превышения»: частота дискретизации должна не менее чем в 5 раз превышать наивысшую частотную составляющую измеряемого сигнала
  • Минимальная частота дискретизации тоже может иметь важное значение, если нужно исследовать медленно меняющиеся сигналы в течение длительного времени
  • Большинство осциллографов начального уровня имеют максимальную частоту дискретизации от 1 до 2 Гвыб./с, тогда как осциллографы среднего ценового диапазона могут предлагать от 5 до 10 Гвыб./с
  • Чем выше частота дискретизации, тем меньше теряется информации, и тем лучше осциллограф представляет исследуемый сигнал. Но при этом память заполняется быстрее, что ограничивает интервал захвата
Выбор цифрового осциллографа исходя из частоты дискретизацииВыбор цифрового осциллографа исходя из частоты дискретизации

Рис 5. Точность отображения сигнала зависит от частоты дискретизации и от используемого метода интерполяции.

Линейная интерполяция соединяет выборки сигнала прямыми линиями, но такой подход ограничен реконструкцией сигналов с прямыми участками.

Интерполяция «sin x/x» представляет собой математический процесс, в котором для заполнения промежутков между реальными выборками рассчитываются дополнительные точки. Эта форма интерполяции хорошо работает для сигналов криволинейной формы и непериодических сигналов, которые в реальных схемах встречаются значительно чаще, чем чистые меандры или импульсы.

Следовательно, интерполяция «sin x/x» более предпочтительна для приложений, где частота дискретизации превышает полосу пропускания системы от 3 до 5 раз.

Для захвата глитчей нужна скорость.  Теорема Котельникова гласит, что для точной реконструкции сигнала частота дискретизации должна не менее чем в два раза превышать его наивысшую частотную составляющую.

Однако это соотношение определяет абсолютный минимум, который применим только к синусоидальным и периодическим сигналам. Глитчи по определению являются непериодическими, поэтому дискретизация с удвоенной частотой наивысшей составляющей обычно недостаточна. Вывод: высокая частота дискретизации повышает разрешение, позволяя увидеть накладывающиеся друг на друга события.

6. Гибкая система запуска

Система запуска обеспечивает стабильное изображение и позволяет выделять конкретные фрагменты сложных сигналов.

Что необходимо учитывать

  • Все осциллографы обеспечивают запуск по фронту, и большинство – по длительности импульса
  • Для захвата специфических аномалий и более эффективного использования длины записи выбирайте осциллограф, имеющий расширенные режимы запуска для более сложных сигналов
  • Чем шире выбор условий запуска, тем выше гибкость использования осциллографа (и тем быстрее вы сможете выявлять причины возникающих проблем):
    • запуск по последовательности событий А и В, задержка по времени или по событиям;
    • запуск по строке или кадру видеосигналов стандартной и высокой четкости;
    • запуск по условию – скорость нарастания, глитч, длительность импульса, время ожидания, рант, время установки и удержания;
    • запуск по сигналам последовательных (I2C, SPI, CAN/LIN, USB …) и параллельных шин
Выбор цифрового осциллографа исходя из частоты дискретизацииВыбор цифрового осциллографа исходя из частоты дискретизации

Рис 6. Запуск позволяет начать горизонтальную развертку с нужной точки сигнала, а не просто с того места, где закончилась предыдущая развертка. При однократном запуске происходит захват по всем каналам одновременно.

Расширенные функции запуска помогают найти нужную информацию. Запуск по заданным условиям позволяет выделить определенный участок осциллограммы и обнаружить аномалии. Функции запуска можно настроить на специальные условия во входном сигнале, облегчая, например, обнаружение импульсов, длительность которых меньше заданной

7. Длина записи

Длина записи – это число точек, из которых состоит зарегистрированная осциллограмма. Осциллограф имеет ограниченный объем памяти для записи выборок, поэтому чем больше объем памяти, тем большую длину записи можно получить.

Что необходимо учитывать

  • Время захвата = длина записи / частота дискретизации. Например, при длине записи 1 млн. точек и частоте дискретизации 250 Мвыб./с осциллограф может захватывать сигнал в течение 4 мс. Правильное понимание этого параметра поможет Вам выбрать осциллограф именно под Ваши задачи
  • Современные осциллографы позволяют выбирать длину записи, оптимизируя уровень детализации в соответствии с вашим приложением
  • Хороший осциллограф общего назначения может сохранить более 2000 точек, чего более чем достаточно для стабильного синусоидального сигнала (требующего как минимум 500 точек). Но для отыскания причин аномалий в сложных последовательных потоках данных лучше выбрать осциллограф с цифровым люминофором (DPO) с длиной записи 1 млн. точек или больше.
  • Для регистрации переходных процессов или поиска непериодических сигналов, таких как джиттер, искаженные импульсы или глитчи, выбирайте осциллограф, начиная со среднего ценового диапазона, сочетающий большую длину записи с высокой скоростью обновления осциллограмм.
Длинная память осциллографаДлинная память осциллографа

Рис 7. Поскольку осциллограф может сохранять лишь ограниченное число выборок, временное окно захвата осциллограммы обратно пропорционально частоте дискретизации осциллографа. Время захвата = Длина записи / Частота дискретизации.

Получите полную картину. Достаточно детальный захват для декодирования сигнала шины USB требует высокого разрешения по времени (200 пс). Регистрация нескольких пакетов требует продолжительного времени захвата (200 мкс). Чтобы отобразить и то и другое, нужен осциллограф с большой длиной записи (1 млн. точек).

8. Система навигации и анализа

Поиск определенных аномалий формы сигнала можно сравнить с поиском иголки в стоге сена. Вам понадобятся средства, автоматизирующие этот процесс и ускоряющие получение результата.

Что необходимо учитывать

  • Функция масштабирования и панорамирования позволяет растягивать интересующий участок осциллограммы и перемещать окно обзора назад и вперед по шкале времени
  • Функция воспроизведения и паузы автоматически перемещает окно обзора по осциллограмме. Это позволяет освободить руки и сконцентрироваться на самом сигнале
  • Маркеры позволяют помечать интересующие события. Для быстрого перехода между маркерами и простого измерения временных интервалов можно использовать органы управления передней панели
  • Функция поиска и маркировки позволяет просматривать всю захваченную осциллограмму и автоматически отмечать появления определенных пользователем событий
  • Расширенный поиск позволяет определять различные критерии, аналогичные условиям запуска, в соответствии с которыми будут автоматически обнаруживаться и помечаться события в захваченном сигнале.
Длинная память осциллографаДлинная память осциллографа

Рис 8. Осциллографы с длиной записи в миллионы точек могут выполнять захват в течение длительного времени, что очень важно для исследования сложных сигналов. Расстановка маркеров помогает, например, измерять задержки на шине CAN.

9. Расширенная поддержка приложений

Лучшие осциллографы имеют прикладное программное обеспечение для диагностики оптических и электрических схем и тестирования на соответствие стандартам.

Что необходимо учитывать

  • Приложения для измерения целостности сигнала и джиттера позволяют глубже анализировать проблемы качества сигнала в цифровых системах, выявлять причины их возникновения и оценивать их влияние
  • РЧ приложения предоставляют возможность представления сигналов в частотной области и анализа с помощью спектрограмм и кривых зависимости амплитуды, частоты и фазы от времени.
  • Поддержка отладки встраиваемых систем со смешанными аналоговыми и цифровыми сигналами, параллельными и последовательными шинами, такими как CAN/LIN, I2C, SPI, FlexRay, MOST и другие.
  • Прикладное ПО для учебных заведений: чтобы создавать технологии следующего поколения, студенты, изучающие электронику, должны научиться разбираться в сложных электронных схемах
Длинная память осциллографаДлинная память осциллографа

Рис 9. Устойчиво ли работает ваш импульсный источник питания? Средства автоматического анализа позволяют измерять каждый параметр одним нажатием кнопки, предлагая быстрый и точный анализ области безопасной работы (ОБР), качества питающего напряжения, коммутационных потерь, гармоник, модуляции, пульсаций и скорости нарастания выходного тока и напряжения (di/dt, dv/dt).

10. Простое управление

Осциллографы должны быть просты в управлении даже для неопытных пользователей. Интерфейс пользователя дает существенный вклад во время решения инженерной задачи.

Что необходимо учитывать

  • Часто используемые функции должны иметь отдельные органы управления
  • Кнопки автоматической настройки и сброса к значениям по умолчанию позволяют мгновенно настроить прибор
  • Осциллограф должен иметь быстрый и четкий отклик на органы управления
  • Интерфейс осциллографа должен поддерживать ваш родной язык, включая соответствующие накладки для передней панели
Длинная память осциллографаДлинная память осциллографа

Рис 10. Многие люди пользуются осциллографом не каждый день. Интуитивное управление позволяет даже неопытным пользователям чувствовать себя комфортно, в то же время предлагая опытным пользователям простой доступ к наиболее востребованным функциям. Для использования как в лабораторных, так и в полевых условиях выпускается множество моделей портативных осциллографов.


11.Интерфейсы и возможности расширения

Непосредственное подключение осциллографа к компьютеру или передача данных через сменные носители позволяет выполнять расширенный анализ, упрощает документирование и обмен результатами измерений.

Что необходимо учитывать

  • Обратите внимание на осциллографы, обеспечивающие доступ к рабочему столу Windows, имеющие функции распечатки на сетевом принтере и предоставляющие общий доступ к ресурсам
  • Проверьте, может ли осциллограф использовать программное обеспечение сторонних производителей для анализа, документирования и автоматизации измерений
  • Нужен ли вам доступ в интернет для обмена с коллегами результатами измерений в режиме реального времени?
  • Можно ли расширить возможности осциллографа в соответствии с изменяющимися потребностями? Например, добавить:
    • память для анализа записей большей длины;
    • специальные приложения для измерений;
    • различные пробники и модули;
    • такие принадлежности, как аккумуляторные батареи и комплекты для монтажа в стойку;
    • программное обеспечение для управления осциллографом с компьютера, выполнения
    • автоматических измерений, регистрации и экспорта осциллограмм.
Основные интерфейсы подключения осциллографа: GPIB, RS-232, Ethernet, LXIОсновные интерфейсы подключения осциллографа: GPIB, RS-232, Ethernet, LXI

Рис 11. К стандартным интерфейсам осциллографа относятся GPIB, RS-232, USB, Ethernet, LXI, а также интерфейсы для связи с сетевыми коммуникационными модулями. Интерфейс USB широко используется для сохранения осциллограмм, результатов измерений и наборов настроек на флэш- накопителях. PictBridge позволяет использовать осциллограф в качестве цифровой камеры. Порт VGA обеспечивает подключение внешнего монитора.

… и, наконец, учтите душевный комфорт!

Конечно, приобретая осциллограф, вы заплатите за него определенную сумму, но во что выльются последующие эксплуатационные расходы?

Ознакомьтесь со стоимостью услуг по поддержке прибора, предлагаемых производителем, и оцените, насколько они увеличивают ваши расходы и продлевают срок службы осциллографа.

К таким услугам относятся обучение по месту установки, системная интеграция, управление проектами и другие профессиональные услуги, которые помогут повысить эффективность прибора и позволят выполнять точные и достоверные измерения.

Удобные пакеты дополнительных услуг и такие виды поддержки, как расширенная гарантия, могут сэкономить деньги в долговременной перспективе и избавить от ненужных волнений.

Бюджетные цифровые осциллографы

Осциллографы начального уровня

Осциллографы смешанных сигналов

Продвинутый анализ сигналов

Осциллографы Hi-end класса

  1. Просто позвоните по телефону: +7 (499) 391-90-77
  2. Или напишите на почту: [email protected]
Выбираем бюджетный карманный осциллограф / Инструменты / iXBT Live

Приветствую! 

Добавляю небольшую статью на тему выбора домашнего компактного осциллографа начального уровня для работы и хобби. 

Почему речь пойдет про карманные и и компактные — потому что это самые бюджетные варианты. Настольные осциллографы можно посмотреть по ссылке ниже. Это, как правило, достаточно дорогие модели ($200-400 и дороже) на 4 канала со множеством функций. А вот компактные модели на 1 канал для простых измерений и оценки формы сигнала можно приобрести буквально за $20…$40. И будут приличные модели, достаточные для большинства измерений.Основные технические характеристики карманных осциллографов — это рабочая полоса, которая измеряется в МГц, а также частота дискретизации, которая напрямую влияет на качество измерений. Не менее важная характеристика — это размер дисплея и емкость батареи, обеспечивающие комфортную работу в автономном режиме.

В статье постараюсь описать осциллографы, которые лично были в руках и дать небольшие плюсы и минусы данных моделей.

Начальный вариант, через который прошли многие радиолюбители — это осциллограф на базе микроконтроллера ATmega, на Али есть множество вариантов, в том числе для самостоятельной сборки, например, DSO138. Его развитие на базе микроконтроллера STM32 называется DSO150.

ОСЦИЛЛОГРАФ DSO 150 В КОМПЛЕКТЕ С ЩУПОМ P6020 ЗА $21

DSO150 — это неплохой осциллограф для радиолюбителя начального уровня. Сам осциллограф имеет полосу около 200кГц. Построен на базе STM32, АЦП до 1М семплов. Хороший вариант для проверки простых блоков питания (ШИМ) и аудиотрактов. Цена $17 за комплект с корпусом и щупом Р6100. Подойдет для начинающих, например, для исследования звуковых сигналов (настройке усилителя и т.п.). Из минусов отмечу невозможность сохранить картинку осциллограммы, а также небольшую полосу пропускания.

Технические характеристики:
• Максимальная частота выборки в режиме реального времени: 1 Мвыб/с
• Аналоговая полоса пропускания: 0 — 200 кГц
• Диапазон чувствительности: 5 – 20 мВ/дел
• Максимальное входное напряжение: 50 В макс. (1 зонд)
• Полное входное сопротивление: 1M ом/20пФ
• Точность: 12 бит
• Длина записи: 1024 точек
• Режимы связи: постоянный ток / переменный ток/ заземление
• Временной диапазон развёртки: 500с/дел– 10 мкc/дел
• Режимы ожидания: автоматический, нормальный и одиночный
• Положение запуска: в центре буфера
• Напряжение источника питания: 9 В (8 – 10 В) постоянного тока
• Потребление тока: ~ 120 мА @ 9 В
• Размер основной платы: 94 x 65 мм 
• Размер аналоговой платы: 65 x 47 мм 
• Размер экрана: 52 x 40 мм
• Размер упаковки: 14,5 x 10 x 3,7 см 
• Вес упаковки: 179 граммов

 

 Но хобби быстро прошло, перешел к серьезным моделям.

В начале 2018 года попался один из популярных вариантов осциллографов начального уровня — простой, но неплохой осциллографический пробник — DSO188.

Осциллограф DSO188 — простой «показометр» с одним каналом, без памяти, но с цветным дисплеем, аккумулятором 300mAh и очень маленький по размерам. Его плюс именно в компактности и портативности, а полосы частот хватит для большинства приложений (например, настройка звукотехники).
При небольшой стоимости ($30) он отображает сигналы с частотой 1МГц ( семплирование 5MSA/s). Для работы используются MMCX щупы, но в комплекте есть адаптер MMCX-BNC. Установлен отдельный АЦП на 5MSPS, полоса до 1МГц, корпус сборный из панелей, что очень даже неплохо выглядит. В плюсах отмечу компактные размеры и приличную полосу, по сравнению с DSO150 (1МГц), а также компактные размеры. Очень удобно использовать вместе с обычным тестером. Легко помещается в карман. Из минусов — корпус имеет открытую конструкцию, не защищенную от внешних воздействий (нужно дорабатывать), а также отсутствие возможности перенести на компьютер сохраненные снимки. Наличие коннектора MMCX это удобно, но для полноценной работы потребуется адаптер на BNC или специальные щупы. За свои деньги это очень хороший вариант начального уровня.

Specifications:
1:Analog band width: 1MHz
2:Maximum real time sampling rate: 5MS/s
3:Vertical sensitivity: 50 mV/div ~ 200 V/div
4:Horizontal time base range: 100mS/div ~ 2uS/div
5:Maximum input voltage: 40 V (1X probe), 800 V (10X probe)
6:Storage depth: 40KB
7:Input resistance: 1M
8:ADC precision: 12bits
9:Coupling mode: AC/DC
10:Trigger mode: Auto
11:Trigger edge: Ascending/descending edge
12:External trigger voltage 0 – 40 V
13:Display: TFT color display
14:Power supply: 250 mAh lithium battery
15:Size: 57 x 34 x 11 mm 
16:Weight: 40 grams

Если одного мегагерца мало, можно посмотреть в сторону карманных осциллографов в корпусе с BNC коннектором. 

 КАРМАННЫЙ ОСЦИЛЛОГРАФ DSO FNISKI PRO

 АНАЛОГИЧНАЯ МОДЕЛЬ  DSO FNISKI PRO С ЩУПОМ P6100 

Это очень хороший вариант за свои деньги. Полоса 5МГц (синус). Есть возможность сохранения графиков.  Цена с купоном продавца $38.

Характеристики:
1:Analog band width: 5MHz
2:Maximum real time sampling rate: 20MS/s
3:Vertical sensitivity: 50 mV/div ~ 200 V/div
4:Horizontal time base range: 50S/div ~ 250nS/div
5:Maximum input voltage: 40 V (1X probe), 800 V (10X probe)
6:Storage depth: 40KB
7:Input resistance: 1M
8:ADC precision: 8bits
9:Coupling mode: AC/DC
10:Trigger mode: Single, Normal, Automatic
11:Trigger edge: Ascending/descending edge
12:External trigger voltage 0 – 40 V
13:Display: 2.4 inch @ 320 * 240
14:Power supply: 1200 mAh lithium battery

 

Есть вариант с BNC-крокодилами.

Есть вариант с щупом 10х щуп P6010 (с полосой до 10МГц). 

 Я бы взял первый вариант (с крокодилами) и докупил бы щупы отдельно. Ссылка на щупы есть ниже.

По результатам использования отмечу удобный корпус,  большой дисплей. Тестовый сигнал на 5МГц (синус) показывает без особых проблем, другие периодические и апериодические сигналы нормально показывает до 1 МГц. 

Если полоса выше 1МГЦ не критична, и не требуется работать с большими напряжениями, то DSO FNIRSI PRO c BNC коннектором — хороший выбор. Он использует стандартные щупы и может применяться как быстрый карманный осциллографический пробник — потыкать и посмотреть, жив ли обмен, микросхема и т.п. А потом топать за большим осциллографом либо нести пациента на стол и вскрывать. 

 А вот если требуется полоса чуть больше — обратите внимание на недорогой осциллографический пробник DSO168

Осциллограф DSO168 имеет необычный дизайн, смахивающий на популярные МР3 плееры. Это одновременно и плюс (металлический стильный корпус), и минус устройства. Не самый удачный выбор разъема — MiniUSB для зарядки аккумулятора. А также отмечу подключение через джек 3.5 мм — самый главный минус данной модели.

Технические характеристики:
• Максимальная частота выборки в режиме реального времени: 50 Мвыб/с
• Аналоговая полоса пропускания: 0 — 20 МГц
• Диапазон чувствительности: 50 – 200 мВ/дел
• Максимальное входное напряжение: 40 В макс. (1 зонд)
• Полное входное сопротивление: 1Mом/20пФ
• Точность: 12 бит
• Длина записи: 1024 точек
• Режимы связи: постоянный ток / переменный ток
• Временной диапазон развёртки: 100с/дел– 100нс/дел
• Режимы ожидания: автоматический, нормальный и одиночный
• Положение запуска: в центре буфера
• Напряжение источника питания: 3.7В аккумулятор

DSO168 — интересный прибор за свою стоимость.
Гораздо лучше огромного количества подобных DSО138, которые строятся на базе микроконтроллеров со встроенным АЦП (200kHz).
В данной модели DSO168 установлен отдельный АЦП AD9283, который обеспечивает уверенный анализ сигналов до 1МГц.
До 8 МГц можно использовать данный прибор, но как «отображалку» сигналов, без каких либо серьезных измерений.
А вот до 1МГц — без проблем.

 В комплекте идет стандартный щуп Р6100 BNC, а также адаптер с джека 3.5мм на BNC. 

На борту отдельный АЦП от AD с частотой семплирования до 100 MSPS, аналоговая полоса до 20МГц, один канал.

Осциллограф DSO168 имеет полосу 20МГЦ (при частоте семплирования 60MSA/s), не самый удачный, но более-менее аккуратный корпус аля iPod, встроенный аккумулятор 800 мАч (может питаться от USB). Сходство с плеером добавляют щупы через джек 3,5 мм (есть адаптер BNC-3.5mm). Памяти для сохранения осциллограмм — нет.

Далее предлагаю посмотреть еще одну недорогую модель осциллографа DSO338 с полосой 30МГц.

КОМПАКТНЫЙ ОСЦИЛЛОГРАФ DSO 338 FNISKI 30MHZ 

Это карманный аккумуляторный осциллограф на один канал с частотой семплирования аж 200Msps. Характеристики неплохие, многим такой модели хватает за глаза. В наличии один канал, дисплей имеет хорошие углы обзора, время работы до 8 часов с одного заряда непрерывно. Цена на распродаже с купоном $61.

Технические характеристики:
1:Analog band width: 30MHz
2:Maximum real time sampling rate: 200MS/s
3:Vertical sensitivity: 50 mV/div ~ 200 V/div
4:Horizontal time base range: 100mS/div ~ 125nS/div
5:Maximum input voltage: 40 V (1X probe), 800 V (10X probe)
6:Storage depth: 128KB
7:Input resistance: 1M
8:ADC precision: 8bits
9:Coupling mode: AC/DC
10:Trigger mode: Single, Normal, Automatic
11:Trigger edge: Ascending/descending edge
12:External trigger voltage 0 – 40 V
13:Display: 2.4 inch — IPS — 320*240
14:Power supply: 3000 mAh lithium battery
15:Size: 90 x 70 x 28 mm 
16:Weight: 200g

 Для измерений используется стандартный щуп P6100 BNC.

 Осциллограф достаточно хорошо себя показывает на частотах более 20 МГц.

 Но, учитывая его стоимость, можно посмотреть и другие варианты.

 

 МОЩНЫЙ ОСЦИЛЛОГРАФ FNIRSI-5012H 100МГЦ

 Новая модель и один из лучших за свои деньги. Это одноканальный 100-МГцовый осциллограф с памятью. Частота семплирования достигает 500 Msps.  Цена на распродаже c учетом купона продавца $76.

Осциллограф является одним из самых «мощных» и «навороченных» в своем ценовом диапазоне. Имеется 1 канал BNC, но осциллограф может отображать синусоидальный сигнал до 100МГц. Другие периодические и апериодические сигналы нормально смотрятся до 70-80 МГц.

 В комплекте с осциллографом есть неплохой щуп Р6100 с делителем 10х и полосой до 100МГц, а также кейс для хранения и переноски.

Осциллограф справляется с сигналами не хуже, чем старший собрат Rigol.

 Отмечу отсутствие связи с компьютером (отчасти это не минус, так как нет необходимости осуществлять гальваническую развязку), а также наличие всего одного канала для измерения.

DSO Fniski 100MHz — это хороший выбор, особенно если нет подходящего прибора и остро стоит вопрос стоимости. Если есть возможность добавить — лучше добавить и взять что-то на два канала и с возможностью сохранения результатов.

ПЕРЕНОСНОЙ ОСЦИЛЛОГРАФ HANTEK 2C42 40МГЦ

Хит 2019 года — портативный осциллограф с частотой 40 МГц (есть модель 2C72 до 70МГЦ) на два канала и с генератором частоты. Встроенный мультиметр. Поставляется с сумкой для переноски.  Цена от $99 на распродаже.

В комплекте есть все необходимое + кейс для переноски. Частота оцифровки до 250MSa/s — это самый лучший результат для портативных осциллографов. Существуют версии 2С42/2С72 без встроенного генератора, но они не так интересны с точки зрения цены и функционала.

 Осциллограф чуть дороже предыдущих, но модель 2Dx2 оснащена генератором частоты. На фото ниже показана генерация синусоидального сигнала частотой 1 МГц.

 В остальном, Hantek не хуже своих старших собратьев. Отмечу наличие встроенного мультиметра, что делает данную модель устройством 3-в-1.

 

В статье отмечу еще один популярный вариант карманного осциллографа — DSO203 Handheld ARM Nano Mini Digital Oscilloscope.

Это отличный комбайн со встроенным функциональным генератором сигналов, 4 каналами (2 аналоговых + 2 цифровых), и частотой семплирования 72MHz. Единственно, он самый дорогой из представленных.

 На сегодняшний день существует отработанная прошивка Wildcat, которая значительно повышает функционал данного DSO203.

Осциллограф практически неубиваемый, имеет металлический корпус, два аналоговых входа, два цифровых входа, встроенный генератор частот. Коннекторы MMCX.

 На фото ниже представлен пример работы генератора частоты. В минусы запишу стоимость, мягко говоря нишевый осциллограф. Можно чуть чуть докинуть и взять Rigol или что-то подобное. 

Осциллографы, которые  у меня есть закончились, но я отмечу еще пару моделей, которые имеют право на жизнь. 

 Это удобный и качественный  осциллограф с генератором сигналов Jinhan JDS2023.

Аналоговая полоса 20MHz. Сделан в удобном формфакторе, в комплекте есть все необходмое для работы.

 Осциллограф подключается к компьютеру, имеет встроенный генератор частот, можно сохранять снимки экрана.

 

НОВЫЙ ПОРТАТИВНЫЙ ОСЦИЛЛОГРАФ JDS6031 1CH 30M 200MSPS

МУЛЬТИМЕТР JSD6031 С АЛИ

Характеристики:
Разрешение экрана: 320 * 240
Длина хоста * ширина * высота: 19,5см * 9,5см 3,7см
Внешняя длина упаковки * ширина * высота: 28,5 см * 23 см * 8 см
Вес хозяина: 350 г
Общий вес брутто: 700 г
Канал: 1CH
Пропускная способность: 30МГц
Скорость выборки: 200 MSPS
Режим питания: 18650 съемный аккумулятор
Калибровка сигнала: 1 кГц меандр

А также недорогой осциллограф DSO 112A TFT Mini Digital Oscilloscope.

 Хороший вариант на твердую «четверку». Имеет сенсоный дисплей и возможность подключения по USB. На борту быстрый АЦП c оцифровкой до 5М семплов в секунду, аналоговая полоса до 2МГц. 

Как и с DSO150, применена STM32, полоса 200кГц. При желании можно найти еще дешевле не распаянный вариант. Подойдет для обучения пайки «со смыслом».

Подобные портативные девайсы — то, что я обычно использую. Очень удобно, особенно при настройке различных приборов, проверке, пуско-наладке.  Могу рекомендовать брать вариант DSO150, а еще лучше, похожий DSO138 (200kHz) в варианте DIY для обучения пайки и азам радиоэлектроники.  Из функциональный моделей отмечу DSO Fniski 100MHz, как осциллограф с самым лучшим соотношением цена и рабочая полоса, а также Hantek 2С72 как самый фунциональный.

Рекомендую обратить внимание на полезные аксессуары для осциллографа:

Щуп Р6100 100МГц с компенсацией емкости и делителем 10х ($5)

Щуп Р2100 100МГц с компенсацией емкости и делителем 10х копия Tectronix ($7)

Щуп Р4100 100МГц 2кВ с компенсацией емкости и делителем 100х ($10)

Пассивный аттенюатор сигнала Hantek HT201 для осциллографа 20:1 BNC для измерений напряжения до 800Вольт ($4)

 

 Все перечисленные модели интересны, в период летней распродажи с 18 по 23 июня будут приличные скидки до 15-20%. Старайтесь комбинировать с купонами, приведенными выше. Про оформлении смотрите купоны магазина, которые доступны на странице акций или на странице товара. 

Лучшие модели осциллографов для радиолюбителя с Aliexpress на летней распродаже

Смотрите горячие темы:

Выбираем лучшие карманные осциллографы (DSO) с Али

Электроника, модули и промавтоматика с Али и не только. Недорого и очень выгодно

Топ-10 новых автогаджетов с Aliexpress

Подборка топ-10 аудиомагазинов с Aliexpress: компоненты для самодельных усилителей и акустических систем

Подборка топ-10 аудиоусилителей с Aliexpress

Умный дом с нуля: устройства Xiaomi MiHome

Умный дом с нуля: выбираем устройства Xiaomi MiHome

Подборка лучших павербанков (внешних аккумуляторов) c поддержкой QC3.0 и PD

Профильные магазины с Алиэкспресс: аудиомодули, радиотовары, специальные гаджеты и инструменты

Подборка паяльного оборудования для радиолюбителя с Али (и не только)

Выбираем лучшее оборудование для радиолюбителя с Али (и не только)

Топ мультиметров и измерителей с Али

Недорогие и полезные DIY модули и инструменты для радиолюбителя

Подборка лучших павербанков (внешних аккумуляторов) c поддержкой QC3.0 и PD

Подборка серьезных осциллографов с Али (20МГц-100МГц)

Подборка готовых модулей усилителей звука с Али (плюс пара динамиков) для DIY акустических систем

Аудиомодули и платы усилителей с Али и не только

Лучшие компоненты для создания точечной сварки своими руками с Алиэкспресс (для сварки аккумуляторов)

Подборка интересных товаров, гаджетов, инструментов и игрушек с Алиэкспресс с хорошей скидкой

Инструменты, тестер, павербанк — годнота с Алишки

Лучшие аккумуляторные батарейки с Али: АА (пальчиковые), ААА (мизинчиковые), «Крона»

Подборка лучших внешних аккумуляторов c QC3.0 и PD для питания паяльников и мощных устройств

Подборка очень выгодных товаров технической направленности с Алиэкспресс

Лучшие наборы LEGO с Алиэкспресс (10 сборных моделей автомобилей)

Аксессуары для LEGO — лучшие и самые необычные дополнения с Али

20 самых важных характеристик осциллографов!

20 самых важных характеристик осциллографов!

Попробуем разобраться в том, какую роль играет полоса пропускания, чувствительность и память осциллографа при измерениях, в каких случаях лучше использовать аналоговые и цифровые, двухканальные и двухлучевые осциллографы, а когда вместо современного стационарного цифрового или портативного осциллографа достаточно иметь под рукой старый советский прибор? Ответы на эти и другие вопросы, а также все типовые заблуждения, связанные с этими приборами, вы найдете в нашей подборке — 20 самых важных характеристик осциллографов!

Когда мы говорим «осциллограф», то представляем себе прибор, на лицевой панели которого расположен экран, отображающий графики входных электрических сигналов (амплитудные и временных характеристики). Однако поскольку видов этих сигналов «великое множество», очевидно, что не может быть одного универсального прибора, способного адекватно показать все. Поэтому, выбирая осциллограф, нужно ориентироваться во всех разновидностях этого «многоликого» по областям применения прибора, чтобы выбрать именно тот, который подходит для решения стоящих перед вами задач. И здесь немудрено запутаться или упустить какие-то моменты, что может привести к покупке «ненужного чуда» электронной техники. А чтобы не попасть впросак, стоит прислушаться к отзывам опытных практиков, помогающим системно подойти к своим запросам и сделать действительно безошибочный выбор. Далее разбираются основные параметры и технические характеристики осциллографов.

1. Чем хорош двухлучевой осциллограф?

важные характеристики двухлучевого осциллографа

Двухлучевой осциллограф позволяет двумя лучами одновременно наблюдать на общей временной развертке два независимых процесса. Двухканальный осциллограф содержит электронный коммутатор, коммутирующий либо намного чаще, чем частота процесса, либо намного реже, чем частота процесса два процесса на один луч. При этом получается, как бы два луча, но график отображается «кусками, хотя, если частота коммутации выбрана верно, то визуально это не заметно. Все это верно до тех пор, пока исследуются строго периодические процессы. Если же процессы импульсные или не строго периодические (форма сигнала отличается в разных периодах или период меняется), качественно наблюдать два таких процесса на двухканальном однолучевом осциллографе невозможно, потому что в каждый момент времени мы видим только кусочек одного процесса. В принципе двухлучевой осциллограф, конечно, намного лучше однолучевого двухканального. У двухлучевого есть и недостаток: вертикальная развертка каждого луча линейна в своей половине экрана, верхнего – в верхней, нижнего – в нижней. При попытке использовать весь экран одним лучом нас ждет разочарование – отклонение луча у двухлучевой ЭЛТ в «чужой» половине экрана существенно нелинейно.

2. Ограничения двухканального (многоканального) осциллографа

Двухканальный (многоканальный) осциллограф отличается от двухлучевого (многолучевого) тем, что у него одновременное наблюдение разных сигналов обеспечивается быстрым переключением с одного канала на другой, т. к. применяется однолучевая трубка. Из-за чего на высоких скоростях развертки он «рвет» сигналы на экране. Двухлучевой (многолучевой) – имеет трубку с несколькими лучами, поэтому он сигналы не «рвет», но стоит обычно дороже.

3. Любой осциллограф – это не измерительный, а наблюдательный прибор

Хотя в цифровых осциллографах используются также измерительные функции (можно, например, проводить измерения амплитуды сигнала и т. д.). У аналоговых осциллографов погрешность по экрану 5-10%. Цифровые, к которым относятся также USB-осциллографы, вроде более точные, но есть такое понятие, как «Вертикальное разрешение». Например, у типового USB-осциллографа – указано 9 бит вертикального разрешения (реально часто – 8 бит). Это значит, что входной сигнал, надо поделить на 2 в 8-й степени, то есть на 256, что при входном сигнале 10 В даст ступеньку в 0,4 В.

4. Цифровой или аналоговый осциллограф?

Выбор «цифровой или аналоговый осциллограф» зависит от характера исследуемых процессов. Цифровой имеет память, широчайшие возможности рассматривать уже зарегистрированные кратковременные сигналы (есть возможность делать их скриншоты), цветной дисплей (что очень способствует восприятию информации), множество способов синхронизации, некоторые возможности обработки сигнала. У аналогового – наименьшие искажения наблюдаемого сигнала, что обычно приводится как основной довод в их пользу. Других, более серьезных доводов обычно не приводят.

Цифровой или аналоговый осциллограф:отзывы, характеристики

5. Цифровой осциллограф не покажет ВЧ импульсы

Еще одна особенность цифровых осциллографов: для наблюдения непрерывного сигнала, и для того, чтобы сильно не увеличивать частоту дискретизации (квантования) по времени (а это необходимо из-за того, что точных быстродействующих АЦП пока еще мало, а то и вовсе нет для решения каких-то задач), часто используются для обработки численные методы (аппроксимация, интерполяция, экстраполяция). Современные микроконтроллеры довольно просто с этой задачей справляются. Но в результате мы видим не настоящий сигнал, а эрзац-сигнал, полученный в результате обработки точечных отсчетов численными методами. То есть мы можем не увидеть на сигнале «иглы» высокочастотных импульсных помех, которые будут прекрасно видны на аналоговом осциллографе.

6. Цифровой осциллограф умеет запоминать сигналы

У цифрового осциллографа дополнительное удобство – он может запоминать сигнал и выводить его на экран в увеличенном масштабе (функция экранной лупы). А также достаточно просто реализуются функции автонастройки на сигнал и измерение параметров сигнала (но это уже в дорогих моделях). Еще одно важное достоинство – просмотр или предварительное (возможно и полное) декодирование промышленных протоколов.

7. Ограничения АЦП цифровых осциллографов

Цифровой осциллограф работает на принципе преобразования аналогового (т. е. непрерывного) сигнала в цифровой (т. е. дискретный) со всеми вытекающими отсюда последствиями: 

  • Для того чтобы передать сигнал как можно точнее, частота дискретизации должна быть намного выше частоты измеряемого сигнала. Т. е. чем больше дискретных отсчетов в единицу времени, тем более непрерывным будет отображение сигнала и более точным его воспроизведение на экране.
  • Дискретизация по уровню измеряемого сигнала (как правило, это напряжение). Чтобы его как можно точнее измерить, надо иметь хорошую дискретизацию по уровню. Допустим, мы имеем АЦП 8-бит. Теоретически он дает 256 уровней сигнала. Т. е. сигнал с амплитудой 10 В он может перевести в цифровой код с точностью 0,04 В, а если у АЦП 10 разрядов (1024 уровня), то мы сможем наблюдать этот же сигнал с точностью 0,01 В (правда, на самом деле точность будет ниже, из-за погрешности самого АЦП).
  • Многолучевым цифровой осциллограф в принципе быть не может.
  • Интерфейс для связи с компьютером имеют не только цифровые, но и многие аналоговые осциллографы.

характеристики портативного осциллографа

8. Объем памяти цифрового осциллографа

Объем памяти выборок (в английской технической документации используются термины Record Length – длина записи или Memory Depth – глубина памяти) – третья ключевая характеристика цифровых осциллографов, наряду с полосой пропускания и частотой оцифровки. Суть в том, что это память, работающая на частоте оцифровки. Ее нехватка приводит к тому, что на медленных развертках осциллограф вынужден снижать частоту оцифровки во избежание переполнения памяти. Хотя есть «кривые» попытки обойти эту проблему, например, использованием пик-детектора. Если памяти выборок много (от 1 Мегасемплов), то это производителем специально подчеркивается, а если мало, то всячески замалчивается. Или приводится большой объем памяти, но оказывается, что это просто ОЗУ встроенного процессора, а не быстрая память выборок. Допустим, частота выборок – 500 мегавыборок в секунду (полоса пропускания – 50 МГц, 10 выборок на период). Смотрим сигнал 50 Гц (период 20 мс). За это время осциллограф сделает 10 000 000 выборок. С 8-битным АЦП ему надо запомнить 1 байт на выборку. Итого, чтобы зарисовать этот период, ему нужно либо 10 Мб памяти, либо снижать частоту выборок.

9. «Короткая и длинная» память в цифровом осциллографе

Короткая и длинная память — это «закон сохранения энергии в осциллографе». Если вы используете максимальную частоту дискретизации то у вас «короткая память» будет (извините за выражение), если же частота дискретизации будет в два раза меньше — то у вас память будет «ого-го». Если нужно посмотреть пачку импульсов — используете большую память, если периодический, но высокочастотный сигнал (тем более меандр), то тогда более важна частота дискретизации.

10. Время нарастания входного сигнала

Показатель «Время нарастания входного сигнала» – чем меньше, тем лучше. Это значит, что меньше будет «отгрызаться» начало первого сигнала на экране при внутренней синхронизации, и тем лучше частотные свойства осциллографа.

11. Полоса пропускания цифрового осциллографа

Считается, что для наблюдения цифровых сигналов полоса пропускания осциллографа должна быть в несколько раз выше частоты сигнала (хотя бы втрое), иначе прямоугольный сигнал превращается в «квазисинусоиду» (то есть «заваливаются» фронты). И частота дискретизации должна быть выше хотя бы раз в десять (некоторые даже считают, что это соотношение должно быть не менее 1:20).

Ограничения АЦП цифровых осциллографов

12. Как связаны шумы и погрешность Разрешение экрана

Чем выше разрешение экрана, тем больше детализация. Выбирайте разрешение не менее 640 точек по горизонтали и не менее 480 точек по вертикали, многие современные относительно недорогие осциллографы уже имеют такие экраны. Экран должен быть цветным и с малой инерционностью. Черно-белые экраны с большой инерционностью — прошлый век.

13. Как связаны шумы и погрешность Когда нужен осциллограф с логическим анализатором?

характеристики осциллографа

Современная прикладная электроника – это в большинстве случаев «смесь цифры с аналогом». Расшифровка протоколов здесь не главное (хотя и не без нее). Но вот, допустим, имеем сигнал ШИМ, который в свою очередь может перейти во что угодно – ток, напряжение, температуру, магнитное поле, обороты и т. д. и т. п. Регулирование этих величин, допустим, выполняется с помощью микроконтроллера посредством какого-либо ПИД-регулятора. Как отрабатывать все тонкости этих процессов? Вот тут и придет на помощь встроенный в осциллограф логический анализатор. Конечно, все то же самое можно делать и отдельным анализатором, и синхронизировать его с аналоговыми сигналами. Но все это вы будете видеть на разных мониторах и засечь, что и после чего изменяется «от цифры в аналоге» уже будет очень неудобно и непродуктивно.

Таким образом, если вы собираетесь рассматривать цифровой и аналоговый сигналы одновременно, например, цифровой сигнал зависит (синхронизирован) от аналогового или наоборот, то лучшим решением будет осциллограф с логическим анализатором на борту или хотя бы с возможностью докупить логический анализатор позже (но нужно, чтобы у покупаемого осциллографа была такая опция). Отдельный логический анализатор удобен для работы с чистой цифрой.

14. Как связаны шумы и погрешность Как связаны шумы и погрешность осциллографа с разрешением экрана?

Шумы осциллографа не имеют никакого отношения к разрешению экрана.  Точно так же и погрешность осциллографа не имеет никакого отношения к разрешению экрана.

15. Эквивалентный режим

Полоса пропускания цифрового осциллографа

Эквивалентный режим используется только для периодических сигналов. Он позволяет повысить частоту дискретизации в десятки раз. Суть в том, что друг за другом делается не одна запись сигнала, а много, но каждый раз с небольшим смещением. Поскольку сигнал все время одинаковый (периодический), потом полученные записи накладывают друг на друга, и получают запись с как-бы очень высокой частотой оцифровки, например 50 ГГц, хотя реальная частота оцифровки была обычная, например 500 МГц. Для однократных сигналов не годится.

16. Режим сегментированной памяти

Некоторые цифровые осциллографы имеют режим сегментированной памяти. То есть их можно оставить работать хоть на неделю, но они будут записывать не весь сигнал, а только его часть, форма которой задается через меню, например, только короткие пики. Таким образом, ни один пик не будет пропущен и будет записан с нужной (высокой) частотой дискретизации. А потом все записанные сегменты (кусочки сигнала) можно разом просмотреть.

17. Минусы портативных осциллографов

У портативных приборов цены выше, а параметры хуже, это известно. В частности, «настольные» осциллографы давно «доросли» до 1-2 мегасемплов (мегабайт) памяти выборок, а у портативных эта память по-прежнему 1-40 килосемплов (килобайт).

Ограничения АЦП цифровых осциллографов

18. Что такое мотортестер?

Для диагностики системы зажигания автомобильного двигателя используется мотортестер, представляющий собой многоканальный осциллограф (осциллограф-мультиметр с четырьмя и более каналами), с инсталлированным в нем специальным ПО. К осциллографу подключается комплект датчиков. Мотортестер отображает осциллограмму высокого напряжения системы зажигания и в реальном времени параметры импульсов зажигания, такие как пробивное напряжение, время и напряжение горения искры.

19. Что такое автомобильный диагностический сканер?

Для «общей» автодиагностики применяют диагностический адаптер или CAN-Bus автомобильный диагностический сканер, представляющий собой осциллограф смешанных сигналов – осциллограф со встроенным логическим анализатором, который, используя специальное ПО, выполняет дешифровку протоколов CAN/KWP2000/др. и трактует полученные данные. Система управления современного двигателя, отвечающего строгим нормам токсичности, в качестве главного своего элемента содержит электронный блок управления (ЭБУ). Так вот сканер предназначен именно для работы с ЭБУ, для его «сканирования». А так как сканер работает с блоком, то он позволяет:

  • Наблюдать сигналы с датчиков системы, следить за их изменением во времени.
  • Проверять работу исполнительных механизмов путем приведения их в действие и визуального или другого контроля.
  • Считывать сохраненные системой коды неисправностей.
  • Посмотреть идентификационные данные ЭБУ, системы и т. п.

20. Почему лучше не использовать осциллографы, выпущенные в СССР?

В России до сих пор продаются осциллографы, выпущенные в СССР 25-30 лет назад. Они могут привлечь внимание разве что новичков и не очень требовательных радиолюбителей. Однако опытные практики пишут на страницах интернет-форумов буквально следующее: «Ни в коем случае не советую связываться с советскими приборами, тем более осциллографами, управляемыми микропроцессором. Советские приборы утыканы сбоку и сверху подстроечниками для калибровки. Методика описана в инструкции, обычно довольно бестолковой. Перечень «пороков» советских приборов продолжают габариты, вес и высохшие электролиты».

советские осциллографы: отзывы

Примечание.

При подготовке этой статьи использовались отзывы, советы и рекомендации по выбору и работе с электронными осциллографами,  собранные с крупнейших отечественных и зарубежных интернет-форумов.

 

Примеры оборудования:

Цифровые осциллографы Rohde&Schwarz, Fluke Источники питания постоянного тока Анализаторы спектра Генераторы сигналов Векторные анализаторы цепейЧастотомеры и измерители

Выбираем бюджетный карманный осциллограф / Хабр

Приветствую!

Добавляю небольшую статью на тему выбора домашнего компактного осциллографа начального уровня для работы и хобби.

Почему речь пойдет про карманные и компактные — потому что это самые бюджетные варианты. Настольные осциллографы – это более громоздкие, функциональные устройства, и, как правило, достаточно дорогие модели ($200-400 и дороже) на 4 канала со множеством функций.
А вот компактные модели на 1 канал для простых измерений и оценки формы сигнала можно приобрести буквально за $20…$40.



Итак, основные технические характеристики карманных осциллографов — это рабочая полоса, которая измеряется в МГц, а также частота дискретизации, которая напрямую влияет на качество измерений.

В статье постараюсь описать осциллографы, которые лично были в руках и дать небольшие плюсы и минусы данных моделей.

Начальный вариант, через который прошли многие радиолюбители — это осциллограф на базе микроконтроллера ATmega, на Али есть множество вариантов, в том числе для самостоятельной сборки, например, DSO138. Его развитие на базе микроконтроллера STM32 называется DSO150.

Осциллограф DSO150 — это неплохой осциллограф для радиолюбителя начального уровня. В комплекте есть щуп Р6020. Сам осциллограф имеет полосу около 200кГц. Построен на базе STM32, АЦП до 1М семплов. Хороший вариант для проверки простых блоков питания (ШИМ) и аудиотрактов. Подойдет для начинающих, например, для исследования звуковых сигналов (настройке усилителя и т.п.). Из минусов отмечу невозможность сохранить картинку осциллограммы, а также небольшую полосу пропускания.

Технические характеристики:

  • Частота выборки в режиме реального времени: 1 Мвыб/с
  • Аналоговая полоса пропускания: 0 — 200 кГц
  • Диапазон чувствительности: 5 – 20 мВ/дел
  • Максимальное входное напряжение: 50 В макс. (1х щуп)
  • Временной диапазон развёртки: 500с/дел– 10 мкc/дел

При желании можно найти еще дешевле не распаянный вариант. Подойдет для обучения пайки «со смыслом».

Но хобби быстро прошло, перешел к серьезным моделям.

В начале 2018 года попался один из популярных вариантов осциллографов начального уровня — простой, но неплохой осциллографический пробник — DSO188.

Осциллограф DSO188 — простой «показометр» с одним каналом, без памяти, но с цветным дисплеем, аккумулятором 300mAh и очень маленький по размерам. Его плюс именно в компактности и портативности, а полосы частот хватит для большинства приложений (например, настройка звукотехники).

При небольшой стоимости ($30) он отображает сигналы с частотой 1МГц (семплирование 5MSA/s). Для работы используются MMCX щупы, но в комплекте есть адаптер MMCX-BNC. Установлен отдельный АЦП на 5MSPS, полоса до 1МГц, корпус сборный из панелей, что очень даже неплохо выглядит. В плюсах отмечу компактные размеры и приличную полосу, по сравнению с DSO150 (1МГц), а также компактные размеры. Очень удобно использовать вместе с обычным тестером. Легко помещается в карман. Из минусов — корпус имеет открытую конструкцию, не защищенную от внешних воздействий (нужно дорабатывать), а также отсутствие возможности перенести на компьютер сохраненные снимки. Наличие коннектора MMCX это удобно, но для полноценной работы потребуется адаптер на BNC или специальные щупы. За свои деньги это очень хороший вариант начального уровня.

Технические характеристики:

  • Частота выборки в режиме реального времени: 5 Мвыб/с
  • Аналоговая полоса пропускания: 0 — 1 МГц
  • Диапазон чувствительности: 50 mV/div ~ 200 V/div
  • Максимальное входное напряжение: 40 V (1X щуп), 400 V (10X щуп). Встроенного аттенюатора сигнала нет.
  • Временной диапазон развёртки: 100mS/div ~ 2uS/div

Если одного мегагерца мало, можно посмотреть в сторону карманных осциллографов в корпусе с BNC коннектором, например, недорогой карманный осциллограф DSO FNISKI PRO.

Это очень хороший вариант за свои деньги. Полоса 5МГц (синус). Есть возможность сохранения графиков во внутреннюю память устройства.

Технические характеристики:

  • Частота выборки в режиме реального времени: 20 Мвыб/с
  • Аналоговая полоса пропускания: 0 — 5 МГц
  • Диапазон чувствительности: 50 mV/div ~ 200 V/div
  • Максимальное входное напряжение: 40 V (1X щуп), 400 V (10X щуп). Встроенного аттенюатора сигнала нет.
  • Временной диапазон развёртки: 50S/div ~ 250nS/div

Есть вариант DSO FNISKI PRO с BNC-крокодилами.

Есть вариант DSO FNISKI PRO с щупом 10х P6010 (с полосой до 10МГц).

Я бы взял первый вариант (с крокодилами) и докупил бы щупы отдельно. Ссылка на щупы есть ниже.

По результатам использования отмечу удобный корпус, большой дисплей. Тестовый сигнал на 5МГц (синус) показывает без особых проблем, другие периодические и апериодические сигналы нормально показывает до 1 МГц.

Если полоса выше 1МГЦ не критична, и не требуется работать с большими напряжениями, то DSO FNIRSI PRO c BNC коннектором — хороший выбор. Он использует стандартные щупы и может применяться как быстрый карманный осциллографический пробник — потыкать и посмотреть, жив ли обмен, микросхема и т.п. А потом топать за большим осциллографом, либо нести пациента на стол и вскрывать.

А вот если требуется полоса еще чуть больше — обратите внимание на недорогой осциллографический пробник DSO168

Осциллограф DSO168 имеет необычный дизайн, смахивающий на популярные МР3 плееры. Это одновременно и плюс (металлический стильный корпус), и минус устройства. Не самый удачный выбор разъема — MiniUSB для зарядки аккумулятора. А также отмечу подключение через джек 3.5 мм — самый главный минус данной модели.

Технические характеристики:

  • Частота выборки в режиме реального времени: 50 Мвыб/с
  • Аналоговая полоса пропускания: 0 — 20 МГц
  • Диапазон чувствительности: 50 mV/div ~ 200 V/div
  • Максимальное входное напряжение: 40 V (1X щуп)
  • Временной диапазон развёртки: 100S/div ~ 100nS/div

DSO168 — интересный прибор за свою стоимость.

Гораздо лучше огромного количества подобных DSО138, которые строятся на базе микроконтроллеров со встроенным АЦП (200kHz).

В данной модели DSO168 установлен отдельный АЦП AD9283, который обеспечивает уверенный анализ сигналов до 1МГц. До 8 МГц можно использовать данный прибор, но как «отображалку» сигналов, без каких либо серьезных измерений. А вот до 1МГц — без проблем.

В комплекте идет стандартный щуп Р6100 BNC, а также адаптер с джека 3.5мм на BNC.

Осциллограф DSO168 имеет полосу 20МГЦ (при частоте семплирования 60MSA/s), не самый удачный, но более-менее аккуратный корпус аля iPod, встроенный аккумулятор 800 мАч (может питаться от USB). Сходство с плеером добавляют щупы через джек 3,5 мм (есть адаптер BNC-3.5mm). Памяти для сохранения осциллограмм — нет. Отмечу конструктивный просчет — джек 3,5 мм не предназначен для передачи СВЧ сигналов, присутствуют искажения формы сигнала на частотах более 1МГц. Так что устройство интересное, но я бы выбрал другой вариант.

Далее предлагаю посмотреть еще одну недорогую модель осциллографа DSO338 с полосой 30МГц.
Карманный осциллограф DSO 338 FNISKI 30MHZ

Это карманный аккумуляторный осциллограф на один канал с частотой семплирования аж 200Msps. Характеристики неплохие, многим такой модели хватает за глаза. В наличии один канал, дисплей имеет хорошие углы обзора, время работы до 8 часов с одного заряда непрерывно.

Технические характеристики:

  • Частота выборки в режиме реального времени: 200 Мвыб/с
  • Аналоговая полоса пропускания: 0 — 30 МГц
  • Диапазон чувствительности: 50 mV/div ~ 200 V/div
  • Максимальное входное напряжение: 40 V (1X щуп), 400 V (10X щуп). Встроенного аттенюатора сигнала нет.
  • Временной диапазон развёртки: 100mS/div ~ 125nS/div

Для измерений используется стандартный щуп P6100 BNC.

Осциллограф достаточно хорошо себя показывает на частотах более 10-20 МГц.

Хороший вариант, но, учитывая его стоимость, можно посмотреть и другие модели.
Например, чуть дороже можно приобрести мощный осциллограф FNIRSI-5012H 100МГц

Новая модель и один из лучших за свои деньги – одноканальный 100-МГцовый осциллограф с памятью. Частота семплирования достигает 500 Msps.

Осциллограф является одним из самых «мощных» и «навороченных» в своем ценовом диапазоне. Имеется 1 канал BNC, но осциллограф может отображать синусоидальный сигнал до 100МГц. Другие периодические и апериодические сигналы нормально смотрятся до 70-80 МГц.
В комплекте с осциллографом есть неплохой щуп Р6100 с делителем 10х и полосой до 100МГц, а также кейс для хранения и переноски.

Технические характеристики:

  • Частота выборки в режиме реального времени: 500 Мвыб/с
  • Аналоговая полоса пропускания: 0 — 100 МГц
  • Диапазон чувствительности: 50 mV/div ~ 100 V/div
  • Максимальное входное напряжение: 80 V (1X щуп), 800 V (10X щуп). Встроенного аттенюатора сигнала нет.
  • Временной диапазон развёртки: 50S/div ~ 6nS/div

Осциллограф справляется с сигналами не хуже, чем старший собрат Rigol.

Отмечу отсутствие связи с компьютером (отчасти это не минус, так как нет необходимости осуществлять гальваническую развязку), а также наличие всего одного канала для измерения.

DSO Fniski 100MHz — это хороший выбор, особенно если нет подходящего прибора и остро стоит вопрос стоимости. Если есть возможность добавить — лучше добавить и взять что-то на два канала и с возможностью сохранения результатов.

Переносной осциллограф 3-в-1 HANTEK 2C42 40МГц

Хит 2019 года — портативный осциллограф с частотой 40 МГц (есть модель 2C72 до 70МГЦ) на два канала и с генератором частоты. Встроенный мультиметр. Поставляется с сумкой для переноски. Цена от $99.

В комплекте есть все необходимое + кейс для переноски. Частота оцифровки до 250MSa/s — это самый лучший результат для портативных осциллографов. Существуют версии 2С42/2С72 без встроенного генератора, но они не так интересны с точки зрения цены и функционала.

Технические характеристики:

  • Частота выборки в режиме реального времени: 250 Мвыб/с
  • Аналоговая полоса пропускания: 0 — 40 МГц
  • Диапазон чувствительности: 10 mV/div ~ 10 V/div
  • Максимальное входное напряжение: 60 V (1X щуп), 600 V (10X щуп).
  • Временной диапазон развёртки: 500S/div ~ 5nS/div

Осциллограф чуть дороже предыдущих, но модель 2Dx2 оснащена генератором частоты. На фото ниже показана генерация синусоидального сигнала частотой 1 МГц.

В остальном, Hantek не хуже своих старших собратьев. Отмечу наличие встроенного мультиметра, что делает данную модель устройством 3-в-1.

Осциллографы, которые у меня есть закончились, но я отмечу еще одну модель, которая имеет право на жизнь. В этом ценовом диапазоне есть удобная и качественная модель портативного осциллографа JDS6031 1CH 30M 200MSPS.

Технические характеристики:

  • Частота выборки в режиме реального времени: 200 Мвыб/с
  • Аналоговая полоса пропускания: 0 — 30 МГц
  • Диапазон чувствительности: 10 mV/div ~ 10 V/div
  • Максимальное входное напряжение: 60 V (1X щуп), 600 V (10X щуп).
  • Временной диапазон развёртки: 500S/div ~ 5nS/div

Рекомендую обратить внимание на полезные аксессуары для осциллографа:

Щуп Р6100 100МГц с компенсацией емкости и делителем 10х ($5)
Щуп Р2100 100МГц с компенсацией емкости и делителем 10х копия Tectronix ($7)
Щуп Р4100 100МГц 2кВ с компенсацией емкости и делителем 100х ($10)
Пассивный аттенюатор сигнала Hantek HT201 для осциллографа 20:1 BNC для измерений напряжения до 800Вольт ($4)

Подобные портативные девайсы — то, что я часто использую. Очень удобно, особенно при настройке различных приборов, проверке, пуско-наладке. Могу рекомендовать брать вариант DSO150, а еще лучше, похожий DSO138 (200kHz) в варианте DIY для обучения пайки и азам радиоэлектроники. Из функциональных моделей отмечу DSO Fniski 100MHz, как осциллограф с самым лучшим соотношением цена/рабочая полоса, а также Hantek 2D72 как самый функциональный (3-в-1).

Осциллограф. Виды и устройство. Работа и применение. Особенности

Осциллограф представляет прибор, используемый для исследования временных и амплитудных параметров электрического сигнала, который подается на его вход, или непосредственно на экране, или записываемого на фотоленте. На сегодняшний день это один из самых распространенных типов контрольно-измерительных приборов, который наряду с мультиметрами позволяет производить производственные и научные исследования.

На сегодняшний день промышленность не стоит на месте. Создаются современные приборы, которые позволяют значительно сокращать время исследований и разработок. Они обладают значительным набором измерительных приложений, емкостным сенсорным дисплеем, глубокой памятью и высочайшей скоростью обновления сигналов на экране.

Виды
Всего имеется несколько типов приборов, которые различаются по характеристикам:

  • Аналогово-цифровые.

  • Цифровые запоминающие.

  • Устройства смешанных сигналов.

  • Виртуальные устройства.
По количеству лучей осциллограф может быть:
  • Однолучевой.
  • Двулучевой и так далее.

Число лучей может быть 16 и более (n-лучевой прибор имеет n сигнальных входов, в том числе может отображать на экране одновременно n графиков входных сигналов).

Приборы также классифицируются по принципу действия:
  • Электронный: аналоговый и цифровой.
  • Электромеханический: электродинамический, выпрямительный, электростатический, термоэлектрический, электромагнитный, магнитоэлектрический.
По развертке их можно поделить:
  • Специальный.
  • Запоминающий.
  • Стробоскопический.
  • Скоростной.
  • Универсальный.

Имеются также приборы, которые совместимы с иными измерительными устройствами. Это может быть не только автономное устройство, но и приставка, к примеру, компьютер, карта расширения или вовсе подключение к внешнему порту.

Устройство

Конструкция аналоговых устройств базируется на применении систем аналоговой горизонтальной развертки и электронно-лучевых трубок. Одним из главных блоков данных приборов являются генераторы линейно меняющегося напряжения пилообразной формы.

Аналоговый осциллограф имеет:

  • Отклонение луча на экране определяется напряжение пластин. Трубки выделяются большим диапазоном частоты. Горизонтальная развертка функционирует от напряжения горизонтальных пластин по линейной зависимости. Верхняя граница частоты определяется усилителем и емкостью пластин. Нижний предел соответствует 10 герцам.
  • Для визуализации характеристик и формы в аналогово-цифровых приборах исследуемого сигнала используются системы аналоговой горизонтальной развертки, электронно-лучевые трубки, в том числе генераторы линейно изменяющегося напряжения. К тому же в конструкции приборов имеются встроенные запоминающие модули, которые используются для хранения изображения.
  • Запоминающие цифровые приборы применяют высокоскоростную оцифровку аналоговых сигналов, обеспечивают их хранение и выводят на жидкокристаллический индикатор, который применяется вместо электронно-лучевой трубки. Цифровой осциллограф имеет преобразователь аналогового сигнала, усилитель, делитель, блок управления, память и блок выведения на ЖК панель.
  • Устройства смешанных сигналов быстро оцифровывают аналоговые сигналы, в том числе имеют функцию ввода цифровых последовательностей. Вся необходимая информация сохраняется в запоминающий модуль и выводится на жидкокристаллический монитор при необходимости.
Принцип действия

Аналоговые устройства для создания изображения на экране применяют электронно-лучевую трубку. В ней напряжение, которое подается на оси X и Y, заставляет точку передвигаться по экрану. На горизонтали можно наблюдать зависимость от времени, тогда как по вертикали идет отображение пропорциональное входному сигналу. В целом же сигнал усиливается и направляется на электроды, которые отклоняют по оси Y электронно-лучевой трубки с применением аналоговой технологии.

Цифровой осциллограф работает несколько по-другому:
  • Выполняется модификация входящего аналогового сигнала в цифровую форму.
  • Затем происходит его сохранение. Скорость сохранения зависит от управляющего устройства. Верхняя граница определяется скоростью преобразователя, при этом у нижней границы нет ограничений.
  • Преобразование сигнала в цифровой код позволяет повысить устойчивость отображения, сделать масштаб и растяжку проще, сохранить данные в память.
  • Использование дисплея вместо электронной трубки дает возможность отображать любые данные, в том числе выполнять управление прибором. У дорогостоящих приборов установлены цветные экраны, благодаря чему они дают возможность выделять цветом различные места, различать курсоры и сигналы иных каналов.
  • Синхронизацию можно наблюдать прямо перед включением развертки. Используемые процессоры обработки сигнала позволяют обрабатывать сигнал при помощи анализа преобразованием Фурье.
  • Информация в цифровом виде дает возможность записать экран с итогами измерения в память, в том числе распечатать на принтере. Большинство приборов имеют накопители, чтобы можно было записать изображения в архив и в дальнейшем произвести их обработку.
Применение
Осциллограф представляет измерительный прибор, при помощи него можно:
  • Определить значения напряжения сигнала (амплитуду) и временные параметры.
  • Измерив временные характеристики сигнала, удастся определить его частоту.
  • Наблюдать сдвиг фаз, происходящий при прохождении разных участков цепи.
  • Выяснить переменную (AC) и постоянную (DC), которые составляют сигнал.
  • Наблюдать искажение сигнала, который вносит определенный участок цепи.
  • Выяснить соотношение сигнал/шум, определить стационарность шума или его изменение по времени.
  • Понять процессы, которые происходят в электрической цепи.
  • Выяснить частоту колебаний и так далее.

Эти устройства преимущественно применяются в электронике и радиотехнике. Особенно важным элементом прибор используется в электромеханических сферах производства. Данное устройство выступает в качестве фиксирующего прибора, который наглядно отображает все колебания электрического тока, происходящие в определенном электрическом механизме. С помощью прибора можно найти помехи, а также искажения прохождения электрического импульса в самых разных узлах схемы.

Применение в диагностике и ремонте автомобилей

Применяются эти приборы и в других областях. Так они часто используются для определения неисправностей в системе исполнительных механизмов и иной диагностике. При помощи них даже можно диагностировать механические неисправности двигателя.

К примеру, осциллограф способен:
  • Выявить неисправный катализатор.
  • Определить соответствие установки задающего шкива коленвала по отношению к датчику положения коленчатого вала.
  • Выявить сильный подсос воздуха.
  • Наблюдать сигналы с датчиков системы, отслеживать их изменение.
  • Считывать коды неисправностей, сохраненные системой.
  • Указать идентификационные данные системы, ЭБУ.
  • Выполнить проверку работу исполнительных механизмов и так далее.

Естественно, что такой прибор должен иметь логический анализатор, специальное программное обеспечение и уметь выполнять дешифровку протоколов.

Как выбрать осциллограф
На рынке представлено множество самых разных моделей. Поэтому перед покупкой следует определиться:
  • Следует узнать, где будет применяться прибор?
  • Какова амплитуда измеряемых сигналов?
  • Сигналы в скольких точках схемы будет нужно измерять одновременно?
  • Необходимость измерения одиночных и периодических сигналов?
  • Необходимость сигналов в частотной области, функции быстрого преобразования Фурье и так далее?
При выборе следует обратить внимание на следующие параметры:
  • Количество каналов. Они будут влиять на число отображаемых независимых сигналов на дисплее. Их одновременное наличие позволит наблюдать за несколькими графиками, проводить их сравнение и анализировать. Для работы с простой техникой хватит 2-4 каналов. Наиболее продвинутыми являются приборы с функцией логического анализатора и 16 каналами.
  • Частота дискретизации будет влиять на число выборок сигнала в секунду, то есть на качество разрешения изображения на экране. Большее количество точек сигнала позволит построить более точное изображение. Данный параметр важен при измерении переходных и однократных процессов.
  • Тип питания. При работе с прибором на выезде или вдали от сети лучше покупать модель с аккумулятором. В остальных случаях лучше покупать измерительные приборы, работающие от сети.
  • Полоса пропускания. Следует учесть, что полоса пропускания должна в 3-5 раз быть выше значения частот исследуемых сигналов. Для простых усилителей звуковой частоты и цифровых схем достаточно параметра в 25 МГц. Для профессиональных исследований и радиочастотных схем будет нужно устройство с полосой пропускания порядка 100-200 МГц.
Почему не стоит использовать советские приборы
Сегодня вполне можно купить устройства, выпущенные 30-40 лет назад. Однако такой осциллограф лучше не использовать, ведь:
  • Для калибровки необходимо использовать подстроечники, которых полно и сверху и сбоку. Обеспечить точную настройку будет затруднительно.
  • Высохшие электролиты.
  • Вес.
  • Габариты и так далее.
Похожие темы:

Осциллограф — это… Что такое Осциллограф?

Осциллограф

Осцилло́граф (лат. oscillo — качаюсь + греч. γραφω — пишу) — прибор, предназначенный для исследования (наблюдения, записи; измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране, либо записываемого на фотоленте.

Современные осциллографы позволяют исследовать сигнал гигагерцовых частот. Для исследования более высокочастотных сигналов можно использовать электронно-оптические камеры.

Применение

Используются в прикладных, лабораторных и научно-исследовательских целях, для контроля/изучения электрических сигналов — как непосредственно, так и получаемых при воздействии различных устройств/сред на датчики, преобразующие эти воздействия в электрический сигнал.

Курсорные измерения

Захват строки телевизионного сигнала

Для периодического и оперативного контроля качественных показателей телевизионного тракта и отдельных его звеньев в системах телевещания применяются специальные осциллографы с блоком выделения строк.

Классификация

По назначению и способу вывода измерительной информации:

  • Осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.) — в зап.-европ. языках oscilloscop(e)
  • Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф) — в зап.-европ. языках oscillograph

По способу обработки входного сигнала

  • Аналоговый
  • Цифровой

По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16-ти и более (n-лучевой осциллограф имеет nное количество сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром).

Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру (подключаемой через какой-либо порт: LPT, COM, USB, вход звуковой карты).

Устройство

Осциллограф с дисплеем на базе ЭЛТ состоит из электронно-лучевой трубки, блока горизонтальной развертки и входного усилителя (для усиления слабых входных сигналов). Также содержатся вспомогательные блоки: блок управления яркости, блок вертикальной развертки, калибратор длительности, калибратор амплитуды.

Современные осциллографы всё в большей степени переходят (как и вся техника визуализации — телевизоры, мониторы и тп.) на отображение информации на экране ЖК-дисплеев.
Передняя панель типичного двухлучевого осциллографа

Экран

Передняя панель типичного двухлучевого осциллографа Схема электронно-лучевой трубки осциллографа: 1 — отклоняющие пластины, 2 — электронная пушка, 3 — пучок электронов, 4 — фокусирующие катушки, 5 — экран

Осциллограф имеет экран A, на котором отображаются графики входных сигналов (у цифровых осциллографов изображение выводится на дисплей (монохромный или цветной) в виде готовой картинки, у аналоговых осциллографов в качестве экрана используется электронно-лучевая трубка с электростатическим отклонением). На экран обычно нанесена разметка в виде координатной сетки.

Сигнальные входы

Осциллографы разделяются на одноканальные и многоканальные (2, 4, 6, и т. д. каналов на входе). Многоканальные осциллографы позволяют одновременно сравнивать сигналы между собой (формы, амплитуды, частоты и пр.)

Управление разверткой

Имеются значительные отличия в аналоговых и цифровых осциллографах. В цифровых осциллографах, строго говоря, не требуется синхронизация, так как при частоте обновления 1 сек и менее изображение на экране вполне читаемо визуально.

Режимы развертки:

  • автоматический;
  • ждущий;
  • автоколебательный;
  • однократный;

Триггер

Если запуск развёртки никак не связан с наблюдаемым сигналом, то изображение на экране будет выглядеть «бегущим» или даже совершенно размазанным. Это происходит потому, что в этом случае осциллограф отображает различные участки наблюдаемого сигнала на одном и том же месте. Для получения стабильного изображения все осциллографы содержат систему, называемую триггер.

Триггер в осциллографе — это устройство, которое задерживает запуск развёртки до тех пор, пока не будут выполнены некоторые условия. Триггер имеет как минимум две настройки:

  • Уровень сигнала: задаёт входное напряжение (в вольтах), при достижении которого запускается развёртка
  • Тип запуска: по фронту или по спаду

Таким образом, триггер запускает развёртку всегда с одного и того же места сигнала, поэтому изображение сигнала на осциллограмме выглядит стабильным и неподвижным (конечно, только при правильных настройках триггера).

Настройка

Для работы с осциллографом предварительно необходимо произвести калибровку его канала (каналов). Калибровка производится после прогрева прибора (примерно минут 5). Калибратор встроен в большинство осциллографов. Для калибровки высокочастотных моделей желательно иметь шнур с двумя разъемами (на выход калибратора и на вход осциллографа) иначе возможны искажения сигнала. Для низкочастотных моделей возможно просто коснуться щупом выхода калибратора. Далее ручку вольт/дел. ставится так, чтобы сигнал калибратора занимал 2—4 деления на экране (то есть, если калибратор 1 вольт,- то на 250 милливольт). После этого канал включается на переменное напряжение и на экране появится сигнал. Далее, в зависимости от частоты калибратора, ручка развертки ставится в положение при котором видно не менее 5—7 периодов сигнала. Для частоты 1 килогерц частота развертки при которой каждый период занимает одно деление экрана равен 1 мс (одна миллисекунда). Далее необходимо убедиться, чтобы сигнал на протяжении этих 5-7 периодов попадал точно по делениям экрана. Для аналоговых осциллографов нормируется как правило ±4 деления от центра экрана, то есть на протяжении восьми делений должен совпадать точно. Если не совпадает, следует поворачивать ручку плавного изменения развертки добиваясь совпадения. Заодно проверяется амплитуда (размах) сигнала — она должна совпадать с тем, что написано на калибраторе. Если не совпадает, то необходимо добиться совпадения, поворачивая ручку плавного изменения чувствительности вольт/дел. Необходимо помнить, что если установлена чувствительность канала в 250 милливольт, то сигнал в 1 вольт занимает при правильной настройке 4 деления. После калибровки прибор будет показывать сигнал точно. Теперь можно не только смотреть, но и измерять сигналы.

История

Первый осциллограф был изобретён французским физиком Андре Блонделем в 1893 году.

Интересные факты

См. также

Примечания

Ссылки

Литература

  • Р. Г. Карпов, Н. Р. Карпов Электрорадио измерения М.: «Высшая школа», 1978

Что такое осциллограф »Электроника Примечания

Осциллограф является одним из наиболее полезных измерительных приборов, используемых для проектирования электронных схем, производства, тестирования, обслуживания и ремонта электроники.


Осциллограф Учебное пособие включает в себя:
Основы осциллографа Типы осциллографов Характеристики Как пользоваться осциллографом Запуск области Осциллографические зонды Характеристики осциллографа

Типы областей действия включают в себя: Аналоговый прицел Объем аналогового хранилища Цифровой люминофор Цифровая сфера USB / ПК объем Осциллограф смешанных сигналов MSO


Осциллографы или прицелы являются важным инструментом в арсенале инженера-электронщика или тестировщика.Осциллограф — это элемент оборудования для тестирования электроники, который позволяет видеть сигналы и таким образом значительно облегчает обнаружение любых проблем, возникающих в цепи электроники.

Принимая во внимание преимущества, которыми они обладают, осциллографы являются важным компонентом испытательного оборудования для электроники для любой лаборатории электроники или оборудования для тестирования в области электроники, будь то радиочастотное проектирование, проектирование электронных схем общего назначения, производство электроники, обслуживание, ремонт или любое другое место, где электронные схемы и сигналы на них должны быть исследованы.

Название осциллографа происходит от того факта, что он позволяет просматривать колебания. Иногда использовалось название катодно-лучевой осциллограф, или CRO. Причиной этого было то, что электронно-лучевые трубки (ЭЛТ) были использованы для отображения формы волны. В настоящее время эти измерительные приборы обычно называют осциллографами или просто прицелами.

В настоящее время используются ЖК-дисплеи или плазменные дисплеи, так как они меньше по размеру и более удобны в использовании, тем более что они не требуют очень высоких напряжений старых ЭЛТ.

Функция осциллографа

Функция осциллографа заключается в том, чтобы иметь возможность отображать сигналы на некоторой форме дисплея. В обычном режиме работы время отображается вдоль оси X (горизонтальная ось), а амплитуда отображается вдоль оси Y (вертикальная ось). Таким образом, можно увидеть электронную форму волны на осциллографе, как это может быть предусмотрено. Форма волны можно сравнить с волнами при движении вдоль поверхности пруда, когда в него падает камень.

Видя форму волны таким образом, можно увидеть анализ работы схемы и выяснить, почему могут возникнуть какие-либо проблемы.

Concept of an oscilloscope screen Базовый экран осциллографа

Ключевые темы осциллографа

При взгляде на осциллограф есть несколько ключевых тем и областей интереса:

  • Типы осциллографов: Существует несколько различных типов осциллографов от аналоговых до цифровых и многое другое. Первые типы осциллографов были аналоговыми, но с достижениями в области цифровых технологий практически все новые измерительные приборы в наши дни управляются процессором и используют цифровую обработку сигналов для обеспечения превосходного отображения сигналов.

    Мало того, что осциллографы содержатся не только в стандартных бочкообразных блоках, но и некоторые прицелы, предназначенные для связи с компьютерами, используя их отображение и обработку для помощи. Часто это осциллографы USB, подключенные через USB-каналы, но также доступны другие типы, подключенные через другие шинные системы или для использования в стойках, таких как PXI и более старые системы VXI.


  • Характеристики прицела: Спецификации для осциллографов иногда могут сбивать с толку.Базовое понимание терминов и их значения очень полезно. Понимание основных характеристик осциллографа может дать представление об ограничениях любого конкретного тестового прибора, а также помочь в выборе, когда его нужно нанять, купить или даже забронировать из обычного магазина.

    Характеристики области немного различаются для аналоговой и цифровой областей. Хотя основные понятия, такие как точность, временной диапазон, верхние частоты и тому подобное, по существу одинаковы, цифровые области также имеют спецификации для таких элементов, как количество бит ЦАП, глубина памяти и тому подобное, которые характерны для цифровых осциллографов.


  • Как использовать осциллограф: Хотя осциллографы просты в использовании в наши дни, это помогает понять, как работают эти элементы испытательного оборудования электроники и какие существуют элементы управления и как они работают. На экране есть даже софт-клавиши, поэтому многое можно сделать.

    Обычно наиболее широко используемые элементы управления являются общими для всех областей применения от любого производителя, поэтому переход из одной области в другую часто относительно прост.


  • Запуск осциллографа: Функция запуска является одной из наиболее важных функций на осциллографе. Триггер области позволяет временной базе «запускаться» в одной и той же точке на каждом цикле сигнала, и это позволяет отображать его так, чтобы оно оставалось на экране.

    Функция запуска осциллографа значительно расширилась, поскольку большинство областей применения перешли на использование цифровых технологий. Доступная цифровая обработка сигналов позволяет триггеру обеспечить большую гибкость и большую функциональность, чтобы можно было более тщательно исследовать сигналы для выявления проблем и проблем.


  • Пробники осциллографа: Любому осциллографу понадобятся пробники для подключения к тестируемому устройству. Эффективность и использование этих зондов позволяют наилучшим образом использовать реальный измерительный прибор, поэтому знание, какие зонды выбрать, как их настроить и какие ограничения необходимы, для правильного понимания выполненных измерений.


Типичный осциллограф

Разработка осциллографа

Осциллограф разрабатывался в течение многих лет.Потребовалось большое количество новых открытий и изобретений, чтобы достичь уровня сложности, который мы наблюдаем сегодня.

Истории дат осциллограмм более 100 лет, каждый шаг является результатом инноваций, вдохновения и упорного труда.

Ключевые этапы развития и история осциллографа
Дата Открытие / Разработка
1897 Карл Фердинанд Браун изобрел первую электронно-лучевую трубку CRT.Он мог отображать грубые цифры на экране, контролируемые напряжениями на пластинах трубки.
1899 Джонатан Ценнек усовершенствовал базовую электронно-лучевую трубку, добавив в нее формирующие пучок пластины и используя магнитное поле для очистки следа.
1931 В. К. Зворыкин усовершенствовал электронно-лучевую трубку, когда детализировал герметично закрытую высоковакуумную электронно-лучевую трубку с термоэлектронным излучателем. Это позволило General Radio изготовить осциллограф, который можно было использовать вне лабораторных условий.
Конец 1930-х годов Британская компания A C Cossor изобрела двухлучевой осциллограф, который широко использовался во время Второй мировой войны для обслуживания электронного оборудования и, в частности, радиолокационных систем.
1946 Осциллограф с триггерным сканированием был изобретен Говардом Фоллумом и Джеком Мердоком. Это сделало осциллограф намного проще в использовании, поскольку сигналы могли отображаться устойчиво.
1946 Tektronix был основан Говардом Фоллумом и Джеком Мердоком.
1963 Компания Tektronix представила бистабильную накопительную трубку Direct View (DVBST). Это позволило отображать отдельные импульсы, а не просто повторять сигналы.
Цифровой запоминающий осциллограф DSO был изобретен Уолтером ЛеКрой после производства высокоскоростных цифровых преобразователей для исследовательского центра CERN в Швейцарии. Уолтер ЛеКрой позже основал корпорацию ЛеКрой.

Осциллограф наружный

Осциллограф обычно имеет большой набор предметов на внешней стороне корпуса.

A typical oscilloscope as used in an electronics laboratory Высокопроизводительный осциллограф

На передней панели испытательного оборудования обычно есть несколько элементов:

  1. Дисплей Первое, что заметили на осциллографе, — это большой дисплей, который используется для отображения формы сигнала. Обычно это занимает около четверти места на передней панели или даже немного больше. Часто полезно иметь достаточно большой дисплей, тогда легче увидеть различные элементы формы сигнала.
  2. Разъемы На передней панели имеется множество различных разъемов. Обычно есть вход для каждого из отображаемых каналов — часто осциллограф имеет более одного канала. Многие осциллографы являются двухканальными и поэтому могут отображать два сигнала одновременно, что позволяет сравнивать формы сигналов. Другие входы могут включать в себя триггерный вход, который позволит запустить трассировку на осциллографе в соответствии с этим сигналом.
  3. Органы управления На осциллографе имеется множество органов управления:
    • Чувствительность вертикального усиления / входного сигнала: Обычно она калибруется в В / см, т. Е. Каждое вертикальное деление на шкале представляет собой заданное количество вольт.
    • Timebase: изменяет скорость, с которой трасса пересекает экран по горизонтали на осциллографе. Он откалиброван по времени / делению, например 1 мс / см, при условии, что деления с интервалом в один сантиметр.
    • Триггер. Элементы управления, связанные с триггером, позволяют запускать временную базу осциллографа различными способами. Это позволяет получить неподвижное или стабильное изображение на экране осциллографа.

Для правильной работы осциллографа необходимо подключить правильные сигналы к входам, а также правильно использовать органы управления.

Осциллографы

являются одним из наиболее широко используемых элементов испытательного оборудования для электроники.Они обеспечивают высокий уровень понимания работы схемы и являются ключом к нахождению многих проблем и их решению, будь то в целом проектирование электронных схем, проектирование радиочастот, тестирование производства электроники, сервисное обслуживание, ремонт и даже обслуживание в полевых условиях.

Дополнительные темы испытаний:
Анализатор сети передачи данных Цифровой мультиметр Частотомер осциллограф Генераторы сигналов Анализатор спектра LCR метр Глубиномер, ГДО Логический анализатор ВЧ измеритель мощности Генератор радиосигналов Логический зонд Рефлектометр во временной области Вектор сетевой анализатор PXI GPIB Сканирование границы / JTAG
Вернуться в меню «Тест»., ,

,
Виртуальный осциллограф | Academo.org — бесплатное, интерактивное, обучение.

Осциллограф является полезным инструментом для всех, кто работает с электрическими сигналами, поскольку он обеспечивает визуальное представление формы сигнала или формы сигнала. Это позволяет измерять свойства волны, такие как амплитуда или частота.

Начальный сигнал выше — синусоида 200 Гц с амплитудой 5 вольт. Частота этой волны может быть отрегулирована с помощью ползунка «Частота входной волны».(Вы также можете выбрать отображение прямоугольной волны.)

Если вы просматриваете с использованием последней версии Google Chrome, выпадающий список ввода позволяет выбрать «прямой ввод». Это будет принимать данные с любого микрофона, подключенного к вашему компьютеру, и отображать данные в реальном времени. (Разные микрофоны посылают на компьютер разные напряжения, поэтому для согласованности мы нормализовали вход, чтобы исходный входной сигнал всегда был ограничен где-то между -5 и +5 вольт.)

Поскольку формы сигналов имеют самые разные формы, амплитуды и частоты, осциллографы должны иметь несколько элементов управления для настройки отображения формы сигнала, чтобы он мог удобно помещаться в окне просмотра.

Freeze live input
Этот флажок фиксирует ввод, позволяя эффективно делать снимок того, что отображается на осциллографе в данный момент времени. Это особенно полезно потому что вы все еще можете настроить время базы и вольт на деление настройки. Попробуйте свистеть и заморозить ввод. Настройка временной шкалы на удобную шкалу позволяет рассчитать частоту вашего свистка путем подсчета периода одного полного сигнала.

Усиление осциллографа
Это число, на которое умножается входящий сигнал.Усиление 1 не будет иметь эффекта, усиление менее 1 уменьшит сигнал, а усиление более 1 увеличит его.

секунд / дел
Этот элемент управления позволяет настроить продолжительность времени, которое представляет каждый квадрат сетки. Когда осциллограф загружается впервые, этот параметр устанавливается на 1 мс и отображает один полный сигнал на 4 квадратах. Это означает, что период волны составляет 4 мс или 0,004 с, что дает частоту (1 / 0,004) = 250 Гц. Если вы измените временную базу на 500 мкс (половина того, с чего она началась), вы должны увидеть, что форма волны теперь занимает 8 квадратов для завершения одного полного колебания.Период (и, следовательно, частота) остается постоянным, потому что 8 раз 500 мкс все еще равны 0,004 с.

вольт / дел.
Эта настройка очень похожа на настройку временной базы, описанную выше, но вместо того, чтобы растягивать волну вдоль оси x, она включает в себя растяжение ее вдоль оси y. Синусоидальная волна имеет амплитуду 5 В, что означает, что, если вольт / деление установлено на 5, форма волны просто достигает вершины первого квадрата. Если вы измените настройку на 10 вольт / дел, форма волны теперь достигает только половины квадрата.

Смещение по горизонтали и вертикали
Эти два ползунка позволяют регулировать положение следа осциллографа на сетке. Они особенно полезны для выравнивания частей форма волны с линиями сетки (это может упростить подсчет квадратов, например, при определении длины волны).

Если вы хотите разместить осциллограф на своем веб-сайте, скопируйте и вставьте следующий HTML-код на свою веб-страницу.

Пожалуйста, включите JavaScript для просмотра комментариев на основе Disqus.,

Осциллограф

Программный осциллограф для просмотра музыки. Перетащите аудиофайл в приложение и смотреть сигналы.

скачиваний

  • Windows 1.0.8 (23 января 2017 г.)
  • Mac OS X 1.0.8 (23 января 2017 г.)
  • Linux 1.0.3-пререлиз; выбор устройства не работает (5 марта 2016 г.)
  • Источник
Новая версия не очень проверена.Если у вас есть проблемы, попробуйте предыдущий выпуск: Осциллограф Webring

Как использовать

После запуска осциллографа приветственное сообщение уже загружено, нажмите ▶ ︎ play, чтобы убедиться, что настройка звука работает. Если это не так, откройте ⚙ настройки и отключите «Использовать системные настройки по умолчанию». Затем выберите аудиовыход, который вы хотите использовать.

Чтобы открыть файлы, вы можете либо щелкнуть значок папки, либо перетащить файл из Explorer / Finder / Nautilus / … в приложение.

Ключ Акция
Space Play / Pause
f Полноэкранный режим
Tab Скрыть интерфейс
e Экспорт в последовательность изображений (по умолчанию 1920×1080 при 60 кадр / с, редактирование настроек.TXT для настройки)

Особенности

  • с версии 1.0.8 3D (бок о бок и анаглиф) при воспроизведении 4-канальных файлов
  • с 1.0.7 Time Stretch аудио файлы
  • с версии 1.0.6 Стереомикрофон, вход
  • , начиная с 1.0.5 Поддерживаемые платформы: Windows и Mac OS X (32-разрядная версия)
  • с 1.0.5 Экспорт последовательности изображений
  • начиная с 1.0.1 Wav, Flac, Mp3 и некоторые другие файлы поддерживаются (через ffmpeg / libavcodec)
  • с 1.0.0 Эстетика очень близка к аналоговому осциллографу

Известные проблемы

Спасибо. Спасибо!

Лицензия / Исходный код

  • Вы можете найти проект home и исходный код в свободном доступе на github. Сам код передается по лицензии MIT.
  • На основе Openframeworks, творческой библиотеки кодирования для C ++. Большая его часть лицензирована как MIT / BSD.
  • Использует FFmpeg для декодирования аудиофайлов.FFmpeg лицензируется в соответствии с gpl / lgpl 2.1. Общие библиотеки, включенные здесь, были скомпилированы в соответствии с lgpl. Копию LGPL вместе с инструкциями по компиляции библиотеки для каждой платформы можно найти в папке docs / ffmpeg . это часть файлов релиза. В качестве альтернативы (или если файлы не были включены случайно) вы можете найти онлайн-версии инструкций по компиляции и LGPL как часть проекта ofxAvCodec.

Форум / Вопросы

Пожалуйста, включите JavaScript для просмотра комментариев на основе Disqus.

Это программное обеспечение использует код FFmpeg, лицензированный в соответствии с LGPLv2.1, и его исходный код можно скачать здесь / здесь.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *