+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Закон Ома для участка цепи

Скажу сразу, что закон Ома – основной закон электротехники и применяется для расчета таких величин, как: ток, напряжение и сопротивление в цепи.

Рассмотрим электрическую цепь, приведенную на рисунке 1.

Рисунок 1. Простейшая цепь, поясняющея закон Ома.

Мы знаем, что электрический ток, то есть поток электронов, возникает в цепи между двумя точками (на рисунке А и Б) с разными потенциалами. Тогда следует считать, что чем больше разность потенциалов, тем большее количество электронов переместятся из точки с низким потенциалом (Б) в точку с высоким потенциалом (А). Количественно ток выражается суммой зарядов прошедших через заданную точку и увеличение разности потенциалов, то есть приложенного напряжения к резистору R, приведет к увеличению тока через резистор.

С другой стороны сопротивление резистора противодействует электрическому току. Тогда следует сказать, что чем больше сопротивление резистора, тем меньше будет средняя скорость электронов в цепи, а это ведет к уменьшению тока через резистор.

Совокупность двух этих зависимостей (тока от напряжения и сопротивления) известна как закон Ома для участка цепи и записывается в следующем виде:

I=U/R

Это выражение читается следующим образом: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Следует знать что:

I – величина тока, протекающего через участок цепи;

U – величина приложенного напряжения к участку цепи;

R – величина сопротивления рассматриваемого участка цепи.

При помощи закона Ома для участка цепи можно вычислить приложенное напряжение к участку цепи (рисунок 1), либо напряжение на входных зажимах цепи (рисунок 2).

Рисунок 2. Последовательная цепь, поясняющая расчет напряжения на зажимах цепи.

В этом случае формула (1) примет следующий вид:

U = I *R

Но при этом необходимо знать ток и сопротивление участка цепи.

Третий вариант закона Ома для участка цепи, позволяющий рассчитать сопротивление участка цепи по известным значениям тока и напряжения имеет следующий вид:

R =U/I

Как запомнить закон Ома: маленькая хитрость!

Для того, что бы быстро переводить соотношение, которое называется закон Ома, не путаться, когда необходимо делить, а когда умножать входящие в формулу закона Ома величины, поступайте следующим образом. Напишите на листе бумаги величины, которые входят в закон Ома, так как показано на рисунке 3.

Рисунок 3. Как запомнить закон Ома.

Теперь закройте пальцем, ту величину, которую необходимо найти. Тогда относительное расположение оставшихся незакрытыми величин подскажет, какое действие необходимо совершить для вычисления неизвестной величины.

Подробнее можно узнать в мультимедийном учебнике по основам электротехники и электроники.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Закон Ома для участка цепи, формула, определение

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит.

Возьмем замкнутую электрическую цепь (рисунок 1) и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R, где

  • I — ток, протекающий по участку цепи.
  • R — сопротивление этого участка.
  • φ1-φ2 — разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R

Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

ПРАВИЛО ЗНАКОВ ДЛЯ ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:

Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной (рис.3.1). В противном случае — ЭДС считается отрицательной (рис.3.2).

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2

-E3.

При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

Закон Ома для полной цепи — его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r).

Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС.

Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r — сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной.

Закон Ома рассмотрен здесь достоточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Закон Ома. Для цепей и тока. Формулы и применение

Георг Симон Ом начал свои исследования вдохновляясь знаменитым трудом Жана Батиста Фурье «Аналитическая теория тепла». В этой работе Фурье представлял тепловой поток между двумя точками как разницу температур, а изменение теплового потока связывал с его прохождением через препятствие неправильной формы из теплоизолирующего материала. Аналогично этому Ом обуславливал возникновение электрического тока разностью потенциалов.

История

Исходя из этого Ом стал экспериментировать с разными материалами проводника. Для того, чтобы определить их проводимость он подключал их последовательно и подгонял их длину таким образом, чтобы сила тока была одинаковой во всех случаях.

Важно при таких измерениях было подбирать проводники одного и того же диаметра. Ом, замеряя проводимость серебра и золота, получил результаты, которые по современным данным не отличаются точностью. Так, серебряный проводник у Ома проводил меньше электрического тока, чем золотой. Сам Ом объяснял это тем, что его проводник из серебра был покрыт маслом и из-за этого, по всей видимости, опыт не дал точных результатов.

Однако не только с этим были проблемы у физиков, которые в то время занимались подобными экспериментами с электричеством. Большие трудности с добычей чистых материалов без примесей для опытов, затруднения с калибровкой диаметра проводника искажали результаты тестов. Еще большая загвоздка состояла в том, что сила тока постоянно менялась во время испытаний, поскольку источником тока служили переменные химические элементы. В таких условиях Ом вывел логарифмическую зависимость силы тока от сопротивления провода.

Немногим позже немецкий физик Поггендорф, специализировавшийся на электрохимии, предложил Ому заменить химические элементы на термопару из висмута и меди. Ом начал свои эксперименты заново. В этот раз он пользовался термоэлектрическим устройством, работающем на эффекте Зеебека в качестве батареи. К нему он последовательно подключал 8 проводников из меди одного и того же диаметра, но различной длины. Чтобы измерить силу тока Ом подвешивал с помощью металлической нити над проводниками магнитную стрелку. Ток, шедший параллельно этой стрелке, смещал ее в сторону. Когда это происходило физик закручивал нить до тех пор, пока стрелка не возвращалась в исходное положение. Исходя из угла, на который закручивалась нить можно было судить о значении силы тока.

В результате нового эксперимента Ом пришел к формуле:

Х = a / b + l

Здесь X – интенсивность магнитного поля провода, l – длина провода, a – постоянная величина напряжения источника, b – постоянная сопротивления остальных элементов цепи.

Если обратиться к современным терминам для описания данной формулы, то мы получим, что

Х – сила тока, а – ЭДС источника, b + l – общее сопротивление цепи.

Закон Ома для участка цепи

Закон Ома для отдельного участка цепи гласит: сила тока на участке цепи увеличивается при возрастании напряжения и уменьшается при возрастании сопротивления этого участка.

I = U / R

Исходя из этой формулы, мы можем решить, что сопротивление проводника зависит от разности потенциалов. С точки зрения математики, это правильно, но ложно с точки зрения физики. Эта формула применима только для расчета сопротивления на отдельном участке цепи.

Чтобы рассчитать сопротивление проводника, нужно перемножить его длину на удельное сопротивление его материала и разделить на площадь поперечного сечения.

Таким образом формула для расчета сопротивления проводника примет вид:

R = p ⋅ l / s

Закон Ома для полной цепи

Отличие закона Ома для полной цепи от закона Ома для участка цепи заключается в том, что теперь мы должны учитывать два вида сопротивления. Это «R» сопротивление всех компонентов системы и «r» внутреннее сопротивление источника электродвижущей силы. Формула таким образом приобретает вид:

I = U / R + r

Закон Ома для переменного тока

Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).

Попробуем разобраться, в чем реальная разница между реактивным и активным сопротивлением в цепи с переменным током. Вы уже должны были понять, что значение напряжение и силы тока в такой цепи меняется со временем и имеют, грубо говоря, волновую форму.

Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.

Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.

На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие активного сопротивления от реактивного в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.

Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.

Формула для расчета падения напряжения на индуктивном сопротивлении:

U = I ⋅ ωL

Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).

Формула для расчета падения напряжения на емкостном сопротивлении:

U = I / ω ⋅ С

С – емкость реактивного сопротивления.

Эти две формулы – частные случаи закона Ома для переменных цепей.

Полный же будет выглядеть следующем образом:

I = U / Z

Здесь Z – полное сопротивление переменной цепи известное как импеданс.

Сфера применения

Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:

  • Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
  • В сверхпроводниках;
  • Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
  • В вакуумных и газовых радиолампах;
  • В диодах и транзисторах.
Похожие темы:

Закон Ома для участка цепи

Эмпирический физический закон Ома для участка цепи установил Georg Simon Ohm почти два столетия назад, и получил название в честь этого знаменитого физика из Германии.

Именно этим законом определяется связь, которая возникает между электродвижущей силой источника, силой электротока и показателями сопротивления внутри проводника.

Классическая формулировка

Рассмотрим определение закона Ома.

Весь объём прикладной электротехника базируется на физическом законе Ома и представлен двумя основными формами:

  • учacтoк электрoцепи;
  • пoлнaя электрoцепь.

В классическом виде формулировка такого закона очень хорошо известна всем ещё со школьной скамьи: сила тока в электрической цепи является прямо пропорциональной показателям напряжения, а также обладает обратной пропорциональностью показателям сопротивления.

Интегральная форма такого закона следующая: I = U / R, где

  • I – показатель силы тока, который проходит через участок электроцепи при показателях сопротивления, обозначаемых R;
  • U – показатель напряжения.

Сопротивление или «R» принято считать наиболее важной характеристикой, что обусловлено зависимостью от таких параметров проводника.

Необходимо помнить, что такая форма закона, помимо растворов и металлов, справедлива исключительно для электрических цепей, в которых отсутствует реальный источник тока или он идеален.

Закон Ома для неоднородного участка цепи

Участок любой электрической цепи является неоднородным, если в него подключен источник электродвижущей силы. Таким образом, в этой электроцепи отражается воздействие посторонних сил.

I=ϕ21+ℰ/R+r, где

  • I — обозначение силы тока;
  • ϕ1 — обозначение пoтeнциaлa точки «A»;
  • ϕ2 — обозначение пoтeнциaлa точки «B»;
  • ℰ — показатели электродвижущей силы источника электрического тока в вольтах;
  • R — обозначение сопротивления участка;
  • r — внутреннее сопротивление источника тока.

Закон Ома для участка цепи

Для стандартных неоднородных участков характерным является наличие некоторой разницы потенциалов на концевой части электроцепи, а также внутренних скачков потенциалов.

В последние годы индукционный счетчик электроэнергии выходит из обращения и заменяется более новыми моделями. Однако, такие приборы учета все же используются. В статье рассмотрим, как правильно установить индукционный счетчик.

Сколько можно эксплуатировать электросчетчик по закону и кто должен его менять, читайте далее.

В некоторых случаях выгодно использовать счетчик день-ночь. В каких случаях выгодны двойные тарифы и как снимать показания, расскажем в этой теме.

Закон Ома для участка цепи

Согласно закону, сила тока на участке электрической цепи имеет прямую пропорциональность уровню напряжения и обратную пропорциональность электрическому сопротивлению на данном участке.

Например, если проводник обладает сопротивлением в 1 Ом и током в 1 Ампер, то его концах напряжение составит 1 Вольт, что означает падение напряжения или U = IR.

Если концы проводника обладают напряжением в 1 Вольт и током в 1 Ампер, то показатели сопротивления проводника составят 1 Ом или R = U/I

Участок цепи может быть представлен простой цепью с одним потребителем, параллельным подключением с парой потребителей, а также последовательным подключением и смешанным топом соединением, отличающимся совокупностью последовательного и параллельного подсоединения.

Закон Ома для участка цепи с ЭДС

ЭДС или электродвижущая сила является физической величиной, определяющей отношение посторонних сил в процессе перемещения заряда в сторону положительного полюса источника тока к величине данного заряда:

  • ε = Acт / q
  • ε – электродвижущая сила;
  • Acт – работа сторонних сил;
  • q – заряд;

Единица измерения электродвижущей силы – В (вольт)

Закон Ома для участка цепи с ЭДС

Аналитическое выражение закона для участка цепи с источником электродвижущей силы следующее:

  • I = (φa – φc + E) / R = (Uac + E) / R;
  • I = (φa – φc – E) / R = (Uac – E) / R;
  • I = E /(R+ r), где
  • Е – показатели электродвижущей силы.

Электрический ток в этом случае представляет собой алгебраическую сумму, полученную при сложении показателей напряжения на зажимах с показателями электродвижущей силы, разделенной на показатели сопротивления.

Правило, касающееся наличия одного ЭДС гласит: наличие постоянного тока предполагает поддерживание неизменной разности потенциалов на концах электрической цепи посредством стандартного источника тока.

Внутри источника электрического тока положительный заряд переносится в сторону большего потенциала с разделением зарядов на положительные и отрицательно заряженные частицы.

Закон Ома для участка цепи без ЭДС

Нужно учитывать, что для участка цепи, не содержащего источника электродвижущей силы, устанавливается связь, возникающая между электрическим током и показателями напряжения на данном участке.

I = Е / R

Согласно данной формуле, сила тока имеет прямую пропорциональность напряжению на концах участка электрической цепи и обратную пропорциональность показателям сопротивления на этом участке.

Источник электродвижущей силы

Благодаря внешним характеристикам ЭДС определяется степень зависимости показателей напряжения на зажимах источника и величины нагрузки.

Например, U= E-R0 х I, в соответствии с двумя точками: I=0 E=U и U=0 E=R0I.

Идеальный источник электродвижущей силы: R0=0, U=E. В этом случае величина нагрузки не оказывает воздействия на показатели напряжения.

Эмпирический физический закон Ома для полной цепи определяет два следствия:

  • В условиях r < < R, показатели силы тока в электрической цепи являются обратно пропорциональными показателям сопротивления. В некоторых случаях источник может являться источником напряжения.
  • В условиях r > > R, свойства внешней электрической цепи или величина нагрузки не оказывают влияния на показатели сила тока, а источник может назваться источником тока.

Электродвижущая сила, находящаяся в условиях замкнутой цепи с электрическим током, чаще всего равна: Е = Ir + IR = U(r) + U(R)

Таким образом, ЭДС можно определить, как скалярную физическую величину, отражающую воздействие сторонних сил неэлектрического происхождения.

Принятые единицы измерения

К основным, общепринятым единицам измерения, которые используются при выполнении любых расчётов, касающихся закона Ома, относятся:

  • отражение показателей напряжения в вольтах;
  • отражение показателей тока в амперах;
  • отражение показателей сопротивления в омах.

Любые другие величины перед тем, как приступить к расчётам, необходимо в обязательном порядке перевести в общепринятые.

Важно помнить, что физический закон Ома не соблюдается в следующих случаях:

  • высокие частоты, сопровождающиеся значительной скоростью изменений электрического поля;
  • при сверхпроводимости в условиях низкотемпературных режимов;
  • в лампах накаливания, что обусловлено ощутимым нагревом проводника и отсутствием линейности напряжения;
  • при наличии пробоя, вызванного воздействием на проводник или диэлектрик напряжения с высокими показателями;
  • внутри вакуумных источников света и электронных ламп, заполненных газовыми смесями, включая люминесцентные осветительные приборы.

Такое же правило распространяется на гетерогенные полупроводники и полупроводниковые приборы, характеризующиеся наличием p/n-переходов, включая диодные и транзисторные элементы.

Чем точнее счетчик измеряет затраченную электроэнергию, тем лучше. Класс точности электросчетчика отражает возможную погрешность прибора учета.

О такой величине как коэффициент трансформации счетчика электроэнергии, поговорим в этом материале.

Видео на тему

Закон Ома кратко и понятно для чайников

Закон Ома является одним из фундаментальных законов электродинамики, который определяет взаимосвязь между напряжением, сопротивлением и силой тока. Его важно знать и понимать. Понятное объяснение вы найдёте в статье.

Закон Ома официально и абсолютно оправдано можно отнести к ряду основополагающих в физике по нескольким признакам. Данный закон объясняют в школе на базовом уровне, а после, более углубленно, в учреждениях, специализирующихся на изучении технических аспектов технологий.

Закон Ома – определение

Впервые данный закон был официально зафиксирован и сформулирован в восемнадцатом веке, благодаря сделанному сейчас уже широко известным всем Георгом Симоном Омом открытию. Благодаря данному закону получило грамотное и исчерпывающее объяснение наличие количественной связи между тремя фигурирующими в определении параметрами. Зависимость рассматривается как пропорциональная. Когда данное явление только было выявлено, закон несколько раз формулировали. В итоге сейчас всем известно данное определение: «величина тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна его сопротивлению».

Для лучшего понимания разделим определение на две части и разберём отдельно более понятным языком смысл каждой.

  1. Первая часть определения указывает на то, что если на определенной отрезке цепи происходит количественный скачок напряжения, то величина тока также увеличивается на данном участке. Важно упомянуть, что становится больше и величина тока на заданном участке цепи.
  2. Концовка определения расшифровывается также просто. Выше напряжение – меньше сила тока.

Закон Ома – формула

Иллюстрация связи сопротивления

Рисунок наглядно демонстрирует связь фигурирующих в понятии «участников». Таким образом, вытекают простые выводы:

1. При данных условиях: на конкретном отрезке увеличивается напряжение, но при том сопротивление остаётся прежним, ток резко возрастает;

2. Иная ситуация: наоборот, изменяется сопротивление, а точнее возрастает, при том что уровень напряжения не меняется вовсе, тока становится меньше.

В итоге в законе Ома участвуют всего три величины.

Готовая формула выглядит так:

I = U/R

Фигурируют и другие две переменные, их также можно вычислить, при условии, что другие два значения известны. Видоизменив формулу, получим:

Формула сопротивленияR = U/I
Формула напряженияU = I × R
Формула силы токаI = U/R

Важно!

Шпаргалка для закона Ома

На начальном этапе, когда составлять формулы ещё сложно, можно воспользоваться небольшой шпаргалкой.

На треугольнике просто нужно закрыть то значение, которое необходимо найти.

Закон Ома для участка цепи

Итоговая формула не видоизменяется вовсе. Обычно сопротивление в данном законе является явной характеристикой проводника, потому что это значение не постоянная величина: в зависимости от материала и других параметров число может увеличиваться или уменьшаться. Закон применим как при расчёте с использованием металлов, так и растворов электролитов, однако существует важный нюанс: в цепи не должно быть реального источника тока, или же источник должен быть идеальным, то есть он не должен создавать дополнительное сопротивление.

Шпаргалка для использования закона Ома

С ЭДС

Обобщённый закон Ома формулируется так:

I = (Uab+E)/R

Также формулу можно выразить через проводимость:

I = (Uab + E) × G, как понятно, G – проводимость участка электрической цепи. Эти формулы можно использовать, если сохраняются условия, зафиксированные на рисунке.

Участок цепи с ЭДС

Без ЭДС

Для начала определим, что положительное направление – это то, что слева направо. Только в этом случае напряжение на участке будет равняться разности потенциалов.

Разность потенциалов

Если сохраняется условие и потенциал конечный меньше потенциала начального, то напряжение будет больше нуля. Значит, как и полагается, направление линий напряженности в проводнике будет от начала к концу, следовательно, направление тока будет идентичным. Именно такое направление тока принято считать положительным, I > O. Данный вариант самый простой для расчётов. Формула действительна с любыми числами.

Закон Ома для полной (замкнутой) цепи

При данной вариации закона выявляется значение тока при реальных условиях, то есть в настоящей полной цепи. Важно учитывать то, что получившееся в результате расчетов число зависит от нескольких параметров, а не только от сопротивления нагрузки.

Сопротивление нагрузки – внешнее сопротивление, а сопротивление самого источника тока – внутреннее сопротивление (обозначается маленькой r).

Вывод формулы закона Ома для замкнутой цепи

Если к цепи подключено напряжение и в цепи замечено напряжение (ток), то, чтобы поддержать его во внешней цепи, необходимо создать условия, при которых между её концами возникнет разность потенциалов. Это число будет равняться I × R. Однако важно помнить о том, что вышеупомянутый ток будет и во внутренней цепи и его также необходимо поддерживать, поэтому нужно создать разность потенциалов между концами сопротивления r. Эта разность равняется I × r.

Чтобы поддержать ток в цепи, электродвижущая сила (ЭДС) аккумулятора должна иметь величину:

E = I × r + I × R

Эта формула показывает, что электродвижущая сила в цепи равна сумме внешнего и внутреннего падений напряжения. Вынося I за скобки, получим:

E = I(r + R)

или

I = E / (r + R)

Две последние формулы выражают закона Ома для полной цепи.

Закон Ома в дифференциальной форме

Дифференциальная форма закона Ома

Закон можно представить таким образом, чтобы он не был привязан к размерам проводника. Для этого выделим участок проводника Δl, на концах которой расположены ф1 и ф2. Среднюю площадь проводника обозначают ΔS , а плотность тока j, при таких условиях сила тока будет равняться:

I = jΔS = (ф1- ф2) / R = -(((ф1 — ф2)ΔS) / pΔl , отсюда следует, что j = -y × (Δф/Δl)

При условии, что Δl будет равен 0, то, взяв предел отношения:

lim (-(Δф/Δl)) = -(dф/dl) = Е,

окончательное выражение будет выглядеть так:

j = yE

Данное выражение закона находит силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон Ома в интегральной форме

В данной интерпретации закона не содержится в условиях ЭДС, то есть формула выглядит так:

I = U/R

Чтобы найти значение для однородного линейного проводника, выразим R через p и получим:

R = p (l/S), где за р принимаем удельное объёмное сопротивление.

Линией тока принято называть кривую, в каждой точке которой вектор плотности тока направлен по касательной к этой кривой. При таких условиях вектор плотности находится из отношения J = jt, где t – это единичный вектор касательной к линии тока.

Для лучшего понимания предположим, что удельное сопротивление, а также напряженность поля движущих сил на поперечном сечении проводника однородны. При таком условии Е однородна, а значит, и j также однородная величина. Примем произвольное значение поперечного сечения цепи S, тогда pl/s = E. Получившееся равенство умножим на dl. Тогда Edl = (Е эл.ст.+Е стор.) dl = Е эл.ст. dl + Е стор. dl = -dф + dE. Отсюда получим (pI/S) dl = -dф + dE. Возьмём в учёт, что p/s dl = dR и запишем закон Ома в интегральной форме:

IdR = -dф + dE.

Закон Ома в комплексной форме

Чтобы провести анализ электрических цепей синусоидального тока, комфортнее использовать закон Ома в комплексной форме. Для лучшего понимания введем основное понятие, фигурирующее в данной интерпретации закона: синусоидальный ток – это линейные цепи с установившимся режимом работы, после того, как переходные процессы в них завершены, уровень напряжения резко уменьшается на конкретной дистанции, токи в ветвях и ЭДС источников являются синусоидальными функциями времени. В противном случае, когда данные параметры не соблюдаются, закон не может быть применим. Чем отличается эта форма от обычной? Ответ прост: токи, сопротивление и ЭДС фиксируются как комплексные числа. Это обусловлено тем, что существуют как активные так и реактивные значения напряжений, токов и сопротивлений, а в результате этого требуется внесение определенных коррективов.

Вместо активного сопротивления используется полное, то есть комплексное сопротивление цепи Z. Падение напряжения, ток и ЭДС тоже превращаются в комплексные величины. При реальных расчетах лучше и удобнее применять действующие значения. Итак, закон в комплексной форме выглядит так:

i = U/Z, i = UY

В данной формуле Z – комплексное сопротивление, Y – комплексная проводимость.

Чтобы выявить эти величины, выведены формулы. Пропустим шаги их создания и приведем готовые формулы:

Z = ze = z cosф + jz sinф = r + jx

Y = 1/ ze = ye = y cos ф — jy sin ф = g + jb

Закон Ома для переменного тока

После того как Фарадей открыл электромагнитную индукцию, стали активно использовать генераторы сперва постоянного, а после и переменного тока.

Используется уже известная формула:

I = U/Z

Полное сопротивление тока – это совокупность активного, а также индуктивного и емкостного сопротивлений.2

Цепь

В такой цепи колебания тока и напряжения разные по фазе, а разность фаз зависит от индуктивности катушки и ёмкости конденсатора:

U = Um sin (ωt)

I = Im sin (ωt + ф)

Закон Ома для постоянного тока

В данном случае частота будет равняться нулевому значению, поэтому остальные показатели также будут нулевыми соответственно, в то время как значение ёмкости достигнет бесконечности. Цепь разорвётся. Поэтому отсюда вытекает логичный вывод: реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для однородного участка цепи

Формула выглядит уже известным образом:

I = U/R

В данном случае главной характеристикой проводника остаётся сопротивление. От того, как выглядит проводник, зависит количество узлов кристаллической решётки и атомов примесей. Поэтому электроны могут замедляться или ускоряться.

Сопротивление будет зависеть от вида проводника, а именно от его сечения, материала и длины:

R = p (L/S)

Закон Ома для неоднородного участка цепи

При решении задачи становится понятным, что для того, чтобы поддерживался стабильный ток в замкнутой цепи, нужны силы совершенной другой природы, а не кулоновские. В этом случае можно заметить такую закономерность: заряды, которые никак не соприкасаются друг с другом, выступают в двух ролях одновременно, то есть они являются силами электрического поля и силами иного вида – сторонними в это же время. Участок, на котором замечена данная закономерность, называется неоднородным.

Неоднородный участок цепи

Формула принимает вид:

E = Eq + Est

Закон Ома в данном подразделе был сформулирован таким образом: сила тока прямо пропорциональна напряжению на данном участке и обратно пропорциональна его полному сопротивлению.

Итак, готовая формула:

I = U12/R, где U12

Закон Ома для магнитной цепи

В каждом электромагните совмещены несколько важных элементов: стальной сердечник и катушка. По последней протекает ток. При совмещении нескольких участков образуется магнитная цепь.

При кольцевом магнитопроводе все поле находится внутри кольца. Тогда поток в магнитопроводе равен:

Ф = Вср S = μHср S

Формула закона для магнитной цепи:

Формула закона ома для магнитной цепи

Задачи с решениями на закон Ома

Задача №1

Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 127 В. Определить силу тока в проволоке.

Дано:

  • l = 120 м,
  • S = 0,5 мм,
  • U = 127 В,
  • p = 1,1 Ом*мм2 /м.

Найти: I — ?

Решение:

  • R = p * l / S,
  • R = 1,1 Ом*мм2 /м * 120 м : 0,5 мм = 264 Ом,
  • I = 127 В : 264 Ом = 0,48 А.

Ответ: I = 0,48 Ом

Задача №2

Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 220 В. Определить силу тока в проволоке.

Дано:

  • l = 120 м,
  • S = 0,5 мм,
  • U = 220 В,
  • p = 1,1 Ом*мм2 /м.

Найти: I — ?

Решение:

  • R = p * l / S,
  • R = 1,1 Ом*мм2 /м * 120 м : 0,5 мм = 264 Ом,
  • I = 220 В : 264 Ом = 0,83 А.

Ответ: I = 0,83 Ом

Задача №3

Дано:

  • U = 15 В,
  • R1 = 3 Ом,
  • R2 = R3 = 4 Ом.

Найти: I — ?

Решение:

  • R2 и R3 соединены параллельно R2 = R3, R2.3 = R2 / 2 = 2 Ом, составим эквивалентную схему:
  • R = R1 + R2,3
  • R = 3 Ом + 2 Ом = 5 Ом
  • Найдем силу тока на участке цепи по закону Ома I = U / R
  • I = 15 В / 5 Ом = 3 А

Ответ: I = 3 A.

Закон Ома.

Закон Ома.

Программа КИП и А

В программу «КИП и А», в разделе «Электрика» включен блок расчета закона Ома для постоянного и переменного тока. Сначала немного теории..

Для постоянного тока

Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.

I = U / RгдеI — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)
R — сопротивление, измеряется в Омах, (Ω)

Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, — «Не знаешь закон Ома, — сиди дома..».

Помимо закона Ома, важнейшим является понятие электрической мощности, P:

Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.

P = I × UгдеP — эл. мощность, измеряемая в Ваттах, (W)
I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)

Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Сила тока,I=U/RP/U√(P/R)
Напряжение,U=I×RP/I√(P×R)
Сопротивление,R=U/IP/I²U²/P
Мощность,P=I×UI²×RU²/R

Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.

Наиболее распространенные множительные приставки:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.

Для переменного тока

В цепи переменного тока закон Ома может иметь некоторые особенности, описанные ниже.

Импеданс, Z

В цепи переменного тока, сопротивление кроме активной (R), может иметь как емкостную (C), так и индуктивную (L) составляющие. В этом случае вводится понятие электрического импеданса, Z (полного или комплексного сопротивления для синусоидального сигнала). Упрощенные схемы комплексного сопротивления приведены на рисунках ниже, слева для последовательного, справа для параллельного соединения индуктивной и емкостной составляющих.


Последовательное включение R, L, C
Параллельное включение R, L, C

Также, полное сопротивление, Z зависит не только от емкостной (C), индуктивной (L) и активной (R) составляющих, но и от частоты переменного тока.

Импеданс, Полное сопротивление, Z
При последовательном включении R, L, CПри параллельном включении R, L, C
Z=√(R2+(ωL-1/ωC)2)Z=1/ √(1/R2+(1/ωL-ωC)2)
где,
ω = 2πγ — циклическая, угловая частота; γ — частота переменного тока.

Коэффициент мощности, Cos(φ)

Коэффициент мощности, в самом простом понимании, это отношение активной мощности (P) потребителя электрической энергии к полной (S) потребляемой мощности, т. е.

Cos(φ) = P / S

Он также показывает насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.
Изменяется от 0 до 1. Если нагрузка не содержит реактивных составляющих (емкостной и индуктивной), то коэффициент мощности равен единице.
Чем ближе Cos(φ) к единице, тем меньше потерь энергии в электрической цепи.

Исходя из вышеперечисленных понятий импеданса Z и коэффициента мощности Cos(φ), характерных для переменного тока, выведем формулу закона Ома, коэффициента мощности и их производные для цепей переменного тока:

I = U / ZгдеI — сила переменного тока, измеряемая в Амперах, (A)   
U — напряжение переменного тока, измеряемое в Вольтах, (V)
Z — полное сопротивление (импеданс), измеряется в Омах, (Ω)

Производные формулы:

Сила тока,I=U/ZP/(U×Cos(φ))√(P/Z)
Напряжение,U=I×ZP/(I×Cos(φ))√(P×Z)
Полное сопротивление, импедансZ=U/IP/I²U²/P
Мощность,P=I²×ZI×U×Cos(φ)U²/Z

Программа «КИП и А» имеет в своем составе блок расчета закона Ома как для постоянного и переменного тока, так и для расчета импеданса и коэффициента мощности Cos(φ). Скриншоты представлены на рисунках внизу:


Закон Ома для постоянного тока
Закон Ома для переменного тока
Расчет полного сопротивления
Расчет коэффициента мощности Cos(φ)

 

1. Электрическое сопротивление. Закон Ома для участка электрической цепи

Соберём электрическую цепь, состоящую из источника тока (который позволяет плавно менять напряжение), амперметра, спирали из никелиновой проволоки (проводника), ключа и параллельно присоединённого к спирали вольтметра (схема этой цепи показана рядом, прямоугольником условно обозначен проводник).

 

 

Замкнём цепь и отметим показания приборов. Затем при помощи источника тока плавно изменим напряжение (лучше всего увеличить его вдвое). Напряжение на спирали при этом тоже увеличится вдвое, и амперметр покажет вдвое большую силу тока. Увеличивая напряжение в \(3\) раза, напряжение на спирали увеличивается втрое, во столько же раз увеличивается сила тока.
Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нём. Другими словами:

 

Обрати внимание!

Сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

Эту зависимость можно изобразить графически. Её называют зависимостью силы тока в проводнике от напряжения между концами этого проводника.

 

 

Включая в электрическую цепь источника тока различные проводники и амперметр, можно заметить, что при разных проводниках показания амперметра различны, т.е. сила тока в данной цепи различна.

 

 

Графики тоже будут отличаться.

 

 

Вольтметр, поочерёдно подключаемый к концам этих проводников, показывает одинаковое напряжение. Значит, сила тока в цепи зависит не только от напряжения, но и от свойств проводников, включённых в цепь. Зависимость силы тока от свойств проводника объясняется тем, что разные проводники обладают различным электрическим сопротивлением.


 

Обрати внимание!

Электрическое сопротивление — физическая величина. Обозначается оно буквой R.

За единицу сопротивления принимают \(1\) ом — сопротивление такого проводника, в котором при напряжении на концах \(1\)вольт сила тока равна \(1\) амперу.

Кратко это записывают так: 1 Ом =1 В1 А.Применяют и другие единицы сопротивления: миллиом (мОм), килоом (кОм), мегаом (МОм).

 

\(1\) мОм = \(0,001\) Ом;

\(1\) кОм = \(1000\) Ом;

\(1\) МОм = \(1 000 000\) Ом.

 

Причина сопротивления заключается в следующем: электроны взаимодействуют с ионами кристаллической решётки металла. При этом замедляется упорядоченное движение электронов, и сквозь поперечное сечение проводника проходит за \(1\) с меньшее их число. Соответственно, уменьшается и переносимый электронами за \(1\) с заряд, т.е. уменьшается сила тока. Таким образом, каждый проводник как бы противодействует электрическому току, оказывает ему сопротивление. Итак:

 

Обрати внимание!

Причиной сопротивления является взаимодействие движущихся электронов с ионами кристаллической решётки.

Чтобы ответить на вопрос, как зависит сила тока в цепи от сопротивления, обратимся к опыту.

 

 

На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор. В эту цепь по очереди включают проводники, обладающие различным сопротивлением. Напряжение на концах проводника во время опыта поддерживается постоянным. За этим следят по показаниям вольтметра. Силу тока в цепи измеряют амперметром. Ниже приведены результаты опытов с тремя различными проводниками.

 

Напряжение на концах проводника, ВСопротивление проводника, ОмСила тока в цепи, А

\(2\)

\(1\)

\(2\)

\(2\)

\(2\)

\(1\)

\(2\)

\(4\)

\(0,5\)

Обобщая результаты опытов, приходим к выводу, что:

 

Обрати внимание!

Сила тока в проводнике обратно пропорциональна сопротивлению проводника.

Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома — по имени немецкого учёного Георга Ома, открывшего этот закон в \(1827\) году.
Закон Ома читается так:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

И записывается так:

 

I=UR,

 

где \(I\) — сила тока в участке цепи, \(U\) — напряжение на этом участке, \(R\) — сопротивление участка.

Зависимость силы тока от сопротивления проводника при одном и том же напряжении на его концах может быть показана графически:

 

 

 

Найти сопротивление экспериментально можно несколькими способами:

 

 

Где  — обозначение омметра в цепи (или мультиметра в режиме измерения сопротивления).

Источники:

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://xn--h2adlho.xn--g1ababalj7azb.xn--p1ai/375/
http://radiolove.ucoz.com/index/ne_znaesh_zakona_oma_sidi_doma/0-8

Что такое закон Ома? | Fluke

Закон Ома — это формула, используемая для расчета взаимосвязи между напряжением, током и сопротивлением в электрической цепи.

Для изучающих электронику закон Ома (E = IR) столь же фундаментально важен, как уравнение относительности Эйнштейна (E = mc²) для физиков.

E = I x R

Когда прописано, это означает напряжение = ток x сопротивление , или вольт = амперы x ом , или В = A x Ω .

Названный в честь немецкого физика Георга Ома (1789-1854), Закон Ома касается ключевых величин, действующих в цепях:

Количество Закон Ома
символ
Единица измерения
(аббревиатура)
Роль в схемы На случай, если вам интересно:
Напряжение E Вольт (В) Давление, которое запускает поток электронов E = электродвижущая сила (старый термин)
Ток I Ампер, ампер (A) Скорость потока электронов I = интенсивность
Сопротивление R Ом (Ом) Ингибитор потока Ω = греческая буква omega

Если известны два из этих значений, технические специалисты могут перенастроить закон Ома, чтобы вычислить третье.Просто измените пирамиду следующим образом:

Если вы знаете напряжение (E) и ток (I) и хотите узнать сопротивление (R), вытяните R в пирамиде и вычислите оставшееся уравнение (см. Первое или дальнее слева, пирамида вверху).

Примечание: Сопротивление нельзя измерить в рабочей цепи, поэтому закон Ома особенно полезен, когда его нужно вычислить. Вместо того, чтобы отключать цепь для измерения сопротивления, техник может определить R, используя вышеуказанный вариант закона Ома.

Теперь, если вы знаете напряжение (E) и сопротивление (R) и хотите узнать ток (I), вытяните I и вычислите оставшиеся два символа (см. Среднюю пирамиду выше).

И если вы знаете ток (I) и сопротивление (R) и хотите знать напряжение (E), умножьте нижние половины пирамиды (см. Третью или крайнюю правую пирамиду выше).

Попробуйте несколько примеров расчетов на основе простой последовательной схемы, которая включает только один источник напряжения (аккумулятор) и сопротивление (свет).В каждом примере известны два значения. Используйте закон Ома для вычисления третьего.

Пример 1: Напряжение (E) и сопротивление (R) известны.

Какой ток в цепи?

I = E / R = 12 В / 6 Ом = 2 А

Пример 2: Напряжение (E) и ток (I) известны.

Какое сопротивление создает лампа?

R = E / I = 24 В / 6 A = 4 Ом

Пример 3: Ток (I) и сопротивление (R) известны. Какое напряжение?

Какое напряжение в цепи?

E = I x R = (5A) (8Ω) = 40 В

Когда Ом опубликовал свою формулу в 1827 году, его ключевым выводом было то, что величина электрического тока, протекающего через проводник, прямо пропорциональна приложенному напряжению. в теме.Другими словами, требуется один вольт давления, чтобы протолкнуть один ампер тока через один ом сопротивления.

Что проверять с помощью закона Ома

Закон Ома можно использовать для проверки статических значений компонентов схемы, уровней тока, источников напряжения и падений напряжения. Если, например, измерительный прибор обнаруживает более высокое значение измерения тока, чем обычно, это может означать, что сопротивление уменьшилось или что напряжение увеличилось, вызывая ситуацию высокого напряжения. Это может указывать на проблему с питанием или цепью.

В цепях постоянного тока (dc) измерение тока ниже нормального может означать, что напряжение снизилось или сопротивление цепи увеличилось. Возможные причины повышенного сопротивления — плохие или неплотные соединения, коррозия и / или поврежденные компоненты.

Нагрузки в цепи потребляют электрический ток. Нагрузки могут быть любыми компонентами: небольшими электрическими устройствами, компьютерами, бытовой техникой или большим двигателем. На большинстве этих компонентов (нагрузок) есть паспортная табличка или информационная наклейка.На этих паспортных табличках указаны сертификаты безопасности и несколько номеров.

Технические специалисты обращаются к заводским табличкам на компонентах, чтобы узнать стандартные значения напряжения и тока. Во время тестирования, если технические специалисты обнаруживают, что обычные значения не регистрируются на их цифровых мультиметрах или токоизмерительных клещах, они могут использовать закон Ома, чтобы определить, какая часть цепи дает сбой, и, исходя из этого, определить, в чем может заключаться проблема.

Основы науки о схемах

Цепи, как и вся материя, состоят из атомов.Атомы состоят из субатомных частиц:

  • Протонов (с положительным электрическим зарядом)
  • Нейтронов (без заряда)
  • Электронов (отрицательно заряженных)

Атомы остаются связанными силами притяжения между ядром атома и электронами в его внешняя оболочка. Под воздействием напряжения атомы в цепи начинают преобразовываться, и их компоненты проявляют потенциал притяжения, известный как разность потенциалов. Взаимно привлеченные свободные электроны движутся к протонам, создавая поток электронов (ток).Любой материал в цепи, ограничивающий этот поток, считается сопротивлением.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Статьи по теме

Закон Ома: сопротивление и простые схемы

Цели обучения

К концу этого раздела вы сможете:

  • Объясните происхождение закона Ома.
  • Рассчитайте напряжения, токи или сопротивления по закону Ома.
  • Объясните, что такое омический материал.
  • Опишите простую схему.

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В, , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :

[латекс] I \ propto {V} \\ [/ латекс].

Это важное соотношение известно как закон Ома . Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием.Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

Сопротивление и простые схемы

Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R . Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток.Сопротивление обратно пропорционально току, или

.

[латекс] I \ propto \ frac {1} {R} \\ [/ latex].

Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

[латекс] I = \ frac {V} {R} \\ [/ латекс].

Это соотношение также называется законом Ома. Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален.Многие вещества, для которых действует закон Ома, называются омическими . К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R , которое не зависит от напряжения В и тока I . Объект с простым сопротивлением называется резистором , даже если его сопротивление невелико. Единица измерения сопротивления — Ом и обозначается символом Ω (греческая омега в верхнем регистре).Перестановка I = V / R дает R = V / I , и поэтому единицы сопротивления: 1 Ом = 1 вольт на ампер:

[латекс] 1 \ Omega = 1 \ frac {V} {A} \\ [/ latex].

На рисунке 1 показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R .

Рисунок 1.Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими проводами), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Пример 1. Расчет сопротивления: автомобильная фара

Каково сопротивление автомобильной фары, через которую протекает ток 2,50 А при 12.0 В к нему приложено?

Стратегия

Мы можем изменить закон Ома, как указано в формуле I = V / R , и использовать его для определения сопротивления.

Решение

Перестановка I = V / R и замена известных значений дает

[латекс] R = \ frac {V} {I} = \ frac {\ text {12} \ text {.} \ Text {0 V}} {2 \ text {.} \ Text {50 A}} = \ text {4} \ text {.} \ text {80 \ Omega} \\ [/ latex].

Обсуждение

Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары.Как мы увидим в разделе «Сопротивление и удельное сопротивление», сопротивление обычно увеличивается с температурой, поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, в то время как сопротивление человеческого сердца составляет примерно 10 3 Ом.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление». Дополнительное понимание можно получить, решив I = V / R для V , что дает

В = ИК

Это выражение для В можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I .Фраза IR drop часто используется для этого напряжения. Например, фара в Примере 1 выше имеет падение IR на 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления.Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, так как PE = q Δ V , и через каждую из них протекает то же самое q . Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.(См. Рисунок 2.)

Рис. 2. Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Установление соединений: сохранение энергии

В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму только с помощью резистора. Мы обнаружим, что сохранение энергии имеет и другие важные применения в схемах и является мощным инструментом анализа схем.

Исследования PhET: закон Ома

Посмотрите, как уравнение закона Ома соотносится с простой схемой. Отрегулируйте напряжение и сопротивление и посмотрите, как изменяется ток по закону Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

Щелкните, чтобы запустить моделирование.

Сводка раздела

  • Простая схема — это схема , в которой есть один источник напряжения и одно сопротивление.
  • Одно из утверждений закона Ома дает соотношение между током I , напряжением В и сопротивлением R в простой схеме как [латекс] I = \ frac {V} {R} \\ [/ latex] .
  • Сопротивление выражается в единицах Ом (Ом), относящихся к вольтам и амперам на 1 Ом = 1 В / А.
  • На резисторе есть падение напряжения или IR , вызванное протекающим через него током, равным V = IR .

Концептуальные вопросы

  1. Падение напряжения IR на резисторе означает изменение потенциала или напряжения на резисторе.Изменится ли ток при прохождении через резистор? Объяснять.
  2. Как падение IR в резисторе похоже на падение давления в жидкости, протекающей по трубе?

Задачи и упражнения

1. Какой ток протекает через лампочку фонаря на 3,00 В, когда ее горячее сопротивление составляет 3,60 Ом?

2. Вычислите эффективное сопротивление карманного калькулятора с батареей на 1,35 В, через которую протекает ток 0,200 мА.

3.Каково эффективное сопротивление стартера автомобиля, когда через него проходит 150 А, когда автомобильный аккумулятор подает на двигатель 11,0 В?

4. Сколько вольт подается для работы светового индикатора DVD-плеера с сопротивлением 140 Ом, если через него проходит 25,0 мА?

5. (a) Найдите падение напряжения на удлинителе с сопротивлением 0,0600 Ом, через который проходит ток 5,00 А. (b) Более дешевый шнур использует более тонкую проволоку и имеет сопротивление 0.300 Ом. Какое в нем падение напряжения при протекании 5.00 А? (c) Почему напряжение на любом используемом приборе снижается на эту величину? Как это повлияет на прибор?

6. ЛЭП подвешена к металлическим опорам со стеклянными изоляторами, имеющими сопротивление 1,00 × 10 9 Ом. Какой ток протекает через изолятор при напряжении 200 кВ? (Некоторые линии высокого напряжения — постоянного тока.)

Глоссарий

Закон Ома:
эмпирическое соотношение, указывающее, что ток I пропорционален разности потенциалов V , V ; его часто записывают как I = V / R , где R — сопротивление
сопротивление:
электрическое свойство, препятствующее току; для омических материалов это отношение напряжения к току, R = V / I
Ом:
единица сопротивления, равная 1Ω = 1 В / A
омическое:
тип материала, для которого действует закон Ома
простая схема:
схема с одним источником напряжения и одним резистором

Избранные решения проблем и упражнения

1.0,833 А

3. 7,33 × 10 −2 Ом

5. (а) 0,300 В

(б) 1,50 В

(c) Напряжение, подаваемое на любой используемый прибор, снижается, поскольку общее падение напряжения от стены до конечного выхода прибора является фиксированным. Таким образом, если падение напряжения на удлинителе велико, падение напряжения на приборе значительно уменьшается, поэтому выходная мощность прибора может быть значительно уменьшена, что снижает способность прибора работать должным образом.

Закон

Ома — Как соотносятся напряжение, ток и сопротивление | Закон Ома

Первая и, возможно, самая важная взаимосвязь между током, напряжением и сопротивлением называется законом Ома, который был открыт Георгом Симоном Омом и опубликован в его статье 1827 года «Гальваническая цепь, исследованная математически».

Напряжение, ток и сопротивление

Электрическая цепь образуется, когда создается проводящий путь, позволяющий электрическому заряду непрерывно перемещаться.Это непрерывное движение электрического заряда через проводники цепи называется током , и его часто называют «потоком», как поток жидкости через полую трубу.

Сила, побуждающая носители заряда «течь» в цепи, называется напряжением . Напряжение — это особая мера потенциальной энергии, которая всегда относительна между двумя точками.

Когда мы говорим об определенном количестве напряжения, присутствующем в цепи, мы имеем в виду измерение того, сколько потенциальной энергии существует для перемещения носителей заряда из одной конкретной точки в этой цепи в другую конкретную точку.Без ссылки на два конкретных пункта термин «напряжение» не имеет значения.

Ток имеет тенденцию проходить через проводники с некоторой степенью трения или сопротивления движению. Это противодействие движению правильнее называть сопротивлением . Величина тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующего прохождению тока.

Как и напряжение, сопротивление — это величина, относительная между двумя точками.По этой причине величины напряжения и сопротивления часто указываются как «между» или «поперек» двух точек в цепи.

Единицы измерения: вольт, ампер и ом

Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, мы должны уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любой другой вид физической величины. Для массы мы можем использовать единицы «килограмм» или «грамм».

Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия.Вот стандартные единицы измерения электрического тока, напряжения и сопротивления:

«Символ», присвоенный каждой величине, представляет собой стандартную буквенную букву, используемую для представления этой величины в алгебраическом уравнении. Подобные стандартизированные буквы распространены в физических и технических дисциплинах и признаны во всем мире.

«Аббревиатура единицы» для каждой величины представляет собой алфавитный символ, используемый в качестве сокращенного обозначения для конкретной единицы измерения.И да, этот странно выглядящий символ «подкова» — это заглавная греческая буква Ω, просто символ иностранного алфавита (извинения перед читателями-греками).

Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта и Ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение.«R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как «I» для тока кажется немного странным. Считается, что буква «I» должна представлять «интенсивность» (потока заряда), а другой символ напряжения, «E», означает «электродвижущую силу». Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые споры по поводу значения слова «я».

Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах зарезервировано «E» для обозначения напряжения на источнике (таком как батарея или генератор) и «V» для обозначения напряжения на чем-либо еще.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенным» значением). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пик напряжения при ударе молнии в тот самый момент, когда он попадает в линию электропередач, скорее всего обозначается строчной буквой «е» (или строчной буквой «v»), чтобы обозначить это значение как имеющееся в один момент времени.

То же самое соглашение о нижнем регистре справедливо и для тока, строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.

Кулон и электрический заряд

Одна из основополагающих единиц электрического измерения, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, — это единица кулонов , которая представляет собой меру электрического заряда, пропорционального количеству электронов в несбалансированном состоянии.Один кулон заряда равен 6 250 000 000 000 000 000 электронов.

Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается заглавной буквой «C». Бывает так, что единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этих терминах ток — это скорость движения электрического заряда по проводнику.

Как указывалось ранее, напряжение является мерой потенциальной энергии на единицу заряда , доступной для стимулирования протекания тока из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общая метрическая единица для энергии любого вида — джоуль , равная количеству работы, совершаемой силой в 1 ньютон, возникающей при движении на 1 метр (в том же направлении).

В британских подразделениях это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фута. Проще говоря, требуется около 1 джоуля энергии, чтобы поднять груз весом 3/4 фунта на 1 фут от земли или перетащить что-то на расстояние 1 фут, используя параллельную тяговую силу 3/4 фунта.В этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.

Уравнение закона Ома

Принципиальное открытие

Ома заключалось в том, что величина электрического тока, протекающего через металлический проводник в цепи, прямо пропорциональна напряжению, приложенному к нему при любой заданной температуре.Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь напряжения, тока и сопротивления:

В этом алгебраическом выражении напряжение (E) равно току (I), умноженному на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решая для I и R соответственно:

Анализ простых схем с помощью закона Ома

Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:

В приведенной выше схеме есть только один источник напряжения (батарея слева) и только один источник сопротивления току (лампа справа).Это позволяет очень легко применять закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

Какой ток (I) в этой цепи?

В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

Какое сопротивление (R) дает лампа?

В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

Какое напряжение обеспечивает аккумулятор?

Техника треугольника закона Ома

Закон Ома — очень простой и полезный инструмент для анализа электрических цепей.Он так часто используется при изучении электричества и электроники, что серьезный студент должен запомнить его. Для тех, кто еще не знаком с алгеброй, есть уловка, позволяющая вспомнить, как решить для любого количества, учитывая два других.

Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

В конце концов, вам придется быть знакомым с алгеброй, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений.Если вы хорошо разбираетесь в алгебре, все, что вам нужно сделать, это зафиксировать E = IR в памяти и вывести из нее две другие формулы, когда они вам понадобятся!

ОБЗОР:

  • Напряжение измеряется в вольтах , обозначается буквами «E» или «V».
  • Ток измеряется в амперах , обозначается буквой «I».
  • Сопротивление измеряется в Ом. обозначается буквой «R».
  • Закон Ома: E = IR; I = E / R; R = E / I

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Попробуйте наш калькулятор закона Ома в разделе «Инструменты».

закон Ома | физика | Britannica

Закон Ома , описание взаимосвязи между током, напряжением и сопротивлением. Величина постоянного тока через большое количество материалов прямо пропорциональна разности потенциалов или напряжению на материалах. Таким образом, если напряжение В (в единицах вольт) между двумя концами провода, сделанного из одного из этих материалов, утроится, ток I (амперы) также утроится; и частное V / I остается постоянным.Частное В, / I для данного куска материала называется его сопротивлением, R, , измеренным в единицах, называемых омами. Сопротивление материалов, для которых действует закон Ома, не изменяется в огромных диапазонах напряжения и тока. Математически закон Ома может быть выражен как V / I = R . То, что сопротивление или отношение напряжения к току для всей или части электрической цепи при фиксированной температуре обычно является постоянным, было установлено к 1827 году в результате исследований немецкого физика Георга Симона Ома.

Альтернативные утверждения закона Ома заключаются в том, что ток I в проводнике равен разности потенциалов В, в проводнике, деленной на сопротивление проводника, или просто I = В, / R , и что разность потенциалов в проводнике равна произведению тока в проводнике и его сопротивления, В = IR . В цепи, в которой разность потенциалов или напряжение постоянна, ток можно уменьшить, добавив большее сопротивление, или увеличить, удалив некоторое сопротивление.Закон Ома также может быть выражен в терминах электродвижущей силы или напряжения E источника электроэнергии, такого как батарея. Например, I = E / R .

С изменениями закон Ома также применяется к цепям переменного тока, в которых соотношение между напряжением и током более сложное, чем для постоянного тока. Именно из-за того, что ток меняется, помимо сопротивления, возникают другие формы противодействия току, называемые реактивным сопротивлением.Комбинация сопротивления и реактивного сопротивления называется импедансом, Z. Когда полное сопротивление, эквивалентное отношению напряжения к току, в цепи переменного тока является постоянным, обычно применяется закон Ома. Например, V / I = Z .

С дальнейшими изменениями закон Ома был расширен до постоянного отношения магнитодвижущей силы к магнитному потоку в магнитной цепи.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишись сейчас Закон

Ома | Основы резистора

Что такое закон Ома?

Закон

Ома гласит, что электрический ток через проводник пропорционален разности потенциалов на нем. Кроме того, электрическое сопротивление проводника постоянно. Это приводит к математическому уравнению:

где I — ток в амперах, V — напряжение в вольтах, R — сопротивление в омах. Для иллюстрации: резистор сопротивлением 1 Ом, на который действует ток 1 А, имеет разность напряжений на выводах 1 В.Уравнение названо в честь Георга Ома. В 1827 году он опубликовал свои выводы, которые легли в основу формулы, которая используется сегодня. Он провел большую серию экспериментов, которые показали связь между приложенным напряжением и током через проводник. Следовательно, закон эмпирический. Хотя закон Ома является одной из основ электротехники, на момент публикации он был встречен с критикой. Ом принят как официальная единица измерения электрического сопротивления в системе СИ. Густав Кирхгоф (известный из законов схем Кирхгофа) сделал обобщение, которое больше используется в физике:

где σ — параметр проводимости (зависит от материала), J — плотность тока в месте расположения этого материала, а E — электрическое поле в этом месте.

Закон Ома и резисторы

Резисторы — это пассивные элементы, которые создают сопротивление прохождению электрического тока в цепи. Резистор, работающий по закону Ома, называется омическим резистором. Когда ток проходит через омический резистор, падение напряжения на выводах пропорционально величине сопротивления. Формула Ома действует также для цепей с переменным напряжением или током, поэтому ее можно использовать и для цепей переменного тока. Для конденсаторов и катушек индуктивности этот закон, конечно, не может быть использован, поскольку их ВАХ по своей природе не линейна (не омична).

Формула

Ома действительна для цепей с несколькими резисторами, которые могут быть подключены последовательно, параллельно или и то, и другое. Группы резисторов, включенных последовательно или параллельно, можно упростить с помощью эквивалентного сопротивления. В статьях «Последовательные резисторы» или «Параллельные резисторы» более подробно описано, как это сделать.

Георг Симон Ом (1789-1854)

Георг Симон Ом

Немецкий физик Георг Симон Ом опубликовал в 1827 году свою полную теорию электричества под названием «Гальваническая цепь, исследованная математически.Он обнаружил, что падение напряжения в части цепи является произведением проходящего через нее тока и сопротивления этой части. Это легло в основу того закона, которым мы пользуемся сегодня. Закон — одно из основополагающих соотношений для резисторов.

Его коллеги не оценили его выводы, и закон был нелегко принят. Ом был учителем в гимназии в Кельне в то время, и он решил уйти в отставку. Позже он стал профессором экспериментальной физики Мюнхенского университета. Позже он наконец получил признание и получил медаль Копли в 1841 году от Королевского общества.

Уравнения закона Ома

Формула

Ом может использоваться, когда известны две из трех переменных. Связь между сопротивлением, током и напряжением можно записать по-разному. Чтобы запомнить это, может оказаться полезным калькулятор треугольника Ома. Два примера ниже демонстрируют использование калькулятора треугольников.

или

или

Примеры

Рассмотрим резистор на 1 Ом в цепи с перепадом напряжения от 100 В до 10 В на его выводах.Какой ток через резистор? Треугольник напоминает нам, что:
Рассмотрим резистор 10 Ом в цепи, подверженной току 2 Ампера и напряжению 120 В. Какое падение напряжения на резисторе? Использование треугольника показывает нам, что:

Таким образом, напряжение на оконечном выводе составляет 120-20 = 100 В.

Степенной закон Ома

Резистор рассеивает мощность, когда через него проходит ток.Энергия выделяется в виде тепла. Мощность зависит от тока I и приложенного напряжения V:

где P — мощность в ваттах. В сочетании с законом Ома степенной закон можно переписать в виде:

или

Идеальные резисторы рассеивают всю энергию и не накапливают электрическую или магнитную энергию. У каждого резистора есть предел мощности, которая может рассеиваться без повреждения. Это называется номинальной мощностью. Окружающие условия могут снизить это значение.Например, корпус вокруг резистора или более высокая температура окружающей среды уменьшат количество энергии, которое резистор может рассеять. Этот эффект называется снижением номинальных характеристик и может быть визуализирован с помощью диаграммы снижения мощности. На практике резисторы редко имеют указанную номинальную мощность. Однако большинство резисторов рассчитаны на 1/4 или 1/8 Вт. Круговая диаграмма помогает быстро найти соотношение между электрической мощностью, током, напряжением и сопротивлением. Для каждого из четырех параметров показано, как рассчитать их значение.

Ниже приведены несколько примеров задач закона Ома. Вы можете попробовать решить проблему самостоятельно, прежде чем читать ответ.

Цветовой код резистора

Значение сопротивления в омах часто обозначается цветовым кодом на резисторе. Комбинация цветов указывает значение, а также допуск резистора. Для получения дополнительной информации по этой теме см. Цветовую кодировку резистора.

19,1 Закон Ома | Texas Gateway

Постоянный и переменный ток

Так же, как вода течет с большой высоты на низкую, электроны, которые могут свободно перемещаться, будут перемещаться из места с низким потенциалом в место с высоким потенциалом.Батарея имеет две клеммы с разным потенциалом. Если клеммы соединены проводом, электрический ток (заряды) будет течь, как показано на рисунке 19.2. Затем электроны будут двигаться от низкопотенциальной клеммы батареи (отрицательный конец ) через провод и попадут в высокопотенциальную клемму батареи (положительный конец ).

Рис. 19.2 У батареи есть провод, соединяющий положительную и отрицательную клеммы, который позволяет электронам перемещаться от отрицательной клеммы к положительной.

Электрический ток — это скорость движения электрического заряда. Большой ток, такой как тот, который используется для запуска двигателя грузовика, перемещает большую величину очень быстро, тогда как небольшой ток, такой как тот, который используется для работы портативного калькулятора, перемещает небольшое количество заряда медленнее. В форме уравнения электрический ток I определяется как

, где ΔQΔQ — это количество заряда, которое проходит через заданную область, а ΔtΔt — время, за которое заряд проходит мимо этой области.Единицей измерения электрического тока в системе СИ является ампер (А), названный в честь французского физика Андре-Мари Ампера (1775–1836). Один ампер — это один кулон в секунду, или

1 А = 1 Кл / с. 1 А = 1 Кл / с.

Электрический ток, движущийся по проволоке, во многом похож на ток воды, движущийся по трубе. Чтобы определить поток воды через трубу, мы можем подсчитать количество молекул воды, которые проходят мимо данного участка трубы. Как показано на рисунке 19.3, электрический ток очень похож. Считаем количество электрических зарядов, протекающих по участку проводника; в данном случае провод.

Рис. 19.3 Электрический ток, движущийся по этому проводу, — это заряд, который проходит через поперечное сечение A, деленный на время, необходимое этому заряду, чтобы пройти через участок A .

Предположим, что каждая частица q на рис. 19.3 несет заряд q = 1 нКл = 1 нКл, и в этом случае общий показанный заряд будет ΔQ = 5q = 5 нКлΔQ = 5q = 5 нКл. Если эти заряды пройдут мимо области A за время Δt = 1 нсΔt = 1 нс, то ток будет

19,1I = ΔQΔt = 5 нКл1 нс = 5 А.I = ΔQΔt = 5 нКл1 нс = 5 А.

Обратите внимание, что мы присвоили зарядам на рис. 19.3 положительный заряд. Обычно отрицательные заряды — электроны — являются подвижным зарядом в проводах, как показано на рисунке 19.2. Положительные заряды обычно застревают в твердых телах и не могут свободно перемещаться. Однако, поскольку положительный ток, движущийся вправо, аналогичен отрицательному току такой же величины, движущемуся влево, как показано на рисунке 19.4, мы определяем обычный ток, который течет в том направлении, в котором протекал бы положительный заряд, если бы он мог двигаться. .Таким образом, если не указано иное, предполагается, что электрический ток состоит из положительных зарядов.

Также обратите внимание, что один кулон — это значительная величина электрического заряда, поэтому 5 А — это очень большой ток. Чаще всего вы увидите ток порядка миллиампер (мА).

Рис. 19.4 (a) Электрическое поле направлено вправо, ток движется вправо, а положительные заряды движутся вправо. (б) Эквивалентная ситуация, но с отрицательными зарядами, движущимися влево.Электрическое поле и ток по-прежнему справа.

Snap Lab

Vegetable Current

Эта лабораторная работа помогает студентам понять, как работает ток. Учитывая, что частицы, заключенные в трубе, не могут занимать одно и то же пространство, толкание большего количества частиц в один конец трубы приведет к вытеснению того же количества частиц из противоположного конца. Это создает поток частиц.

Найдите солому и сушеный горох, которые могут свободно перемещаться в соломе. Положите соломинку на стол и засыпьте ее горошком.Когда вы вдавливаете одну горошину с одного конца, другая горошина должна выходить из другого конца. Эта демонстрация представляет собой модель электрического тока. Определите часть модели, которая представляет электроны, и часть модели, которая представляет собой подачу электроэнергии. В течение 30 секунд подсчитайте, сколько горошин вы можете протолкнуть через соломинку. Когда закончите, вычислите гороховый ток , разделив количество горошин на время в секундах.

Обратите внимание, что поток гороха основан на том, что горох физически сталкивается друг с другом; электроны толкают друг друга за счет взаимно отталкивающих электростатических сил.

Проверка захвата

Предположим, четыре горошины в секунду проходят через соломинку. Если бы каждая горошина несла заряд 1 нКл, какой электрический ток проходил бы через соломинку?

  1. Электрический ток будет равен заряду гороха, умноженному на 1 нКл / горох.
  2. Электрический ток будет равняться пиковому току, вычисленному в лаборатории, умноженному на 1 нКл / горох.
  3. Электрический ток будет равняться гороховому току, рассчитанному в лаборатории.
  4. Электрический ток равен заряду горошины, разделенному на время.

Направление обычного тока — это направление, в котором будет течь положительный заряд . В зависимости от ситуации могут перемещаться положительные заряды, отрицательные заряды или и то, и другое. В металлических проводах, как мы видели, ток переносится электронами, поэтому отрицательные заряды движутся. В ионных растворах, таких как соленая вода, движутся как положительно заряженные, так и отрицательно заряженные ионы.То же самое и с нервными клетками. Чистые положительные токи относительно редки, но встречаются. История отмечает, что американский политик и ученый Бенджамин Франклин описал ток как направление, в котором положительные заряды проходят через провод. Он назвал тип заряда, связанный с электронами, отрицательным задолго до того, как стало известно, что они переносят ток во многих ситуациях.

Когда электроны движутся по металлической проволоке, они сталкиваются с препятствиями, такими как другие электроны, атомы, примеси и т. Д.Электроны разбегаются от этих препятствий, как показано на рисунке 19.5. Обычно электроны теряют энергию при каждом взаимодействии. Таким образом, чтобы электроны двигались, требуется сила, создаваемая электрическим полем. Электрическое поле в проводе направлено от конца провода с более высоким потенциалом к ​​концу провода с более низким потенциалом. Электроны, несущие отрицательный заряд, движутся в среднем (или дрейф ) в направлении, противоположном электрическому полю, как показано на рисунке 19.5.

Рис. 19.5. Свободные электроны, движущиеся в проводнике, совершают множество столкновений с другими электронами и атомами. Показан путь одного электрона. Средняя скорость свободных электронов находится в направлении, противоположном электрическому полю. Столкновения обычно передают энергию проводнику, поэтому для поддержания постоянного тока требуется постоянный запас энергии.

До сих пор мы обсуждали ток, который постоянно движется в одном направлении. Это называется постоянным током, потому что электрический заряд течет только в одном направлении.Постоянный ток часто называют током DC .

Многие источники электроэнергии, такие как плотина гидроэлектростанции, показанная в начале этой главы, вырабатывают переменный ток, направление которого меняется взад и вперед. Переменный ток часто называют . Переменный ток . Переменный ток перемещается вперед и назад через равные промежутки времени, как показано на рисунке 19.6. Переменный ток, который исходит из обычной розетки, не меняет направление внезапно.Скорее, он плавно увеличивается до максимального тока, а затем плавно уменьшается до нуля. Затем он снова растет, но в противоположном направлении, пока не достигнет того же максимального значения. После этого он плавно уменьшается до нуля, и цикл начинается снова.

Рисунок 19.6 При переменном токе направление тока меняется на противоположное через равные промежутки времени. График вверху показывает зависимость тока от времени. Отрицательные максимумы соответствуют движению тока влево.Положительные максимумы соответствуют току, движущемуся вправо. Ток регулярно и плавно чередуется между этими двумя максимумами.

Устройства, использующие переменный ток, включают пылесосы, вентиляторы, электроинструменты, фены и многие другие. Эти устройства получают необходимую мощность, когда вы подключаете их к розетке. Настенная розетка подключена к электросети, которая обеспечивает переменный потенциал (потенциал переменного тока). Когда ваше устройство подключено к сети, потенциал переменного тока толкает заряды вперед и назад в цепи устройства, создавая переменный ток.

Однако во многих устройствах используется постоянный ток, например в компьютерах, сотовых телефонах, фонариках и автомобилях. Одним из источников постоянного тока является аккумулятор, который обеспечивает постоянный потенциал (потенциал постоянного тока) между своими выводами. Когда ваше устройство подключено к батарее, потенциал постоянного тока толкает заряд в одном направлении через цепь вашего устройства, создавая постоянный ток. Другой способ получения постоянного тока — использование трансформатора, который преобразует переменный потенциал в постоянный. Небольшие трансформаторы, которые вы можете подключить к розетке, используются для зарядки вашего ноутбука, мобильного телефона или другого электронного устройства.Люди обычно называют это зарядным устройством или батареей , но это трансформатор, который преобразует напряжение переменного тока в напряжение постоянного тока. В следующий раз, когда кто-то попросит одолжить зарядное устройство для ноутбука, скажите им, что у вас нет зарядного устройства для ноутбука, но они могут одолжить ваш преобразователь.

Рабочий пример

Ток при ударе молнии

Удар молнии может передать до 10201020 электронов из облака на землю. Если удар длится 2 мс, каков средний электрический ток в молнии?

СТРАТЕГИЯ

Используйте определение тока, I = ΔQΔtI = ΔQΔt.Заряд ΔQΔQ из 10201020 электронов ΔQ = neΔQ = ne, где n = 1020n = 1020 — количество электронов, а e = −1.60 × 10−19 Ce = −1.60 × 10−19 C — заряд электрона. Это дает

19,2 ΔQ = 1020 × (−1.60 × 10−19 ° C) = — 16,0 ° C ΔQ = 1020 × (−1,60 × 10−19 ° C) = — 16,0 ° C.

Время Δt = 2 × 10–3 с Δt = 2 × 10–3 с — длительность удара молнии.

Решение

Ток при ударе молнии

19,3I = ΔQΔt = −16,0 C2 × 10−3 с = −8 кА. I = ΔQΔt = −16,0 C2 × 10−3 с = −8 кА.

Обсуждение

Отрицательный знак отражает тот факт, что электроны несут отрицательный заряд.Таким образом, хотя электроны текут от облака к земле, положительный ток должен течь от земли к облаку.

Рабочий пример

Средний ток для заряда конденсатора

В цепи, содержащей конденсатор и резистор, зарядка конденсатора емкостью 16 мкФ с использованием батареи 9 В. занимает 1 мин. Какой средний ток в это время?

СТРАТЕГИЯ

Мы можем определить заряд конденсатора, используя определение емкости: C = QVC = QV.Когда конденсатор заряжается батареей 9 В, напряжение на конденсаторе будет V = 9 VV = 9 В. Это дает заряд

.

Подставляя это выражение для заряда в уравнение для тока, I = ΔQΔtI = ΔQΔt, мы можем найти средний ток.

Решение

Средний ток

19,5I = ΔQΔt = CVΔt = (16 × 10−6 F) (9 В) 60 с = 2,4 × 10−6 A = 2,4 мкА I = ΔQΔt = CVΔt = (16 × 10−6 F) (9 В) 60 с = 2,4 × 10-6 А = 2,4 мкА.

Обсуждение

Этот небольшой ток типичен для тока, встречающегося в таких цепях.

Неразрушающая оценка Физика: Электричество

После прочтения этого раздела вы сможете делать следующее:

  • Определите, что такое последовательная цепь.
  • Объясните, как работает закон Ома.

Переменный ток: Электрический ток, периодически меняющий направление на противоположное.

Цепь: Полный или частичный путь, по которому может течь ток.

Сопротивление: Свойство проводника, с помощью которого он препятствует прохождению электрического тока, что приводит к выделению тепла в проводящем материале.

Напряжение: Электродвижущая сила или разность электрических потенциалов, выраженная в вольтах.

Ток: Расход или скорость электрического заряда в проводнике или среде между двумя точками, имеющими разность потенциалов, обычно выражаемую в амперах.

Закон Ома — важнейший, основной закон электричества. Он определяет соотношение между тремя фундаментальными электрическими величинами: током , напряжением и сопротивлением .Когда напряжение подается на цепь , содержащую только резистивные элементы (то есть без катушек), ток течет в соответствии с законом Ома, который показан ниже. Схема ниже называется последовательностью . В последовательной схеме компоненты соединяются по единому пути.

I = VRI = \ frac {V} {R}

Где:

I =

Электрический ток (Амперы)

В =

Напряжение (Напряжение)

R =

Сопротивление (Ом)

Закон Ома гласит, что электрический ток ( I ), протекающий в цепи, пропорционален напряжению ( В, ) и обратно пропорционален сопротивлению ( R ).Следовательно, если напряжение увеличивается, ток будет увеличиваться при условии, что сопротивление цепи не изменится. Точно так же увеличение сопротивления цепи снижает ток, если напряжение не изменяется. Формулу можно реорганизовать, чтобы можно было легко увидеть взаимосвязь для всех трех переменных.

Приведенный ниже апплет позволяет пользователю изменять каждый из этих трех параметров в соответствии с законом Ома и видеть влияние на два других параметра. Значения можно вводить в диалоговые окна, или сопротивление и напряжение также можно изменять, перемещая стрелки в апплете.Ток и напряжение отображаются так, как если бы они отображались на осциллографе, где по оси X отложено время, а по оси Y — амплитуда тока или напряжения. Закон Ома действителен как для постоянного тока (DC), так и для переменного тока (AC). Обратите внимание, что в цепях переменного тока, состоящих из чисто резистивных элементов, ток и напряжение всегда совпадают по фазе друг с другом.

упражнение:

Используйте интерактивный апплет ниже, чтобы исследовать взаимосвязь переменных в законе Ома.Измените напряжение в цепи, щелкнув и перетащив стрелку, отмеченную буквой V. Сопротивление в цепи можно увеличить, перетащив стрелку под переменный резистор, отмеченный R. Вертикальная шкала экрана осциллографа автоматически подстраивается под значение тока.

Посмотрите, что происходит с напряжением и током при увеличении сопротивления в цепи. Что произойдет, если в цепи недостаточно сопротивления? Если сопротивление увеличивается, что должно произойти, чтобы поддерживать ток на том же уровне?

Обзор:

  1. В последовательной схеме компоненты соединены по единому пути.
  2. Закон
  3. Ома гласит, что электрический ток ( I ), протекающий в цепи, пропорционален напряжению ( В, ) и обратно пропорционален сопротивлению ( R ).
.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *