+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Сопротивление конденсатора, теория и примеры

Сопротивление конденсатора постоянному току

Конденсатор характеризуют при помощи ряда параметров (емкость, рабочее напряжение и т. д), одной из таких характеристик является сопротивление. Конденсатор практически не пропускает постоянный электрический ток. То есть сопротивление конденсатора является бесконечно большим для постоянного тока, но это идеальный случай. Через реальный диэлектрик очень малый ток протекать может. Этот ток называют током утечки. Ток утечки является показателем качества диэлектрика, который применяется при изготовлении конденсатора. У современных конденсаторов ток утечки составляет некоторые доли микроампера. Сопротивление конденсатора в таком случае можно вычислить, используя закон Ома для участка цепи, зная величину напряжения, до которой заряжен конденсатор и ток утечки. Но обычно при решении учебных задач сопротивление конденсатора постоянному току считают бесконечно большим.

Сопротивление конденсатора переменному напряжению

При включении конденсатора в цепь с переменным током, ток свободно проходит через конденсатор. Это объясняется очень просто: происходит процесс постоянной зарядки и разрядки конденсатора. При этом говорят, что в цепи присутствует емкостное сопротивление конденсатора, помимо активного сопротивления.

И так, конденсатор, который включен в цепь переменного тока, ведет себя как сопротивление, то есть оказывает влияние на силу тока, текущую в цепи. Величину емкостного сопротивления обозначим как , его величина связана с частотой тока и определена формулой:

   

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Если конденсатор включен в цепь переменного тока, то в нем не затрачивается мощность, потому что фаза тока сдвинута по отношению к напряжению на . Если рассмотреть один период колебания тока в цепи (T), то происходит следующее: при заряде конденсатора (это составляет ) энергия в поле конденсатора запасается; на следующем отрезке времени () конденсатор разряжается и отдает энергию в цепь. Поэтому ёмкостное сопротивление называют реактивным (безваттным).

Следует заметить, что в каждом реальном конденсаторе реальная мощность (мощность потерь) все же тратится, при течении через него переменного тока. Это вызвано тем, что происходят изменения в состоянии диэлектрика конденсатора. Помимо этого существует некоторая утечка в изоляции обкладок конденсатора, поэтому появляется небольшое активное сопротивление, которое как бы включено параллельно конденсатору.

Примеры решения задач

Калькулятор импеданса конденсатора • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Отметим, что величина импеданса идеального конденсатора равна его реактивному сопротивлению. Однако это не идентичные величины, так как между током и напряжением в емкостной цепи существует фазовый сдвиг. Для расчетов используются указанная ниже формула:

Здесь

XC — реактивное сопротивление конденсатора в омах (Ом) ,

ZLC — импеданс конденсатора в омах (Ом),

ω = 2πf — угловая частота в рад/с,

j — мнимая единица.

f — частота в герцах (Гц),

С — емкость в фарадах (Ф), и

Для расчета выберите единицы измерения и введите емкость и частоту. Импеданс конденсатора будет показан в омах.

График зависимости реактивного сопротивления конденсатора XC и текущего через него тока I от частоты f для нескольких величин емкости показывает обратную пропорциональную зависимость от частоты реактивного сопротивления

Конденсатор представляет собой пассивный электрический элемент с двумя выводами, состоящий, в основном, из двух электрических проводников, часто в форме тонких металлических пластин, разделенных диэлектриком, например, пластмассовой пленкой, керамикой, бумагой или даже воздухом. Конденсаторы используются для хранения энергии в форме электрического заряда.

Если незаряженный конденсатор подключить к источнику постоянного напряжения, он заряжается до приложенного напряжения и его зарядный ток экспоненциально уменьшается от максимального значения в начальной точке заряда до нуля. В то же время, напряжение на конденсаторе увеличивается до напряжения источника постоянного тока.

Таким образом, когда напряжение на конденсаторе становится максимальным, ток через него достигает минимума. Скорость изменения тока определяется постоянной времени цепи, в которую включен конденсатор. Полностью заряженный конденсатор блокирует ток и действует как временный накопитель энергии.

Идеальный конденсатор поддерживает полный заряд в течение неограниченно долгого времени даже в том случае, если отключить источник постоянного напряжения. Однако в реальной жизни конденсаторы, особенно электролитические, не могут хранить энергию постоянно, так как у них имеется относительно низкое сопротивление утечки и, следовательно, большой ток утечки.

Если к конденсатору приложить синусоидальное напряжение, он заряжается сначала в одном направлении, а затем в противоположном. Полярность его заряда изменяется со скоростью изменения переменного напряжения. Как уже упоминалось выше, когда напряжение достигает максимума, ток становится минимальным и когда напряжение достигает минимума, ток достигает максимума. Ток через конденсатор пропорционален скорости изменения напряжения, причем ток максимален, когда напряжение изменяется быстрее всего, а это происходит, когда синусоида напряжения пересекает нулевую точку. На рисунке показан график напряжения на конденсаторе, заряда на нем и протекающего через него тока выглядит.

В чисто емкостной цепи величина тока зависит от скорости изменения напряжения. Ток заряжает конденсатор и когда ток медленно понижается до нуля, конденсатор полностью заряжен и напряжение на нем достигает максимума. VC — напряжение, QC — заряд, IC — ток, φ = –90° = –π/2 — фазовый сдвиг. 1 — конденсатор начинает заряжаться, ток достиг положительного максимума, скорость его изменения нулевая и напряжение на конденсаторе, а также его заряд — нулевые; 2 — конденсатор полностью заряжен, ток через него равен нулю, скорость его изменения в этот момент максимальна, а напряжение на конденсаторе и его заряд в этот момент максимальны и положительны; 3 — конденсатор заряжается в противоположном направлении, ток через него достиг отрицательного максимума, скорость его изменения нулевая, напряжение и заряд конденсатора также нулевые; 4 — конденсатор полностью заряжен, ток через него нулевой, скорость его изменения максимальна, а заряд и напряжение на конденсаторе достигли своих отрицательных максимумов

Как мы видим, напряжение на конденсаторе отстает от тока в нем по времени и фазе на 90°, так ток должен течь достаточно долго, чтобы на конденсаторе возник заряд и, соответственно, возросло напряжение. Можно также сказать, что ток опережает напряжение. Величина этого опережения зависит от соотношения величин реактивного сопротивления и активного сопротивления в цепи. Если сопротивления в цепи нет, то отставание (опережение) будет на 90° (ток нулевой, когда напряжение максимально). Этот угол называется фазовым сдвигом.

Аналогичное явление можно наблюдать и в природе. Сравните: Солнце светит сильнее всего в астрономический полдень (солнечный свет — напряжение), однако самая жаркая часть дня обычно бывает через несколько часов после полудня (температура — ток). Или другой пример. День зимнего солнцестояния в северном полушарии (самый короткий день) — в конце декабря, однако самые холодные месяцы еще впереди. В зависимости от того, где вы живете, это будет январь или февраль. Вспомните поговорку «Солнце — на лето, зима — на мороз». Это как раз о поведении емкости, только в природной аналогии. Такой сезонный «сдвиг фаз» или отставание вызван поглощением энергии Солнца огромными массами воды в океанах. Они отдадут эту запасенную энергию, но позже — точно так же, как это делают конденсаторы.

День зимнего солнцестояния

Рассчитанный этим калькулятором импеданс представляет собой меру сопротивления конденсатора пропускаемому через него сигналу на определенной частоте. Емкостное реактивное сопротивление обратно пропорционально частоте приложенного переменного напряжения. Приведенные выше формула и график показывают, что реактивное сопротивление конденсатора XС мало при высоких частотах и велико при низких частотах (катушки индуктивности ведут себя с точностью до наоборот). При нулевой частоте (при постоянном напряжении) емкостное реактивное сопротивление становится бесконечно большим и прерывает протекающий ток. С другой стороны, при очень высоких частотах конденсатор проводит очень хорошо — отсюда правило, которое мы выучили в школе: конденсаторы не пропускают постоянный ток и пропускают переменный. Если частота очень высокая, конденсаторы пропускают сигнал очень хорошо.

Импеданс измеряется в омах, так же, как и сопротивление. Импеданс мешает прохождению электрического тока так же, как и сопротивление, и показывает как сильно конденсатор противодействует прохождению тока через него. Но тогда возникает вопрос: в чем же разница между импедансом и сопротивлением? А разница заключается в зависимости импеданса от частоты приложенного сигнала. Сопротивление от частоты не зависит, а импеданс конденсаторов от частоты зависит. С увеличением частоты импеданс конденсатора уменьшается и наоборот.

Этот калькулятор предназначен для расчета импеданса идеальных конденсаторов. Реальные конденсаторы всегда имеют некоторую индуктивность и сопротивление. Для расчета импеданса реальных конденсаторов пользуйтесь калькулятором импеданса RLС-цепей.

Конденсаторы советского производства, выпущенные в конце 60-х гг. прошлого века

Однофазные цепи переменного тока (страница 2)

Решение:
Полное сопротивление схемы

Полная мощность на входе схемы

Потери мощности в обмотке катушки

Активная мощность схемы

Коэффициент мощности схемы

Из таблиц тригонометрических величин .
Активное сопротивление схемы

сопротивление дуги

Индуктивное сопротивление цепи представлено индуктивным сопротивлением катушки:

Эту же величину можно определить из треугольника сопротивлении (рис. 25, масштаб )

Искомая индуктивность катушки

Если бы вместо катушки был включен реостат, то сопротивление схемы имело бы ту же величину 6 Ом, но было бы чисто активным:

откуда

Потери мощности в катушке

Потери мощности в реостате

Отсюда ясно, что к. п. д. схемы выше при «погашении» избытка напряжения индуктивной катушкой. Действительно, к. п. д. при наличии катушки

к. п. д. при наличии реостата

Не следует забывать, что «погашение» избытка напряжения катушкой (или конденсатором) ухудшает коэффициент мощности (в данном примере при наличии катушки и при наличии реостата).

22. Последовательно с катушкой, параметры которой и L=15,92 мГн, включен реостат сопротивлением, . Цепь включена на напряжение U=130 В при частоте f=50 Гц.
Определить ток в цепи; напряжение на катушке и реостате; коэффициент мощности цепи и катушки.

Решение:
Индуктивное сопротивление катушки

Полное сопротивление катушки

Активное сопротивление цепи, состоящей из последовательно соединенных катушки и реостата,

Полное сопротивление цепи

На основании закона Ома ток в цепи

Напряжение на катушке

Напряжение на реостате

Арифметическая сумма много больше приложенного напряжения U=130 В. Коэффициент мощности цепи

Коэффициент мощности катушки

Следовательно, реостат увеличивает коэффициент мощности и сопротивление цепи, но уменьшает ток, увеличивает потребление энергии схемой.
Действительно, активная мощность катушки

активная мощность реостата

Так как цепь неразветвленная и ток один, то с него целесообразно начать построение векторной диаграммы (рис. 26).
Напряжение на реостате, представляющем собой чисто активное сопротивление, совпадает по фазе с током; на диаграмме вектор этого напряжения совпадает по направлению с вектором тока. Из конца вектора в сторону опережения вектора тока I, под углом в сторону, противоположную вращению стрелки часов, откладываем вектор напряжения на катушке . Векторы построены так с целью сложения по правилу многоугольника.

23. Неразветвленная цепь составлена из двух катушек: у первой катушки индуктивность и сопротивление , у второй катушки индуктивность и сопротивление .
Определить ток в цепи и напряжения на каждой катушке, а также построить в масштабе векторную диаграмму, если частота f=50 Гц и приложенное напряжение U=12,6 В.

Решение:
Индуктивное сопротивление первой катушки

т. е. оно численно равно активному сопротивлению , что обусловливает отставание тока по фазе от напряжения на 1/8 периода (на 45°).
Действительно, тангенс угла сдвига фаз

Индуктивное сопротивление второй катушки

Так как ее активное сопротивление то тангенс угла сдвига фаз

Построим в масштабе треугольник сопротивлений для рассматриваемой цепи. Для этого зададимся масштабом сопротивлений . Тогда на диаграмме сопротивление 1,57 Ом будет изображено отрезком 15,7 мм, сопротивление 2,7 Ом — отрезком 27 мм и т. д. На рис. 27 отрезок, изображающий активное сопротивление , отложен в горизонтальном направлении, а отрезок, изображающий индуктивное сопротивление , — в вертикальном направлении под прямым углом к .

Полное сопротивление первой катушки является гипотенузой прямоугольного треугольника. Из вершины с этого треугольника в горизонтальном направлении отложен отрезок, изображающий сопротивление , и под прямым углом к нему вверх — отрезок, изображающий сопротивление . Гипотенуза се прямоугольного треугольника означает полное сопротивление второй катушки.
Из рис. 27 видно, что отрезок ае, изображающий полное сопротивление z неразветвленной цепи из двух катушек, не равен сумме отрезков ас и се, т. е. . Чтобы определить полное сопротивление z рассматриваемой цепи, следует сложить отдельно активные (, отрезок аf) и индуктивные (, отрезок ef) сопротивления катушек.
Гипотенуза ае, означающая полное сопротивление z цепи, определяется по теореме Пифагора:

Ток в цепи определяется по закону Ома:

Напряжение на первой катушке

Напряжение на второй катушке

Строим векторную диаграмму (рис. 28), приняв масштабы:
а) для тока ; тогда вектор тока изобразится отрезком длиной 25 мм;
б) для напряжения ; при этом вектор напряжения будет иметь длину 55,2 мм, вектор напряжения — длину 71 мм, а вектор приложенного напряжения — длину 126 мм.
Начало вектора совмещено с концом вектора для возможности сложения векторов напряжений но правилу многоугольника (напряжение, приложенное к неразветвленной цепи катушек, равно геометрической сумме напряжений отдельных катушек).

 

Работа 352 Определение ёмкостного сопротивления конденсатора в цепи переменного тока

Переменный электрический ток

Юльметов А. Р. Переменный электрический ток Методические указания к выполнению лабораторных работ Оглавление P3.4.5.1. Преобразование тока и напряжения в трансформаторе……… 2 P3.4.5.2. Преобразование

Подробнее

, где I m амплитуда силы тока

ЛАБОРАТОРНАЯ РАБОТА 8. ИНДУКТИВНОСТЬ И ЕМКОСТЬ В ЦЕПИ ПЕРЕМЕННОГО ТОКА Цель работы: определение зависимости индуктивного и емкостного сопротивлений от частоты, а также определение угла сдвига фаз тока

Подробнее

Лабораторная работа 35

Лабораторная работа 35 Исследование резонанса в цепи переменного тока Методическое руководство Москва 04 г. Исследование резонанса в цепи переменного тока. Цель лабораторной работы Изучение зависимости

Подробнее

Лабораторная работа 5 Резонанс напряжений

Лабораторная работа 5 Резонанс напряжений В механической системе онанс наступает при равенстве собственной частоты колебаний системы и частоты колебаний возмущающей силы, действующей на систему. Колебания

Подробнее

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ Цель работы: исследование зависимости напряжения на емкости и тока в колебательном контуре от частоты вынужденных колебаний ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ Для

Подробнее

10. ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

44 0 ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕКИЙ ТОК 0 Основные понятия и определения Переменным называется ток, который с течением времени изменяет свою величину Квазистационарным называется переменный ток, который во всех

Подробнее

Тема 4.2. Цепи переменного тока

Тема 4.. Цепи переменного тока Вопросы темы.. Цепь переменного тока с индуктивностью.. Цепь переменного тока с индуктивностью и активным сопротивлением. 3. Цепь переменного тока с ёмкостью. 4. Цепь переменного

Подробнее

Лекция 4 ПЕРЕМЕННЫЙ ТОК

Сегодня: среда, 18 сентября 213 г. Лекция 4 ПЕРЕМЕННЫЙ ТОК Содержание лекции: 1. Сопротивление в цепи переменного тока 2. Емкость в цепи переменного тока 3. Индуктивность в цепи переменного тока 4. Закон

Подробнее

1. Основные положения теории

. Основные положения теории…. Предварительная подготовка… 5 3. Задание на проведение эксперимента… 8 4. Обработка результатов экспериментов… 3 5. Вопросы для самопроверки и подготовке к защите

Подробнее

Электрические колебания

Электрические колебания Примеры решения задач Пример В схеме изображенной на рисунке ключ первоначально находившийся в положении в момент времени t переводят в положение Пренебрегая сопротивлением катушки

Подробнее

С.А. Иванская ЭЛЕКТРОТЕХНИКА

МИНИСТЕРСТВО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКОГО КРАЯ ГОУ СПО «Минераловодский колледж железнодорожного транспорта» С.А. Иванская ЭЛЕКТРОТЕХНИКА Методические рекомендации по освоению теоретического материала и

Подробнее

Электромагнитные колебания и волны

Юльметов А. Р. Электромагнитные колебания и волны Методические указания к выполнению лабораторных работ Оглавление P3.7.1.1. Свободные электромагнитные колебания…………….. 2 P3.7.1.2. Поддержание

Подробнее

Конденсатор в цепи переменного тока

Лабораторная работа 6 Конденсатор в цепи переменного тока Цель работы: исследование зависимости проводимости конденсатора от частоты синусоидального тока. Определение емкости конденсатора и диэлектрической

Подробнее

Лабораторная работа 16 Трансформатор.

Лабораторная работа 16 Трансформатор. Цель работы: исследовать работу трансформатора в холостом режиме и под нагрузкой. Оборудование: трансформатор (собирать схему для понижающего трансформатора!), источник

Подробнее

Резонанс «на ладони».

Резонанс «на ладони». Резонансом называется режим пассивного двухполюсника, содержащего индуктивные и ёмкостные элементы, при котором его реактивное сопротивление равно нулю. Условие возникновения резонанса

Подробнее

Электромагнитные колебания и волны.

Вариант 1. 1. Конденсатор электроемкостью 500 пф соединен параллельно с катушкой длиной 40см и площадью поперечного сечения 5 см 2. Катушка содержит 1000 витков. Сердечник немагнитный. Найти период колебаний

Подробнее

А.С. КАЛИНИН ЭЛЕКТРОТЕХНИКА

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский технологический университет» МИРЭА Филиал МИРЭА в г. Фрязино Кафедра общенаучных дисциплин

Подробнее

1. Пассивные RC цепи

. Пассивные цепи Введение В задачах рассматриваются вопросы расчета амплитудно-частотных, фазочастотных и переходных характеристик в пассивных — цепях. Для расчета названных характеристик необходимо знать

Подробнее

Тестовые вопросы по «Электронике». Ч.1

(в.1) Тестовые вопросы по «Электронике». Ч.1 1. Первый закон Кирхгофа устанавливает связь между: 1. Падениями напряжения на элементах в замкнутом контуре; 2. Токами в узле схемы; 3. Мощностями рассеиваемыми

Подробнее

Как рассчитать реактивное сопротивление конденсатора для прямоугольной волны

Точно так же, как рассчитать реактивное сопротивление для конденсатора, когда через него проходит прямоугольная волна. Какая формула?

Нет емкостного сопротивления, связанного с прямоугольной волной. Само понятие реактивного сопротивления зависит от контекста синусоидального возбуждения.

Когда мы решаем схемы переменного тока в векторной области, считается само собой разумеющимся, что схема находится в синусоидальном устойчивом состоянии, то есть все источники имеют синусоидальную форму с одинаковой частотой и все переходные процессы затухают.

Этот факт таков: нельзя осмысленно суммировать фазоры или реактивные сопротивления для синусоид разных частот .

Теперь, это не значит, что вы не можете применить концепцию реактивного сопротивления, чтобы найти напряжение на конденсаторе для тока прямоугольной формы.

Поскольку (идеальные) конденсаторы являются линейными , мы можем разложить прямоугольную волну на синусоидальные компоненты, найти соответствующее синусоидальное напряжение для каждого компонента, а затем суммировать с компонентами напряжения, чтобы найти общее напряжение.

Напомним фундаментальное соотношение векторной области для напряжения и тока конденсатора:

В ⃗ с = 1 J ω C я ⃗ с В → с знак равно 1 J ω С я → с

где ω ω угловая частота связанной синусоиды.

Теперь пусть

я С ( т ) = а 1 соз ( ω т + ϕ 1 ) + а 2 соз ( 2 ω t + ϕ 2 ) + а 3 соз ( 3 ω т + ϕ 3 ) + . , , я С ( T ) знак равно 1 соз ⁡ ( ω T + φ 1 ) + 2 соз ⁡ ( 2 ω T + φ 2 ) + 3 соз ⁡ ( 3 ω T + φ 3 ) + , , ,

Для каждого синусоидального компонента существует связанный вектор. Например, для первого компонента связанный вектор

я ⃗ с 1 = а 1 е j ϕ 1 я → с 1 знак равно 1 е J φ 1

таким образом

В ⃗ с 1 = а 1 е j ϕ 1 J ω C В → с 1 знак равно 1 е J φ 1 J ω С

и что

v С 1 ( т ) = а 1 ω C соз ( ω т + ϕ 1 — π 2 ) v С 1 ( T ) знак равно 1 ω С соз ⁡ ( ω T + φ 1 — π 2 )

Повторите для каждого члена в серии, а затем сложите, чтобы найти общее напряжение конденсатора.

Обратите внимание, что мы не определили реактивное сопротивление для всей текущей формы волны, и мы не можем определить такую ​​вещь. Вместо этого мы

(1) найдено реактивное сопротивление для каждого синусоидального компонента

(2) преобразовал каждое результирующее векторное напряжение обратно во временную область

(3) суммируются отдельные компоненты напряжения во временной области

Как определить емкость сопротивления. Формула емкостного сопротивления

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.

При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U , подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U , ток не может начаться мгновенно по причине противодействия ЭДС, равного -U , поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε ), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt) .
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t) , либо равная ей функция sin(t-π/2) .
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL , которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U , мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt) .
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2) .
Тогда для синусоидального напряжения u = U amp sin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = U amp ωCsin(ωt+π/2) .

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Реактивное сопротивление ёмкости
X C = 1 /(2πƒC)

В которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим. По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора.


Рис. 1. Изменение тока и напряжения в цепи с емкостью

Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда (рис. 2),один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится.

Рис. 2. Изменение напора воды в трубе, соединяющей сообщающиеся сосуды, сходно с изменением тока в цепи во время заряда конденсатора

Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит .

Убедиться в этом можно на следующем простом опыте. Подключите к сети переменного тока через лампочку электрического освещения мощностью 25 Вт конденсатор емкостью 4-6 мкф. Лампочка загорится и не погаснет до тех пор, пока не будет разорвана цепь. Это говорит о том, что по цепи с емкостью проходил переменный ток. Однако проходил он, конечно, не сквозь диэлектрик конденсатора, а в каждый момент времени представлял собой или ток заряда или ток разряда конденсатора.

Диэлектрик же, как нам известно, поляризуется под действием электрического поля, возникающего в нем при заряде конденсатора, и поляризация его исчезает, когда конденсатор разряжается.

При этом диэлектрик с возникающим в нем током смещения служит для переменного тока своего рода продолжением цепи, а для постоянного разрывает цепь. Но ток смещения образуется только в пределах диэлектрика конденсатора, и поэтому сквозного переноса зарядов по цепи не происходит.

Сопротивление, оказываемое конденсатором переменному току, зависит от величины емкости конденсатора и от частоты тока.

Чем больше емкость конденсатора, тем больший заряд переносится по цепи за время заряда и разряда конденсатора, а следовательно, и тем больший будет ток в цепи. Увеличение же тока в цепи свидетельствует о том, что уменьшилось ее сопротивление.

Следовательно, с увеличением емкости уменьшается сопротивление цепи переменному току.

Увеличение увеличивает величину переносимого по цепи заряда, так как заряд (а равно и разряд) конденсатора должен произойти быстрее, чем при низкой частоте. В то же время увеличение величины переносимого в единицу времени заряда равносильно увеличению тока в цепи, а следовательно, уменьшению ее сопротивления.

Если же мы каким-либо способом будем постепенно уменьшать частоту переменного тока и сведем ток к постоянному, то сопротивление конденсатора, включенного в цепь, будет постепенно возрастать и станет бесконечно большим (разрыв цепи) к моменту появления в .

Следовательно, с увеличением частоты уменьшается сопротивление конденсатора переменному току.

Подобно тому как сопротивление катушки переменному току называют индуктивным, сопротивление конденсатора принято называть емкостным.

Таким образом, емкостное сопротивление тем больше, чем меньше емкость цепи и частота питающего ее тока.

Емкостное сопротивление обозначается через Хс и измеряется в омах.

Зависимость емкостного сопротивления от частоты тока и емкости цепи определяется формулой Хс = 1/ ωС, где ω — круговая частота, равная произведению 2 πf , С-емкость цепи в фарадах.

Емкостное сопротивление, как и индуктивное, является реактивным по своему характеру, так как конденсатор не потребляет энергии источника тока.

Формула для цепи с емкостью имеет вид I = U/Xc , где I и U — действующие значения тока и напряжения; Хс — емкостное сопротивление цепи.

Свойство конденсаторов оказывать большое сопротивление токам низкой частоты и легко пропускать токи высокой частоты широко используется в схемах аппаратуры связи.

С помощью конденсаторов, например, достигается необходимое для работы схем разделение постоянных токов и токов низкой частоты от токов высокой частоты.

Если нужно преградить путь току низкой частоты в высокочастотную часть схемы, последовательно включается конденсатор небольшой емкости. Он оказывает большое сопротивление низкочастотному току и в то же время легко пропускает ток высокой частоты.

Если же надо не допустить ток высокой частоты, например, в цепь питания радиостанции, то используется конденсатор большой емкости, включаемый параллельно источнику тока. Ток высокой частоты в этом случае проходит через конденсатор, минуя цепь питания радиостанции.

Активное сопротивление и конденсатор в цепи переменного тока

На практике часто встречаются случаи, когда в цепи последовательно с емкостью Общее сопротивление цепи в этом случае определяется по формуле

Следовательно, полное сопротивление цепи, состоящей из активного и емкостного сопротивлений, переменному току равно корню квадратному из суммы квадратов активного и емкостного сопротивлений этой цепи.

Закон Ома остается справедливым и для этой цепи I = U/Z .

На рис. 3 приведены кривые, характеризующие фазовые соотношения между током и напряжением в цепи, содержащей емкостное и активное сопротивления.

Рис. 3. Ток, напряжение и мощность в цепи с конденсатором и активным сопротивлением

Как видно из рисунка, ток в этом случае опережает напряжение уже не на четверть периода, а меньше, так как активное сопротивление нарушило чисто емкостный (реактивный) характер цепи, о чем свидетельствует уменьшенный сдвиг фаз. Теперь уже напряжение на зажимах цепи определится как сумма двух слагающих: реактивной слагающей напряжения u с, идущей на преодоление емкостного сопротивления цепи, и активной слагающей напряжения преодолевающей активное ее сопротивление.

Чем больше будет активное сопротивление цепи, тем меньший сдвиг фаз получится между током и напряжением.

Кривая изменения мощности в цепи (см. рис. 3) дважды за период приобрела отрицательный знак, что является, как нам уже известно, следствием реактивного характера цепи. Чем менее реактивная цепь, тем меньше сдвиг фаз между током и напряжением и тем большую мощность источника тока эта цепь потребляет.

Конденсатор используется в схемах для разделения переменной и постоянной составляющей напряжения, при этом он хорошо проводит высокочастотный сигнал, и плохо — низкочастотный. Находясь в цепи постоянного тока, его импеданс принимается бесконечно большим. Для переменного тока ёмкостное сопротивление конденсатора не имеет постоянной величиной. Поэтому расчёт этого значения крайне важен при проектировании различных радиоэлектронных приборов.

Общее описание

Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

На схемах конденсатор изображается в виде двух прямых, соответствующих проводящим пластинам прибора, и перпендикулярно к их серединам нарисованными отрезками — выводами устройства.

Принцип действия конденсатора заключается в следующем : при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними.

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2) ½ , где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное — с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Ёмкостное сопротивление

Для понимания процесса следует представить конденсатор в электрической цепи, по которой течёт переменный ток. Причём в этой цепи нет других элементов. Значение тока, проходящего через конденсатор, и напряжения, приложенного к его обкладкам, изменяется по времени. Зная любое из этих значений, можно найти другое.

Пускай ток изменяется по синусоидальной зависимости I (t) = Im * sin (w*t+ f 0). Тогда напряжение можно описать как U (t) = (Im/C*w) *sin (w*t+ f 0 -p/2). При учёте в формуле сдвига фаз на 90 градусов, возникающего между сигналами, вводится комплексная величина j, называемая мнимой единицей. Поэтому формула для нахождения тока будет выглядеть как I = U /(1/j*w*C). Но учитывая, что комплексное число только обозначает смещение напряжения относительно тока, а на их амплитудные значения не влияет, его можно убрать из формулы, тем самым значительно её упростив.

Так как по закону Ома сопротивление прямо пропорционально напряжению на участке цепи и обратно пропорционально току, то преобразуя формулы, можно будет получить следующее выражение:

  • Xc = 1/w*C = ½*p*f*C. Единица измерения — ом.

Становится понятно, что ёмкостное сопротивление зависит не только от ёмкости, но и от частоты. При этом чем больше эта частота, тем меньшее сопротивление конденсатор будет оказывать проходимому через него току. По отношению к ёмкости это утверждение будет обратным. Вот поэтому для постоянного тока, частота которого равна нулю, сопротивление накопителя будет бесконечно большим.

Индуктивная составляющая

При прохождении переменного сигнала через накопитель, его можно представить в виде последовательно включённой с источником питания катушки индуктивности. Эта катушка характеризуется большим сопротивлением в цепи переменного сигнала, чем постоянного. Значение силы тока в определённой точке времени находится как I = I 0 * sinw .

Приняв во внимание, что мгновенная величина напряжения U 0 обратна по знаку мгновенному значению ЭДС самоиндукции E 0, а также используя правило Ленца, можно получить выражение E = L * I, где L — индуктивность.

Следовательно: U = L*w * I 0 *cosw*t = U 0 *sin (wt + p /2) , причём ток отстаёт от напряжения на p /2. Используя закон Ома и приняв, что сопротивление катушки равно w * L, получится формула для участка электрической цепи, имеющая только индуктивную составляющую: U 0 = I 0 / w * L.

Таким образом, индуктивное сопротивление будет равно Xl = w * L, измеряется оно также в омах. Из полученного выражения видно, что чем больше частота сигнала, тем сильнее будет сопротивление прохождению тока.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения. Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток. Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2) ½ .

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (5000 2 +3200 2)½ = 5 936 Ом =5,9 кОм.

Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.

ОПРЕДЕЛЕНИЕ

Конденсатор , в простейшем случае состоит из двух металлических проводников (обкладок), которые разделяет слой диэлектрика. Каждая из обкладок конденсатора имеет свой вывод и может быть подключена к электрической цепи.

Конденсатор характеризуют при помощи ряда параметров (емкость, рабочее напряжение и т. д), одной из таких характеристик является сопротивление. Конденсатор практически не пропускает постоянный электрический ток. То есть сопротивление конденсатора является бесконечно большим для постоянного тока, но это идеальный случай. Через реальный диэлектрик очень малый ток протекать может. Этот ток называют током утечки. Ток утечки является показателем качества диэлектрика, который применяется при изготовлении конденсатора. У современных конденсаторов ток утечки составляет некоторые доли микроампера. Сопротивление конденсатора в таком случае можно вычислить, используя закон Ома для участка цепи, зная величину напряжения, до которой заряжен конденсатор и ток утечки. Но обычно при решении учебных задач сопротивление конденсатора постоянному току считают бесконечно большим.

Сопротивление конденсатора переменному напряжению

При включении конденсатора в цепь с переменным током, ток свободно проходит через конденсатор. Это объясняется очень просто: происходит процесс постоянной зарядки и разрядки конденсатора. При этом говорят, что в цепи присутствует емкостное сопротивление конденсатора, помимо активного сопротивления.

И так, конденсатор, который включен в цепь переменного тока, ведет себя как сопротивление, то есть оказывает влияние на силу тока, текущую в цепи. Величину емкостного сопротивления обозначим как , его величина связана с частотой тока и определена формулой:

где — частота переменного тока; — угловая частота тока; C — емкость конденсатора.

Если конденсатор включен в цепь переменного тока, то в нем не затрачивается мощность, потому что фаза тока сдвинута по отношению к напряжению на . Если рассмотреть один период колебания тока в цепи (T), то происходит следующее: при заряде конденсатора (это составляет ) энергия в поле конденсатора запасается; на следующем отрезке времени () конденсатор разряжается и отдает энергию в цепь. Поэтому ёмкостное сопротивление называют реактивным (безваттным).

Следует заметить, что в каждом реальном конденсаторе реальная мощность (мощность потерь) все же тратится, при течении через него переменного тока. Это вызвано тем, что происходят изменения в состоянии диэлектрика конденсатора. Помимо этого существует некоторая утечка в изоляции обкладок конденсатора, поэтому появляется небольшое активное сопротивление, которое как бы включено параллельно конденсатору.

Примеры решения задач

ПРИМЕР 1

ЗаданиеКолебательный контур имеет сопротивление (R), катушку индуктивности (L) и конденсатор емкости C (рис.1). К нему подключено внешнее напряжение, амплитуда которого равна , а частота составляет . Какова амплитуда силы тока в цепи?

РешениеСопротивление контура рис.1 складывается из активного сопротивления R, емкостного сопротивления конденсатора и сопротивления катушки индуктивности . Полное сопротивление цепи (Z), которая содержит названные выше элементы, находят как:

Закон Ома для нашего участка цепи можно записать как:

Выразим искомую амплитуду силы тока из (1.2), подставим вместо Z правую часть формулы (1.1), имеем:

Ответ

Конденсаторы, как и резисторы, относятся к наиболее многочисленным элементам радиотехнических устройств. Основное свойство конденсаторов, это способность накапливать электрический заряд . Основной параметр конденсатора это его емкость .

Емкость конденсатора будет тем значительнее, чем больше площадь его обкладок и чем тоньше слой диэлектрика между ними. Основной единицей электрической емкости является фарада (сокращенно Ф), названная так в честь английского физика М. Фарадея. Однако 1 Ф — это очень большая емкость. Земной шар, например, обладает емкостью меньше 1 Ф. В электро- и радиотехнике пользуются единицей емкости, равной миллионной доле фарады, которую называют микрофарадой (сокращенно мкФ) .

Емкостное сопротивление конденсатора переменному току зависит от его емкости и частоты тока: чем больше емкость конденсатора и частота тока, тем меньше его емкостное сопротивление.

Керамические конденсаторы обладают сравнительно небольшими емкостями — до нескольких тысяч пикофарад. Их ставят в те цепи, в которых течет ток высокой частоты (цепь антенны, колебательный контур), для связи между ними.


Простейший конденсатор представляет собой два проводника электрического тока, например: — две металлические пластины, называемые обкладками конденсатора, разделенные диэлектриком, например: — воздухом или бумагой. Чем больше площадь обкладок конденсатора и чем ближе они расположены друг к другу, тем больше электрическая емкость этого прибора. Если к обкладкам конденсатора подключить источник постоянного тока, то в образовавшейся цепи возникнет кратковременный ток и конденсатор зарядится до напряжения, равного напряжению источника тока. Вы можете спросить: почему в цепи, где есть диэлектрик, возникает ток? Когда мы присоединяем к конденсатору источник тока, электроны в проводниках образовавшейся цепи начинают двигаться в сторону положительного полюса источника тока, образуя кратковременный поток электронов во всей цепи. В результате обкладка конденсатора, которая соединена с положительным полюсом источника тока, обедняется свободными электронами и заряжается положительно, а другая обкладка обогащается свободными электронами и, следовательно, заряжается отрицательно. Как только конденсатор зарядится, кратковременный ток в цепи, называемый током зарядки конденсатора, прекратится.

Если источник тока отключить от конденсатора, то конденсатор окажется заряженным. Переходу избыточных электронов с одной обкладки на другую препятствует диэлектрик. Между обкладками конденсатора тока не будет, а накопленная им электрическая энергия будет сосредоточена в электрическом поле диэлектрика. Но стоит обкладки заряженного конденсатора соединить каким-либо проводником «лишние» электроны отрицательно заряженной обкладки перейдут по этому проводнику на другую обкладку, где их недостает, и конденсатор разрядится. В этом случае в образовавшейся цепи также возникает кратковременный ток, называемый током разрядки конденсатора. Если емкость конденсатора большая, и он заряжен до значительного напряжения, момент его разрядки сопровождается появлением значительной искры и треска. Свойство конденсатора накапливать электрические заряды и разряжаться через подключенные к нему проводники используется в колебательном контуре радиоприемника.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками ), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.). Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки). Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

Где j — мнимая единица, ω — циклическая частота (рад/с ) протекающего синусоидального тока, f — частота в Гц , C — ёмкость конденсатора (фарад ). Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

Резонансная частота конденсатора равна

При f > f p конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f p , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где U — напряжение (разность потенциалов), до которого заряжен конденсатор.

Сопротивление конденсатора в цепи переменного тока – зависимость частоты от емкости

Свободные электрические колебания в параллельном контуре.

Основные свойства индуктивности:

— Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
— Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U, потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L, в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.

Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t1, которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t1 = .
По истечении времени t1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.
Накопленная катушкой магнитная энергия в этот момент составит.
В идеальном рассмотрении, при полном отсутствии потерь в контуре, EC будет равна EL. Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС, которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t2 = t1, он перезарядит конденсатор от нуля до максимального отрицательного значения (-U).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t1 и t2 составят половину периода полного колебания в контуре.
Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление. Магнитная энергия вновь будет накапливаться в катушке в течении времени t3, сменив полярность полюсов.

В течении заключительного этапа колебания (t4), накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U (в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников, фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t1 + t2 + t3 + t4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура, на которой реактивное сопротивление индуктивности XL=2πfL равно реактивному сопротивлению ёмкости XC=1/(2πfC).

Расчёт частоты резонанса LC-контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Частота резонанса колебательного контура LC.
ƒ = 1/(2π√(LC))

Расчёт ёмкости:

Ёмкость для колебательного контура LC
C = 1/(4𲃲L)

Расчёт индуктивности:

Индуктивность для колебательного контура LC
L = 1/(4𲃲C)

Похожие страницы с расчётами:
Рассчитать импеданс.
Рассчитать реактивное сопротивление.
Рассчитать реактивную мощность и компенсацию.

Частотные характеристики конденсаторов

Импеданс Z идеального конденсатора определяется формулой 1, где ω — угловая частота, а C — емкость конденсатора.


Рисунок 1. Идеальный конденсатор

(1)

Из формулы 1 видно, что с увеличением частоты импеданс конденсатора уменьшается. Это показано на рисунке 1. В идеальном конденсаторе нет потерь и эквивалентное последовательное сопротивление (ESR) равно нулю.

Рисунок 2. Частотная характеристика идеального конденсатора

В реальном конденсаторе (рис. 3) существует некоторое сопротивление (ESR), вызванное диэлектрическими потерями, потерями на сопротивлении обкладок конденсатора и потерями связанные с сопротивлением утечки, а также паразитная индуктивность (ESL) выводов и обкладок конденсатора. В результате частотная характеристика импеданса принимает V образную форму (или U образную в зависимости от типа конденсатора), как показано на рисунке 4.Также на рисунке показана частотная характеристика ESR.


Рисунок 3. Реальный конденсатор


Рисунок 4. Пример частотной характеристики реального конденсатора

Причина, по которой графики |Z| и ESR имеют такой вид как на рисунке 4, можно объяснить следующим образом.
Низкочастотная область
|Z| в этой области уменьшается обратно пропорционально частоте, как и в идеальном конденсаторе. Значение ESR определяется диэлектрическими потерями в конденсаторе.
Область резонанса
При повышении частоты ESR, в результате паразитной индуктивности, сопротивления электродов и других факторов, вызывает отклонение |Z| от идеальной характеристики (красная пунктирная линия) и достигает минимального значения. Частота, на которой |Z| достигает минимума, называется собственной резонансной частотой и на этой частоте |Z| = ESR. После превышения собственной частоты резонанса, характеристика элемента меняется с емкостной на индуктивную и |Z| начинает повышаться. Область ниже собственной резонансной частоты называется емкостной областью, а область выше — индуктивной.
В области резонанса к диэлектрическим потерям добавляются потери на электродах.
Высокочастотная область
При дальнейшем увеличении частоты характеристика |Z| определяется паразитной индуктивностью конденсатора. В высокочастотной области |Z| увеличивается пропорционально частоте, согласно формуле 2. Что касается ESR, в этой области начинают проявляться скин-эффект , эффект близости и другие.

(2)

Итак, мы рассмотрели частотную характеристику реального конденсатора. Здесь важно запомнить, что c повышением частоты ESR и ESL уже нельзя игнорировать. Поскольку существуют большое количество приложений, в которых конденсаторы используются на высоких частотах, ESR и ESL становятся важными параметрами, характеризующими конденсатор помимо значения его емкости.

Частотные характеристики конденсаторов различных типов

Паразитные составляющие реальных конденсаторов имеют различное значение в зависимости от их типа. Давайте посмотрим на частотные характеристики разных конденсаторов. На рисунке 5 показаны графики |Z| и ESR для конденсаторов емкостью 10 мкФ. Все конденсаторы, кроме пленочных, планарные (SMD).


Рисунок 5. Частотные характеристики конденсаторов разных типов.

Для всех типов конденсаторов |Z| ведет себя одинаково до частоты 1 кГц. После 1 кГц импеданс увеличивается сильнее в алюминиевых и танталовых электролитических конденсаторах, чем в монолитных керамических и пленочных конденсаторах.
Это происходит из-за того, что алюминиевые и танталовые конденсаторы имеют высокое удельное сопротивление электролита и большое ESR. В пленочных и монолитных керамических конденсаторах используются металлические материалы для электродов и, следовательно, они обладают очень маленьким ESR.
Монолитные керамические конденсаторы и пленочные показывают примерно одинаковые характеристики до точки собственного резонанса, но у монолитных керамических конденсаторов резонансная частота выше, а |Z| в индуктивной области ниже.
Эти результаты показывают, что импеданс монолитных керамических конденсаторов SMD типа в широком диапазоне частот имеет небольшое значение. Это делает их наиболее подходящими для высокочастотных приложений.

Частотные характеристики монолитных керамических конденсаторов

Существует также несколько типов монолитных керамических конденсаторов, изготовленных из различных материалов и имеющих различную форму. Давайте посмотрим, как эти факторы влияют на частотные характеристики.
ESR
ESR в емкостной области зависит от диэлектрических потерь, вызванных материалом диэлектрика. 2-й класс диэлектрических материалов на основе сегнетоэлектриков имеет высокую диэлектрическую постоянную и, как правило, высокое ESR. 1-ый класс материалов — температурно-компенсированные материалы на основе параэлектриков — имеют низкие диэлектрические потери и низкое ESR.
На высоких частотах в области резонанса и индуктивной области, в дополнение к сопротивлению материала электродов, их форме и количеству слоев, ESR зависит от скин-эффекта и эффекта близости. Электроды часто делают из Ni, но для дешевых конденсаторов иногда применяют Cu, который тоже имеет низкое сопротивление.
ESL
ESL монолитных керамических конденсаторов сильно зависит от внутренней структуры электродов. Если размеры внутренних электродов задаются длиной, шириной и толщиной, то индуктивность ESL может быть определена математически. Значение ESL уменьшается, когда электроды конденсатора короче, шире и тоньше.
На рисунке 6 показана связь между номинальной емкостью и резонансной частотой различных типов монолитных керамических конденсаторов. Вы можете видеть, что при уменьшении размеров конденсатора собственная резонансная частота увеличивается, а ESL уменьшается для одинаковых значений емкости. Это означает, что небольшие конденсаторы короткой длины лучше подходят для высокочастотных приложений.


Рисунок 6.

На рисунке 7 показан обратный LW конденсатор с короткой длиной L и большой шириной W. Из частотных характеристик, показанных на рисунке 8, можно увидеть, что LW конденсатор имеет меньший импеданс и лучшие характеристики, чем обычный конденсатор такой же емкости. С помощью LW конденсаторов можно достичь тех же характеристик, как у обычных конденсаторов, но меньшим числом компонентов. Уменьшение числа компонентов, позволяет сократить расходы и уменьшить монтажное пространство.

Рисунок 7. Внешний вид обратного LW конденсатора.

Рисунок 8. |Z| и ESR обратного LW конденсатора и конденсатора общего назначения

По материалам фирмы Murata.
Вольный перевод ChipEnable.Ru

Напряжение и ток конденсатора

Когда к конденсатору приложено синусоидальное напряжение, он периодически заряжается и разряжается. Ввиду переменного характера напряжения периодически меняется и полярность заряда конденсатора. Ток в конденсаторе ic достигает своего амплитудного значения каждый раз, когда напряжение uC на нем проходит через нуль (рис. 1). Таким образом, синусоида тока iC опережает синусоиду напряжения uc на 90°.

Фазовый сдвиг:

Рис.1

Реактивное сопротивление конденсатора

Конденсатор в цепи синусоидального тока оказывает токоограничивающий эффект, который вызван встречным действием напряжения при изменении знака заряда. Этот токоограничивающий эффект принято выражать как

емкостное реактивное сопротивление (емкостной реактанс) Хc.

Величина емкостного реактанса Хc зависит от величины емкости конденсатора, измеряемой в Фарадах, и частоты приложенного напряжения переменного тока. В случае синусоидального напряжения имеем:

где Хс — реактивное емкостное сопротивление, Ом;

С — емкость конденсатора, Ф;

= 2πf- угловая частота синусоидального напряжения (тока).

Цепи синусоидального с катушками индуктивности

Напряжение и ток катушки индуктивности

Когда к катушке индуктивности подведено синусоидальное напряжение, ток в ней отстает от синусоиды напряжения на 90°. Соответственно, мгновенное значение тока достигает амплитудного значения на четверть периода позже, чем мгновенное значение напряжения (рис. 2). В этом рассуждении пренебрегается активным сопротивлением катушки.

Рис. 2

Лабораторная работа 3

Последовательное соединение резистора

И конденсатора

Когда к цепи (рис. 3.1) с последовательным соединением резистора и катушки индуктивности подается переменное синусоидальное напряжение, один и тот же синусоидальный ток имеет место в обоих компонентах цепи.

Рис. 3.1

Между напряжениями UR, UС и U существуют фазовые сдвиги, обусловленные емкостным реактивным сопротивлением XС. Они могут быть представлены с помощью векторной диаграммы напряжений (рис. 3. 2).

Рис. 3.2

Фазовый сдвиг между током I и напряжением на резисторе Ur отсутствует, тогда как сдвиг между этим током и падением напряжения на конденсаторе Uc равен 90° (т.е. ток опережает напряжение на 90). При этом сдвиг между полным напряжением цепи U и током I определяется соотношением между сопротивлениями Хс и R.

Если каждую сторону треугольника напряжений разделить на ток, то получим треугольник сопротивлений (рис. 3.3). В треугольнике сопротивлений Z представляет собой так называемое полное сопротивление цепи.

Рис. 3.3

Из-за фазового сдвига между током и напряжением в цепях, подобных данной, простое арифметическое сложение действующих или амплитудных значений напряжений на отдельных элементах цепи невозможно. Невозможно и сложение разнородных (активных и реактивных) сопротивлений. Однако в векторной форме

Действующее значение полного напряжения цепи, как следует из векторной диаграммы,

Полное сопротивление цепи:

Активное сопротивление цепи:

Емкостное реактивное сопротивление цепи:

Угол сдвига фаз

Экспериментальная часть

Задание

Для цепи с последовательным соединением резистора и конденсатора измерьте и вычислите действующие значения падений напряжения на резисторе Ur и конденсаторе UC, ток I, угол сдвига фаз φ, полное сопротивление цепи Z и емкостное реактивное сопротивление ХC и активное сопротивление R.

Порядок выполнения работы

· Соберите цепь согласно схеме (рис. 3.4), подсоедините регулируемый источник синусоидального напряжения и установите его параметры: U = 5 В, f = 1 кГц.

Рис. 3.4

· Выполните мультиметрами измерения действующих значений тока и напряжений, указанных в таблице 1.

Таблица 3.1

U, B UR, B UC, B I, мА φ, град. R, Ом ХΔ, Ом Z, Ом Примечание

· Вычислите:

Фазовый угол

Полное сопротивление цепи

Активное сопротивление цепи

Емкостное реактивное сопротивление цепи

·Выберите масштабы и постройте векторную диаграмму напряжений (рис. 5) и треугольник сопротивлений (рис. 6).

Рис. 3.5 Рис. 3.6

Контрольные вопросы:

  1. Что называется периодом?
  2. Что называется частотой?
  3. Для переменного напряжения и тока записать выражения мгновенных напряжений и токов, дать определение амплитуды и начальной фазы.
  4. Дать определение действующего напряжения (тока), указать его связь с амплитудой напряжения (тока).
  5. Дать определения мгновенной и активной мощности.
  6. Объяснить назначение приборов в измерительной цепи.
  7. Какие элементы обладают активным сопротивлением.
  8. Какой вид имеет временная диаграмма напряжений и тока при последовательном соединении R и C-цепей?
  9. Изобразите треугольники напряжений, сопротивлений и мощностей для цепи с активно-ёмкостной нагрузкой. Чем они отличаются от треугольников для активно-индуктивной нагрузки?

Лабораторная работа 4

Дата добавления: 2016-12-04; просмотров: 1927 | Нарушение авторских прав

Рекомендуемый контект:
Похожая информация:
Поиск на сайте:

Начальная фаза. Сдвиг фаз

Предположим, что в магнитном поле генератора находится два одинаковых витка, сдвинутых в пространстве друг относительно друга на угол . При вращении в них буду находится ЭДС одинаковой частоты и амплитуды.

Но т.к. витки сдвинуты в пространстве, то наводимая в них ЭДС будет достигать амплитудных и нулевых значений не одновременно.

В начальный момент времени ЭДС витка будет:

В этих выражениях углы и называются фазными, или фазой. Углы и называются начальной фазой. Фазный угол определяет значение ЭДС в любой момент времени, а начальная фаза определяет значение ЭДС в начальный момент времени.

Разность начальных фаз двух синусоидальных величин одинаковой частоты и амплитуды называется углом сдвига фаз

Разделив угол сдвига фаз на угловую частоту, получим время, прошедшее с начала периода:

Если угол сдвига фаз составляет 1800, то такие ЭДС находятся в противофазе

Графическое изображение синусоидальных величин

Синусоидальные величины можно изображать графически при помощи синусоид или вращающихся векторов.

Любая синусоидальная величина характеризуется:

1. Амплитудой;

2. Угловой частотой;

3. Начальной фазой.

При изображении величины с помощью синусоиды ординаты синусоиды в масштабе представляют собой мгновенное значение, абсциссы – промежутки времени.

При этом длина вектора равна амплитудному значению величины, угол между положительным направлением оси абсцисс и векторов даст начальную фазу. Вектор вращается против часовой стрелки с угловой скоростью . Проекция конца вектора на ось ординат даст мгновенное значение синусоидальной величины.

Совокупность нескольких синусоид называется синусоидальной (волновой) диаграммой.

Совокупность нескольких векторов называется векторной диаграммой.

Сложение и вычитание синусоидальных величин

Для сложения двух синусоидальных величин с помощью синусоид необходимо сложить их ординаты в каждый момент времени.

Для того, чтобы сложить две величины с помощью векторов, необходимо к концу первого вектора добавить второй, не изменяя его величины и направления. Соединив начало первого вектора с концом второго, получим суммарный вектор.

Цепи переменного тока с активным сопротивлением

На величину тока и его характер в цепях переменного тока оказывает влияние не только сопротивление, определяемое материалом и геометрическими размерами, но и наличием в цепи емкости и индуктивности. Любая электрическая цепь обладает сопротивлением, индуктивностью и емкостью. Однако, часто тот или иной элемент преобладает над другим, поэтому их влиянием можно пренебречь.

Один и тот же проводник имеет различное сопротивление в цепях постоянного и переменного тока, причем, в цепях переменного тока это сопротивление больше.

— постоянный ток— переменный ток

Это объясняется тем, что переменный ток в отличие от постоянного, который протекает по сечению проводника с равномерной плотностью, частично вытесняется из внутренних слоев проводника к наружным. В результате чего плотность тока в различных слоях неодинакова. Это явление называется поверхностным эффектом. Это объясняется тем, что внутренние слои проводника сцеплены с большим числом магнитных силовых линий, чем наружные, и поэтому в них наводится большая ЭДС самоиндукции, которая препятствует протеканию тока и вытесняет его к наружным слоям, где ЭДС самоиндукции меньше.

.

Разделив обе части равенства на , получим действующие значения .

Ток и напряжение в цепи с активным сопротивлением совпадают по фазе.

Таким образом, мощность состоит из постоянной составляющей и переменной составляющей , среднее значение которых за период равно нулю. Таким образом, постоянная составляющая мощности выражает среднее за период значение мощности и называется активной мощностью:

Мощность в оба полупериода положительна. Это означает, что цепь с сопротивлением r только потребляет энергию из сети и назад ее не возвращает, т.к. она преобразуется в другие виды энергии.

Цепи переменного тока с индуктивностью

Допустим, что под действием напряжения в этой цепи протекает ток. Под действием переменного тока в катушке возникает переменный магнитный поток, который наводи в ней ЭДС самоиндукции.

ЭДС самоиндукции в любой момент времени уравновешивается напряжением:

Т.о. в цепи с индуктивностью напряжение опережает ток на угол 900.

— индуктивное (реактивное) сопротивление.

— закон Ома для цепи с индуктивностью.

Физически индуктивное сопротивление характеризует препятствие, оказываемое переменному току в результате наличия ЭДС самоиндукции.

Мощность цепи:

Т.о. мощность изменяется с двойной частотой и может быть положительной и отрицательной. Когда она «+» индуктивность потребляет электрическую энергию от источника и запасает ее от магнитного поля. Когда мощность «-» индуктивность возвращает запасенную энергию обратно к источнику.

Т.о. между источником и индуктивностью происходит непрерывный обмен энергией, при котором:

— цепь работает потребителем

— цепь работает генератором.

Максимальное значение мощности цепи индуктивности называется реактивной мощностью:

Энергия, запасенная в магнитном поле катушки, равна

Цепь переменного тока с емкостью

Под действием этого напряжения конденсатор будет разряжаться и заряжаться. Мгновенное значение заряда на обкладках конденсатора:

— закон Ома для цепи с емкостью.

— реактивное емкостное сопротивление

Т.о. ток в цепи с емкостью опережает напряжение на угол 900.

Физически емкостное сопротивление характеризует препятствие, оказываемое переменному току цепью с емкостью. В результате поляризации диэлектрика конденсатора в нем образуется свое внутренне электрическое поле, которое направлено противоположно внешнему полю, приложенному к диэлектрику.

Мощность цепи:

Мощность изменяется с двойной частотой относительно тока и напряжения. В течении первой четверти периода, когда напряжение, приложенное к конденсатору, возрастает, мгновенная мощность положительна. Это означает, что конденсатор получает и запасает энергию источника в виде электрического поля.

В течении второй четверти, когда напряжение, приложенное к конденсатору, уменьшается, запасенная энергия возвращается к источнику, т.е.

— цепь работает потребителем;

— цепь работает источником.

Максимальное значение мощности цепи с емкостью называют реактивной емкостной мощностью:

Она характеризует скорость обмена энергией между источником и цепью с емкостью.

Максимальное значение энергии, запасенной в цепи:

Неразветвленная цепь переменного тока с активным сопротивлением и индуктивностью

Таким сопротивлением (активным и индуктивным) обладают катушки индуктивности, обмотки трансформаторов и электрических машин.

Т.о. напряжение опережает ток в этой цепи на угол , причем .

Мощность цепи:

Т.о. мгновенная мощность состоит из двух составляющих: постоянной и переменной , среднее значение за период которой равно нулю.

Мощность принимает как положительные так и отрицательный значения. Когда мощность положительна, то цепь потребляет энергию, а когда мощность отрицательна, то цепь возвращает запасенную энергию в цепь. Но т.к. потребляет энергию и активное сопротивление и индуктивное, а возвращает в цепь только индуктивность, то положительная будет значительно больше.

Треугольники напряжений, сопротивлений, мощностей

Если стороны треугольника напряжений уменьшить или разделить на величину тока, то получим треугольник сопро-тивлений — полное сопротивление цепи — закон Ома для цепи с активным и индуктивным сопротивлением.

Если стороны треугольника напряжений уменьшить на ток, то получим треугольник мощностей.

— коэффициент мощности

— реактивная мощность

— активная мощность

Коэффициент мощности показывает, какая часть полной мощности потребляется безвозвратно.

Цепь переменного тока с активным сопротивлением, емкостью и индуктивностью

Допустим:

Общий случай неразветвленной цепи

Резонанс напряжений

Результирующий ток резко увеличивается, т.к. индуктивное и емкостное сопротивления компенсируют друг друга.

Если параметры цепи подобрать так, что , то напряжения на емкости и индуктивности будут превышать напряжение на зажимах цепи в раз. Отношение называется добротностью цепи (контура).

Т.о. напряжение на емкости и индуктивности будут превышать напряжение сети в раз, что может привести к пробою диэлектрика в конденсаторе или сопротивлений изоляции индуктивности, поэтому явление резонанса напряжений в электрических цепях нежелательно, но в то же время в радиотехнике его используют (колебательные контуры приемника и передатчика).

Возникновение напряжений на L и С, превышающих напряжение на зажимах цепи объясняется способностью емкости и индуктивности накапливать электрическую энергию.

Между емкостью и индуктивностью происходит непрерывный обмен энергией, который называется собственными колебаниями.

Частоту собственных колебаний можно определить при условии, что .

Т.о. резонанс можно получить, изменяя частоту тока питающей сети, или изменяя емкость или индуктивность.

Резонансные кривые

Зависимость параметров цепи от частоты характеризуется резонансными кривыми.

Разветвленные цепи переменного тока

Рассмотрим цепь с двумя параллельно соединенными катушками.

Для определения тока неразветвленной части цепи необходимо разложить токи и на активные и реактивные составляющие.

Характеристики синусоидальных величин: мгновенное, амплитудное, действующее, среднее значение, период, частота (угловая и циклическая), фаза − мгновенные значения синусоидальных функций обозначают маленькими буквами: i, e, u. Они являются функциями времени.

Зависимость их от времени выражается соотношениями:

− фаза — аргумент синусоидальной функции (wt + j) — показывает, какое значение имеет синусоидальная функция в данный момент времени;

− начальная фаза j — показывает, какое значение имеет синусоидальная функция в момент на чала отсчета, т.е. при t = 0;

− угловая (циклическая) частота изменения тока:

, рад/c.

Для нашей сети w = 314 рад/c.

− Действующее значение переменного тока.

Действующим значением I переменного тока называют такое значение постоянного I, который, протекая по сопротивлению R, за время, равное одному периоду Т изменения тока, выделяет в нем такое же количество теплоты Q, что и переменный ток i. Поясним определение на примере:

После подстановки значения тока i и последующих преобразований получим, что действующее значение переменного тока равно:

Аналогичные соотношения могут быть получены также для напряжения и ЭДС:

Большинство электроизмерительных приборов измеряют не мгновенные, а действующие значения токов и напряжений.

Учитывая, например, что действующее значение напряжения в нашей сети составляет 220 В, можно определить амплитудное значение фазного напряжения Um = UÖ2 = 307 В. Связь между действующим и амплитудным значениями напряжений важно учитывать, например, при проектировании устройств с применением полупроводниковых элементов.

Цепи переменного тока с резистором: напряжение, ток, мощность, векторная диаграмма

Мгновенное значение мощности. В цепи, содержащей активное, индуктивное и емкостное сопротивления, в которой ток I и напряжение u в общем случае сдвинуты по фазе на некоторый угол ?, мгновенное значение мощности р равно произведению мгновенных значений силы тока i и напряжения u. Кривую мгновенной мощности р можно получить перемножением мгновенных значений тока i и напряжения u при различных углах t (рис. 199, а. Из этого рисунка видно, что в некоторые моменты времени, когда ток и напряжение направлены навстречу друг другу, мощность имеет отрицательное значение.

Возникновение в электрической цепи отрицательных значений мощности является вредным. Это означает, что в такие периоды времени приемник возвращает часть полученной электроэнергии обратно источнику; в результате уменьшается мощность, передаваемая от источника к приемнику. Очевидно, что чем больше угол сдвига фаз, тем больше время, в течение которого часть электроэнергии возвращается обратно к источнику, и тем больше возвращаемая обратно энергия и мощность.

Активная и реактивная мощности. Мгновенная мощность может быть представлена в виде суммы двух составляющих 1 и 2 (рис. 199,б). Составляющая 1 соответствует изменению мощности в цепи с активным сопротивлением (см. рис. 175,б).

Среднее ее значение, которое называют активной мощностью,

P = UI cos

Она представляет собой среднюю мощность, которая поступает от источника к электрическим установкам при переменном токе.

Составляющая 2 изменяется подобно изменению мощности в цепи с реактивным сопротивлением (индуктивным или емкостным, см. рис. 179, а и б). Среднее ее значение равно нулю, поэтому для оценки этой составляющей пользуются ее амплитудным значением, которое называют реактивной мощностью:

Q = UI sin

Рассматривая кривые мощности (см. рис. 199,б), можно установить, что только активная мощность может обеспечить преобразование в приемнике электрической энергии в другие виды энергии. Эта мощность в течение всего периода имеет положительный знак, т. е. соответствующая ей электрическая энергия 2, называемая активной, непрерывно переходит от источника 1 к приемнику 4 (рис. 200, а). Реактивная мощность никакой полезной работы создать не может, так как среднее значение ее в течение одного периода равно нулю. Как видно из рис. 199,б, эта мощность становится то положительной, то отрицательной, т. е. соответствующая ей электрическая энергия ,3, называемая реактивной,

Рис. 199. Зависимость мгновенной мощности р (а) и ее составляющих (б) от угла t

Рис. 200. Диаграмма, иллюстрирующая передачу электрической энергии между источником и приемником, содержащим активное и реактивное сопротивления, при отсутствии компенсатора (а) и при наличии его (б): 1 — источник; 2,3 — условные изображения активной и реактивной энергии; 4 — приемник; 5 — компенсатор непрерывно циркулирует по электрической цепи от источника электрической энергии 1 к приемнику 4 и обратно (см. рис. 200, а).

Возникновение реактивной мощности в цепи переменного тока возможно только при включении в эту цепь накопителей энергии, таких как катушка индуктивности или конденсатор. В первом случае электрическая энергия, поступающая от источника, накапливается в электромагнитном поле катушки индуктивности, а затем отдается обратно; во втором случае она накапливается в электрическом поле конденсатора, а затем возвращается обратно к источнику. Постоянная циркуляция реактивной мощности от источника к приемникам загружает генераторы переменного тока и электрические сети реактивными токами, не создающими полезной работы, и тем самым не дает возможности использовать их по прямому назначению для выработки и передачи потребителям активной мощности. Поэтому в производственных условиях стараются по возможности уменьшить реактивную мощность, потребляемую электрическими установками.

Полная мощность. Источники электрической энергии переменного тока (генераторы и трансформаторы) рассчитаны на определенный номинальный ток Iном и определенное номинальное напряжение Uном, которые зависят от конструкции машины, размеров ее основных частей и пр. Увеличить значительно номинальный ток или номинальное напряжение нельзя, так как это может привести к недопустимому нагреву обмоток машины или пробою их изоляции. Поэтому каждый генератор или трансформатор может длительно отдавать без опасности аварии только вполне определенную мощность, равную произведению его номинального тока на номинальное напряжение. Произведение действующих значений тока и напряжения называется полной мощностью,

S = UI

Следовательно, полная мощность представляет собой наибольшее значение активной мощности при заданных значениях тока и напряжения. Она характеризует ту наибольшую мощность, которую можно получить от источника переменного тока при условии, что между проходящим по нему током и напряжением отсутствует сдвиг фаз. Полную мощность измеряют в вольт-амперах (В*А) или киловольт-амперах (кВ*А).

Связь между мощностями Р, Q и S можно определить из векторной диаграммы напряжений (рис. 201, а). Если умножить на ток I все стороны треугольника ABC, то получим треугольник мощностей А’В’С’ (рис. 201,б), стороны которого равны Р, Q и S. Из треугольника мощностей имеем:

S = (P2 + Q2)

Из этого выражения следует, что при заданной полной мощности S (т. е. напряжении U и токе I) чем больше реактивная мощность Q, которая проходит через генератор переменного тока или трансформатор, тем меньше активная мощность Р, которую он может отдать приемнику. Иными словами, реактивная мощность не позволяет полностью использовать всю расчетную мощность источников переменного тока для выработки полезно используемой электрической энергии.

То же самое относится и к электрическим сетям. Ток I = (Ia2 + Ip2), который можно безопасно пропускать по данной электрической сети, определяется, главным образом, поперечным сечением ее проводов. Поэтому если часть Iр проходящего по сети тока (см. рис. 194,б) идет на создание реактивной мощности, то должен быть уменьшен активный ток Iа, обеспечивающий создание активной мощности, которую можно пропустить по данной сети.

Рис. 201. Векторная диаграмма напряжений (а) и треугольник мощностей (б) для цепи переменного тока

Если задана активная мощность Р, то при увеличении реактивной мощности Q возрастут реактивный ток Iр и общий ток I, проходящий по проводам генераторов переменного тока, трансформаторов, электрических сетей и приемников электрической энергии. При этом увеличиваются и потери мощности Р = I2Rпp в активном сопротивлении Rпp этих проводов.

Таким образом, бесполезная циркуляция электрической энергии между источником переменного тока и приемником, обусловленная наличием в нем реактивных сопротивлений, требует также затраты определенного количества энергии, которая теряется в проводах всей электрической цепи.

Коэффициент мощности. Из формулы (75) следует, что активная мощность Р зависит не только от тока I и напряжения U, но и от величины cos, называемой коэффициентом мощности:

cos = P/(UI) = P/S = P/(P2 + Q2)

По значению cos можно судить, как использует мощность источника данный приемник или электрическая цепь. Чем больше cos ?, тем меньше sin, следовательно, согласно формулам (75) и (76) при заданных U и I, т. е. S, тем больше активная и меньше реактивная мощности, отдаваемые источником. При повышении cos и постоянной активной мощности Р, поступающей в приемник, уменьшается ток в цепи I = P/(U cos). При этом уменьшаются потери мощности P = I2Rпp в проводах и обеспечивается возможность дополнительной загрузки источника и электрической сети, т. е. лучшего их использования.

Если приемник питается от источника при неизменном токе нагрузки, то повышение cos ведет к возрастанию активной мощности Р, используемой приемником. При cos = 1 реактивная мощность равна нулю, и вся мощность, отдаваемая источником, является активной. Поэтому на всех предприятиях и во всех отраслях народного хозяйства стремятся всемерно повышать коэффициент мощности и доводить его по возможности до единицы.

Значения коэффициента мощности электрических установок переменного тока различны. Электрические лампы обладают, главным образом, активным сопротивлением, поэтому при их включении сдвиг фаз между током и напряжением практически отсутствует. Следовательно, для осветительной нагрузки коэффициент мощности можно считать равным единице. Коэффициент мощности для двигателей переменного тока зависит от нагрузки. При номинальной расчетной нагрузке двигателя cos = 0,8-0,9, а у крупных двигателей даже выше. При недогрузке двигателей коэффициент мощности их резко снижается (при холостом ходе cos = 0,25-0,3).

Повышение коэффициента мощности. Cos повышают различными способами. Основной из них — включение параллельно приемникам электрической энергии специальных устройств, называемых компенсаторами. В качестве последних чаще всего используют батареи конденсаторов (статические компенсаторы), но могут быть применены также и синхронные электрические машины (вращающиеся компенсаторы).

Способ повышения cos с помощью статического компенсатора (рис. 202, а) называют компенсацией сдвига фаз, или компенсацией реактивной мощности. При отсутствии компенсатора от источника к приемнику, содержащему активное и индуктивное сопротивления, поступает ток i1 который отстает от напряжения и на некоторый угол сдвига фаз. При включении компенсатора Хс по нему проходит ток ic, опережающий напряжение и на 90°. Как видно из векторной диаграммы (рис. 202,б), при этом в цепи источника будет проходить ток i < i1 и угол сдвига фаз его относительно напряжения также будет меньше.

Для полной компенсации угла сдвига фаз, т. е. для получения cos = 1 и минимального значения тока Imin, необходимо, чтобы ток компенсатора Iс был равен реактивной составляющей I1p = I1 sin1 тока I1.

При включении компенсатора 5 (см. рис. 200,б) источник 1 и электрическая сеть разгружаются от реактивной энергии 3, так как она циркулирует уже по цепи «приемник — компенсатор». Благодаря этому достигаются существенное повышение использования генераторов переменного тока и электрических сетей и уменьшение потерь энергии, возникающих при бесполезной циркуляции реактивной энергии между источником 1 и приемником 4.

Рис. 202. Схема, иллюстрирующая способ повышения cos с помощью компенсатора (а), и векторная диаграмма (б)

Компенсатор в этом случае выполняет роль генератора реактивной энергии, так как токи Iсв конденсаторе и I1р в катушке индуктивности (см, рис. 202,б) направлены навстречу один другому (первый опережает по фазе напряжение на 90°, второй отстает от него на 90°), вследствие чего включение компенсатора уменьшает общий реактивный ток Iр и сдвиг фаз между током I и напряжением U. При надлежащем подборе реактивной мощности компенсатора можно добиться, что вся реактивная энергия 3 (см. рис. 200,б), поступающая в приемник 4, будет циркулировать внутри контура «приемник — компенсатор», а генератор и сеть не будут участвовать в ее передаче. При этих условиях от источника 1 к приемнику 4 будет передаваться только активная мощность 2, т. е. cos будет равен единице.

В большинстве случаев по экономическим соображениям в электрических установках осуществляют неполную компенсацию угла сдвига фаз и ограничиваются значением cos = 0,95.

Последовательное соединение активного и реактивного элементов

В общем случае в цепях переменного тока обычно имеются все виды сопротивлений: активное, индуктивное и емкостное. Например, электрические двигатели переменного тока могут быть представлены эквивалентной схемой, состоящей из индуктивного сопротивления имеющихся в нем катушек и активного сопротивления образующих эти катушки проводов.

Рис. 192. Схема цепи переменного тока, содержащей последовательно включенные активное, индуктивное и емкостное сопротивления (а), векторные диаграммы (б и а), кривые тока и напряжения и (г)

Воздушные линии электропередачи или кабельные линии обычно представляют в виде совокупности активного, индуктивного и емкостного сопротивлений. Активное сопротивление обусловлено сопротивлением электрических проводов, индуктивное — индуктивностью линии, а емкостное — емкостью, возникающей между отдельными проводами, между проводами и землей или же между отдельными жилами кабеля и между жилами кабеля и его оболочкой.

Расчет электрических цепей переменного тока существенно отличается от расчета цепей постоянного тока, так как при переменном токе в активном, индуктивном и емкостном сопротивлениях имеют место различные сдвиги фаз между токами и напряжениями.

Ток, напряжение и полное сопротивление. При последовательном включении в цепь переменного тока активного R, индуктивного XL и емкостного Хс сопротивлений (рис. 192, а) к ним приложены напряжения: активное ua = iR, индуктивное uL = iXL и емкостное uc = iXc. Мгновенное значение напряжения и, приложенного к данной цепи, согласно второму закону Кирхгофа равно алгебраической сумме напряжений:

u = ua + uL + uc

Но для действующих значений эта формула неприменима, так как между всеми указанными напряжениями имеется сдвиг по фазе (амплитудные значения этих напряжений не совпадают по времени).

Рис. 193. Треугольник со противлении

Для этого строят векторную диаграмму, на которой откладывают в определенном масштабе векторы тока и напряжений. Из этих напряжений первое совпадает по фазе с током, второе опережает его на 90°. Векторная диаграмма (рис. 192,б) построена для цепи, в которой индуктивное сопротивление XL больше емкостного Xc, а рис. 192, в — для цепи, в которой XL меньше Хс. Напряжение U (действующее значение) может быть определено из треугольника ЛВС по теореме Пифагора:

U = (U2a + (UL – Uc)2)

Таким образом, из-за наличия угла сдвига фаз напряжение U всегда меньше алгебраической суммы Ua + UL + UC. Разность UL – UC = Up называется реактивной составляющей напряжения.

Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

В цепи, содержащей все три вида сопротивления, ток i и напряжение и оказываются сдвинутыми по фазе на некоторый угол ср (рис. 192, г).

Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения Ua = IR; UL = lL и UC=I/(C), то будем иметь: U = ((IR)2+ 2), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

I = U / ( (R2+ 2) ) = U / Z (72)

где Z = (R2+ 2) = (R2+ (XL – Xc)2)

Величину Z называют полным сопротивлением цепи, оно измеряется в омах. Разность L — l/(C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

Z = (R2+ X2)

Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

Угол сдвига фаз определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

sin ? = X / Z; cos? = R / Z; tg? = X / R

Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз возрастает и приближается к 90°. При этом, если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол.

Идеальная катушка индуктивности, реальная катушка и конденсатор в цепи переменного тока.

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля.

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р, а изменение энергии в магнитном поле — реактивной мощностью Q.

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

>Емкостное сопротивление конденсатора определяется по формуле. Сопротивление конденсатора

Сопротивление конденсатора.

Замкнем цепь. Конденсатор начал заряжаться и сразу стал источником тока, напряжения, Э. Д. С.. На рисунке видно что Э. Д. С. конденсатора направлена против заряжающего его источника тока.

Противодействие электродвижущей силы заряжаемого конденсатора заряду этого конденсатора называется емкостным сопротивлением.

Вся энергия затрачиваемая источником тока на преодоление емкостного сопротивления превращается в энергию электрического поля конденсатора. Когда конденсатор будет разряжаться вся энергия электрического поля вернется обратно в цепь в виде энергии электрического тока. Таким образом емкостное сопротивление является реактивным, т.е. не вызывающим безвозвратных потерь энергии.

Почему постоянный ток не проходит через конденсатор, а переменный ток проходит?

Включим цепь постоянного тока. Лампа вспыхнет и погаснет, почему? Потому что в цепи прошел ток заряда конденсатора. Как только конденсатор зарядится до напряжения батареи ток в цепи прекратится.

А теперь замкнем цепь переменного тока. В I четверти периода напряжение на генераторе возрастает от 0 до максимума. В цепи идет ток заряда конденсатора. Во II четверти периода напряжение на генераторе убывает до нуля. Конденсатор разряжается через генератор. После этого конденсатор вновь заряжается и разряжается. Таким образом в цепи идут токи заряда и разряда конденсатора. Лампочка будет гореть постоянно.

В цепи с конденсатором ток проходит во всей замкнутой цепи, в том числе и в диэлектрике конденсатора. В заряжающемся конденсаторе образуется электрическое поле которое поляризует диэлектрик. Поляризация это вращение электронов в атомах на вытянутых орбитах.

Одновременная поляризация огромного количества атомов образует ток, называемый током смещения. Таким образом в проводах идет ток и в диэлектрике причем одинаковой величины.

Емкостное сопротивление конденсатора определяется по формуле

Рассматривая график делаем вывод: ток в цепи с чисто емкостным сопротивлением опережает напряжение на 90 0 .

Возникает вопрос каким образом ток в цепи может опережать напряжение на генераторе? В цепи идет ток от двух источников тока поочередно, от генератора и от конденсатора. Когда напряжение на генераторе равно нулю ток в цепи максимален. Это ток разряда конденсатора.

Активное сопротивление, индуктивность и емкость в цепи переменного тока.

Изме­нения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вооб­ще говоря, различны. Поэтому если начальную фазу силы тока ус­ловно принять за нуль, то начальная фаза напряжения будет иметь некоторое значение φ. При таком условии мгновенные значения силы тока и нап­ряжения и будут выражаться следующими формулами:

i = I m sinωt

u = U m sin(ωt + φ)

a) Активное сопротивление в цепи переменного тока. Сопротивление цепи, которое обу­словливает безвозвратные потери элект­рической энергии на тепловое действие тока, называют активным . Это сопротив­ление для тока низкой частоты можно счи­тать равным сопротивлению R этого же проводника постоянному току.

В цепи переменного тока, имеющей только активное сопротивле­ние, например, в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. φ = 0. Это означает, что ток и напряжение в такой цепи изменяются в оди­наковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.

Будем счи­тать, что напряжение на зажимах цепи меняется по гармоническому закону: и = U т cos ωt.

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значе­ния силы тока можно применить закон Ома:

по фазе с колебаниями напряже­ния.

b) Катушка индуктивности в цепи переменного тока. Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление X L , которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. само­индукции тем больше, чем больше индуктивность цепи и чем быст­рее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω: X L = ωL.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь. Для это­го предварительно найдем связь между напряжением на катушке и ЭДС самоиндукции в ней. Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри про­водника в любой момент времени должна быть равна нулю. Иначе сила тока, согласно закону Ома, была бы бесконечно большой.

Равенство нулю напряженности поля оказывается возможным потому, что напряженность вих­ревого электрического поля E i , порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля Е к, создаваемого в про­воднике зарядами, расположенными на зажимах источни­ка и в проводах цепи.

Из равенства E i = -Е к следует, что удельная работа вихревого поля (т. е. ЭДС самоиндукции e i) равна по моду­лю и противоположна по знаку удельной работе кулонов­ского поля . Учитывая, что удельная работа кулоновского поля равна напряжению на концах катушки, можно запи­сать: e i = -и.

При изменении силы тока по гармоническому закону i = I m sin соsωt, ЭДС самоиндукции равна: е i = -Li» = -LωI m cos ωt. Так как e i = -и, то напряжение на концах катушки ока­зывается равным

и = LωI m cos ωt = LωI m sin (ωt + π/2) = U m sin (ωt + π/2)

гдеU m = LωI m — амплитуда напряжения.

Следовательно, колебания напряжения на катушке опе­режают по фазе колебания силы тока на π/2, или, что то же самое, колебания силы тока отстают по фазе от колеба­ний напряжения на π/2.

Если ввести обозначение X L = ωL, то получим . Величину X L , равную произведению циклической час­тоты на индуктивность, называют индуктивным сопротив­лением. Согласно формуле , значение силы тока связано с значением напряжения и ин­дуктивным сопротивлением соотношением, подобным за­кону Ома для цепи постоянного тока.

Индуктивное сопротивление зависит от частоты ω. По­стоянный ток вообще «не замечает» индуктивности катушки. При ω = 0 индуктивное сопротивление равно нулю. Чем быстрее меняется напряжение, тем больше ЭДС са­моиндукции и тем меньше амплитуда силы тока. Следует отметить, что напряжение на индуктивном со­противлении опережает по фазе ток .

c) Конденсатор в цепи переменного тока. Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерыв­но изменяется, поэтому в цепи течет переменный ток. Сила тока бу­дет тем больше, чем больше емкость конденсатора и чем чаще про­исходит его перезарядка, т. е. чем больше частота переменного тока.

Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивле­нием Х с . Оно обратно пропорционально емкости С и круговой частоте ω: Х с =1/ωС.

Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением прово­дов и обкладок конденсатора можно пренебречь.

Напряжение на конденсаторе u = q/C равно напряжению на концах цепи u = U m cosωt.

Следовательно, q/C = U m cosωt. Заряд конденсатора меняется по гармоническому закону:

q = CU m cosωt.

Сила тока, представляющая со­бой производную заряда по вре­мени, равна:

i = q» = -U m Cω sin ωt =U m ωC cos(ωt + π/2).

Следовательно, колебания си­лы тока опережают по фазе ко­лебания напряжения на конден­саторе на π/2.

Величину Х с , обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины анало­гична роли активного сопротивления R в законе Ома. Значение силы тока связано с значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока. Это и поз­воляет рассматривать величину Х с как сопротивление кон­денсатора переменному току (емкостное сопротивление).

Чем больше емкость конденсатора, тем больше ток пе­резарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току беско­нечно велико, его сопротивление переменному току имеет конечное значение Х с. С увеличением емкости оно умень­шается. Уменьшается оно и с увеличением частоты ω.

В заключение отметим, что на протяжении четверти пе­риода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в кон­денсаторе в форме энергии электрического поля. В следую­щую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Из сравнения формул X L = ωL и Х с =1/ωС видно, что катушки ин­дуктивности. представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Индуктивное Х L и емкостное Х C сопротивления называют реактивными.

d) Закон ома для электрической цепи переменного тока.

Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конден­сатор емкостью С

Мы видели, что при включении по отдельности в цепь активного сопротивления R, конденсатора емкостью С или катуш­ки с индуктивностью L амплитуда силы тока определяется соот­ветственно формулами:

; ; I m = U m ωC .

Амплитуды же на­пряжений на активном сопротивлении, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так: U m = I m R; U m = I m ωL;

В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряже­ние на контуре и напряжения на отдельных элементах цепи, ока­жется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах. Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.

Действительно, ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлениями. Однако только на активном сопро­тивлении колебания напряжения и тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колеба­ний тока на π/2, а на катушке индуктивности колеба­ния напряжения опережают колебания тока на π/2. Если учесть сдвиг фаз между складываемыми напряжениями, то окажется, что

Для получения этого равенства нужно уметь скла­дывать колебания напряжений, сдвинутые по фазе друг относительно друга. Проще всего выполнить сложение нескольких гар­монических колебаний с помощью векторных диаграмм. Идея метода основана на двух довольно простых положениях.

Во-первых, проекция вектора с модулем х m вращающегося с постоянной угловой скоростью совершает гармонические колебания: х = х m cosωt

Во-вторых, при сложении двух векторов проекция суммарного векто­ра равна сумме проекций складываемых векторов.

Векторная диаграмма электрических колебаний в цепи, изображенной на рисунке, позволит нам получить соотношение между амплитудой силы тока в этой цепи и амплитудой напряжения. Так как сила тока одинакова во всех участках цепи, то построение век­торной диаграммы удобно начать с вектора силы тока I m . Этот вектор изобра­зим в виде горизонтальной стрелки. Напряжение на активном со­противлении совпадает по фазе с силой тока. Поэтому вектор U mR , должен совпадать по направлению с вектором I m . Его модуль равен U mR = I m R

Колебания напряжения на индуктивном сопротивлении опережают колебания силы тока на π/2, и соответствующий вектор U m L должен быть повернут относительно вектора I m на π/2. Его модуль равен U m L = I m ωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор U m L следует повернуть налево. (Можно было бы, конечно, поступить и наоборот.)

Его модуль равен U mC =I m /ωC . Для нахождения вектора суммарного напряжения U m нужно сложить три вектора: 1) U mR 2) U m L 3) U mC

Вначале удобнее сложить два вектора: U m L и U mC

Модуль этой суммы равен , если ωL > 1/ωС. Именно такой случай изображен на рисунке. После этого, сложив вектор (U m L + U mC) с вектором U mR получим вектор U m , изображающий колебания напряжения в сети. По теореме Пифагора:

Из последнего равенства можно легко найти амплитуду силы тока в цепи:

Таким образом, благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи, изобра­женной на рисунке, выражается так:

От амплитуд силы тока и напряжения можно перейти к дейст­вующим значениям этих величин:

Это и есть закон Ома для переменного тока в цепи, изображен­ной на рисунке 43. Мгновенное значение силы тока меняется со временем гармонически:

i = I m cos (ωt+ φ), где φ — разность фаз между силой тока и напряжением в сети. Она зависит от частоты ω и параметров цепи R, L, С.

e) Резонанс в электрической цепи. При изучении вынужденных механических колебаний мы по­знакомились с важным явлением — резонансом. Резонанс наблю­дается в том случае, когда собственная частота колебаний систе­мы совпадает с частотой внешней силы. При малом трении происходит резкое увеличение амплитуды установившихся вы­нужденных колебаний. Совпадение законов механи­ческих и электромагнитных ко­лебаний сразу же позволяет сделать заключение о возмож­ности резонанса в электриче­ской цепи, если эта цепь представляет, собой колеба­тельный контур, обладающий определенной собственной ча­стотой колебаний.

Амплитуда тока при вы­нужденных колебаниях в кон­туре, совершающихся под дей­ствием внешнего гармонически изменяющегося напряжения, определяется формулой:

При фиксированном напря­жении и заданных значениях R, L и С, сила тока достигает мак­симума при частоте ω, удовлетворяющей соотношению

Эта амплитуда особенно велика при малом R. Из этого уравнения можно определить значение циклической частоты переменного тока, при которой сила тока максимальна:

Эта частота совпадает с частотой свободных колебаний в конту­ре с малым активным сопротивлением.

Резкое возрастание амплитуды вынужденных колебаний тока в колебательном контуре с малым активным сопротивлением про­исходит при совпадении частоты внешнего переменного напря­жения с собственной частотой колебательного контура. В этом состоит явление резонанса в электрическом колебательном кон­туре.

Одновременно с ростом силы тока при резонансе резко воз­растают напряжения на конденсаторе и катушке индуктивности. Эти напряжения становятся одинаковыми и во много раз пре­восходят внешнее напряжение.

Действительно,

U м, С,рез =
U м, L ,рез =

Внешнее напряжение связано с резонансным током так:

U м = . Если тоU m , C ,рез = U m , L ,рез >> U m

При резонансе сдвиг фаз между током и напряжением стано­вится равным нулю.

Действительно, колебания напряжения на катушке индуктив­ности и конденсаторе всегда происходят в противофазе. Резо­нансные амплитуды этих напряжений одинаковы. В результате напряжения на катушке и конденсаторе полностью компенсиру­ют друг друга, и падение напряжения происходит только на активном сопротивлении.

Равенство нулю сдвига фаз между напряжением и током при резонансе обеспе­чивает оптимальные условия для поступления энергии от источ­ника переменного напряжения в цепь. Здесь полная аналогия с механическими колебаниями: при резонансе внешняя сила (ана­лог напряжения в цепи) совпадает по фазе со скоростью (аналог силы тока).

Конденсаторы, как и резисторы, относятся к наиболее многочисленным элементам радиотехнических устройств. Основное свойство конденсаторов, это способность накапливать электрический заряд . Основной параметр конденсатора это его емкость .

Емкость конденсатора будет тем значительнее, чем больше площадь его обкладок и чем тоньше слой диэлектрика между ними. Основной единицей электрической емкости является фарада (сокращенно Ф), названная так в честь английского физика М. Фарадея. Однако 1 Ф — это очень большая емкость. Земной шар, например, обладает емкостью меньше 1 Ф. В электро- и радиотехнике пользуются единицей емкости, равной миллионной доле фарады, которую называют микрофарадой (сокращенно мкФ) .

Емкостное сопротивление конденсатора переменному току зависит от его емкости и частоты тока: чем больше емкость конденсатора и частота тока, тем меньше его емкостное сопротивление.

Керамические конденсаторы обладают сравнительно небольшими емкостями — до нескольких тысяч пикофарад. Их ставят в те цепи, в которых течет ток высокой частоты (цепь антенны, колебательный контур), для связи между ними.

Простейший конденсатор представляет собой два проводника электрического тока, например: — две металлические пластины, называемые обкладками конденсатора, разделенные диэлектриком, например: — воздухом или бумагой. Чем больше площадь обкладок конденсатора и чем ближе они расположены друг к другу, тем больше электрическая емкость этого прибора. Если к обкладкам конденсатора подключить источник постоянного тока, то в образовавшейся цепи возникнет кратковременный ток и конденсатор зарядится до напряжения, равного напряжению источника тока. Вы можете спросить: почему в цепи, где есть диэлектрик, возникает ток? Когда мы присоединяем к конденсатору источник тока, электроны в проводниках образовавшейся цепи начинают двигаться в сторону положительного полюса источника тока, образуя кратковременный поток электронов во всей цепи. В результате обкладка конденсатора, которая соединена с положительным полюсом источника тока, обедняется свободными электронами и заряжается положительно, а другая обкладка обогащается свободными электронами и, следовательно, заряжается отрицательно. Как только конденсатор зарядится, кратковременный ток в цепи, называемый током зарядки конденсатора, прекратится.

Если источник тока отключить от конденсатора, то конденсатор окажется заряженным. Переходу избыточных электронов с одной обкладки на другую препятствует диэлектрик. Между обкладками конденсатора тока не будет, а накопленная им электрическая энергия будет сосредоточена в электрическом поле диэлектрика. Но стоит обкладки заряженного конденсатора соединить каким-либо проводником «лишние» электроны отрицательно заряженной обкладки перейдут по этому проводнику на другую обкладку, где их недостает, и конденсатор разрядится. В этом случае в образовавшейся цепи также возникает кратковременный ток, называемый током разрядки конденсатора. Если емкость конденсатора большая, и он заряжен до значительного напряжения, момент его разрядки сопровождается появлением значительной искры и треска. Свойство конденсатора накапливать электрические заряды и разряжаться через подключенные к нему проводники используется в колебательном контуре радиоприемника.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками ), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.). Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки). Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

С точки зрения метода комплексных амплитуд конденсатор обладает комплексным импедансом

,

Где j — мнимая единица, ω — циклическая частота (рад/с ) протекающего синусоидального тока, f — частота в Гц , C — ёмкость конденсатора (фарад ). Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

Резонансная частота конденсатора равна

При f > f p конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f p , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где U — напряжение (разность потенциалов), до которого заряжен конденсатор.

Ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС.
Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

Общее описание

Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

На схемах конденсатор изображается в виде двух прямых, соответствующих проводящим пластинам прибора, и перпендикулярно к их серединам нарисованными отрезками — выводами устройства.

Принцип действия конденсатора заключается в следующем: при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Характеристики прибора

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними.

Кроме ёмкости конденсатор характеризуется рядом параметров, такими как:

  • удельная ёмкость — определяет отношение величины ёмкости к массе диэлектрика;
  • рабочее напряжение — номинальное значение, которое может выдержать устройство при подаче его на обкладки элемента;
  • температурная стабильность — интервал, в котором ёмкость конденсатора практически не изменяется;
  • сопротивление изоляции — характеризуется саморазрядом устройства и определяется током утечки;
  • эквивалентное сопротивление — состоит из потерь, образуемых на выводах прибора и слое диэлектрика;
  • абсорбция — процесс возникновения разности потенциалов на обкладках после разряда устройства до нуля;
  • ёмкостное сопротивление — уменьшение проводимости при подаче переменного тока;
  • полярность — из-за физических свойств материала, используемого при изготовлении, конденсатор сможет правильно работать, только если к обкладкам приложен потенциал с определённым знаком;
  • эквивалентная индуктивность — паразитный параметр, появляющийся на контактах устройства и превращающий конденсатор в колебательный контур.

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное — с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Ёмкостное сопротивление

Для понимания процесса следует представить конденсатор в электрической цепи, по которой течёт переменный ток. Причём в этой цепи нет других элементов. Значение тока, проходящего через конденсатор, и напряжения, приложенного к его обкладкам, изменяется по времени. Зная любое из этих значений, можно найти другое.

Пускай ток изменяется по синусоидальной зависимости I (t) = Im * sin (w*t+ f 0). Тогда напряжение можно описать как U (t) = (Im/C*w) *sin (w*t+ f 0 -p/2). При учёте в формуле сдвига фаз на 90 градусов, возникающего между сигналами, вводится комплексная величина j, называемая мнимой единицей. Поэтому формула для нахождения тока будет выглядеть как I = U /(1/j*w*C). Но учитывая, что комплексное число только обозначает смещение напряжения относительно тока, а на их амплитудные значения не влияет, его можно убрать из формулы, тем самым значительно её упростив.

Так как по закону Ома сопротивление прямо пропорционально напряжению на участке цепи и обратно пропорционально току, то преобразуя формулы, можно будет получить следующее выражение:

  • Xc = 1/w*C = ½*p*f*C. Единица измерения — ом.

Становится понятно, что ёмкостное сопротивление зависит не только от ёмкости, но и от частоты. При этом чем больше эта частота, тем меньшее сопротивление конденсатор будет оказывать проходимому через него току. По отношению к ёмкости это утверждение будет обратным. Вот поэтому для постоянного тока, частота которого равна нулю, сопротивление накопителя будет бесконечно большим.

На практике всё немного по-другому. Чем ближе частота сигнала приближается к нулевому значению, тем больше становится сопротивление конденсатора, но при этом разрыв цепи наступить всё равно не может. Связанно это с током утечки. В случае когда частота стремится к бесконечности, сопротивление конденсатора должно становиться нулевым, но этого тоже не происходит — из-за присутствия паразитной индуктивности и всё того же тока утечки.

Индуктивная составляющая

При прохождении переменного сигнала через накопитель, его можно представить в виде последовательно включённой с источником питания катушки индуктивности. Эта катушка характеризуется большим сопротивлением в цепи переменного сигнала, чем постоянного. Значение силы тока в определённой точке времени находится как I = I 0 * sinw .

Приняв во внимание, что мгновенная величина напряжения U 0 обратна по знаку мгновенному значению ЭДС самоиндукции E 0, а также используя правило Ленца, можно получить выражение E = L * I, где L — индуктивность.

Следовательно: U = L*w * I 0 *cosw*t = U 0 *sin (wt + p /2) , причём ток отстаёт от напряжения на p /2. Используя закон Ома и приняв, что сопротивление катушки равно w * L, получится формула для участка электрической цепи, имеющая только индуктивную составляющую: U 0 = I 0 / w * L.

Таким образом, индуктивное сопротивление будет равно Xl = w * L, измеряется оно также в омах. Из полученного выражения видно, что чем больше частота сигнала, тем сильнее будет сопротивление прохождению тока.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения. Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток. Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2 ) ½.

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6 ) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (50002+32002)½ = 5 936 Ом =5,9 кОм.

Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.

esr — Моделирование утечки конденсатора

Вы путаете ESR, что означает эквивалентное последовательное сопротивление, и утечку. Первый моделируется как последовательный резистор и учитывает сопротивление проводов, сопротивление внутренних пластин проводов и т. Д. И в идеале равен нулю. Второй моделируется как резистор, подключенный параллельно конденсатору, и учитывает небольшие токи утечки в диэлектрике, и в идеале имеет бесконечность.

Формула, которую вы используете, верна, но полученное вами значение НЕ является СОЭ, а является сопротивлением утечке.После того, как конденсатор заряжен, если вы оставите его, он медленно разряжается через резистор утечки с постоянной времени \ $ R_ {leak} \ cdot C \ $, так что \ $ R_ {leak} \ $ — это то, что вы рассчитали, примерно \ $ 50. M \ Omega \ $, что правдоподобно.

Для расчета ESR вам нужно измерить, сколько времени требуется конденсатору, чтобы разрядиться через резистор гораздо меньшего размера, назовем его \ $ R_ {dis} \ $. Когда вы разряжаете конденсатор через \ $ R_ {dis} \ $, полное сопротивление, через которое он разряжается, на самом деле равно \ $ R_ {dis} + R_ {ESR} \ $, поэтому, используя ту же формулу, которую вы использовали для сопротивления утечки, вы можно рассчитать СОЭ.

Но неужели это так просто? Конечно, нет.

ESR, надеюсь, довольно мало, десятые доли миллиом, если у вас очень хороший конденсатор до нескольких Ом. Поскольку в формуле есть \ $ R_ {dis} + R_ {ESR} \ $, вам не нужно, чтобы следующий \ $ R_ {dis} \ $ маскировал \ $ R_ {ESR} \ $. Хорошо, тогда! Почему бы нам не выбрать \ $ R_ {dis} = 0 \ Omega \ $? Простой вопрос:

  • \ $ 0 \ Omega \ $ сопротивления не существует. Но я могу сделать это маленьким!
  • Время. Вы должны уметь измерить, сколько времени требуется конденсатору, чтобы разрядиться.

Если вы зарядите конденсатор до определенного напряжения, потребуется \ $ \ tau \ ln {2} \ приблизительно0.7 \ cdot \ tau \ $, где \ $ \ tau = RC \ $. Если \ $ R = R_ {ESR} + R_ {dis} = 1 \ Omega + 1 \ Omega = 2 \ Omega \ $ и \ $ C = 680 \ mu F \ $, это меньше 1 мс. Без надлежащего оборудования, то есть правильно настроенного осциллографа, вы не сможете легко измерить ESR.

И последнее, но не менее важное: имейте в виду, что номиналы электролитических конденсаторов имеют допуск \ $ \ pm10 \% \ $, что приводит к: $$ R_ {ESR} = \ frac {t_ {dis}} {\ left (C \ pm C / 10 \ right) \ ln {2}} — R_ {dis} $$ с указанными выше числами, t = 1 мс, C = \ $ 680 \ mu F \ $, \ $ R_ {dis} = 1 \ Omega \ $, это означает: $$ R_ {ESR} \ in \ left [0.91,1.33 \ вправо] \ Omega $$ Это на 10% меньше и более 30% вверх.

Цепи постоянного тока

, содержащие резисторы и конденсаторы

1. Устройство синхронизации в системе стеклоочистителей прерывистого действия автомобиля основано на постоянной времени RC и использует конденсатор емкостью 0,500 мкФ и переменный резистор. В каком диапазоне должно изменяться значение R для достижения постоянной времени от 2,00 до 15,0 с?

2. Кардиостимулятор срабатывает 72 раза в минуту, каждый раз, когда конденсатор емкостью 25,0 нФ заряжается (батареей, включенной последовательно с резистором) до 0.632 от его полного напряжения. В чем ценность сопротивления?

3. Продолжительность фотографической вспышки связана с постоянной времени RC , которая составляет 0,100 мкс для определенной камеры. (а) Если сопротивление импульсной лампы составляет 0,0400 Ом во время разряда, каков размер конденсатора, обеспечивающего его энергию? (б) Какова постоянная времени зарядки конденсатора, если сопротивление зарядки составляет 800 кОм?

4. Конденсатор емкостью 2,00 и 7,50 мкФ можно подключать последовательно или параллельно, как и конденсатор емкостью 25 мкФ.0- и резистор 100 кОм. Вычислите четыре постоянные времени RC , которые можно получить при последовательном соединении полученной емкости и сопротивления.

5. После двух постоянных времени, какой процент конечного напряжения, ЭДС, находится на первоначально незаряженном конденсаторе C , заряженном через сопротивление R ?

6. Резистор 500 Ом, незаряженный конденсатор 1,50 мкФ и ЭДС 6,16 В соединены последовательно. а) Каков начальный ток? (b) Какова постоянная времени RC ? (c) Каков ток через одну постоянную времени? (d) Какое напряжение на конденсаторе после одной постоянной времени?

7.Дефибриллятор сердца, используемый на пациенте, имеет постоянную времени RC 10,0 мс из-за сопротивления пациента и емкости дефибриллятора. (a) Если дефибриллятор имеет емкость 8,00 мкФ, каково сопротивление пути, проходящего через пациента? (Вы можете пренебречь емкостью пациента и сопротивлением дефибриллятора.) (B) Если начальное напряжение составляет 12,0 кВ, сколько времени потребуется, чтобы упасть до 6,00 × 10 2 В?

8. У монитора ЭКГ постоянная времени RC должна быть меньше 1.00 × 10 2 мкс, чтобы иметь возможность измерять изменения напряжения за небольшие промежутки времени. (а) Если сопротивление цепи (в основном из-за сопротивления груди пациента) составляет 1,00 кОм, какова максимальная емкость цепи? (б) Будет ли сложно на практике ограничить емкость до значения, меньшего, чем значение, указанное в (а)?

9. На рис. 7 показано, как истекающий резистор используется для разряда конденсатора после отключения электронного устройства, что позволяет человеку работать с электроникой с меньшим риском поражения электрическим током.а) Что такое постоянная времени? (b) Сколько времени потребуется, чтобы снизить напряжение на конденсаторе до 0,250% (5% от 5%) от его полного значения после начала разряда? (c) Если конденсатор заряжен до напряжения В 0 через сопротивление 100 Ом, рассчитайте время, необходимое для повышения до 0,865 В 0 (это примерно две постоянные времени).

Рисунок 7.

10. Используя точную экспоненциальную обработку, найдите, сколько времени требуется, чтобы разрядить конденсатор емкостью 250 мкФ через резистор 500 Ом до 1.00% от исходного напряжения.

11. Используя точную экспоненциальную обработку, найдите, сколько времени требуется для зарядки первоначально незаряженного конденсатора 100 пФ через резистор 75,0 МОм до 90,0% от его конечного напряжения.

12. Integrated Concepts Если вы хотите сфотографировать пулю, движущуюся со скоростью 500 м / с, то очень короткая вспышка света, производимая разрядом RC через импульсную лампу, может ограничить размытие. Предполагая, что перемещение 1,00 мм за одну постоянную RC является приемлемым, и учитывая, что вспышка приводится в действие конденсатором емкостью 600 мкФ, какое сопротивление в импульсной лампе?

13. Integrated Concepts Мигающая лампа в рождественской серьге основана на разряде конденсатора RC через его сопротивление. Эффективная продолжительность вспышки составляет 0,250 с, в течение которых она дает в среднем 0,500 Вт при среднем 3,00 В. а) Какую энергию она рассеивает? б) Сколько заряда проходит через лампу? (c) Найдите емкость. (г) Какое сопротивление лампы?

14. Integrated Concepts Конденсатор емкостью 160 мкФ, заряженный до 450 В, разряжается через 31.Резистор 2 кОм. (а) Найдите постоянную времени. (b) Рассчитайте повышение температуры резистора, учитывая, что его масса составляет 2,50 г, а его удельная теплоемкость [латекс] 1,67 \ frac {\ text {кДж}} {\ text {кг} \ cdotº \ text {C}} \\ [/ latex], учитывая, что большая часть тепловой энергии сохраняется за короткое время разряда. (c) Рассчитайте новое сопротивление, предполагая, что это чистый углерод. (d) Кажется ли это изменение сопротивления значительным?

15. Необоснованные результаты (a) Рассчитайте емкость, необходимую для получения постоянной времени RC , равной 1.00 × 10 3 с резистором 0,100 Ом. б) Что неразумного в этом результате? (c) Какие допущения ответственны?

16. Создайте свою проблему Рассмотрим вспышку фотоаппарата. Составьте задачу, в которой вы вычисляете размер конденсатора, который накапливает энергию для лампы-вспышки. Среди факторов, которые необходимо учитывать, — это напряжение, приложенное к конденсатору, энергия, необходимая для вспышки, и соответствующий заряд, необходимый для конденсатора, сопротивление импульсной лампы во время разряда и желаемая постоянная времени RC .

17. Создайте свою проблему Рассмотрим перезаряжаемый литиевый элемент, который будет использоваться для питания видеокамеры. Постройте задачу, в которой вы вычисляете внутреннее сопротивление элемента во время нормальной работы. Кроме того, рассчитайте минимальное выходное напряжение зарядного устройства, которое будет использоваться для зарядки литиевого элемента. Среди факторов, которые следует учитывать, — ЭДС и полезное напряжение на клеммах литиевого элемента, а также ток, который он должен обеспечивать в видеокамере.

КАК РАССЧИТАТЬ ЗНАЧЕНИЕ РЕЗИСТОРА И КЕРАМИЧЕСКОГО КОНДЕНСАТОРА.: 6 Steps

Прежде всего, я хотел бы дать вам таблицу, чтобы вы могли рассчитать сопротивление и допуск.
СОПРОТИВЛЕНИЕ
Теперь, если первая полоса коричневого цвета, это означает, что первый номер равен 1. 1
Опять же, если вторая полоса черная, то вторая цифра равна 0. 10
Третья полоса оранжевая, как оранжевая является третьим в таблице, будет 3 нуля.10 X 1000
ОБЩЕЕ СОПРОТИВЛЕНИЕ 10 000 Ом

СОПРОТИВЛЕНИЕ

Пример, как на картинке ПЕРВАЯ ПОЛОСА = ЖЕЛТАЯ 5
ВТОРАЯ ПОЛОСА = ФИОЛЕТОВАЯ 57
ТРЕТЬЯ ПОЛОСА = КРАСНАЯ 57×100

ОБЩЕЕ СОПРОТИВЛЕНИЕ 57000 Ом Теперь приходит допуск
.ну это вариация сопротивления.

Если это + 5%, то сопротивление может быть на 5% больше.

ПРИМЕР. Если на картинке он золотой, сопротивление может составлять _ + 5% от сопротивления.
57000 X 5/100
= 2850 Ом
Следовательно, сопротивление может составлять 57000 + 5% = 59850 Ом
57000-5% = 54150 Ом

Изображения взяты из —http: // www.doctronics.co.uk/resistor.htm

Методы измерения емкости, входящего тока, внутреннего сопротивления и ESR

% PDF-1.6 % 287 0 объект > / Метаданные 368 0 R / Страницы 284 0 R / StructTreeRoot 84 0 R / Тип / Каталог / Просмотрщик Настройки >>> эндобдж 321 0 объект > / Шрифт >>> / Поля [] >> эндобдж 368 0 объект > поток False11.08.522018-11-06T16: 33: 30.078-05: 00 Библиотека Adobe PDF 11.0Eatonfbd8739bef2a157818271cab46c704a8027b31be221544 Методы измерения емкости, тока на входе, внутреннего сопротивления и ESR | Техническая нота 5502 | Библиотека PDF EatonAdobe 11.0falseAdobe InDesign CC 2014 (Macintosh) 2018-10-30T09: 28: 33.000-07: 002018-10-30T12: 28: 33.000-04: 002015-06-11T11: 45: 02.000-04: 00application / pdf

  • en
  • 2018-11-13T14: 33: 10.066-05: 00
  • Eaton
  • Методы измерения емкости
  • приток тока
  • внутреннее сопротивление и СОЭ | Техническая нота 5502 | Eaton
  • Методы измерения емкости, входящего тока, внутреннего сопротивления и ESR
  • uuid: bd8487d8-7c34-4075-bb78-38d956775753uuid: e038444a-4348-4c69-ade4-9d2cf756a0b7
  • eaton: ресурсы / технические-ресурсы / руководства-спецификации продукта
  • eaton: язык / ru
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство телевизоров
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство b-суперконденсаторов
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов hb
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов hv
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов kr
  • eaton: систематика продуктов / электроника / суперконденсаторы / семейство суперконденсаторов квт
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов m-supercapacitor
  • eaton: систематика продуктов / электроника / суперконденсаторы / семейство pb-supercapacitor
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство phb-суперконденсаторов
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов phv
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов pm
  • eaton: систематизация продуктов / электроника / суперконденсаторы / суперконденсаторы xb
  • eaton: систематизация продуктов / электроника / суперконденсаторы / суперконденсаторы xl60
  • eaton: систематизация продуктов / электроника / суперконденсаторы / xt-суперконденсаторы
  • eaton: систематизация продуктов / электроника / суперконденсаторы / xv-суперконденсаторы
  • конечный поток эндобдж 284 0 объект > эндобдж 84 0 объект > эндобдж 85 0 объект > / Pa1> / Pa10> / Pa2> / Pa3> / Pa4> / Pa5> / Pa6> / Pa8 >>> эндобдж 86 0 объект > эндобдж 87 0 объект > эндобдж 88 0 объект > эндобдж 89 0 объект [279 0 R 278 0 R 278 0 R 278 0 R 247 0 R 277 0 R 276 0 R 275 0 R 271 0 R 270 0 R 269 0 R 265 0 R 264 0 R 263 0 R 259 0 R 258 ​​0 R 257 0 R 199 0 R 200 0 R 200 0 R 201 0 R 200 0 R 241 0 R 242 0 R 241 0 R 240 0 R 237 0 R 236 0 R 233 0 R 232 0 R 231 0 R 227 0 R 226 0 R 225 0 R 221 0 R 220 0 R 219 0 R 215 0 R 214 0 R 213 0 R 243 0 R 244 0 R 244 0 R 244 0 R 244 0 R 244 0 R 244 0 R 244 0 R 245 0 R 246 0 246 руб. 0 246 руб. 0 151 руб. 0 156 руб. 0 280 0 руб. 282 0 руб. 283 0 руб. 282 0 руб.] эндобдж 90 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null 91 0 R 92 0 R 93 0 R 94 0 R 95 0 R 96 0 R 97 0 R 98 0 R 99 0 R 100 0 R 101 0 R 102 0 R 103 0 R 104 0 105 0 R 106 0 R 107 0 R 108 0 R 109 0 R 110 0 R 111 0 R 110 0 R 112 0 R 113 0 R 114 0 R 115 0 R 115 0 R 115 0 R 116 0 R 117 0 R 118 0 R 119 0 R 120 0 R 121 0 R 121 0 R 122 0 R 123 0 R 124 0 R 125 0 R 126 0 R 127 0 R 127 0 R 127 0 R 128 0 R 129 0 R 128 0 R 130 0 R 131 0 R 130 0 R 132 0 R 133 0 R 134 0 R 133 0 R 135 0 R 133 0 R 136 0 R 137 0 R 136 0 R 138 0 R 136 0 R 139 0 R 140 0 R 141 0 R 142 0 143 0 рэнд] эндобдж 91 0 объект > / K 58 / P 145 0 R / Pg 1 0 R / S / Рисунок >> эндобдж 92 0 объект > эндобдж 93 0 объект

    Резисторы и конденсаторы

    Резисторы и конденсаторы Эта лаборатория представляет собой введение в использование резисторов и конденсаторов в электрических цепях.

    Резистор, который мы будем использовать в этой лаборатории, представляет собой лампочку. С помощью мультиметра измерить сопротивление лампочки в единицах Ом (Ом). Запишите это значение.

    Фактическое сопротивление лампочки может варьироваться в зависимости от ее температуры. Чтобы измерить это, создать простую схему, подключив лампочку к блоку питания. Затем включите напряжение напряжения источника питания от 0,0 В до 5,0 В, останавливаясь с шагом 0,5 В для сбора данных.

    Для каждой точки данных: измерьте падение напряжения (В) и ток (I) лампочки. Возможно, вам будет удобно использовать два отдельных мультиметра.

    График V vs. I. Вы должны заметить, что наклон графика изменился.

    Выполните линейную аппроксимацию первых нескольких точек и найдите сопротивление лампы, используя \ (R = \ frac {{\ Delta V}} {{\ Delta I}} \).

    Используя ту же процедуру, найдите сопротивление для последних нескольких точек на графике.Сопротивление увеличивалось или уменьшалось при лампочка стала горячее?

    Выберите 2 конденсатора из пластикового лотка и измерьте емкость с помощью мультиметра. Запишите эти значения и вычислите погрешность в процентах по сравнению с этикетками на конденсаторах.

    Подключите 2 выбранных конденсатора параллельно. Используя \ ({C_ {total}} = {C_1} + {C_2} \), спрогнозируйте общую емкость комбинация. Измерьте фактическую емкость комбинации с помощью мультиметра.

    Подключите 2 выбранных конденсатора последовательно. Используя \ (\ frac {1} {{{C_ ​​{total}}}} = \ frac {1} {{{C_1}}} + \ frac {1} {{{C_2}}} \), спрогнозируйте общую емкость комбинации. Измерьте фактическую емкость комбинации с помощью мультиметр.

    Сделайте большой конденсатор из круглых пластин. Между пластинами поместите несколько небольших кусочков изоляционного материала. держать их отдельно. Измерьте радиус пластин и толщину изоляционного материала.2}}} \). Измерьте емкость с помощью мультиметра и сравните с вашим прогнозом.

    Поверните ручки напряжения и тока источника питания в крайнее нижнее положение (выключено). Убедитесь, что Показания источника питания выставлены на настройку «вольт». Используя два провода, подключите большой конденсатор 1F к блок питания.

    МЕДЛЕННО поворачивайте ручки тока и напряжения на блоке питания, пока показания не покажут около 5 вольт. Через мгновение вы будете использовать накопленную в конденсаторе энергию для питания лампочки.{Bt}} \) к вашим данным. Сравните «B» с \ (\ frac {1} {{RC}} \).

    Повторите эту процедуру, используя две параллельно подключенные лампочки. Диммирование происходит более или менее быстро? Почему?

    Емкостное реактивное сопротивление — обзор

    X

    Символ реактивного сопротивления.

    X C

    Символ емкостного реактивного сопротивления.

    X L

    Символ индуктивного реактивного сопротивления.

    Демодуляция X и Z

    Система демодуляции цветного ТВ, в которой два повторно вставленных сигнала поднесущей 3,58 МГц отличаются примерно на 60 °, а не на обычные 90 °. Напряжения R — Y, B — Y и G — Y выводятся из демодулированных сигналов, и эти напряжения управляют тремя пушками кинескопа. Важным преимуществом этой системы является то, что схема приемника проще, чем требуется при I- и Q-демодуляции.

    Ось X

    1.Ось отсчета в кристалле кварца. 2. Горизонтальная ось в системе прямоугольных координат. 3. Направление по горизонтали или слева направо в двумерной системе координат. X-X обозначает одно направление, которому следует следовать в методе пошагового повторения.

    Диапазон X

    Радиочастотный диапазон от 5200 до 11000 МГц с длинами волн от 5,77 до 2,75 см.

    X-образный стержень

    Прямоугольный кристаллический стержень, обычно вырезанный из Z-образного сечения, вытянутый параллельно X и с его краями, параллельными X, Y и Z.

    X-конденсатор

    Конденсатор для подавления радиопомех, предназначенный для приложений, в которых отказ конденсатора не приведет к опасности поражения электрическим током.

    Х-образный кристалл

    Кристалл, вырезанный так, что его основные поверхности перпендикулярны электрической оси (X) исходного кристалла кварца.

    ксенон

    Инертный газ, используемый в некоторых тиратронах и других газовых трубках.

    ксеноновая импульсная лампа

    Источник некогерентного белого света высокой интенсивности; он работает, разряжая конденсатор через трубку с газом ксеноном. Такое устройство часто используется в качестве источника излучения накачки для различных лазеров с оптическим возбуждением.

    ксерографический принтер

    Устройство для печати оптического изображения на бумаге; светлые и темные области представлены электростатически заряженными и незаряженными участками на бумаге.Порошковые чернила, присыпанные пылью на бумаге, прилипают к заряженным участкам и затем плавятся в бумаге под воздействием тепла.

    ксерографическая запись

    Запись, полученная с помощью ксерографии.

    ксерография

    1. Эта ветвь электростатической электрофотографии, в которой изображения формируются на фотопроводящей изолирующей среде с помощью инфракрасного, видимого или ультрафиолетового излучения. Затем среду присыпают порошком, который прилипает только к электростатически заряженному изображению.Затем применяется тепло, чтобы сплавить порошок в постоянное изображение. 2. Процесс печати электростатической электрофотографии, в котором используется фотопроводящая изолирующая среда в сочетании с инфракрасным, видимым или ультрафиолетовым излучением для создания структур скрытого электростатического заряда для достижения наблюдаемой записи.

    xeroprinting

    Эта ветвь электростатической электрофотографии, в которой узор из изоляционного материала на проводящей среде используется для формирования структур электростатического заряда для использования при копировании.

    ксерорадиография

    Процесс печати электростатической электрофотографии, в котором используется светопроводящая изолирующая среда в сочетании с рентгеновскими или гамма-лучами для создания структур скрытого электростатического заряда для получения наблюдаемого рисунка.

    ксерорадиографическое оборудование

    Оборудование, использующее принципы электростатики и фотопроводимости для записи рентгеновских изображений на сенсибилизированной пластине через короткое время после экспонирования.

    xfmr

    Сокращенное обозначение трансформатора.

    xistor

    Сокращенное обозначение транзистора.

    Разъем XLR

    Экранированный трехжильный микрофонный штекер или розетка с фиксатором для разблокировки пальцем для предотвращения случайного извлечения. Стандартный разъем для профессиональных пользователей микрофонов.

    xmitter

    Аббревиатура передатчика.Также сокращенно trans или xmtr.

    xmsn

    Сокращенное обозначение передачи.

    xmtr

    Аббревиатура передатчика. Также сокращенно транс или xmitter.

    X-off

    Передатчик выключен.

    X-on

    Передатчик включен.

    X-частица

    Частица, имеющая такой же отрицательный заряд, что и электрон, но масса между электроном и протоном.Он создается космическим излучением, падающим на молекулы газа или фактически составляющим часть космических лучей.

    Рентгеновский аппарат

    Рентгеновская трубка и принадлежности к ней, включая рентгеновский аппарат.

    Рентгеновская кристаллография

    1. Использование рентгеновских лучей для изучения расположения атомов в кристалле. 2. Изучение структуры кристаллических материалов с использованием взаимодействия рентгеновских лучей и электронной плотности кристалла (дифракции).

    Устройство обнаружения рентгеновских лучей

    Устройство, обнаруживающее неоднородности поверхности и объема твердых тел с помощью рентгеновских лучей.

    Камера для дифракции рентгеновских лучей

    Камера, которая направляет пучок рентгеновских лучей на образец неизвестного материала и позволяет полученным дифрагированным лучам воздействовать на полосу пленки.

    Картина дифракции рентгеновских лучей

    Картина, полученная на пленке, экспонированной в рентгеновской камере.Он состоит из частей кругов с разным расстоянием между ними в зависимости от исследуемого материала.

    Рентгеновский гониометр

    Прибор, который определяет положение электрических осей кристалла кварца путем отражения рентгеновских лучей от атомных плоскостей кристалла.

    Рентгеновские лучи

    Также называются рентгеновскими лучами. Проникающее излучение похоже на свет, но имеет гораздо более короткие длины волн (от 10 –7 до 10 –10 см).Обычно они возникают при бомбардировке металлической мишени потоком высокоскоростных электронов.

    Рентгеновский спектрограф

    Инструмент, который используется для построения диаграмм дифракции рентгеновских лучей, такой как рентгеновский спектрометр с фотографическими или другими регистрирующими устройствами.

    Рентгеновский спектрометр

    1. Прибор для получения спектра рентгеновского излучения и измерения длин волн его компонентов. 2. Прибор, предназначенный для получения рентгеновского спектра материала в качестве помощи в его идентификации.Этот метод особенно полезен, когда материал не может быть физически разрушен.

    Спектр рентгеновского излучения

    Расположение пучка рентгеновских лучей в порядке длины волны.

    Рентгеновский толщиномер

    Бесконтактный толщиномер, используемый для измерения и индикации толщины движущегося холоднокатаного стального листа в процессе прокатки. Рентгеновский луч, направленный через лист, поглощается пропорционально толщине материала и его атомному номеру, и измерение количества поглощения дает непрерывное указание толщины листа.

    Рентгеновская трубка

    Вакуумная трубка, в которой рентгеновские лучи производятся путем бомбардировки мишени высокоскоростными электронами, ускоренными электростатическим полем.

    Мишень для рентгеновской трубки

    Также известен как антикатод. Электрод или электродная секция, на которую фокусируется электронный луч и который излучает рентгеновские лучи.

    xso

    Аббревиатура для кварцевого стабилизатора.

    xtal

    Аббревиатура кристалла.

    X-волна

    Одна из двух составляющих, на которые магнитное поле Земли делит радиоволну в ионосфере. Другой компонент — обыкновенная, или О-, волна.

    Кристалл XY-огранки

    Кристалл, ограненный таким образом, что его характеристики находятся между кристаллами X- и Y-огранки.

    Плоттер XY

    1.Устройство, используемое вместе с компьютером для построения координатных точек в виде графика. 2. Компьютерное устройство вывода, которое реагирует на цифровые сигналы предварительно записанных и / или обработанных данных путем распечатки линейных сегментов. Эти данные, которые могут включать буквенно-цифровые символы, диаграммы, таблицы или рисунки, загружаются из памяти компьютера со скоростью, достаточной для работы плоттера. XY-плоттер нельзя использовать для прямой записи аналоговых сигналов без дигитайзеров.

    Регистратор XY

    1.Регистратор, который отслеживает на графике отношения между двумя переменными, ни одна из которых не является временем. Иногда диаграмма перемещается, и одна из переменных контролируется так, что взаимосвязь действительно увеличивается пропорционально времени. 2. Регистратор, в котором два сигнала одновременно записываются одним пером, которое приводится в движение в одном направлении (ось X) одним сигналом, а в другом направлении (ось Y) — вторым сигналом. 3. Регистратор данных, который используется для записи изменения одного параметра по отношению к другому.Например, изменение давления в зависимости от температуры. Для этих записывающих устройств доступен широкий спектр преобразователей для преобразования физических параметров в электрические сигналы, используемые в самописце. Датчики давления, термопары, тензодатчики и акселерометры — вот несколько примеров. 4. Тип регистратора, который реагирует на поступающие аналоговые сигналы по мере их появления. Сигналы печатаются на графике заранее определенного размера, который может охватывать тестовые периоды от нескольких секунд до целого года. Регистратор XY записывает непрерывными линиями.Кроме того, скорость отклика прибора важна для точности записи.

    Переключатель XY

    Переключатель с дистанционным управлением, расположенный так, что дворники перемещаются вперед и назад по горизонтали.

    4.6 Цепи постоянного тока, содержащие резисторы и конденсаторы

    Разряд конденсатора

    Разряд конденсатора через резистор происходит аналогично, как показано на Рисунке 4.42. Первоначально ток I0 = V0R, I0 = V0R, размер 12 {I rSub {размер 8 {0}} = {{V rSub {размер 8 {0}}} больше {R}}} {}, управляемый начальным напряжение V0V0 размер 12 {V rSub {размер 8 {0}}} {} на конденсаторе.По мере уменьшения напряжения ток и, следовательно, скорость разряда уменьшаются, что подразумевает другую экспоненциальную формулу для V.V. размер 12 {V} {} С помощью расчетов напряжение VV ​​размером 12 {V} {} на конденсаторе CC размером 12 {C} {}, разряженном через резистор RR размером 12 {R} {}, составляет

    4,80 В = V0e − t / RC (разрядка) .V = V0e − t / RC (разрядка). размер 12 {V = `V» «lSub {size 8 {0}}` e rSup {size 8 {- t / ital «RC»}}} {} Рисунок 4.42 (a) При замыкании переключателя происходит разряд конденсатора CC размером 12 {C} {} через резистор R.R. размер 12 {R} {} Взаимное отталкивание одинаковых зарядов на каждой пластине приводит в движение ток. (b) График зависимости напряжения на конденсаторе от времени, V = V0V = V0 размер 12 {V = V rSub {size 8 {0}}} {} при t = 0.t = 0. Напряжение уменьшается экспоненциально, падая на фиксированном отрезке пути до нуля в каждой последующей постоянной времени τ.τ. размер 12 {τ} {}

    График на Рисунке 4.42 (b) является примером этого экспоненциального затухания. Опять же, постоянная времени τ = RC.τ = RC. размер 12 {τ = ital «RC»} {} Малое сопротивление RR размером 12 {R} {} позволяет конденсатору разряжаться за короткое время, так как ток больше.Точно так же небольшая емкость требует меньше времени для разряда, поскольку сохраняется меньше заряда. В первом временном интервале τ = RCτ = RC size 12 {τ = ital «RC»} {} после замыкания переключателя напряжение падает до 0,368 от своего начального значения, поскольку V = V0⋅e − 1 = 0,368V0.V = V0⋅e − 1 = 0,368V0. размер 12 {V = V rSub {размер 8 {0}} cdot e rSup {размер 8 {- 1}} = 0 «.» «368» V rSub {размер 8 {0}}} {}

    В течение каждого последующего времени τ, τ, размера 12 {τ} {} напряжение падает до 0,368 от своего предыдущего значения. Через несколько значений, кратных τ, τ, размер 12 {τ} {}, напряжение становится очень близким к нулю, как показано на графике на Рисунке 4.42 (б).

    Теперь мы можем объяснить, почему зарядка камеры со вспышкой в ​​нашем сценарии занимает намного больше времени, чем разрядка; сопротивление при зарядке значительно больше, чем при разрядке. Внутреннее сопротивление батареи составляет большую часть сопротивления во время зарядки. По мере старения аккумулятора возрастающее внутреннее сопротивление делает процесс зарядки еще медленнее. (Вы могли это заметить.)

    Импульсный разряд происходит через ионизованный газ с низким сопротивлением в импульсной трубке и происходит очень быстро.Фотографии со вспышкой, такие как на рис. 4.43, могут запечатлеть краткий момент быстрого движения, поскольку длительность вспышки может быть меньше микросекунды. Такие вспышки могут быть очень интенсивными.

    Во время Второй мировой войны ночные разведывательные фотографии производились с воздуха, при этом одна вспышка освещала территорию противника более чем на квадратный километр. Краткость вспышки устраняет размытость изображения из-за движения самолета наблюдения. Сегодня очень важно использовать мощные импульсные лампы для накачки энергии в лазер.Короткая интенсивная вспышка может быстро возбудить лазер и позволить ему переизлучить энергию в другой форме.

    Рис. 4.43 Эта покадровая фотография рыжего колибри ( Selasphorus rufus ), питающегося цветком, была получена при очень короткой и интенсивной вспышке света, вызванной разрядом конденсатора через газ. (Дин Э. Биггинс, Служба рыболовства и дикой природы США)

    Пример 4.6. Проблема интегрированной концепции: расчет размера конденсатора — стробоскопы

    Фотографию со скоростной вспышкой впервые применил Док Эдгертон в 1930-х, когда он был профессором электротехники в Массачусетском технологическом институте.Вы, возможно, видели примеры его работ в удивительных кадрах движущихся колибри, капли молока, брызгающей на стол, или пули, пробившей яблоко (см. Рис. 4.43). Как упоминалось ранее в этом модуле, чтобы остановить движение и запечатлеть эти изображения, нужна очень короткая импульсная вспышка высокой интенсивности.

    Предположим, кто-то хочет сделать снимок пули (движущейся со скоростью 5,0 × 102 м / с и 5,0 × 102 м / с), проходящей через яблоко. Продолжительность вспышки связана с постоянной времени RCRC size 12 {ital «RC»} {} τ.τ. размер 12 {τ} {} Конденсатор какого размера потребовался бы в схеме RCRC размера 12 {ital «RC»} {}, чтобы добиться успеха, если бы сопротивление импульсной лампы составляло 10,0 Ом 10,0 Ом размер 12 {«10″% OMEGA } {}? Предположим, что яблоко — это сфера диаметром 8,0 × 10–2 м. 8,0 × 10–2 м.

    Стратегия

    Начнем с определения задействованных физических принципов. В этом примере рассматривается стробоскоп, о котором говорилось выше. На рисунке 4.42 показана схема этого пробника. Характерное время ττ размера 12 {τ} {} строба задается как τ = RC.τ = RC. размер 12 {τ = ital «RC»} {}

    Решение

    Мы хотим найти C, C, размер 12 {C} {}, но мы не знаем τ.τ. size 12 {τ} {} Мы хотим, чтобы вспышка была включена только тогда, когда пуля пересекает яблоко. Поэтому нам нужно использовать кинематические уравнения, которые описывают взаимосвязь между расстоянием x, x, размером 12 {x} {}, скоростью v, v, размером 12 {v} {} и временем t.t. размер 12 {т} {}

    4.81 x = vtort = xvx = vtort = xv размер 12 {t = {{x} над {v}}} {}

    Скорость пули равна 5.0 × 102 м / с, 5,0 × 102 м / с, а расстояние xx размер 12 {x} {} составляет 8,0 × 10–2 м. 8,0 × 10–2 м. Таким образом, время перехода составляет

    . 4,82 t = xv = 8,0 × 10–2 м 5,0 × 102 м / с = 1,6 × 10–4 с. T = xv = 8,0 × 10–2 м 5,0 × 102 м / с = 1,6 × 10–4 с. размер 12 {t = {{x} больше {v}} = {{0 «.» «08» «м»} больше {«500 м / с»}} = 1 «.» 6 раз по «10» rSup {размер 8 {- 4}} «s»} {}

    Мы устанавливаем это значение для времени пересечения tt size 12 {t} {} равным τ.τ. размер 12 {τ} {} Следовательно,

    4,83 C = tR = 1,6 × 10–4 с 10,0 Ом = 16 мкФ. C = tR = 1,6 × 10–4 с 10,0 Ом = 16 мкФ. размер 12 {C = {{t} над {R}} = {{left (1 «.»6´» 10 «rSup {размер 8 {-4}} вправо)} больше {» 10 «}} =» 16 «мкФ} {}

    Примечание. Емкость CC размера 12 {C} {} обычно измеряется в фарадах, F, F, определяемых как кулоны на вольт. Из уравнения видно, что размер CC 12 {C} {} также может быть выражен в секундах на Ом.

    Обсуждение

    Интервал вспышки 160 мкс 160 мкс размер 12 {«160» мс} {} (время перемещения пули) сегодня относительно легко получить. Стробоскопические огни открыли новые миры от науки до развлечений.Информация с изображения яблока и пули была использована в отчете комиссии Уоррена об убийстве президента Джона Ф.

    Разное

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *