+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как определить фазу | Практическая электроника

Как определить фазу? Чаще всего таким вопросом задаются тогда, когда надо определить фазу в домашней розетке либо в проводке. Сетевое напряжение, которое заходит в ваш дом, поступает по двум проводам, одним из которых является фаза, а другой – ноль. В этой статье вы найдете два способа, чтобы определить фазу в вашей домашней проводке либо в розетке.

С помощью индикаторной отвертки


На рынке либо в радиомагазине часто можно увидеть фазоиндикаторные отвертки. Чаще всего их называют пробниками. На вид пробник – это плоская отвертка, которая состоит из железного щупа, высокоомного резистора и неоновой лампочки. Все они подключаются последовательно.

Давайте же на практике попробуем определить фазу с помощью нашей фазоиндикаторной отвертки. Для того, чтобы это сделать, нам надо коснутся пальцем вершины отвертки, тем самым мы замкнем цепь фаза-пробник-мы-земля, если тыкнем на фазу. Через потечет ток, но он будет настолько слабым, что вы даже ничего не почувствуете. Тем временем на отвертке загорится неоновая лампочка.

Значит, мы попали на фазу.

Втыкаем пробник и попадаем на “ноль”. Неоновая лампочка не горит. Значит, другой контакт розетки точно фаза.

Проверяем и убеждаемся. Неоновая лампочка горит, значит это у нас фаза.

 

С помощью мультиметра

А что, если у нас нет индикаторной отвертки? Как быть в этом случае?  Для этих целей можно использовать обыкновенный мультиметр. Ставим крутилку на измерение переменного напряжения и берем любой щуп мультиметра в руки.

Второй щуп втыкаем в розетку и смотрим, что у нас мультиметр покажет на дисплее. Если мы касаемся нуля, то на дисплее мультиметра  высветятся нули или несколько вольт. Если касаемся фазы, то на дисплее мультиметра появится приличное напряжение – это и есть фаза. Внизу на фото мы определили фазу.

Если также показывает нули, то одной рукой возьмитесь за батарею, а другой – за щуп мультиметра. Возможно, что ваш пол очень хорошо изолирован от земли. Когда будете измерять таким способом,  главное не перепутайте режим измерения напряжения и силы тока. Если вы случайно поставите крутилку мультиметра в режим измерения силы тока и коснетесь батареи, то это может привести даже к летальному исходу! Будьте очень внимательны, если будете использовать этот способ.

Все те же самые операции касаются и трехфазной сети, где у нас три фазных провода и один ноль.

Как определить фазу и ноль мультиметром

Очень часто при выполнении в квартире, доме, гараже или на даче ремонтных либо монтажных работ, связанных с электричеством, возникает необходимость отыскать ноль и фазу. Это нужно для правильного подключения розеток, выключателей, осветительных приборов. Большинство людей, даже если они не имеют специального технического образования, представляют себе, что для этого есть специальные индикаторы.

Мы рассмотрим вкратце этот метод, а также расскажем вам об ещё одном приборе, без которого не обходится ни один профессиональный электрик. Поговорим о том, как определить фазу и ноль мультиметром.

Понятия ноля и фазы

Перед тем, как определить фазу ноль, хорошо бы вспомнить самую малость физики и разобраться, что это за понятия и зачем их находят в розетке.

Все электросети (и бытовые, и промышленные) подразделяются на два типа – с постоянным и переменным током. Со школы помним, что ток – это передвижение электронов в определённом порядке. При постоянном токе электроны передвигаются в каком-то одном направлении. При переменном токе это направление постоянно меняется.

Нас больше интересует переменная сеть, которая состоит из двух частей:

  • Рабочей фазы (как правило, её называют просто «фазой»). На неё подаётся рабочее напряжение.
  • Пустой фазы, именуемой в электричестве «нулём». Она необходима, чтобы создать замкнутую сеть для подключения и работы электрических приборов, служит также для заземления сети.

Когда мы включаем приборы в однофазную сеть, то особой важности нет, где именно пустая или рабочая фаза. А вот когда монтируем в квартире электрическую проводку и подсоединяем её к общей домовой сети, это знать необходимо.

Разница между нолем и фазой на видео:

Простейшие способы

Существует несколько способов, как найти фазу и ноль. Рассмотрим их вкратце.

По цветовому исполнению жил

Наиболее простым, но в то же время и самым ненадёжным способом, является определение фазы и ноля по цветам изоляционных оболочек проводников. Как правило, фазная жила имеет чёрное, коричневое, серое или белое цветовое исполнение, а ноль делают голубым либо синим. Чтобы вы были в курсе, бывают ещё жилы зелёные или жёлто-зелёные, так обозначаются проводники защитного заземления.

В этом случае никаких приборов не нужно, глянули на цвет провода и определили – фаза это или ноль.

Но почему этот метод самый ненадёжный? А нет никакой гарантии, что во время монтажа электрики соблюдали цветовую маркировку жил и ничего не перепутали.

Цветовая маркировка проводов на следующем видео:

Индикаторной отвёрткой

Более правдивым методом является применение индикаторной отвёртки. Она состоит из не токопроводящего корпуса и встроенных в него резистора с индикатором, который представляет собой обыкновенную неоновую лампочку.

Например, при подключении выключателя главное не перепутать ноль с фазой, так как этот коммутационный аппарат работает только на разрыв фазы. Проверка индикаторной отвёрткой заключается в следующем:

  1. Отключите общий вводной автомат на квартиру.
  2. Зачистите ножом проверяемые жилы от изоляционного слоя на 1 см. Разведите их между собой на безопасное расстояние, чтобы полностью исключить возможность соприкосновения.
  3. Подайте напряжение, включив вводной автомат.
  4. Жалом отвёртки прикоснитесь к оголённым проводникам. Если при этом загорится индикаторное окошко, значит, провод соответствует фазному. Отсутствие свечения говорит о том, что найденный провод – нулевой.
  5. Нужную жилу наметьте маркером либо кусочком изоленты, после чего снова отключите общий автомат и проведите подсоединение коммутационного аппарата.

Более сложные и точные проверки выполняются с помощью мультиметра.

Поиск фазы индикаторной отверткой и мультиметром на видео:

Мультиметр. Что это за прибор?

Мультиметр (электрики его ещё называют тестером) представляет собой комбинированный прибор для электрических измерений, который объединил в себе множество функций, основные из которых омметр, амперметр, вольтметр.

Эти приборы бывают разными:

  • аналоговыми;
  • цифровыми;
  • переносными лёгкими для каких-то базовых измерений;
  • сложными стационарными с большим количеством возможностей.

С помощью мультиметра можно не только определить землю, ноль или фазу, но и померить на участке цепи ток, напряжение, сопротивление, проверить электрическую цепь на целостность.

Прибор представляет собой дисплей (или экран) и переключатель, который можно устанавливать в различные позиции (вокруг него находится восемь секторов). В самом верху (в центре) имеется сектор «OFF», когда переключатель установлен в это положение, значит, прибор выключен. Чтобы выполнять замеры напряжения понадобится установить переключатель в сектора «ACV» (для переменного напряжения) и «DCV» (для постоянного напряжения).

В комплект мультиметра входят ещё два измерительных щупа – чёрный и красный. Чёрный щуп подсоединяется в нижнее гнездо с маркировкой «СОМ», такое подключение является постоянным и используется при проведении любых измерений. Красный щуп в зависимости от замеров вставляется в среднее или верхнее гнездо.

Как использовать прибор?

Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится.

Тогда давайте поучимся, как проверить жилы мультиметром.

Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:

  • Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
  • На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.

  • Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.

Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

В этом случае у нас будут задействованы два гнезда «СОМ» и «V», вставьте в них измерительные щупы. Прибор установите в режим «ACV», на значение 200 В.

У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.

Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.

Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.

Несколько правил по использованию мультиметра

Перед тем, как определить фазу и ноль мультиметром, ознакомьтесь с несколькими правилами, которые необходимо соблюдать при работе с прибором:

  • Никогда не пользуйтесь мультиметром во влажной среде.
  • Не применяйте неисправные измерительные щупы.
  • В момент проведения замеров не меняйте измерительные пределы и не переставляйте положение переключателя.
  • Не измеряйте параметры, значение которых выше чем верхний измерительный предел прибора.

Как замерять напряжение мультиметром – на следующем видео:

Обратите внимание на важный нюанс в использовании мультиметра. Поворотный переключатель изначально всегда необходимо устанавливать на максимальное положение, чтобы избежать повреждения электронного прибора. А уже в дальнейшем, если показания оказываются ниже, переключатель переставляется на низкие отметки для получения максимально точных замеров.

Как определить фазу и ноль мультиметром?

Часто бывает так, что во время монтажа различного электрического оборудования в доме, будь то светильники, розетки или выключатели, либо проверка неисправностей электросети, требуется осуществить поиск какого-то провода. Речь идёт о ноле, фазе, а также заземлении. Попытаемся разобраться, что это за провода, как их различить при помощи такого прибора, как мультиметр, и какие меры предосторожности следует соблюдать, дабы человека не ударило электрическим током.

Определение терминов

Итак, для начала следует разобраться в данных терминах и понять, зачем искать тот или иной провод. Необходимо вспомнить, что все электрические сети делятся на 2 категории:

  • с переменным током;
  • с постоянным током.

Ток представляет собой движение электронов по определённому сценарию. В первом варианте электроны осуществляют перманентное передвижение в некоем определённом направлении. А в случае с переменным, особенностью будет постоянная смена направления движения.

Теперь немного скажем о фазе, нуле и заземлении. Электроэнергия поступает в электросеть от трансформаторной подстанции, главным назначением которой является преобразование большого напряжения в 380 В. А к дому электроэнергия подводится либо по воздуху, либо под землёй через вводной щит распределения. Потом напряжение идёт на щитки, расположенные в каждом подъезде. И уже в квартиры идёт по одной фазе с нулём, то есть 220 вольт и проводник защиты.

Проводник, что обеспечивает подачу электрического тока потребителю, будет иметь название фазного. Внутри трансформаторной обмотки они соединяются между собой в так называемую звезду, что имеет общую нейтраль, которая заземлена на самой подстанции. Она обычно идёт к нагрузке по отдельному кабелю. Ноль, являющийся общим проводником, предназначается для реверсивного движения тока на источник электричества. Он даёт возможность выровнять фазное напряжение – разницу между нулём и фазой.

А заземление, которое в простонародье прозвали землёй, напряжения не имеет. Главной его задачей является защита пользователя от воздействия электротока при появлении неполадок с техникой, то есть при возникновении пробоя.

Это может случиться, если повреждается проводниковая изоляция, и деформированный участок касается приборного корпуса. Но так как потребители заземляются, то при возникновении большого напряжения на корпусе заземление тянет на себя опасный потенциал.

Методы

Теперь, когда стало ясно, что представляют собой ноль, фаза и заземление, необходимо разобраться в методах, при помощи которых они могут быть определены. Наиболее распространёнными и общепринятыми будут 3 метода, с использованием которых можно проверить фазу и ноль:

  • по расцветке самих жил;
  • при помощи отвёртки-индикатора;
  • с использованием мультиметра.

Если говорить о первом методе, то он является простейшим и ненадёжным. Обычно проводники имеют цветную изоляцию оболочек. Фаза отличается серой, коричневой, чёрной либо белой оплёткой. Ноль обычно делается синим либо голубым. Заземление, как правило, имеет зелёный либо зелено-жёлтый цвет. Тут не требуется применять какие-либо приборы или технику – посмотрели на цвет и поняли, что за кабель перед вами.

Но проблема заключается в отсутствии уверенности, что при прокладывании проводки что-то не перепутали, и цветная маркировка соблюдена в рамках существующих норм.

Если говорить об отвёртке-индикаторе, то этот способ будет более надёжным для нахождения фазы и ноля. Она обычно имеет корпус, не проводящий ток, а также встроенный индикаторный резистор, являющийся обычным диодом. Чтобы осуществить проверку ноля с фазой, следует осуществить такие действия.

  • Выключить общий УЗО ввода в квартиру.
  • Осуществить зачистку чем-то острым проверяемых жил от изоляции на 1 сантиметр. Далее, производится их разведение на определённое расстояние, дабы исключить соприкосновение и дальнейшее короткое замыкание.
  • Осуществляем подачу тока, предварительно включив автомат ввода.
  • Отвёрточным жалом необходимо прикоснуться к оголённым проводникам. Если горит индикаторное окно, это будет означать, что перед нами – фазный кабель. Отсутствие света свидетельствует, что проверяемый провод является нулевым.
  • Теперь помечаем маркером необходимую жилу и опять обесточиваем общий автомат, после чего осуществляем подсоединение аппарата коммутации.

Как можно убедиться, в этом нет ничего сложного. А вот более точные и сложные проверки производятся с использованием такого прибора, как мультиметр, или, как его ещё называют, тестер. Он представляет собой комбинированный прибор для проведения различного рода электрических измерений. Мультиметр может заменить большое количество устройств для проведения электронных измерений. В частности, омметр, амперметр, вольтметр.

При помощи тестера можно осуществить определение не только земли, ноля либо фазы, но и осуществить замеры на участке цепи тока, напряжения, сопротивления, и проверить целостность электроцепи. Теперь попытаемся разобраться, как узнать при помощи тестера, где будет фаза, а где — ноль.

Описание процесса

Начнём с фазы. Требуется включить устройство, после чего выставить на нём определение напряжения переменного характера, что на корпусе устройства обычно обозначается значком V~. Также следует выбрать предел измерения выше предполагаемого сетевого напряжения. Часто говорят о 400–700 В. Щупы тогда будут подключаться так: чёрный следует установить в разъём с пометкой COM, а красный – VΩmA. Но прежде чем осуществлять это, следует проверить работоспособность мультиметра в выбранном режиме. Проще попытаться выяснить напряжение в простой розетке. Для этого вставляем щупы в розеточные отверстия. Если устройство рабочее, и таковой будет розетка, то мультиметр покажет вам значение около 220–230 В.

Теперь приступим непосредственно к поиску фазы на примере 2 кабелей, торчащих из потолка и использующихся для включения люстры. Всё будет довольно легко. Требуется сформировать условия для прохождения электричества по прибору и установить этот факт. Создаётся электрическая цепь примерно такая, как с отвёрткой-индикатором.

При выяснении напряжения переменного характера с установленной границей 500 вольт, красным щупом нужно коснуться проверяемого кабеля, а чёрный прижать пальцами или коснуться предмета, что заземлён. Им может стать каркас стены из стали, отопительный радиатор и так далее. Если на проверяемом кабеле будет фаза, тестер высветит на дисплее величину напряжения около 220 В. Она может чуть различаться из-за условий, но будет примерно такой. Если провод не фаза, то появится 0 либо прибор покажет не более пары десятков вольт.

Теперь поговорим о том, как найти ноль. Он обычно находится уже относительно фазы. Сначала ищем её и логически предполагаем, что провод, расположенный рядом, ноль либо земля. Определить, является кабель нулём либо заземлением с помощью рассматриваемого устройства относительно сложно из-за того, что данные проводники почти одинаковы и повторяют друг друга.

Бывает, что ноль и заземление связаны в электрозащите и установить их действительно крайне сложно.

Проще всего будет отключить от заземлительной шины в электрощитке кабель ввода. При осуществлении проверки напряжения между кабелями заземления и фазой нельзя будет получить 220 вольт, как при проверке фазы и нуля. Кроме того, следует сказать, что если в электрощите стоит защита дифференциального типа, то она точно сработает при проверке кабелей заземления относительно иного проводника, даже нулевого.

Если надо установить ноль в розетке, то следует красный щуп поставить в фазовую розеточную дырку, а чёрный поднести к иному контакту, после чего сделать эти же действия с третьим контактом. Обязательно следует запомнить напряжение в обоих случаях. Где оно будет меньше, там будет заземление. А там, где показатель будет чуть выше – там будет нулевой провод. В общем, как можно убедиться, ничего сложного в поиске нуля и фазы мультиметром нет.

Меры безопасности

Следует немного сказать и о некоторых правилах безопасности, которые обязательно следует прочитать, прежде чем начинать определение фазы и нуля при помощи мультиметра:

  • ни в коем случае нельзя использовать мультиметр в помещении с высокой влажностью;
  • нельзя использовать неисправные щупы для измерений;
  • при осуществлении замеров нельзя изменять пределы измерений и переставлять режим переключателя;
  • нельзя менять параметры, значение которых будет выше, чем приборная грань измерений.

Кроме того, поворотный переключатель с самого начала следует установить в максимальное положение, дабы избежать поломки прибора.

О том, как определить фазу и ноль мультиметром, смотрите в следующем видео.

Как мультиметром найти фазу без ошибок

Ремонт и монтаж бытовой проводки своими руками требуют умения грамотно определять потенциалы напряжения, отличать фазу ноль и землю внутри домашней электрической схемы.

За многолетнюю практику электрика встретил много ошибок, которые допускают новички. Написал эту статью, чтобы вы их не повторяли. Делюсь опытом, как мультиметром найти фазу безопасно и быстро.

Информацию разбил на несколько частей, сосредоточив первоначальное внимание на особенностях и устройстве измерительного прибора. Бывалым электрикам можно сразу перейти к третьему разделу.

Содержание статьи

Что такое фаза, ноль и земля: краткое объяснение простыми словами

Прежде чем начать разбираться с проводами в квартире следует хорошо представлять, откуда и какими способами появляются в ней потенциалы напряжения, чем отличаются способы заземления.

Современные промышленные генераторы вырабатывают трехфазную систему токов.

Напряжение по проводам или кабелям поступает к потребителю от трансформаторных подстанций.

При этом в квартиру многоэтажного дома обычно заводится 220 вольт, определяемые между потенциалами одной из фаз и общего нуля. На ввод частного дома может поступать и полноценное трехфазное питание.

Более подробно об этом можно прочитать в статье про электрическое напряжение.

Во времена СССР внутри жилых помещений для экономии материалов использовалась двухпроводная схема питания, когда на электрическую розетку квартиры подавалось два потенциала:

  1. одной из трех фаз;
  2. общего нуля, который является заземлением одного вывода обмотки трансформаторной подстанции и обозначается латинскими буквами PEN.

Эта самая простая система заземлений больше не имеет никаких дополнительных контуров.

Современная схема подключения жилых помещений более сложная. В ней отдельно смонтированы потенциалы заземления выходной обмотки трансформаторной подстанции двумя магистралями, разделяющими PEN:

  1. рабочего ноля N, который используется только для протекания токов, обеспечивающих полезную работу бытовых механизмов;
  2. защитного проводника PE, предназначенного для отвода опасных токов утечек при аварийных ситуациях на электрическом оборудовании.

Разновидностями современной системы заземлений, обладающих дополнительным защитным контуром, являются ее модификации: TN-C-S, TT.

Сейчас у жителей частных домов есть возможность сделать защитное заземление своими руками и спастись от случайных аварийных ситуаций.

Тем же людям, кто проживает в старых многоквартирных домах, приходится ждать очереди, когда государство переведет их на более безопасную систему. А новые здания строятся с учетом существующих нормативов ПУЭ.

Таким образом, в современной квартире можно встретить две системы подключения бытовых приборов, выполненных по двухпроводной или трехпроводной схеме.

Для них выпускаются свои два вида электрических розеток, к которым монтируются 2 либо 3 провода.

Для их подключения разработаны определенные правила монтажа.

Таким образом: потенциалы рабочего ноля N и земли РЕ объединены на заземленной части выходной обмотки трансформаторной подстанции. В старой схеме они подводятся одним проводником PEN, а в новой — двумя раздельными.

Требования ПУЭ к монтажу РЕ проводника очень жесткие, в нем должно обеспечиваться минимально допустимое сопротивление протеканию аварийного тока. Он монтируется без использования коммутационных аппаратов на проводах повышенной надежности.

В рабочий ноль могут включаться контакты автоматических и дифференциальных выключателей, УЗО, коммутационных аппаратов, а рабочие провода подбираются для передачи только обычных нагрузок.

За счет этих двух требований и благодаря удалению бытовой проводки от трансформаторной подстанции на стороне потребителя между РЕ и N создается небольшая разность потенциалов, которую можно замерить обыкновенным вольтметром.

Почему мультиметр необходимо переводить в режим вольтметра при проверке фазы

До массового появления в продаже цифровых приборов нам в электролабораторию друзья и знакомые частенько приносили для ремонта сгоревшие аналоговые тестеры.

Причина их повреждения практически всегда была одна: неправильный выбор режима измерения при подключении прибора к цепям напряжения.

При этом в лучшем случае выгорали цепочки подключения резисторов с кнопками и переключателями, а в худшем — высочувствительная измерительная головка с токопроводящими пружинками. Последние неисправности чаще всего ремонту не поддавались.

Люди просто не понимали, что тестер, как и цифровой мультиметр, производит измерения на основе закона Ома.

Разница только в том, что тестер работает с аналоговыми величинами, а мультиметр — оцифрованными. Но принципы подключения обоих типов приборов одинаковы, сводятся к двум простым правилам:

  1. при измерении напряжения переключатели ставят в то положение, которое вводит калиброванное сопротивление, ограничивающее ток через токоизмерительную головку или датчик;
  2. замер неизвестной величины напряжения всегда необходимо выполнять на режиме максимального значения шкалы прибора.

Неправильное положение переключателей, переводящих прибор в режим омметра или амперметра, чаще всего встречается у новичков по невнимательности и из-за низких навыков.

На моей памяти есть случай, когда два опытных электрика, понадеявшись в спешке друг на друга, спалили дорогой образцовый вольтметр — эталон класса точности 0,2.

Прибором пришлось срочно воспользоваться для выставления уставок зарядного устройства аккумуляторной батареи оперативного тока 220 вольт на подстанции 330 кВ.

Один работник держал прибор в руках горизонтально и подал концы с щупами второму для выполнения замера. Никто из них не обратил внимания, что переключатель стоял на низшем пределе измерения. В результате протекания повышенного тока измерительная головка выгорела полностью.

Этот случай не типичный, но наглядно показывает, что электричество никому и никаких ошибок не прощает. Ток течет туда, где ему оказывается меньшее сопротивление.

Неправильное подключение мультиметра или тестера к цепям напряжения кроме повреждения самого измерительного прибора создает режим короткого замыкания, вредного для бытовых потребителей и проводки.

Поэтому перед установкой измерительных щупов на цепи напряжения необходимо проверять исходное положение переключателей прибора в режим вольтметра.

Вообще-то стоит заметить, что элитные цифровые мультиметры оборудованы встроенной электронной схемой, защищающей прибор от неправильного подключения к цепям напряжения, а у бюджетных моделей она отсутствует.

Ее в народе часто называют «защитой от дурака». Во многих случаях она может спасти прибор и бытовую сеть, но постоянно использовать эти ее возможности все же я не рекомендую: подключайте вольтметр правильно всегда.

Технические приемы в картинках: как мультиметром искать потенциалы напряжения в электропроводке

Сейчас производители выпускают очень большой ассортимент цифровых измерительных приборов. Они имеют различные органы управления, внешний вид, конфигурацию. Поэтому точно показать положение кнопок и переключателей для всех моделей невозможно.

Однако при их выпуске соблюдается определенные стандарты маркировки переключающих устройств и органов индикации. По этому вопросу у меня на сайте есть статья, объясняющая, как пользоваться любым мультиметром новичку.

В ней я нарисовал и показываю обобщенную модель с максимальным расположением кнопок управления и переключателей, где подробно в табличной форме объясняю положение каждого органа. Читайте и пользуйтесь.

Для постоянного использования себе выбрал бюджетный карманный мультиметр Mestek MT102 с большим количеством функций и сделал подробный обзор его возможностей отдельной статьей.

Это прибор буду использовать при демонстрации приемов работы по определению разности потенциалов между проводами и контактами.

Вначале показываю, как им пользоваться для измерения напряжения в розетке. На этом примере мы сразу решаем две задачи:

  1. Определяем техническую исправность самого мультиметра и его концов для подключения.
  2. Контролируем наличие питания 220 вольт в квартире.

Концы для мультиметра — специальные провода с наконечниками для соединения прибора с измеряемой схемой выполнены красным и черным цветом.

По этой расцветке они всегда должны вставляться в соответствующие гнезда нижнего блока. Причем красный конец обычно подключается справа.

Если на приборе есть дополнительные красные гнезда, то они используются только для измерения больших токов или на пределе милли-, микроампер.

Центральным переключателем я свой Mestek MT102 перевел в режим измерения вольтметра, выбрав положение «V», а кнопкой «SEL» указав режим измерения параметров переменного тока «АС».

Только после этого подключенные к прибору концы установил в розетку для измерения напряжения.

На дисплее появилось значение 242,8 вольта, что укладывается в норму.

После этого можно сделать вывод, что в розетке имеется напряжение, а Mestek MT102 и его концы исправны и им можно пользоваться дальше. Подготовительные процедуры закончены, но дальнейшую работу начинающему электрику может облегчить знание расцветки жил кабелей.

Правила цветовой маркировки проводов: как их следует учитывать

Расцветка жил значительно упрощает монтаж электрической проводки и поиск в ней неисправностей. Поэтому производители ее наносят на изоляцию, а профессиональные электрики стараются придерживаться правил монтажа.

Правила цветовой маркировки предполагают обозначение:

  • защитного РЕ проводника желто-зеленым цветом;
  • рабочего ноля синим или голубым;
  • фазы — остальными: белым, оранжевым, коричневым, черным, серым, красным, фиолетовым.

Обратите внимание, что не всегда кабель и провод имеет подобное разнообразие расцветок. Изоляция жил часто может иметь какой-то один оттенок. Да и не все монтажники, а особенно домашние мастера придерживаются этого правила.

Цветовая маркировка призвана облегчить поиск неисправностей и монтажные работы, она является дополнительным способом определения фазы и рабочего ноля. Но полностью полагаться на этот метод нельзя.

Кстати, во время работы не раз приходилось наблюдать, как в спешке устранения неисправностей даже на ответственных вторичных цепях оборудования 330 кВ на подстанции опытным электрикам приходилось заменять и прокладывать провода из тех, какие есть под рукой, не обращая внимание на их расцветку.

Какие безобразия творятся в бытовой домашней сети, допускаемые необученным персоналом, можете представить сами.

Последовательность поиска фазы вольтметром: пошаговая инструкция из 3 типовых случаев

Работа состоит из подготовительной и основной части.

На первоначальном этапе проверяем исправность измерительного прибора и его концов, как я показал выше. Во многих случаях эта короткая процедура экономит дальнейшее рабочее время. Делайте ее привычкой, ибо плохой контакт в гнезде, оборванная жила, севшие батарейки питания, любые другие дефекты доставят много неприятностей.

Вариант №1. Трехпроводная бытовая схема питания

Определение наличия фазного потенциала на проводе буду показывать на примере проводки с жилами однотонной изоляции. На них предполагаем наличие фазы, земли и ноля. Будем их определять.

Далее все делаем за 2 шага.

Шаг №1. Попарный замер напряжения между проводами

Произвольно помечаем все три провода. Например, присваиваем им номера, буквы или располагаем сверху вниз либо слева направо.

При этом помним, что они находятся под напряжением и прикасаться к ним можно только с соблюдением правил безопасности, не создавая контакт тела с токоведущими жилами.

Для наглядности я расположил их вертикально и присвоил номера №1÷3. Затем щупами вольтметра последовательно замеряем разность потенциалов между токоведущими жилами.

Допустим, мы увидели 220 вольт между проводами 1 и 2, а также 2 и 3.

А между жилами №1 и 3 вольтметр показывает доли вольта, близкие к нулю.

Шаг №2. Анализ результатов измерения

На основе этих замеров можно сделать вывод, что общий провод №2 для двух случаев измерения 220 вольт является фазным.

Вариант №2. Двухпроводная бытовая сеть

Имеем два провода с фазой и нулем, но не знаем где находится какой потенциал.

Шаг №1. Замер напряжения между проводами

Вначале проверяем разность потенциалов между токоведущими жилами. При исправной цепи мы должны увидеть 220 вольт, как я показал на фотографии розетки выше при проверке исправности прибора.

Шаг №2. Замер напряжения между каждым проводом и контуром земли

Один конец от вольтметра крокодилом подключаем на водопроводный кран, батарею отопления или любую другую заземленную металлическую конструкцию. Вторым щупом поочередно касаемся токоведущих жил.

В одном положении вольтметр покажет что-то близкое к нолю, а в другом — 220 вольт. На этом проводе и будет присутствовать потенциал фазы.

Оба случая проверки напряжения для двух- и трехпроводной схемы хорошо подходят для оценки наличия фазы в соответствующих типах розеток.

Вариант №3. Принцип определения фазы на емкостном токе

Здесь используется та же технология, что и при проверке напряжения обычной индикаторной-отверткой.

Внутри индикатора стоит высокоомный резистор, ограничивающий ток через тело оператора на землю до безопасной величины: нескольких милли- или микроампер, достаточных для свечения неоновой либо светодиодной лампочки.

Когда человек касается пальцами контакта на торце отвертки, то, если имеется потенциал фазы на противоположном конце лезвия, создается емкостной ток и лампочка горит. В противном случае ее свечения не будет.

Схема протекания емкостного тока выглядит следующим образом.

Заменив индикатор мультиметром в этом методе вполне можно найти фазу, что я и показываю на очередной фотографии.

Один щуп вольтметра установлен в гнездо розетки, а второго касаюсь пальцами. На табло вы видите показание 73 вольта. При этом я сижу в кресле, находящемся на сухом деревянном полу.

За счет хорошей изоляции тела от контура земли мой Mestek MT102 сильно занижает величину фазного потенциала. Поэтому я делаю второй эксперимент.

Снял с ноги носок и притронулся голой стопой к окрашенному радиатору батареи отопления. Вот что получилось.

Mestek MT102 показал уже 175 вольт, что ближе к истине.

Этим методом пользоваться можно, но цифрам дисплея верить нельзя: они приблизительные и зависят от качества заземления тела.

На другом контакте розетки вы вольты таким способом замера не увидите.

Как отличить провод нуля от земли в трехпроводной схеме

Когда мы нашли фазу, то на двух оставшихся исправных проводах будут потенциалы рабочего нуля и РЕ проводника. Их нам необходимо различить.

Для этого первоначально используем цветовую маркировку, если она применена правильно. Но обязательно рекомендую выполнить для достоверности электрические замеры.

Надо просто еще раз внимательно измерить величину разности потенциалов между фазой и этими двумя проводами. Землей будет тот провод, где показание мультиметра чуть больше. На нем меньшие потери напряжения из-за высоких требований к монтажу и отсутствию коммутационных аппаратов внутри цепи.

Третий оставшийся провод — рабочий ноль. Для практики можно измерить разность потенциалов между землей и нулем, сравнить ее с отличием замеров между этими проводами с фазой.

Небольшие отклонения будут вызваны:

  • классом точности прибора;
  • качеством подключения концов;
  • отличием арифметических действий от методов векторной алгебры.

3 заключительных совета из личного опыта

Здесь я поделюсь тремя случаями, которые должны помочь вам облегчить жизнь при общении с электричеством, исключить типичные ошибки.

Удлинитель для мультиметра

Работая тестером на различных объектах мне пришлось изготовить простой удлинитель его концов.

На самодельное пластиковое мотовильце намотал длинный гибкий провод и припаял к нему два штеккера. На фото показаны крокодил и самодельный щуп из спицы велосипеда, закрытый корпусом шариковой ручки. Они легко надеваются и снимаются в зависимости от необходимых задач.

Этот удлинитель занимает мало места, не путается, очень выручает меня при прозвонке удаленных объектов. Он же будет полезен при проверке фазы методом емкостного тока.

«Неисправный телевизор»

Этот случай произошел, когда у нас еще работали черно-белые кинескопные телевизоры.

Соседка с пятого этажа пришла с просьбой: “Помоги, у меня телевизор перестал включаться”. Пришлось брать тестер и инструменты. Первым делом измерил напряжение в розетке: 220 вольт, норма.

Дальше вскрыл заднюю крышку и стал проверять цепи питания подачи напряжения на трансформатор. Все вызвонил, а неисправности не нашел, предохранители и провода целые, кнопки рабочие.

Еще раз проверил розетку: опять 220. Пришлось сильно задуматься. В итоге взял удлинитель, подключил его в другой комнате и запитал телевизор. Он заработал.

Стал разбирать розетку. Алюминиевая лапша 2,5 квадрата. Оба конца исправны, тестер показывает напряжение 220. Включил настольную лампа, а она не горит. Опять возвращаюсь к вольтметру и вижу всего 40 вольт.

Делаю вывод: под нагрузкой где-то пропадает контакт. Лезу в распределительную коробку, осматриваю соединения. Прощупываю провода и замечаю внутри изоляции обломанную жилу: концы подвижны, но соприкасаются.

Когда через них проходит маленький ток от тестера, то контакт надежный, а при увеличении нагрузки от настенной лампы или телевизора он ухудшается и цепь не работает.

Раньше такие неисправности хорошо выявлялись контрольной лампой. Сейчас она запрещена правилами по ряду причин. Однако проверять наличие фазы на проводе под нагрузкой более правильно, чем без нее.

«Электрик по совместительству»

Десяток лет назад встал вопрос о ремонте ванной и туалета. Жене порекомендовали хорошего плиточника по имени Сергей. Он профессионально занимается отделочными работами, имеет опыт, показывает фотографий в своем портфолио.

Цена устроила, договорились. Сергей приступил к работе. По ходу дела он взял на себя весь ремонт, как сейчас говорят, «помещения под ключ», включая сантехнику, электрику, замену дверей.

Во время не удачного демонтажа старой дверной рамы рухнула небольшая часть стены с замурованной проводкой. Одни провода оборвались, а на других повис кусок бетона. (В этом месте был установлен трёхклавишный выключатель и розеточный блок.)

Сергей попытался разобрать образовавшийся клубок и получил сильный удар током. Автоматы отключили короткое замыкание, а неудачный электрик впал в шоковое состояние.

К его счастью в этот момент я пришел с работы и увидел всю эту картину. Сергей сразу заявил, что дальше он с этой неисправностью сам не справится, а от электричества теперь будет держаться подальше.

Пришлось мне браться за прозвонку и монтаж всей проводки. Вам же хочу напомнить, что работы под напряжением относятся к опасным. Их допускается выполнять только обученному персоналу, обладающему:

  1. специальными знаниями;
  2. практическими навыками;
  3. крепким физическим здоровьем.

Если хоть одно из этих требований отсутствует, то беда неминуема. Дабы ее не было — привлекайте профессиональных электриков. Вот и вся информация о том, как мультиметром найти фазу. Можете ее дополнить в комментариях или задать дополнительные вопросы. Я отвечу.

Как определить фазу и ноль мультиметром

Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.

По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа — ёмкость (человек).

Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.  


Как найти фазу мультиметром


Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения — уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».



В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.


Как проверить мультиметром напряжение в розетке 220в


Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом — не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.



Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.



Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.



Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

 

Как найти ноль мультиметром



Ноль, чаще всего, находится мультиметром относительно фазного провода, т.е. сперва, способом, описанным выше, вы находите фазу, а затем установив красный щуп на неё, касаетесь других проводников и когда тестер на экране покажет 220В (+/- 10%), тогда вы поймете, что второй провод нулевой рабочий или нулевой защитный (заземление).

Определить же то, является провод нулем или заземлением одним мультиметром, довольно сложно, ведь по сути, эти проводники одно и то же и нередко просто дублируют другу друга. В определенных системах заземления ноль и зазмление даже связаны между собой в электрощите и очень тяжело точно их выявить.

Проще всего, в таком случае, отключить от шины заземления в электрощите вводной провод, тогда, во всей квартире или доме, при проверке напряжения, между фазой и проводами заземления, вы не получите 220В, как при проверке нуля и фазы.

Так же стоит отметить тот факт, что если в электрощите установлена дифференциальная защита — УЗО или автоматический выключатель дифференциального тока, он обязательно сработает, при проверке проводов заземления относительно любого другого проводника, даже нулевого.

Если же вы знаете более надежные и универсальные методы определения фазы и нуля цифровым мультиметром – обязательно пишите об этом в комментариях к статье, кроме того приветствуются любые мнения, опыт, здоровая критика или вопрос.

Так же вступайте в нашу группу ВКонтакте, следите за появлением новых материалов.

Как определить фазу и ноль правильно: советы и рекомендации

Категория: Электромонтажные работы

Для того чтобы починить розетку или подключить люстру, не обязательно звать на помощь электрика. Все эти работы при наличии определенного минимума знаний может выполнить даже школьник. Чтобы освоить элементарные навыки работы с электрической проводкой в квартире или частом доме необходимо сначала понять принцип устройства электросети, а также обзавестись индикаторной отверткой и недорогим тестером со стрелочной или цифровой индикацией, который называется мультиметром в связи с возможностью измерения сразу нескольких электрических параметров (сила тока, напряжение, сопротивление). Кроме того, для снятия изоляции, резания, сжатия или скрутки проводов, необходимо купить в магазине пассатижи, кусачки, нож и набор отверток различного размера. При этом необходимо чтобы весь инструмент имел надежные рукоятки, изготовленные из изоляционного материала. Из материалов нужна будет только изоляционная лента и клемники, позволяющие быстро соединять провода внутри коробок.

Перед тем, как приступать к подключению или починке электрического устройства или к ремонту электропроводки своими руками, необходимо в первую очередь понять, что представляют собой такие понятия, как фаза и ноль, которыми обычно оперируют электрики. Давайте рассмотрим, чем они отличаются, и как определить фазу и ноль при помощи различных приборов.

Что такое фаза?

Как известно, генератор, который вырабатывает электроэнергию, в сущности, представляет собой несколько огромных катушек провода, в которых возбуждается электрический ток движением постоянных магнитов. Все эти катушки соединены между собой таким образом, что один конец каждой из них соединен с землей (заземление), а другой представляет собой изолированный проводник, идущий к потребителям в виде воздушной линии или изолированного провода. Соответственно, один из двух проводов, которые заведены в квартиру, протянут от заземленного конца катушек электростанции, и представляет собой так называемый «ноль», а другой, который не соединен с землей, называется «фаза».

Как известно, в обычной бытовой розетке всегда есть ноль и одна фаза. В квартирах заведена всегда только одна фаза и ноль, поскольку все бытовые приборы и оборудование рассчитаны на однофазное питание. Однако от электростанции к потребителям идет всегда три фазы и ноль. Так куда же деваются еще две фазы? Почему их нет в квартире? На этот вопрос ответ находится в подвале многоэтажного дома, где установлен силовой щит. К нему подведены все три фазы, которые затем распределяются равномерно между квартирами для обеспечения одинаковой нагрузки.

Что такое ноль и заземление?

Гораздо проще обстоит дело с нолем. Этот проводник должен быть везде, вне зависимости от количества фаз в помещении. Как уже упоминалось, на электростанции ноль заземлен. Тогда почему же к розетке подведены три провода? Третий провод – это заземление, которое необходимо из соображения безопасности эксплуатации бытовых (и промышленных, кстати, тоже) электроприборов.

Дело в том, что если произойдет разрыв нулевого провода к объекту (жилому дому, предприятию, отдельному помещению), внутри объекта окажется только один (либо три) фазный провод, который подключен к огромному количеству различных устройств и приборов. Это значительно повышает вероятность поражения людей электрическим током путем прикосновения к металлическому корпусу или деталям прибора. Именно поэтому все корпуса бытового и промышленного оборудования дополнительно заземляются непосредственно на месте подключения и эксплуатации.

Как отличить друг от друга фазу и ноль?

Для начала отметим, что сегодня приобрела популярность цветовая маркировка проводов, согласно которой заземление должно представлять собой провод желто-зеленого цвета (зеленый с желтой полоской), фазный провод – в коричневой изоляции, и ноль – в синей (голубой). В случае наличия трех фаз остальные две фазы должны быть серого и черного цвета. Однако не рекомендуется доверять визуальному определению, поскольку во многих случаях оно является ошибочным.

Итак, как найти фазу и ноль, если провода не промаркированы или же вы не доверяете цветной маркировке? В бытовых условиях это можно сделать при помощи нескольких приборов: самодельного индикатора (так называемой «контрольки»), индикаторной отвертки и тестера (мультиметра). В первых двух случаях используется один и тот же принцип, который заключается в том, что между нулем и заземлением не должно быть разницы потенциалов (напряжения). В случае использования индикаторной отвертки проверяется каждый провод отдельно.

Итак, «контролька» – это классическое, хотя и примитивное, самодельное устройство, которое представляет собой небольшую лампочку на 220 вольт с патроном и двумя проводами длиной в несколько десятков сантиметров. «Контролькой» можно легко проверить наличие напряжения в розетке, сунув проводки в отверстия, а также определить таким же методом работоспособность проводки, которая идет к люстре, если она не работает. Для этого нужно лишь подключить «контрольку» параллельно проводам, к которым подключен осветительный прибор. Фаза определяется этим способом путем прикладывания одного провода «контрольки» к заземлению, а другого поочередно к проводам фазы и ноля. В данном случае от ноля лампочка, естественно, не будет светиться, а от фазы зажжется.

При определении мультиметром его необходимо включить в режим измерения переменного напряжения не менее 250 вольт. Принцип определения ноля и фазы точно такой же, как в предыдущем случае, просто индикатором в данном случае будет не лампочка, а стрелка или цифровые сегменты прибора. Преимущество в данном случае заключается в том, что тестером можно еще измерить величину напряжения. Один щуп (провод) прибора подключаем на землю, а вторым ищем ноль и фазу. При прикосновении к нулевому проводу стрелка отклоняться не будет, а на фазном проводе мультиметр покажет напряжение в 220 вольт (разумеется, с небольшой погрешностью).

Дополнительные рекомендации

Так чем же лучше всего воспользоваться, чтобы найти ноль и фазу в розетке? Неужели нельзя воспользоваться самодельной «контролькой» и отказаться от покупки других приборов? Конечно же можно, однако стоимость индикаторной отвертки копеечная, а в использовании она гораздо удобнее лампочки с патроном. Кроме того, некоторые современные отвертки имеют очень высокую чувствительность и способны индицировать фазный провод даже на расстоянии в несколько сантиметров.

Что касается мультиметра, его целесообразно приобрести тем, кто ближе знаком с электрическими приборами и электроникой. Этот прибор имеет широкие функциональные возможности в плане измерения различных электрических величин, поэтому он пригодится далеко не каждому человеку.

Избрав для себя оптимальный способ определения фазы и ноля, помните, что все электрические работы связаны с опасностью поражения током, поэтому строго соблюдайте правила техники безопасности при работе с электроприборами! Более наглядно процесс определения фазы и ноля изложен в видео к этому уроку.

Как определить фазу, ноль и заземление

Многие электроприборы требуют соблюдения полярности. Это не только мощные потребители электроэнергии, такие как посудомоечная машина или электрическая печь, но и привычные для нас переключатели для включения/выключения света. Даже подключение переключателя с размыкаемым нулем вместо фазы может стать причиной удара током.

Стабильная и безопасная работа электроприборов возможна только при правильном подключении. Для этого нужно определить, какой из проводников является фазным, нулевым и заземляющим. В этой статье мы подробно рассмотрим способы, как это сделать безопасно с использованием доступных инструментов, а также разберем, можно ли определить фазность без приборов.

Безопасность прежде всего!

Жизнь и здоровье человека являются наибольшей ценностью. Поэтому, прежде чем приступить к работе с электрооборудованием, следует убедиться, что все инструменты исправны: корпуса без повреждений, изоляция без переломов провода и повреждений, щупы не разболтаны и их корпуса не нарушены.

Не прикасайтесь к участкам без изоляции на инструментах и проводах при работе под напряжением!

При возникновении малейших сомнений в правильности действий, прекратите работу и обратитесь к профессионалу — это убережет вас, а также окружающих людей, от возможного поражения током.

Как определить ноль и фазу индикаторной отверткой

Одним из простейших способов выявления фазы и нуля является работа с отверткой-индикатором. Такой инструмент доступен по цене и несложный в использовании. Подробно рассмотрим его устройство для понимания принципа работы.

Этот прибор состоит из рукоятки и металлического жала, большая часть которого покрыта изоляцией. Внутри прозрачной рукоятки размещен резистор и неоновая лампа, а на торцевой части имеется второй контакт.

Работая с индикаторной отверткой, её жало должно касаться исследуемого элемента, а человек — второго контакта. Емкость и сопротивление человеческого тела здесь выступают частями цепи: если в цепи присутствует напряжение, то лампочка начинает светиться.

Для определения фазы и нуля отверткой-индикатором достаточно дотронуться сначала к одному, а затем к другому не изолированному концу провода или отверстию розетки. Если в исследуемом элементе есть напряжение, то лампочка загорится. Это явление соответствует фазному проводнику. Если свечения нет, то перед нами нулевой или заземляющий кабель.

Как определить фазу и ноль мультиметром

Индикаторной отверткой мы могли определить только наличие напряжения. При помощи тестера мы можем увидеть определенные показатели, отображающиеся на мониторе. Определение рабочего, заземляющего и нулевого рабочего элемента при помощи мультиметра происходит по схожему с сценариею (как с отверткой). Но это более сложный прибор, поэтому нужно быть предельно внимательным при выставлении его режимов. Если вместо режима вольтметра будет выставлен режим амперметра, вы можете получить значительный удар током.

Итак, устанавливаем переключатель устройства в режим вольтметра переменного тока «~», а предел измерения устанавливаем выше предполагаемого напряжения в сети. Перед началом работы необходимо убедиться, что мультиметр исправен. Для этого нужно измерить напряжение переменного тока в рабочей розетке и проконтролировать полученные значения. После этого можно приступать к определению фазы в исследуемом объекте. Одним из электрощупов касаемся до исследуемого элемента, а контактную часть второго электрощупа зажимаем между двух пальцев. Если на экране отображается какое-либо значение, значительно отличающееся от нуля (близкое к номинальному напряжению в сети), то перед нами рабочий проводник, если же оно равно нулю или очень низкое (до нескольких десятков вольт), то это нулевой или заземляющий проводник.

Как определить фазу и ноль без приборов

Единственный возможный способ различить проводники без использования приборов — при помощи маркировки проводников по цветам. Желто-зеленая окраска изоляции соответствует кабелю заземления, синяя или голубая — нулевому, а рабочий кабель может быть любого цвета. К сожалению, не все придерживаются ГОСТов, а также необходимых требований. Нередко случается, что электричество подключено либо немаркированными кабелями, либо маркировка не соблюдена. Поэтому доверять такому способу нельзя.

В интернете можно найти множество способов определения фазы при помощи подручных средств — картофеля, стакана с водопроводной водой, контрольной лампочки и пр. Эти способы использовать ни в коем случае нельзя — такие опыты могут закончиться фатально не только для вас, но также для окружающих!

Отдельно отметим рекомендуемую даже некоторыми электриками контрольную лампочку, т.е. патрон с лампой, к которому подсоединены два провода. Использование такого самодельного прибора запрещено Правилами Безопасной Эксплуатации Электроустановок, т.к. может причинить серьезный ущерб и нанести травмы.

Также опасно использовать способы, в которых рекомендуется соединение электросети с заземленными предметами — трубами центрального отопления, водоснабжения, газовыми трубами и пр. — если напряжение окажется на таких предметах, то прикосновение к ним может стать смертельным.

Если вы не имеете достаточно инструментов или опыта работы с электричеством, то не рискуйте жизнью и здоровьем, а доверьте подключение электроприборов профессионалу.

Как определить заземление

Часто в новых домах можно встретить проводку из трехжильного кабеля, т.е. в нем присутствует отдельно выведенное заземление. При неправильном подключении есть риск короткого замыкания, а также поражения током. Поэтому для подключения электрооборудования важно знать не только где находится фаза, но также выявить ноль и заземление.

Определить провод заземления сложно из-за того, что по своим параметрам он схож с нулевым.

В электросистемах типа ТТ, имеющих индивидуальный заземляющий контур, можно найти кабель заземления при помощи измерений мультиметром. Для этого нужно поочередно измерить напряжение между рабочим проводником и двумя другими. Большее значение соответствует нулю, меньшее — земле.

В других конфигурациях сети этот прием не работает, поэтому мы рекомендуем предпринять следующие шаги:

  1. Отключить всех потребителей электроэнергии на исследуемом участке цепи.
  2. В щитке определить, где находится сдвоенный УЗО на ввод.
  3. Внимательно осмотрев защитное устройство, определить нахождение нулевого, а также фазного проводника.
  4. Отключить это УЗО.
  5. Аккуратно отсоединить нуль от УЗО на время исследования.
  6. Включить защитное устройство.
  7. Тестером произвести измерения исследуемых элементов поочередно подключая каждый к фазному. Нулевой проводник отключен, поэтому показания измерений будут нулевыми, сочетание фаза-земля покажет около 220 В.
  8. Промаркировать проводники по установленным данным.
  9. Произвести повторное подключение нуля к УЗО.

Помните: неосторожное или неумелое обращение с электричеством может привести к непоправимым последствиям. Не рискуйте жизнью и здоровьем — доверьте дело профессиональным электрикам со стажем и необходимыми допусками.

Оцените новость:

Как проверить трехфазное напряжение

В жилых домах и на большинстве малых предприятий используется однофазный электрический ток, но это не та форма, которую принимает электричество, когда оно перемещается по электросети. Электроэнергетические предприятия вырабатывают трехфазный электрический ток высокого напряжения, который передается и преобразуется в двухфазный и однофазный ток через трансформаторные коробки. Трехфазный ток зарезервирован для использования на фабриках и аналогичных установках, где он питает большие двигатели, электрические печи и другую тяжелую технику.Проверить трехфазное напряжение можно, осмотрев трехфазный трансформатор.

TL; DR (слишком длинный; не читал)

Чтобы проверить трехфазное напряжение, используйте электрический мультиметр для проверки всех шести проводов в коробке трансформатора, начиная с проводов с маркировкой линии и заканчивая проводами с маркировкой нагрузка.

Перед тестированием

Перед тестированием трехфазного напряжения крайне важно проявить осторожность и принять соответствующие меры безопасности. Рекомендуется надевать заземляющий браслет.Когда все будет готово, переведите выключатель двигателя высоковольтного трансформатора в положение «выключено». Выкрутите винты, удерживающие крышку на выключателе, и снимите крышку. Настройте мультиметр на определение напряжения переменного или постоянного тока в зависимости от того, что указано на коробке, подключите выводы зонда к «общему» и «вольтному» разъему и выберите диапазон напряжения несколько выше, чем напряжение, которое вы собираетесь проверить.

Испытательные линии

Установив и откалиброванный мультиметр, проверьте внутреннюю часть трансформатора.В высоковольтных передачах чаще всего используются три провода: всего вы должны увидеть шесть проводов, по три с каждой стороны коробки. Клеммы, к которым прикреплены эти провода, должны быть помечены L1, L2 и L3 с одной стороны и T1, T2 и T3 с другой — провода L являются входящими или линейными проводами, каждый из которых несет одну фазу трехфазного тока. . Чтобы проверить входящее напряжение, поместите один из щупов мультиметра на L1, а другой — на L2. Подождите, пока мультиметр покажет напряжение, а затем повторите тесты, проверяя L1 и L3, затем L2 и L3.Если трансформатор работает нормально, показания напряжения должны быть одинаковыми после каждого теста.

Тестовые нагрузки

После проверки входящего напряжения необходимо проверить выходное напряжение. Не снимая коробку, проверьте мультиметром выводы T1 и T2, как вы это делали с линейными проводами. Проверьте T2 и T3, затем T1 и T3. Показания напряжения для каждого теста должны быть нулевыми. Когда вы будете готовы, осторожно включите коробку и повторите испытание проводов нагрузки, чтобы определить исходящее трехфазное напряжение.Между тестами должно быть небольшое изменение напряжения.

Для специалистов по обслуживанию систем HVAC: принципы измерения трехфазного напряжения

Измерение статического давления в коммерческих системах HVAC может значительно отличаться от одного типа оборудования к другому. Промышленные испытания под давлением также требуют, чтобы балансировщик интерпретировал внутренние падения давления в оборудовании и сообщал о них. Чтобы оставаться в курсе последних коммерческих испытаний под давлением, давайте взглянем на это последнее обновление для коммерческих испытаний под давлением.

Комплектное оборудование

Крышное коммерческое оборудование сегодня часто используется в коммерческих целях в большинстве регионов страны. Упакованное оборудование 7,5 т и более создает ряд уникальных проблем, о которых следует знать, чтобы избежать неточной интерпретации показаний давления.

Общее внешнее статическое давление

Обычно при измерении общего внешнего статического давления измеряют давление в точке, где поток воздуха входит в оборудование и где поток воздуха выходит из оборудования.Давление на входе в оборудование является всасывающим или отрицательным давлением. Давление на выходе из оборудования — это давление нагнетания или положительное давление. Сложите эти два давления вместе, чтобы найти общее внешнее статическое давление, измеренное оборудованием.

Не забудьте просверлить контрольные отверстия над бордюром, поскольку бордюр считается внешним по отношению к оборудованию.

Пример: 10-тонный упакованный агрегат для установки на крыше, установленный на бордюре.

Пример: 10-тонный упакованный агрегат для установки на крыше, установленный на бордюре.

  • Давление на входе оборудования — 0,46 дюйма. Туалет.
  • Оборудование на выходе с давлением + 0,51 дюйма. Туалет.
  • Общее внешнее статическое давление 0,97 дюйма Туалет.

Сравните измеренное статическое давление с номинальным максимальным общим внешним статическим давлением оборудования, чтобы убедиться, что система работает при меньшем, чем максимальное номинальное общее внешнее статическое давление, указанное производителем. Не обращайте внимания на знаки + и -, поскольку они представляют тип измеряемого давления, а не числовые значения.

Вы также можете использовать измеренное общее внешнее статическое давление и измеренное число оборотов вентилятора, чтобы нанести воздушный поток вентилятора на таблицу характеристик вентилятора производителя или кривую вентилятора.

Построение графика воздушного потока вентилятора и падений внутреннего давления в оборудовании

Измеренное общее внешнее статическое давление используется для построения графика воздушного потока вентилятора … но здесь все становится сложнее. Приготовьтесь, вот и технические штучки.

Помните, что перепады давления на фильтре и змеевике не «видны» для показаний общего внешнего статического давления, так что, если фильтр и змеевик загрязнены и нагружены при нормальном использовании оборудования к моменту балансировки системы?

При первом запуске оборудование новое, фильтр и змеевик чистые.В идеале падение давления на фильтре и змеевике следует снимать и записывать на оборудовании для использования в будущем. К этим базовым испытаниям можно обращаться всякий раз, когда измеряется давление в системе.

Если давление фильтра и змеевика изменяется со временем, увеличенное давление этих компонентов должно быть добавлено к измеренному общему внешнему статическому давлению перед построением графика воздушного потока вентилятора.

Это наиболее точный способ интерпретации статического давления при построении графика воздушного потока вентилятора для упакованного блока.

«В состоянии поставки» — это термин, который в последнее время широко используется в промышленности, что придает ясность измерениям статического давления. При рассмотрении того, как измерить общее внешнее статическое давление, и определении того, должен ли компонент системы быть включен или исключен из показаний общего внешнего статического давления, определите, был ли компонент включен в оборудование «в том виде, в каком он был поставлен» или когда он был испытан в лаборатория.

Что делать, если при запуске не было никакого давления?

Если при запуске не были сняты показания статического давления фильтра и змеевика, в идеале вы можете найти данные производителя, чтобы определить, на какие характеристики были рассчитаны эти компоненты при лабораторных испытаниях оборудования.Плохая новость заключается в том, что многие производители не публикуют эти данные.

Если данные производителя по перепадам давления в фильтре и змеевике отсутствуют, лучше всего использовать бюджеты давления NCI по умолчанию. Исследования выявили некоторые типичные падения давления для фильтров и змеевиков в хорошо работающем коммерческом оборудовании.

Падение давления на фильтре — Чтобы оценить падение давления на чистом фильтре, умножьте номинальное статическое давление вентилятора на 20%. Если падение давления на фильтре превышает 20% от номинального общего внешнего статического давления, добавьте избыточное падение давления на фильтре к измеренному общему внешнему статическому давлению системы, прежде чем строить график воздушного потока вентилятора.

Падение давления в змеевике — Чтобы оценить падение давления в чистом охлаждающем змеевике, умножьте номинальное статическое давление вентилятора на 30%. Если падение давления в змеевике превышает 30% от номинального общего внешнего статического давления, также добавьте избыточное падение давления в змеевике к измеренному общему внешнему статическому давлению системы, прежде чем строить график расхода воздуха вентилятора.

Падение внутреннего давления

Пример использования примера на иллюстрации выше, предположим, что эта упакованная единица имеет рейтинг 1.00-дюйм. ТЕСП. Согласно бюджетам NCI, падение давления на фильтре не должно превышать 0,20 дюйма, а падение давления в змеевике не должно превышать 0,30 дюйма.

Скажите, что падение давления на фильтре, измеренное на 0,35 дюйма, превышает бюджет на 0,15 дюйма. Падение давления в змеевике, измеренное на 0,50 дюйма, превышает бюджет падения давления в змеевике на 0,20 дюйма. Сложите избыточное падение давления на фильтре и змеевик, который превысил бюджет (0,15 дюйма и 0,20 дюйма), чтобы обнаружить, что падение внутреннего давления превысило бюджет на 0,35 дюйма.Добавьте 0,35 дюйма к измеренному общему внешнему статическому давлению в 0,97 дюйма (35 дюймов + 0,97 дюйма = 1,32 дюйма). Затем постройте график воздушного потока вентилятора, используя общее внешнее статическое давление 1,32 дюйма с измеренными оборотами вентилятора, чтобы определить воздушный поток вентилятора.

Ваша способность измерять и интерпретировать статическое давление имеет важное значение для повышения производительности систем отопления, вентиляции и кондиционирования воздуха, которые вы продаете, устанавливаете и обслуживаете.

Как вы можете видеть из сложного характера этой статьи, надеюсь, вы никогда не перестанете изучать лучшие способы измерения и интерпретации статического давления.

Роб «Док» Фалке служит в отрасли в качестве президента Национального института комфорта, обучающей компании и членской организации, работающей в сфере отопления, вентиляции и кондиционирования воздуха. Если вы подрядчик или технический специалист по ОВКВ, заинтересованный в бесплатной коммерческой процедуре испытания статическим давлением, свяжитесь с Доком по адресу [email protected] или позвоните ему по телефону 800-633-7058. Посетите веб-сайт NCI по адресу nationalcomfortinstitute.com для получения бесплатной информации, статей и загрузок.

Как проверить чередование фаз с помощью мультиметра

К сожалению, проверить чередование фаз стандартным мультиметром невозможно.Чередование фаз необходимо проверять с помощью специального тестера, такого как fluke 9040 или Amprobe PRM-6. Эти тестеры позволяют техническим специалистам гарантировать, что оборудование, такое как насосы и компрессоры, не будет повреждено из-за неправильного вращения. Если у вас нет доступа к тестеру чередования фаз, вместо этого можно выполнить ударное испытание двигателя.

Как использовать тестер вращения двигателя

Тестер вращения может быть подключен к трехфазному двигателю и проводам питания, чтобы определить, как двигатель будет вращаться после подачи питания.

  1. Отключите питание двигателя и заблокируйте / пометьте, если необходимо.
  2. Вставьте три измерительных провода в тестер вращения.
  3. Прикрепите зажимы типа «крокодил» к соответствующим проводам двигателя. Например, подключите зажим «крокодил» L1 к проводу T1.
  4. Поверните вал двигателя по часовой стрелке. Тестер покажет вращение по часовой стрелке или против часовой стрелки.
  5. Если тестер показывает вращение против часовой стрелки при повороте вала по часовой стрелке, поменяйте местами два провода и повторяйте тест, пока тестер не покажет правильное направление вращения.
  6. Пометьте провода двигателя A, B, C.

Теперь вам нужно проверить направление напряжения питания.

  1. Отключите питание двигателя и заблокируйте / пометьте при необходимости.
  2. Подключите зажимы типа «крокодил» к трехфазному источнику питания.
  3. Подайте питание на цепь и посмотрите, в каком направлении показывает тестер вращения. Если указанное вращение отличается от желаемого вращения, снова заблокируйте его и поменяйте местами любые два провода, затем повторите тест.
  4. Обозначьте провода как A, B, C.
  5. Снова заблокируйте и подсоедините соответствующие питающие провода к выводам двигателя с такой же этикеткой.

При правильном выполнении этот тест гарантирует, что желаемое направление вращения будет достигнуто с первого раза. Использование этого метода может занять немного больше времени, но если неправильное вращение может повредить оборудование, нет лучшего способа, чем использовать тестер чередования фаз.

Как ударить мотор

Ударное испытание двигателя — отличный способ проверить вращение, если подключенное оборудование, двигающееся назад, не вызовет повреждений.Если возможно, двигатель также можно столкнуть без нагрузки на выходной вал.

В зависимости от способа подключения двигателя замена проводов может занять много времени, если вращение неправильное. Если соединения выполняются с помощью разрезных болтов и резиновой ленты для сращивания, рекомендуется приобрести несколько резиновых сапог, которые могут временно закрыть разрезные болты, пока выполняется ударное испытание.

Всегда проверяйте безопасность проводки и отсутствие короткого замыкания при выполнении ударного испытания.

Некоторые рабочие закрывают пускатели двигателей изолированной отверткой, чтобы выполнить ударное испытание. Это небезопасная практика, и ее не следует выполнять. Поскольку может возникнуть дуговая вспышка, безопаснее использовать альтернативные средства для ударных испытаний двигателя, например:

  • Толчок с клавиатуры, если двигатель управляется плавным пуском или VFD
  • Использование кнопок толчкового режима / тестирования
  • Активация органов управления на консоли оператора
  • Внесение изменений в логику ПЛК для проведения функционального теста

Когда вы готовы к функциональному испытанию, попросите кого-нибудь наблюдать за двигателем, чтобы проверить направление вращения.Быстро толкните двигатель и проверьте направление вращения. Если вращение неправильное, заблокируйте и поменяйте местами любые два провода.

Зачем проверять вращение?

Разве не достаточно просто поменять местами Т-отведения утром, если вращение неправильное?

Меня научили проверять все, что я делаю. Я искренне верю, что проверка вашей работы выделит вас среди других торговцев. Меньше всего я хочу, чтобы оператор запускал машину утром, а цепь двигалась в обратном направлении, создавая для них беспорядок и заставляя меня плохо выглядеть!

И хотя вращение нельзя проверить с помощью мультиметра, нам доступны несколько других вариантов.

электрическая — Как определить фазу и нейтраль на розетке?

Вам не обязательно нужна активная земля, но в противном случае вам понадобится немного внимания.

По сути, вы представляете собой один большой конденсатор с большой поверхностью для распределенной земли вокруг вас, в 9 из 10 мест ваше тело будет работать как земля. Наверное, даже гораздо чаще. Только в очень старых зданиях с проводной индукцией или в деревянных высотках ваша личная земля может быть слишком далеко от реальной земли, чтобы что-то изменить.

Эта концепция используется ручкой тестера напряжения, в ней есть резистор от 220 кОм до 510 кОм и неоновый свет, и вы касаетесь другой стороны неонового света. Таким образом, абсолютный максимум 1 мА проходит от фазы через неоновый свет к вашему телу, который затем передает его в окружающую среду через вашу «личную емкость». Если вы прикоснетесь к нейтрали ручкой, не загорится никакой свет, потому что нейтраль находится слишком близко к земле, которая, по-видимому, есть у вашего тела, и ток не течет.

Плавающий ток 1 мА в вашу руку почти незаметен и совсем не дойдет до груди, поэтому это безопасно, если вы не используете его под струей душа и знаете, что всегда нужно касаться только того конца, на котором есть резистор и свет между вами и живой силой.


Теперь, когда я ответил на этот вопрос в меру своих возможностей, мне очень любопытно, почему EVM интересуется фазой. Связан ли он каким-то образом с внешним миром? В принципе, цепи переменного тока не замечают фазу и нейтраль, потому что, как говорится в этом термине, ток меняется. Схема, подключенная только к этим двум проводам, всегда будет видеть текущую съемку «влево и вправо» с частотой 50 Гц, независимо от того, является ли «левый» фазовым или нейтральным.

Риск становится очевидным только тогда, когда есть какое-то взаимодействие с внешним миром, которое не имеет предсказуемой связи ни с одним из проводов.Например, когда пользователь что-то делает со схемой или подключается другая электроника, внутренняя маршрутизация которой неизвестна. Но в этом случае я бы категорически возражал против уменьшения мощности RC по соображениям безопасности.

(в качестве примечания: срабатывание симистора в фазовой линии, все же в этом смысле не является непредсказуемым, поскольку он является частью той же самой токовой цепи).

Возможно ли, что техническое описание означает только вашу безопасность? Если большой резистор находится в фазовой линии, вы не так рискуете убить себя, если возитесь с чем-то во время экспериментов?

Как измерить напряжение переменного тока

Шаги для измерения напряжения переменного тока цифровым мультиметром

  1. Поверните шкалу на ṽ.Некоторые цифровые мультиметры (DMM) также включают m m. Если напряжение в цепи неизвестно, установите диапазон на максимальное значение напряжения и установите диск на ṽ.
    Примечание: Большинство мультиметров включаются в режиме автоматического выбора диапазона. При этом автоматически выбирается диапазон измерения в зависимости от имеющегося напряжения.
  2. Сначала вставьте черный провод в разъем COM.
  3. Затем вставьте красный провод в гнездо VΩ. Когда закончите, снимите провода в обратном порядке: сначала красные, затем черные.
  4. Подключите щупы к цепи: сначала черный, затем красный.
    Примечание: Напряжение переменного тока не имеет полярности.
    Осторожно: Не позволяйте пальцам касаться кончиков проводов. Не позволяйте наконечникам касаться друг друга.
  5. Считайте результат измерения на дисплее. Когда закончите, сначала удалите красный провод, затем черный.

Другие полезные функции при измерении переменного напряжения

  1. Нажмите кнопку RANGE, чтобы выбрать конкретный фиксированный диапазон измерения.
  2. Нажмите кнопку HOLD, чтобы зафиксировать стабильное измерение.Его можно просмотреть после завершения измерения.
  3. Нажмите кнопку MIN / MAX, чтобы зафиксировать минимальное и максимальное значение. Цифровой мультиметр подает звуковой сигнал каждый раз, когда записывается новое показание.
  4. Нажмите относительную кнопку (REL), чтобы установить мультиметр на определенное эталонное значение. Отображаются измерения выше и ниже эталонного значения.
    Примечание: Избегайте этой распространенной и серьезной ошибки: вставлять измерительные провода в неправильные входные гнезда. Это может привести к опасной вспышке дуги.При измерении переменного напряжения обязательно вставьте красный провод во входное гнездо, обозначенное V, а не A. На дисплее должен отображаться символ ṽ. Подключение измерительных проводов к входам A или MA и последующее измерение напряжения вызовет короткое замыкание в измерительной цепи.

Анализ измерений напряжения переменного тока

  • В общем, все источники переменного напряжения отличаются от колебаний переменного напряжения по системам распределения электроэнергии.
  • Напряжение, которое отличается от ожидаемого, с большей вероятностью будет ниже нормального.
  • В общем, напряжение, измеренное в системах переменного тока, должно находиться в пределах от -10% до + 5%.
  • Измерения напряжения в различных точках системы различаются. См. Таблицу ниже.
Приемлемо 126
Диапазоны напряжения системы *
Питание Диапазон обслуживания Диапазон точки использования
Удовлетворительно Приемлемо 114241 90642 Удовлетворительно
110-127 110-126 106-128
120/240, 1Φ 114/228 — 126/252 110/220 — 127/254 110/220 — 126 / 252 106/212 — 127/254
120/208, 3Φ 114/197 — 126/ 110/191 — 127/220 110/191 — 126/218 106 / 184 — 127/220
120/240, 3Φ 114/228 — 126/252 110/220 — 127/254 110/220 — 126/252 106/212 — 127/254
277/480, 3Φ 263/456 — 291/504 254/440 — 293/508 25 4/440 — 291/504 264/424 — 293/508

* в вольтах

Ссылка: Принципы цифрового мультиметра, автор Glen A.Мазур, американское техническое издательство.

Связанные ресурсы

Как тестировать трехфазные двигатели переменного тока ~ Изучение электротехники

Основные этапы проверки исправности трехфазного двигателя переменного тока приведены ниже:
(а) Общие инспекции
(b) Тест на непрерывность и сопротивление заземления
(c) Тест источника питания
(d) Проверка целостности обмотки двигателя переменного тока
(e) Испытание сопротивления обмотки двигателя переменного тока
(f) Испытание сопротивления изоляции
(g) Испытание на рабочий ток

Общие проверки
Для трехфазного двигателя выполните следующие действия:

(1) Проверьте внешний вид двигателя.Убедитесь в отсутствии ожогов и повреждений корпуса, вентилятора или вала системы охлаждения.
(2) Вручную проверните вал двигателя, чтобы проверить состояние подшипников. Следите за плавным и свободным вращением вала. Если вал вращается свободно и плавно, возможно, подшипник в хорошем состоянии, в противном случае рассмотрите возможность замены, ремонта или проведения дальнейшей диагностики.
(3) Как и при всех проверках и проверках, на паспортной табличке двигателя содержится ценная информация, которая поможет установить истинное состояние двигателя. Тщательно проверьте заводскую табличку и сравните значения проверки рабочего тока (см. Ниже) со значением на заводской табличке

Проверка целостности и сопротивления заземления
С помощью мультиметра измерьте сопротивление между корпусом двигателя и массой.Хороший мотор должен показывать менее 0,5 Ом. Любое значение больше 0,5 Ом указывает на неисправность двигателя. Может потребоваться дальнейшее устранение неисправностей.

Проверка источника питания
Для трехфазных двигателей ожидаемое напряжение для системы 230/400 В составляет 230 В между фазой и нейтралью и 400 В между каждой из трех фазных линий питания. Убедитесь, что на двигатель подается правильное напряжение, используя мультиметр. Убедитесь, что клемма источника питания находится в хорошем состоянии. Проверьте соединительную планку на наличие клеммы (U, V и W).Для трехфазных двигателей тип подключения — звезда (Y) или треугольник.

Проверка целостности обмотки двигателя переменного тока
С помощью мультиметра проверьте целостность обмотки двигателя от фазы к фазе (U — V, V — W, W к U). Каждая фаза должна иметь непрерывность, если обмотка в порядке. Если какая-либо конкретная фаза не проходит проверку целостности, вероятно, ваш двигатель сгорел.
Пожалуйста, посмотрите, как идентифицировать трехфазные обмотки для правильной идентификации обмотки. U, V, W — европейское обозначение обмотки.

Проверка сопротивления обмотки двигателя переменного тока
Проверьте сопротивление обмотки двигателя или показания в омах с помощью мультиметра или омметра для клеммы фаза-фаза (U — V, V — W, W — U). должны быть одинаковыми (или почти одинаковыми). Помните, что у трех фаз одинаковые обмотки или почти одинаковые!

Проверка сопротивления изоляции
Нарушение сопротивления изоляции электродвигателя является одним из первых признаков того, что электродвигатель вот-вот выйдет из строя.Для трехфазного двигателя сопротивление изоляции обычно измеряется между каждой обмоткой или фазой двигателя и между каждой фазой двигателя и корпусом двигателя (землей) с помощью тестера изоляции или мегомметра. Установите напряжение на измерителе сопротивления изоляции на 500 В. Проверьте от фазы к фазе (U к V, V к W, W к U). Проверьте от фазы к корпусу двигателя (заземлению) (U к E, V к E, W к E). Минимальное испытательное значение сопротивления изоляции двигателя составляет 1 МОм (1 МОм). Посмотрите, как измерить сопротивление изоляции электродвигателя.

Проверка рабочего тока
При работающем двигателе проверьте ток полной нагрузки (FLA) подходящим измерителем или, лучше всего, клещами на метр и сравните с заводской табличкой FLA.Отклонения от номинального значения FLA могут означать проблемы с тестируемым двигателем.

Метод перекрестного вольтметра — базовое управление двигателем

При проверке предохранителей в цепи питания , питающей трехфазный двигатель, мы используем метод перекрестного вольтметра .

Контакты двигателя , рассчитанные на мощность , должны быть разомкнуты, а трехфазный разъединитель должен быть замкнут, чтобы получить правильные показания.

Есть три набора измерений, которые необходимо выполнить на линии предохранителей, чтобы убедиться в наличии напряжения .Измерьте каждую пару линейных клемм (L1 – L2; L2 – L3; L3 – L1). На схеме ниже это означает использование вольтметра для проверки между точками 1-3; 3-5; 5-1. Если какой-либо из этих тестов дает показания, отличные от межфазного напряжения, проверьте входящее напряжение на входе. Если все три показания дают межфазное напряжение, то мы знаем, что напряжение присутствует в силовой цепи вплоть до предохранителей. Следующая проверка подтвердит исправность предохранителей.

Трехфазные предохранители, предохранитель C перегорел

На приведенной выше диаграмме все три показания дают нам линейное напряжение.Чтобы проверить состояние предохранителей, мы измеряем расстояние от линии питания одного предохранителя до стороны нагрузки другого предохранителя.

Если использовать диаграмму выше, это будет означать использование вольтметра для проверки между точками 1-4; 3-6; 5-2. Мы получаем следующие значения:

.
  • 1-4 = линейное напряжение, поэтому предохранитель B исправен
  • 3-6 = ноль вольт, поэтому перегорел предохранитель C
  • 5-2 = линейное напряжение, поэтому предохранитель A исправен

Поскольку предохранители A и B в хорошем состоянии, по существу нет разницы потенциалов между точками 1 и 2 и между точками 3 и 4 соответственно, и поэтому вольтметр считывает линейное напряжение с обеих сторон предохранителя.

При разомкнутых силовых контактах и ​​перегорании предохранителя C провод вольтметра, подключенный к точке 6, полностью изолирован от любой другой части цепи и, таким образом, испытывает нулевую разность потенциалов.

Этот метод называется методом перекрестного вольтметра, потому что никогда не требуется проверять напряжение через предохранитель. Если предохранитель находится в хорошем состоянии, как и предохранители A и B, тогда мы проводим измерения в точках с одинаковым потенциалом, и если предохранитель перегорел, то наш второй вывод вольтметра изолирован от цепи, что опять же не дает нам разности потенциалов.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *