+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как найти фазу и ноль в розетке и проводах

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • жалом отвертки прикасаетесь к контакту
  • нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой

Не перепутайте индикаторную отвертку с отверткой для прозвонки.

Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • никогда не дотрагивайтесь до нижней части отвертки при замерах
  • отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Как определить фазу и ноль мультиметром или тестером

Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. Далее замер можно сделать несколькими способами:

  • зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. Если коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.
  • если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.
  • еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу.
    Если он будет фазным, тестер покажет наличие напряжения 220В.

Меры безопасности при работе с мультиметром:

  • обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок ~V или ACV. Иначе может ударить током.
  • некоторые «опытные » электрики для определения фазы, используют так называемую контрольную лампочку. Не рекомендую рядовым пользователям такой метод, тем более он запрещен правилами. Используйте только исправные и проверенные измерительные приборы.

В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.

Статьи по теме

Как понять где фаза а где ноль в проводах: 5 способов узнать

Согласно нормам ПУЭ к выключателю должен подсоединяться фазный провод. При ремонте или реконструкции электропроводки могут возникнуть и другие ситуации, при которых имеет значение, какой из проводов нейтраль, а какой фаза.

При наличии бирок на концах проводников это несложно, но как понять где фаза, а где ноль в проводах, если маркировка на проводах отсутствует? В этом случае необходимо иметь минимальные знания электротехники или внимательно изучить следующую статью.

Зачем нужно определять, где фаза, а где ноль

Для работы электроприборов не имеет значения, к какой клемме присоединяется фазный, а к какой нулевой проводник, но для повышения безопасности людей, живущих в доме, эти провода в некоторых ситуациях должны подключаться определённым образом:

  • К выключателю освещения необходимо подводить фазный провод, а к лампе нулевой. Это обеспечивает отсутствие напряжения в светильнике при выключенном освещении и позволяет производить замену лампы и ремонт осветительной аппаратуры без отключения автоматического выключателя. Это требование так же указано в «библии» электромонтёров — ПУЭ п.
    6.6.28.
  • Наличие в схеме электропроводки УЗО. Использование вместо нулевого проводника заземляющего при подключении электроприборов, освещения и розеток приводит к появлению тока утечки, нарушению равенства токов в нейтрали и фазном проводе и срабатыванию дифзащиты

Простые способы, как найти фазу

Для поиска фазного провода в электропроводке используются различные методы.

По цветовой маркировке

Это самый простой метод, позволяющий выполнить эту работу без каких-либо приборов, однако он применим только к электропроводке, выполненной согласно стандарту IEC 60446, принятому в 2004 году.

В этом случае согласно правилам цветовой маркировки изоляции проводов фазный провод в однофазной электропроводке и двух- или трёхжильных кабелях чаще всего окрашен в коричневый цвет, а в трёхфазной проводке и четырёх- или пятижильных кабелях оболочка может быть любого цвета, кроме синего и жёлто-зелёного.

С помощью индикаторной отвертки

Этот инструмент позволяет

определить фазный контакт даже в закрытой розетке. Принцип работы индикаторной отвёртки основан на протекании через него активного тока, причём жало индикатора должно касаться проверяемого проводника, а вторым проводником является тело человека.

Принципиальная схема индикатора состоит из следующих узлов:

  • Жало отвёртки. Является одним из контактов электросхемы инструмента.
  • Индикатор. В старых моделях это неоновая лампочка, в более новых светодиод или ЖК дисплей.
  • Токоограничивающий элемент. В аппаратах с неонкой это резистор номиналом 1 МОм, в индикаторах со светодиодом или дисплеем ток ограничивается электронной схемой с питанием от батареек.
  • Контактное кольцо или площадка. Находится в рукоятке и служит для замыкания цепи через тело и перед тем, как найти фазу и ноль индикаторной отверткой, следует дотронуться к нему пальцами.

При прикосновении жала к фазному проводу, а человека к контактному кольцу в рукоятке ток начинает идти по цепи «жало-неонка-резистор-контакт-тело-пол» и лампа загорается.

Важно! При помощи индикаторной отвёртки с гарантией можно найти только фазный провод. Отсутствие сигнала не указывает на нулевой проводник, он может быть отключённым или оборванным, а при подаче питания на нём так же может появиться напряжение.

Как найти фазу указателем напряжения

Более надёжными являются индикаторы напряжения, как старые, которые использовались ещё в советское время, ПИН-90, так и более современные, имеющие встроенную функцию указания фазы.

Принцип действия этих устройств аналогичен индикаторной отвёртке, но конструкция прибора позволяет кроме фазного найти так же заземляющий и нейтральный проводники.

Для определения фазы один из щупов должен касаться проверяемого провода, а рукой при этом необходимо, в зависимости от конструкции, касаться второго щупа или специального вывода. При контакте с фазой на приборе загорится лампочка, светодиод или прозвучит звуковой сигнал.

С помощью мультиметра

Этот прибор можно применять для поиска фазы аналогично индикаторной отвёртке, однако необходимо использовать цифровой мультиметр. Он имеет встроенный усилитель сигнала и является более чувствительным, чем стрелочный прибор, требующий больший ток для работы показания которого составят менее 1 В. Есть два варианта, как найти фазу с помощью мультиметра.

Более надёжным способом является поиск фазного проводника при контакте тела с прибором:

  1. 1. перед тем, как найти фазу мультиметром, следует подключить щупы к прибору;
  2. 2. переключить мультиметр для измерения переменного напряжения ACV на предел 750В;
  3. 3. один из щупов взять за металлический наконечник незащищённой рукой;
  4. 4. вторым щупом поочерёдно дотронуться до всех проверяемых проводов.

При прикосновении к фазному контакту дисплей прибора покажет наличие напряжения. Его величина зависит от многих факторов и находится в диапазоне 20-100 Вольт. Так же, как и индикатор напряжения, после определения фазного проводника мультиметром можно найти нулевой провод и заземляющий.

Такой метод поиска фазы не указан в инструкции к прибору, поэтому для большей безопасности можно использовать «бесконтактный» метод, при котором нет необходимости дотрагиваться рукой до второго щупа. Показания мультиметра при этом составят 3-15 Вольт, что достаточно для поиска фазы.

При помощи контрольной лампы

Кроме методов, требующих специальных инструментов, существует достаточно опасный способ, как понять, где фаза, а где ноль в проводах при помощи контрольной лампы или контрольки. Для этого достаточно иметь обычную лампу, патрон и два куска провода. Для сборки этого приспособления провода с зачищенными концами подключают к патрону и закручивают в него лампу.

Для определения фазного провода один из проводов присоединяют к заведомо заземлённому элементу — нейтральному или заземляющему проводнику, шине заземления в электрощитке или контуру заземления здания, а вторым проводом поочерёдно прикасаются к проверяемым проводам. В случае контакта с фазным проводом лампа загорится.

В трёхпроводной электропроводке с заземляющим контактом контрольную лампу последовательно подключают попарно ко всем трём проводам. Тот проводник, при присоединении к которому лампа будет светиться с обоими другими проводами является фазным, оставшиеся являются нейтралью и заземлением.

Этот метод проверки наличия напряжения запрещён ПТБЭЭП и другими нормативными документами. Из-за высокого тока потребления контрольная лампа загорится только при низком сопротивлении электропроводки. Включённая последовательно с проверяемым контактом лампа или плохой контакт в скрутке или клеммнике не позволят лампочке включиться, однако прикосновение к этим проводам опасно для жизни.

Кроме того, возможна ситуация, при которой в кабеле будет обрыв в нулевом и заземляющем проводниках. При этом во всех вариантах подключения контролька светиться не будет, что позволит сделать ошибочный вывод об отсутствии напряжения в сети.

Как определить фазу и ноль

Далеко не всегда достаточно определить, какой из проводников является фазным. Очень часто, особенно в трёхпроводной однофазной системе электроснабжения, нужно найти нулевой контакт. Это необходимо при подключении розеток или освещения и не всегда, если один из проводов фазный, то второй обязательно нейтраль.

Он может быть отключённым, оборванным или замыкать на ту же или другую фазу. Поэтому необходимо проверку производить для всех проводов и существуют разные способы, как понять, где фаза, а где ноль в проводах.

Информация! Для поиска нулевого, фазного и заземляющего проводов можно использовать те же приборы, которые применялись для определения фазы.

По цветовой маркировке

Это самый простой способ, позволяющий определить фазный и нулевой провод без каких-либо приборов, «на глаз». Единственный недостаток этого метода заключается в том, что он применим только к электропроводке, проложенной после 2004 года при полной уверенности, что при этом были соблюдены правила цветовой маркировки изоляции проводов:

  • нейтраль N — синий или голубой;
  • заземление РЕ — в продольную жёлто-зелёную полосу;
  • фаза L — в однофазной электропроводке коричневая, в трёхфазной проводке оболочка может быть любого цвета кроме синего(голубого) и жёлто-зелёного.

Важно! Цветовая маркировка проводов не всегда и далеко не всеми электриками соблюдается. Поэтому этот метод является лишь косвенным, по которому нельзя судить есть напряжение на проводе или нет.

При помощи контрольной лампы, индикатора или вольтметра

В двухпроводной схеме электроснабжения это сделать несложно. После определения фазного проводника необходимо узнать, является ли оставшийся проводник нейтралью. Для этого достаточно любым способом проверить потенциал между ними.

Если прибор покажет напряжение сети 220В, значит эти провода, соответственно, ноль и фаза. В противном случае ноль на этом контакте отсутствует из-за аварии или неправильного монтажа.

В трёхпроводной системе с заземляющим проводом выполнить поиск ноля сложнее. Для этого необходимо:

  1. 1. перед тем, как определить фазу и ноль, в электрощитке от вводного автомата нужно отключить нейтральную клемму;
  2. 2. найти фазный провод;
  3. 3. определить, с каким из двух оставшихся проводников и фазным прибор показывает наличие напряжения.

Этот контакт является заземлением.

Определение ноля и заземления при помощи УЗО

Один из самых простых методов различить нейтральный и заземляющий контакты — это при помощи контрольной лампы и УЗО или дифавтомат.

Лампочка или другой электроприбор должны иметь мощность не менее 10 Вт, а УЗО уставку срабатывания не более 30мА.

Для поиска ноля и заземления необходимо:

  • найти фазу одним из вышеперечисленных способов;
  • отключить вводной автоматический выключатель;
  • подключить к фазному проводу и одному из оставшихся контрольную лампу;
  • включить автомат;
  • если сработает дифференциальная защита, то выбранный проводник является заземляющим, в противном случае это нейтраль.

Для надёжности данную последовательность действий желательно повторить для второго провода.

Совет! При отсутствии в схеме УЗО его допускается установить временно, снаружи электрощита. Подключение при этом можно выполнить при помощи отрезков гибкого провода.

Вывод

В связи с тем, что определение фазы при помощи цветовой маркировки имеет ограниченную область применения — новая электропроводка, причём выполненная профессионалами, а использование контрольной лампы запрещено ПТБЭЭП и может быть опасным для жизни, существует только три надёжных способа, как узнать, где ноль, а где фаза. Это индикаторная отвёртка, индикатор напряжения с функцией поиска фазы и мультиметр, причём два последних устройства позволяют найти не только фазный проводник, но так же нейтраль и заземление.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Как проверить заземление в розетке мультиметром, как найти фазу и ноль

В старых домах еще сохранились двухклеммные розетки. В этом случае проверить устройство можно просто с помощью тестера фазы. Нужно взять тестер (индикаторную отвертку), вставить его в любой разъем розетки. Приложить палец к металлическому колпачку на рукоятке. Когда неоновая лампочка загорится, она тем самым покажет «фазу». Вторая клемма должна быть нулевой. Но так случается не всегда.

Расцветка, индикаторная отвертка или мультиметр

Самый простой способ проверить заземление, это обратить внимание на цвет изоляции.

У заземляющего провода она должна быть желтой с зелеными полосами, а у нулевого светло-синей. Но не всегда это требование выполняется.

В некоторых домах старой постройки электропроводка сделана отдельными проводниками. Если хозяину пришлось проводить изменения в распределительной коробке, то вполне возможен вариант, когда на розетку приходят только два фазных или нулевых проводника. Поэтому необходимо проверить оба гнезда. При касании нуля неоновая лампочка на индикаторе напряжения не должна загораться.

В современных зданиях используются трехклеммные розетки. На нее приходят фазовый, нулевой и заземляющий проводники. Контакты должны соответствовать своему функциональному назначению.

Иначе, возможны несчастные случаи при использовании стиральной машины или бойлера. Поэтому возникают вопросы, как проверить заземление в розетке, чтобы избежать ошибок при монтаже и спокойно, без страха пользоваться своими приборами.

Индикаторная отвертка гарантированно определяет только фазу. Отличить ноль от земли она не может. Маленькой наводки недостаточно для загорания неоновой лампочки. Тогда найдем фазу и ноль мультиметром или вольтметром.

Варианты показания мультиметра

Любой прибор, индикаторную отвертку или тестер, необходимо проверить на работоспособность и только после этого применять. Изоляция должна быть целой, без трещин и разрывов. Острие щупа должно отделяться от держателя диэлектрической шайбой, для защиты от случайных прикосновений.

Корпус измерительного устройства должен быть целым. Перед замером штекеры вставляются в гнезда прибора, которые соответствует измерению переменного напряжения. Убедившись в исправности устройства, нужно перевести его в режим измерения переменного напряжения со шкалой 750 V. Это необходимо на случай измерения линейного напряжения, когда по ошибке на розетку завели две фазы.

Этот способ проверки розетки годится, если проверяющий уверен, что заземляющий контакт действительно земля. Тогда стоит задача найти ноль. Один щуп касается заземляющего контакта, а второй вставляется в любое гнездо розетки. Могут быть следующие варианты:

  • прибор показывает 220 V, значит контакт фазовый;
  • если 0 или единицы вольт, то это нулевой провод.

Если мультиметр относительно заземляющего показывает 0 вольт на гнездовых контактах, значит все они где-то замкнуты между собой.

Показания в несколько вольт говорят, что это ноль. Но как определить ноль, когда дом снабжается электричеством по системе энергоснабжения TN — C и повторным заземлением рядом со зданием? Ведь и в этом случае будут нулевые показания прибора.

Чтобы убедиться, что данный проводник нулевой, нужно отключить заземление в подъездном электрическом щите. Затем замерить напряжение между гнездовыми контактами розетки. Прибор показывает 220 V – найден ноль розетки. Мультиметр ничего не показывает – найдено заземление.

При показаниях прибора 220 V на каждом контакте относительно заземляющего, нужно произвести дополнительное измерение между двумя гнездами розетки. Прибор показывает 0, значит, одна фаза заведена на оба гнезда. В противном случае прибор покажет 380 V, что означает присутствие на розетке двух фаз.

Определение назначения проводников

При работе с электропроводкой обязательно нужно перепроверять назначения проводников розетки. Нет никакой гарантии, что электрик или предыдущий владелец помещения не перепутал провода. Поэтому, если тестер показывает напряжение 220 V относительно клеммы по внешнему виду являющейся заземляющей, это не значит, что она таковой и является.

Это значит, что один из контактов является фазой, а второй нулем или землей. Если тестер покажет 0, то здесь присутствуют нулевой и заземляющий проводник. Точно понять, что есть что, невозможно.

При отсутствии стопроцентной уверенности в назначении заземляющей клеммы розетки действуют иначе. Сначала нужно исключить наличие двух фаз. Проверяем напряжение между всеми контактами. Если прибор 380 V нигде не показывает, а только 220, значит, к розетке подведен один фазный проводник. Теперь нужно приступить к поиску заземления.

Сначала надо отключить заземляющий проводник в этажном щитке. Он присоединен через болтовое соединение к специальной шине, приваренной к корпусу электрического щита.

После этого замеряется напряжение между гнездовыми коннекторами.

Если прибор показывает 220 V, значит гнездовые контакты – это фазный и нулевой провод, а заземляющая клемма действительно таковой является. Теперь зная точно, где находится земля, можно определить остальные коннекторы, но предварительно нужно обратно присоединить «землю» к шине заземления.

Проводим измерение напряжения относительно земляной клеммы. Одно гнездо показывает 220 V – это фаза, второе – 0, то это нулевой контакт.

Если мультиметр показывает 0, значит, земля была присоединена к одному из гнездовых контактов, а второй является нулевым или фазным. Теперь измерения проводим между гнездовым и заземляющим контактом розетки. Если напряжение отсутствует, значит, это гнездо и есть настоящее заземление.

Показания в 220 V говорят сами за себя.

Проверка электропроводки

Проверка заземления электропроводки происходит примерно так же, как с розеткой. Для измерения параметров сети понадобятся мультиметр трехфазный или однофазный, а также индикаторная отвертка.

При ремонте электропроводки и подключении стиральной машины, электрического обогревателя, плиты, духовки и других приборов приходится менять кабели и соединения в распределительных коробках. В этом случае нужно выяснить назначение каждого проводника, необходимо проверить наличие заземления в нужных местах.

Вначале нужно отключить входной автомат на этажном щите. Затем вскрыть распределительную коробку. Развести провода в разные стороны, чтобы они не соприкасались между собой, и снять изоляцию в местах соединения.

После этого входной автомат включается. Индикаторной отверткой находятся фазные провода. Они могут принадлежать одной, двум или трем фазам.

При наличии трехфазного мультиметра, можно сразу проверить состояние сети. Однофазным мультиметром определение количества фаз происходит дольше. К примеру, если напряжения между тремя проводами составляют по 0 вольт, то это фазные провода от одной фазы.

Если прибор показывает напряжение между двумя проводами 380 V, а между двумя другими 0, то две фазы. При напряжении 380 V между всеми проводниками можно говорить о наличии трех фаз.

Определение заземления происходит, как и в случае с розеткой, только здесь проводов будет больше. Сначала отключается заземляющий провод в этажном щитке. Затем один щуп мультиметра цепляется за фазовый провод, а второй за проводник пока неизвестного назначения.

Если прибор покажет напряжение 220 V – этот провод нулевой, если ноль, то это и есть земля.

Дальше отключают входной автомат. Присоединяется заземляющий провод. Когда проверка закончена, выполняется правильное подсоединение всех элементов электросети, места соединений изолируются, коробка закрывается. Автомат защиты включается.

Как определить фазу, ноль и землю: правила, способы, советы

Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь – ноль или земля.

Правильно определить фазу

Провода трехжильные

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).

    Неверное положение нуля и фазы евророзетки

  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Определение положения фазы по цвету изоляции жил провода

Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.

Найти нулевой провод в квартире

По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые – не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.

Штекер 230 вольт Великобритании

В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):

  • Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
  • Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
  • Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
  • Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.

Дополнительные сведения о нахождении земли, фазы, нулевого провода

Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.

Добавим другой способ – промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.

Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.

Современные отвертки-индикаторы определения фазы, нулевого провода, земли

Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:

Отвертка-индикатор

  • Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
  • На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
  • Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.

Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.

Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.

Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:

  1. Красный – фаза.
  2. Синий – нулевой провод.
  3. Желтый – земля.

Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.

Как определить фазу и нуль

Перед тем, как начать процесс определения фазы и нуля, необходимо сделать ряд приготовлений, поскольку для данных работ потребуются следующие приборы и инструменты:

  • мультиметр;
  • индикаторная отвертка;
  • тестер;
  • пассатижи;
  • нож с заточенным лезвием, чтобы снимать изоляцию с проводников;
  • изоляционная лента;
  • маркер для нанесения разметок;

Также, важно помнить, что перед началом любых электромонтажных работ, необходимо отключить автоматы, поскольку несоблюдение данного правила может представлять угрозу для жизни. Помимо этого, требуется убедиться, что весь используемый инструмент обладает надежно заземленными рукоятями.

В противном случае, его использование является небезопасным и не допускается по технике безопасности.

Визуальный метод определения

Данная методика является самым простым способом, поскольку для его реализации не потребуется никаких дополнительных приборов или оборудования.

Необходимо осмотреть проводку, чаще всего она имеет следующие цветовые разграничения:

  1. Провод желто-зеленого цвета является заземлением.
  2. Нуль имеет синий цвет или любые его оттенки вплоть до светло-голубого.
  3. Фаза имеет черный, коричневый или белый цвет.
  4. Необходимо убедиться в соответствии цветов не только в электрощите, но также и в распределителе.

Визуальный осмотр системы должен осуществляться в соответствии со следующим алгоритмом действий:

  1. Открыть электрощит и осмотреть его содержимое. Поскольку расчетная нагрузка может различаться, то и количество установленных автоматов также может быть разным. Через них может быть осуществлено подключение фазы или фазы с нулем, заземление никогда не подсоединяется к автоматическим выключателям, а имеет соединение с шиной. Необходимо убедиться, что все подключенные провода соответствуют цветовой маркировке.
  2. Если цвет изоляции, проведенной от электрощита к домашней сети, соответствует правилам цветовой маркировки, то все равно потребуется вскрытие распределителей для визуального осмотра скруток. Это необходимо для того, чтобы убедиться, что и в них цветовая маркировка изоляции нуля и заземления не была перепутана и соответствует установленным правилам.
  3. Иногда в распределителях осуществляется подключение фазы к автоматическим выключателям. В большинстве случаев, это реализуется при помощи специального провода с двумя жилами, изоляция которого может отличаться цветом.
  4. Если результаты визуальной проверки показали, что цвета изоляции полностью соответствуют правилам, то остается всего лишь проверить фазный проводник, используя для этого индикаторную отвертку.

Определение индикаторной отверткой

Одним из наиболее простейших способов определения нуля и фазы является использование для этих целей индикаторной отвертки.

Для осуществления данного процесса необходимо придерживаться следующего алгоритма действий:

  1. Первоначально потребуется отключить автомат, от которого происходит питание линии электросети на месте проверки.
  2. Провести зачистку обоих проверяемых проводников, достаточно снять не более 1-2 см. изоляционного слоя.
  3. После этого оба проводника разводятся друг от друга на безопасное расстояние, поскольку после подачи напряжения их случайное соприкосновение может стать причиной короткого замыкания.
  4. Можно приступать к идентификации фазного проводника. Для этого включается автоматический автомат, который подает напряжение, после этого необходимо будет взять индикаторную отвертку и прикоснуться к металлической области, расположенной возле основания рукояти.
  5. Категорически не допускается прикасаться к любым частям индикаторной отвертки, расположенным ниже рукояти, поскольку это вызовет удар электрическим током.
  6. Прикоснуться инструментом к одному из проверяемых проводов, при этом не нужно убирать палец с металлической области.
  7. Загорание лампочки, входящей в конструкцию отвертки, свидетельствует о том, что проводник является фазным. Соответственно второй провод – это нуль. Если загорание лампочки не произошло, наоборот, проводник был нулем, а второй является фазой.

Определение тестером или мультиметром

мультиметр

Иным распространенным способом определения фазы и нуля является использование специальных приборов – тестера или мультиметра.

Если был выбран именно этот вариант, то необходимо придерживаться следующей последовательности действий:

  1. Используемому прибору задать настройки предельного измерения переменного тока. На современных моделях этому параметру соответствует режим ~V или ACV. Необходимо указать значение равное 600 В, 750 В, 1000 В или иной параметр в зависимости от особенностей модели, главным требованием является, чтобы он превосходил показатель 250 В.
  2. Щупами прибора необходимо коснуться сразу обоих проводов, для того, чтобы определить уровень напряжения между ними. В стандартных бытовых сетях этот показатель равен 220 В, возможное отклонение не должно превышать 10 % в любую из сторон. Подобное значение свидетельствует о том, что проводник является фазой, у нуля уровень напряжение будет совсем незначительным или равным нулю.
  3. В современных электросетях может потребоваться также идентификация проводника с заземлением, для этого требуется определение уровня сопротивления. В таком случае, прибор переводится в соответствующий режим, который имеет условное обозначение в виде значка звонка или омеги.
  4. Необходимо помнить, что когда прибор переведен в режим для определения уровня сопротивления, категорически запрещено одновременное прикосновение к фазе и заземлению, поскольку произойдет короткое замыкание. Имеется риск получения травм.

Определение по маркировке

При описании визуального способа идентификации проводников уточнялось, что в большинстве современных электросетей желто-зеленый цвет соответствует защитному нулю, все оттенки синего цвета обозначают рабочий нуль, а любые иные цвета фазу.

Однако, необходимо учитывать, что проводники могут не соответствовать принятой цветовой гамме в следующих случаях:

  1. Проводка проложена в доме старой постройки, где не была произведена реконструкция домашней электросети в соответствии с современными правилами. Чаще всего в ней используются одноцветные проводники.
  2. Проводка проложена в новостройке, но ее монтаж осуществлялся частными лицами, а не профессиональными электриками.
  3. Провода ведут к более сложным бытовым устройствам, например, различным переключателям или выключателям, конструкция которых изначально подразумевает принципиально иную схему функционирования.
  4. Проводка прокладывалась по стандартам, отличающимся от принятых в Европе, поэтому она имеет совершенно иные цветовые обозначения.

В большинстве остальных случаев, цветовая маркировка проводников производится в соответствии с указанными правилами, которые регламентируются соответствующим стандартом IEC, действующем на территории всей Европы.

В ситуациях, когда отсутствует полная уверенность в полном соответствии цветовой гаммы общепринятому стандарту, рекомендуется воспользоваться одним из практических методов для определения нуля и фазы.

Также, можно посоветовать в последствии использовать специальные цветные насадки, которые позволят в будущем не забыть предназначение проводников и не осуществлять процедуру их определения заново.

Определение с помощью картошки

Еще одним известным методом определения без специальных приборов является вариант, в котором задействуется обычная сырая картошка. Многие специалисты относятся к таким действиям довольно скептически, но подобное решение все равно является действенным.

Для его осуществления необходимо осуществить следующую последовательность:

  1. Взять одну сырую картофелину и разрезать ее на две части.
  2. Зачистить концы двух проводников и воткнуть их в одну из частей картофелины.
  3. Подождать около 10 минут, после чего вытащить оба провода.
  4. Осмотреть картофелину: в месте, где образовался зеленоватый след, был воткнут фазный проводник.

Другие способы определения

Существует еще несколько альтернативных методик определения фазы и нуля, они редко используются и зачастую подвергаются критике со стороны квалифицированных специалистов. Связано это по большей части с тем, что подобные способы являются более опасными, поэтому проводить их необходимо с максимальной степенью осторожности.

Один их таких методов определения требует задействования обычного компьютерного кулера, его можно применить на практике в тех случаях, когда известны параметры подаваемого напряжения, но неизвестно назначение проводников:

  1. Для реализации необходимо будет использовать красный и черный проводники, выходящие из вентилятора. Иногда в нем имеется и третий провод, который является датчиком оборотов, но он в процессе определения не пригодится.
  2. Красный проводник кулера является фазным, а черный соответствует нулю.
  3. Стандартные вентиляторы рассчитаны на 12 В, а функционировать начинают от 3В, поэтому они лучше всего подходят для проверки от соответствующих источников питания.
  4. Если напряжение превышает показатель 12 В, то потребуется резко прикоснуться проводниками к выводам кулера и посмотреть на реакцию лопастей. Если они остались без движения, то к красному проводнику был подключен нуль, если начали двигаться, то это была фаза.

Для другого способа определения нужна будет контрольная лампа, а его реализация потребует соблюдения следующего алгоритма действий:

  1. Первоначально надо собрать саму контрольную лампу, простейшее устройство будет выглядеть таким образом: вкрутить лампочку в патрон, в его клеммы закрепить проводники, с их концов снять изоляционный слой.
  2. Дальнейший процесс не представляет никакой сложности: тестируемые проводники поочередно соединяются с контактами лампы, во время процесса необходимо наблюдать за ее реакцией.

Среди более безопасных вариантов определения можно выделить следующие альтернативные методы:

  1. Проверка проводников через УЗО, поскольку известно, что при наличии потребителя, подключенного к электросети, замыкание нуля и земли способствует возникновению утечки электрического тока, что моментально отключает защитное устройство. Это поможет идентифицировать нулевой и заземляющий проводник, третий будет являться фазой.
  2. Взять предохранитель и захватить его плоскогубцами, рукоять инструмента при этом должна быть изолирована, чтобы избежать поражения электрическим током. Замкнуть на нем два проводника и проверить результат: если предохранитель сгорел, то это была фаза и земля; если уцелел, то земля и нуль либо фаза и нуль. Поставив несколько поочередных экспериментов с фиксацией результатов, можно будет точно идентифицировать каждый проводник.

Особенности определения фазы и нуля

В двухпроводной сети

Идентификация проводников в двухпроводной сети является гораздо более простой, поскольку осуществляется самым простым способом, для этого потребуется:

  1. Определить только фазу, поскольку известно, что второй проводник будет являться нулевым.
  2. Для определения фазы в двухпроводной сети идеально подходит индикаторная отвертка, подробный порядок действий был описан выше.

В трехпроводной сети

Немного сложнее ситуация обстоит с современными видами трехпроводных сетей, поскольку в них имеется еще и заземление.

Для определения назначения проводников необходимо придерживаться следующего алгоритма действий:

  1. Фаза определяется при помощи индикаторной отвертки методом, описанным выше. После этого рекомендуется нанести пометку при помощи маркера, чтобы в дальнейшем не перепутать провод.
  2. Для работы с нулем и землей потребуется задействовать мультиметр. Нулевой проводник также может обладать напряжением, что вызывается перекосом фаз, но его показатели никогда не превышают 30 В. Мультиметр нужно переключить в режим работы для измерения напряжения переменного тока, после чего один щуп подключается к фазе, а второй поочередно к оставшимся проводникам. Нуль будет там, где зафиксируется наименьший параметр напряжения.
  3. Иногда оба проводника обладают одинаковыми показателями напряжения. В таком случае, фазу необходимо изолировать, а мультиметр переключить в режим, предназначенный для определения уровня сопротивления. Также, потребуется подобрать внешний заземленный элемент и прикоснуться к нему один щупом прибора, а вторым по очереди к каждому из проверяемых проводников. В том случае, когда мультиметр покажет сопротивление 4Ом или меньше, подключение совершено к земле, если показатель выше, то это нуль.
  4. Однако, показатели сопротивления не являются точными, если нейтраль была подвержена заземлению еще внутри электрощита. Тогда потребуется обнаружить и отключить заземляющий элемент, который подключен к шине. После этого, взять контрольную лампу и поставить описанный ранее эксперимент по ее подключению. Ее загорание происходит только при подключении нулевого проводника.

Устройство бытовых электрических сетей

Поступление электроэнергии в любые жилые строения происходит через трансформаторные подстанции, которые изменяют поступающее высоковольтное напряжение, и на выходе оно уже имеет показатель равный 380 В.

Бытовые электросети современного образца выглядят и функционируют следующим образом:

  1. Трансформаторная обмотка на подстанции имеет особый вид соединения, который придает ей сходство со звездой. Три вывода подключаются к одной общей точке нуля, а другие три на соответствующие клеммы.
  2. Выводы, подключенные к нулю, соединяются и подключаются к заземлению трансформаторной подстанции.
  3. В этом же месте общий нуль разделяется на рабочий нуль и специальный защитный PE-проводник.
  4. Описанная система получила обозначение TN-S, но в старых домах до сих пор действует схема TN-C, которая отличается в первую очередь отсутствием защитного PE-проводника.
  5. Фаза и нуль, после вывода из трансформатора, протягиваются к жилым домам для подключения к вводному электрощиту. Здесь происходит создание трехфазной системы напряжения с показателями 320/220В.
  6. Далее разводка осуществляется по подъездным электрощитам, куда поступает напряжение с фазы 220В и защитный PE-проводник, если его наличие было предусмотрено.
  7. Нулем в квартирной электросети будет являться проводник, который имеет соединение с землей в схеме трансформаторной подстанции и предназначенный для создания необходимого уровня нагрузки от фазы, которая также имеет подсоединение к трансформаторной обмотке, но с противоположной стороны. Главной функцией защитного нуля является отвод токов повреждений, которые могут возникнуть при аварийной ситуации внутри сети.
  8. Происходит равномерное распределение нагрузки, это осуществляется благодаря наличию этажной разводки, а также подключению квартирных электрощитов к определенным линиям на 220 В внутри центрального распределителя в подъезде.
  9. Система, по которой осуществляется подведение напряжения к жилому дому, с точностью повторяет векторные характеристики трансформаторной подстанции и также обладает формой звезды.
  10. Сумма всех токов в трехфазной разновидности электросети складывается в соответствии с векторной графикой внутри нулевого проводника, после чего она возвращается на трансформаторную обмотку в подстанции.

Если внутри жилого помещения отключить все потребители электроэнергии и отключить их от рабочих розеток, то электрический ток внутри сети перестанет протекать даже при подведенном к электрощиту напряжении.

Описанная система устройства бытовой электросети является наиболее оптимальной из всех существующих на сегодняшний день, но и она не застрахована от возможных неисправностей. В большинстве случаев они связаны с нарушением соединений контактов либо обрывом проводников.

Статья была полезна?

0,00 (оценок: 0)

Как определить фазу и ноль индикатором-пробником. Цвета фазного провода

Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют Ноль. Оставшиеся три свободных конца обмоток называются Фазами.

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Таблица цветовой маркировки проводов до и после 2011 года

В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.

Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.

Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Светодиодный индикатор-пробник

Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.

Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.

Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!

Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.

Как самому сделать индикатор-пробник


для поиска фазы и ноля на неоновой лампочке

При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.

Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.

Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.

Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.

При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.

Почему индикатор светится


при прикосновении к нулевому проводу

Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.

Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты, установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.

При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя, телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.

Как найти фазу и ноль с помощью контрольки электрика

Контролька электрика на лампочке накаливания

Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.

Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.

Контролька электрика на светодиоде

Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.

Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.

Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.

Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.

Поиск фазы при наличии нулевого и заземляющего проводников

Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.

Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.

Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.

Поиск фазы и нуля контролькой

Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.

Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.

Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.

В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.

Поиск фазы и ноля вольтметром или мультиметром

Нахождение фазы вольтметром или мультиметром проводится так же способом, как и контролькой электрика, только вместо концов контрольки подключается щупы прибора.

Для определения нуля в трехфазной сети с помощью тестера или мультиметра достаточно измерять напряжение между проводами, которое между фазами будет равно 380 В, а между нулем и любой из фаз – 220 В. То есть провод, относительно которого вольтметр будет на остальных трех показывать 220 В и есть нулевой.

Поиск фазы и ноля с помощью картошки

Если у Вас под рукой не оказалось технических средств для поиска фазы, то можно с успехом воспользоваться экзотическим или народным, иначе не назовешь, способом определения фазы, посредством картошки. Не подумайте, что это шутка. Для кого-то это может быть единственно доступный метод, который можно с успехом применить на практике.

Конец одного проводника нужно подсоединить к водопроводной трубе (если она не пластиковая) или батарее отопления. Если труба окрашена, то нужно место присоединения зачистить до металла, чтобы обеспечить электрический контакт. Противоположный его конец воткнуть в срез картошки. Другой проводник тоже втыкается одним концом на максимальном расстоянии от предыдущего в картошку, вторым концом через резистор номиналом не менее 1 Мом по очереди прикасаются к проводам электропроводки. Некоторое время нужно подождать. Если на срезе картошки реакции нет, это ноль, если есть – фаза. Я не рекомендую пользоваться этим методом, если не знаете правил безопасности работы с электрическими установками.

Как видите, на фото вокруг проводов при подсоединении к фазному проводу электропроводки на поверхности среза картошки произошли изменения. При прикосновении к нулевому проводу реакции не последует.


Андрей 19.09.2012

Здравствуйте, я в хрущевке полностью поменял проводку, протянул трехжильный кабель ВВГ 3×2,5. Можно ли на этажном распределительном щитке закрепить к корпусу желтый провод заземления? Электрик с ЖЭУ сказал сделать именно так.

Александр

В квартирах хрушевок и сталинок обычно так и делают, электрик сказал правильно.

Как определить фазу и ноль мультиметром, индикаторной отверткой и без приборов

Проведение ремонтных работ в любом помещении, важным моментом является оснащение этого помещения электричеством. Помимо электропроводки, не стоит забывать о необходимости установки розеток и выключателей, при помощи которых будет происходить регулирование освещения. Тут достаточно важным моментом будет найти фазу, ноль и заземляющего проводника системы.

Для профессиональных монтажников данная задача является очень простой, чего не скажешь о простых обывателях, которые далеко не всегда могут справиться с подобной задачей. Тем не менее, поиск фазы и нуля является процессом не настолько сложным, как может показаться изначально, при этом включает в себя несколько способов определения.

Следует понимать, что проводка в квартире обычно имеет напряжение в 220В, поскольку она предусматривает подключение к нулевому проводнику и к одной из фаз. При этом обязательным является заземление, что делает электрификацию помещения безопасной для обитателей.

Что такое фаза и ноль в электричестве для новичка

Чтобы уловить принцип нахождения фазы и нуля в сети, следует для начала определить для себя, что означают данные термины, которые для простого обывателя могут звучать как совершенно непонятные понятия. Любая система, независимо от ее протяженности, состоит из трех фаз, причем касается также и низковольтных линей, задачей которых является питание жилых домов.

Между двумя любыми фазами возникает линейное напряжение, составляющее 380В. Однако напряжение бытовой сети составляет 220В, главной задачей является появление требуемого для сети напряжения. Для этой цели в любой сети присутствует нулевой провод, которой в сочетании с любой фазой образует разность потенциалов в 200В, которая и будет представлять собой фазное напряжение.

Нулем в электрической цепи называется проводник, который соединяется с контуром земли и используется для создания нагрузки от фазы. Фаза эта подключена к противоположному концу обмотки на ТП. Таким образом, в стандартной розетке, для наглядности, один вход принимается за фазу, а второй за ноль.

Если говорить более простым языком, то фаза представляет собой провод, по которому поступает ток. По нулевому проводу ток возвращается обратно к источнику. В зависимости от количества фаз, система имеет несколько проводов. Допустим, в трехфазовой цепи имеются три фазовых провода и один обратный, нулевой.

Цветовое обозначение. Не редко многих интересует вопрос, какого цвета провода фаза ноль земля, как определить, где какой провод, часто предоставляется возможным при помощи используемых в электрике цветовых разграничений. Однако сработает данный метод только в случае, если проводка действительно выполнена по всем правилам. Изоляция нулевого провода обычно обозначается синим или голубым цветом, земля сочетает в себе сразу две окраски – зеленую и желтую. Провод фазы по правилам обозначается в коричневый, белый или черный цвет.

Обозначение фазы и нуля буквы. Помимо цветовых обозначений, возможной является также буквенная маркировка проводов. Фаза обычно обозначается латинской буквой “L” а нулевой провод принято маркировать буквой “N”. Кроме того, свое обозначение имеет и заземление, обозначать которое принято буквой “G”.

Как определить фазу и ноль индикаторной отверткой

Для нахождение фазы и нуля в сети можно использовать различные инструменты. Наиболее удачным изобретением в помощь начинающим электрикам считается индикаторная отвертка, имеющая специальные чувствительные элементы и индикатор-отражатель.

Осуществлять проверку фазу и нуля в сети при помощи отвертки проще простого. Отвертку следует зажать между большим и средним пальцем. Касаться неизолированной части жала отвертки не разрешается. Палец указательный следует поставить на металлический круглый выступ в конце рукоятки.

Далее жало прикладывают к оголенным концам проводов. В том случае, если произошло касание с фазным проводником, в отвертке загорается соответствующий светодиод.

Определить принцип действия индикаторной отвертки нетрудно, внутри нее расположена специальная лампа, а также резистор, представляющий собой сопротивление. Лампа загорается, если замыкается цепь. Благодаря сопротивлению, можно не бояться поражения током во время проверки, поскольку оно снимает его значение до минимального показателя.

Как узнать где фаза а где ноль в розетке индикаторным пробником видео

Найти ноль такой отверткой, соответственно, не получится. Кроме того, подобный способ нередко дает сбой из-за не слишком хорошей чувствительности. В итоге индикаторная отвертка, реагируя на наводки, может выдать напряжение там, где его совершенно нет.

Как определить фазу и ноль мультиметром

Помимо применения индикаторной отвертки, возможным является использование мультиметра, который также позволит узнать где фаза а где ноль в сети. Обязательным условием для его использования является предварительная зачистка проводов.

На приборе перед использованием требуется установить значение предела измерения переменного тока, величина которого должна превышать 220В. Ориентироваться также следует по маркировке гнезд, куда включены щупы прибора. Для данного типа проверки потребуется щуп, включенный в гнездо с маркировкой «V».

Сама проверка заключается в прикосновении щупа к одному из проводов, следя при этом за показаниями прибора. Если мультиметр идентифицирует какое либо напряжение, то данный провод является фазным. Если другой провод покажет нулевое значение, то это, соответственно, нулевой провод.

Прибор для работы может использоваться любого типа – стрелочный или с цифровым индикатором. В любом случае, важным моментом будет соблюдение мер безопасности, а также правильная индикация прибором показаний с проводов. Точность этого прибора обычно выше индикаторной отвертки.

Главным правилом при использовании мультиметра является запрет на одновременное касание фазы и заземляющего контура. Такая халатность может привести к короткому замыканию и, как следствие, к травматическим ожогам.

Как определить фазу и ноль без приборов

Несмотря на столь широкое распространение приборных способов определения фазы и нуля в сети, далеко не всегда под рукой может оказаться нужное устройство, которое позволит сделать верное заключение. При этом неправильное выявление проводов в сети «на глаз» может привести к достаточно опасным последствиям.

Первый метод, позволяющий справиться с данной задачей, был описан в одном из разделов выше. Заключается он в нахождении проводов, в зависимости от цвета их изоляции, а также от маркировки. Однако это окажется верным только в том случае, если проводка была выполнена по всем правилам.

Второй способ определить их – это сделать так называемую контрольную лампочку, применяя при этом подручные средства. Для этого потребуется простая лампа накаливания и два отрезка провода, длиной примерно 50 сантиметров. Жилы проводов следует присоединить к лампочке, при этом вторым концом одного из проводов следует прикоснуться к трубам отопления (зачищенным), а вторым прикоснуться к «прозваниваемым» проводам. Тот провод, при прикосновении к которому загорается лампочка, является фазным.

Определение фазы без индикатора и прибора видео

Стоит обратить внимание, что описанный способ является очень опасным и может привести к поражению током во время его использования. Ни в коем случае не рекомендуется применять его в случае наличия предельного напряжения в сети, а также нельзя касаться оголенных проводов.

Альтернативной лампочки накаливания может стать лампочка неоновая, которая позволит найти полярность системы.

В заключении следует отметить, что ответ на вопрос: как определить фазу и ноль имеет несколько решений. А именно: индикаторной отверткой, мультиметром, а также можно без приборов. Все зависит от возможностей и наличия приборов под рукой. Обязательным является соблюдение всех мер безопасности при работе с электричеством.

Как работает фазовый автофокус

Когда дело доходит до технологии DSLR, кажется, есть некоторая путаница в том, как именно работает фазовый автофокус. Хотя для большинства людей это может быть не очень интересной темой, если вам интересно, как и почему у камеры может быть проблема с автофокусом, эта статья прольет свет на то, что происходит внутри камеры с точки зрения автофокуса, когда делается снимок. . Существует огромное количество отрицательных отзывов о проблемах с автофокусировкой на таких точных инструментах, как Canon 5D Mark III, Nikon D800, Pentax K-5 и других цифровых зеркальных фотоаппаратах, и похоже, что большинство фотографов, похоже, не понимают, что основная проблема не обязательно с определенной моделью или типом камеры, а скорее с определенным способом фокусировки этих камер.Если вы поищете в Интернете, вы найдете тысячи отчетов об автофокусировке по всем видам зеркальных фотокамер, возраст которых насчитывает более 10 лет. Следовательно, проблемы с передним и задним фокусом, которые мы видим в современных камерах, не являются чем-то новым — они существуют с тех пор, как была создана первая зеркальная фотокамера с датчиком фазового обнаружения.

Как работают камеры DSLR

Чтобы разобраться в этой проблеме более подробно, важно сначала узнать, как работает камера DSLR. На типичных иллюстрациях DSLR показано только одно зеркальное зеркало, расположенное под углом 45 градусов.Чего они не показывают, так это того, что за зеркалом есть вторичное зеркало, которое отражает часть света в датчик фазового детектирования. Взгляните на упрощенную иллюстрацию ниже, которую я сделал из образца изображения Nikon D800:

Вот описание каждого числа, показанного на иллюстрации выше:

  1. Луч света
  2. Основное / отражающее зеркало
  3. Вторичное Зеркало, также известное как «дополнительное зеркало»
  4. Затвор камеры и датчик изображения
  5. Эксцентриковый штифт (1.5 мм шестигранник) для регулировки главного зеркала
  6. Эксцентриковый штифт (шестигранник 1,5 мм) для регулировки вторичного зеркала
  7. Датчик определения фазы (датчик автофокуса)
  8. Пентапризма
  9. Видоискатель

Давайте посмотрим, что происходит внутри камеры когда сделан снимок. Лучи света попадают в объектив (1) и попадают в камеру. Частично прозрачное главное зеркало (2) расположено под углом 45 градусов, поэтому оно отражает большую часть света вертикально в пентапризму (8).Пентапризма волшебным образом преобразует вертикальный свет обратно в горизонтальный и переворачивает его, так что вы видите именно то, что получаете, когда смотрите в видоискатель (9). Небольшая часть света проходит через главное зеркало и отражается вторичным зеркалом (3), которое также наклонено под углом (54 градуса на многих современных камерах Nikon, как показано выше). Затем свет достигает датчика фазового обнаружения / автофокусировки (7), который перенаправляет его на группу датчиков (два датчика на точку автофокусировки). Затем камера анализирует и сравнивает изображения с этих датчиков (аналогично тому, как оценивается фокусировка на дальномере), и, если они не выглядят одинаково, дает команду объективу произвести правильную настройку (подробнее см. Ниже).

Хотя описанный выше процесс выглядит более или менее простым, у этого подхода есть одна серьезная проблема. Датчик фазового определения — это датчик, который дает команду объективу выполнить правильную настройку, в то время как изображение захватывается совершенно другим устройством — датчиком на задней панели камеры. Почему это проблема? Помните, что когда вы делаете снимок, оба зеркала заднего вида поднимаются, затвор открывается, и свет от объектива попадает прямо на датчик камеры (4).Для правильной работы фазового автофокуса расстояние между креплением объектива и датчиком камеры, а также расстояние между креплением объектива и датчиком фазового определения должно быть идентичным . Если есть даже небольшое отклонение, автофокус будет некорректным. Вдобавок ко всему, если угол вторичного зеркала не совсем такой, каким должен быть, это также приведет к проблемам с автофокусировкой.

Как работает датчик фазового детектирования

Как я уже сказал выше, система фазового детектирования работает так же, как и дальномерные камеры.Свет, который отражается от вторичного зеркала, принимается двумя или более небольшими датчиками изображения (в зависимости от того, сколько точек фокусировки имеет система автофокусировки) с микролинзами над ними. Для каждой точки фокусировки, которую вы видите в видоискателе, есть два крошечных датчика разности фаз — по одному для каждой стороны объектива, как показано на иллюстрации вверху страницы (7) (на рисунке это поведение преувеличено, т.к. показаны два отдельных световых луча, достигающих двух отдельных датчиков.

На самом деле, на современном устройстве обнаружения фаз гораздо больше датчиков, чем два, и эти датчики расположены очень близко друг к другу).Когда свет достигает этих двух датчиков, если объект находится в фокусе, световые лучи с крайних сторон линзы сходятся прямо в центре каждого датчика (как на датчике изображения). На обоих датчиках будут одинаковые изображения, указывающие на то, что объект действительно в идеальном фокусе. Если объект находится не в фокусе, свет больше не будет сходиться и попадет в разные стороны датчика, как показано ниже (изображение любезно предоставлено Википедией):

На рисунках 1–4 представлены условия, при которых объектив сфокусирован (1 ) слишком близко, (2) правильно, (3) слишком далеко и (4) слишком далеко.Из графиков видно, что разность фаз между двумя профилями может использоваться, чтобы определить не только в каком направлении, но и на сколько нужно изменить фокус для достижения оптимальной фокусировки. Обратите внимание, что на самом деле вместо сенсора движется объектив.

Поскольку система фазового детектирования знает, находится ли объект в фокусе спереди или сзади, она может отправлять точные инструкции на объектив камеры о том, в какую сторону и на сколько повернуть фокус. Вот что происходит, когда камера фокусируется на объекте (операция автофокусировки с обратной связью):

  1. Свет, проходящий через крайние стороны объектива, оценивается двумя датчиками изображения
  2. В зависимости от того, как свет достигает изображения датчиков, система автофокусировки может определить, находится ли объект в фокусе спереди или сзади, и по тому, насколько
  3. Система автофокусировки затем дает команду объективу отрегулировать фокус.
  4. Вышеупомянутое повторяется столько раз, сколько необходимо, до тех пор, пока не будет достигнута идеальная фокусировка.Если фокусировка не может быть достигнута, объектив сбрасывается и начинает повторно фокусироваться, что приводит к «поиску» фокусировки.
  5. После достижения идеальной фокусировки система автофокусировки отправляет подтверждение того, что объект находится в фокусе (зеленая точка внутри видоискателя, звуковой сигнал и т. д.)

Все это происходит за доли времени, поэтому система определения фазы работает намного быстрее, чем система определения контраста (которая полагается на изменение фокуса вперед и назад до тех пор, пока фокус не будет достигнут, с большим количеством изображений). анализ данных происходит на уровне датчика изображения).

Система фазового детектирования / автофокуса — очень сложная система, в которой практически каждый раз улучшается, когда обновляется линейка камер более высокого класса. С годами количество точек автофокусировки увеличивалось, а также количество более надежных точек автофокусировки перекрестного типа. Например, Canon 1D X и Canon 5D Mark III имеют колоссальную 61 точку фокусировки, 41 из которых перекрестного типа. Взгляните на эту сложную матрицу датчиков автофокусировки на камере:

Увеличено не только количество точек автофокусировки, но и их надежность.Большинство современных профессиональных фотоаппаратов сегодня поставляются с чрезвычайно быстрыми и легко настраиваемыми системами автофокусировки, которые могут непрерывно отслеживать объекты и фокусироваться.

Проблемы с автофокусом DSLR

Как вы можете видеть выше, система автофокусировки с определением фазы очень сложна и требует высокой точности для получения точных результатов. Что наиболее важно, система фазового обнаружения / автофокусировки должна быть правильно установлена ​​и выровнена в процессе производства. Если есть даже небольшое отклонение, которое случается довольно часто при производстве, автофокус отключится.Это основная причина, по которой фазовое обнаружение было источником проблем в значительной степени с тех пор, как появилась первая зеркальная фотокамера с датчиком фазового обнаружения. Понимая эти возможные отклонения, все производители цифровых зеркальных фотоаппаратов разработали систему высокоточной калибровки, которая учитывает это и позволяет проводить индивидуальную калибровку камеры в процессе проверки и обеспечения качества (QA).

Если обнаружена проблема выравнивания датчика с определением фазы, система выполняет автоматическое компьютеризированное тестирование, которое проходит через каждую точку фокусировки и вручную настраивает ее в камере.Отклоненные точки повторно калибруются и настраиваются, затем значения компенсации записываются в прошивку камеры. Думайте об этом как о процессе, аналогичном процессу точной настройки AF / Micro Adjust, который происходит на уровне определения фазы, за исключением того, что он выполняется для каждой точки фокусировки AF отдельно.

Основы работы с камерой # 11: АФ с определением фазы

Фазовый АФ (также известный как АФ с определением разности фаз или АФ с определением разности фаз) — это система автофокусировки, используемая при съемке с использованием видоискателя на цифровых зеркальных фотокамерах.Его главная особенность — высокая скорость автофокусировки. Далее мы расскажем больше о фазовой автофокусировке и о том, как двухпиксельная CMOS-автофокусировка Canon использует новейшую технологию автофокусировки для включения фазовой автофокусировки даже в режиме Live View. (Сообщил Томоко Судзуки)

Фазовый автофокусировка — это система автофокусировки, используемая при съемке с использованием видоискателя на цифровых зеркальных фотокамерах

Для заметок

— Быстрая скорость автофокусировки.
— Требуется зеркальный механизм, разделяющий свет, попадающий в объектив, а также отдельный датчик автофокусировки.

Фазовый автофокусировка — это система автофокусировки, используемая при съемке с использованием видоискателя на цифровых зеркальных камерах. Он работает, разделяя свет, попадающий в линзу, на две части, так что формируются два изображения. Основываясь на разнице в положении точки фокусировки между этими двумя изображениями, камера вычисляет необходимое направление (в сторону камеры или от камеры) и величину (расстояние) для перемещения объектива для достижения фокусировки и перемещается. объектив соответственно.

Фазовый автофокус позволяет быстро установить автофокусировку, поскольку камера точно знает, на сколько и в каком направлении нужно переместить фокусирующую линзу.Однако для этой формы автофокусировки требуется специальный датчик автофокусировки вместе с механизмом, разделяющим свет между датчиком автофокусировки и датчиком изображения, который преобразует свет, попадающий в объектив, в изображение. Это затрудняет создание компактного корпуса камеры.

Фазовый автофокус может быстро фокусироваться, поскольку знает расстояние и направление от объекта

Пример фазового автофокуса

Пример контрастного АФ

Чтобы лучше понять, представим ситуацию, когда вам нужно разрезать арбуз.Фазовая автофокусировка похожа на попытку добраться до арбуза без повязки на глаза. Вы уже знаете расстояние и направление до арбуза, и это знание позволит вам быстро перейти к нему.

Между тем, контрастный AF был бы похож на попытку добраться до арбуза с завязанными глазами. Поскольку вы не можете узнать расстояние и направление до арбуза, вам нужно передвигаться, чтобы попытаться определить его местонахождение. Вот почему контрастный автофокус требует больше времени для достижения фокусировки на объекте по сравнению с фазовым автофокусом.

Связанная концепция 1: линейный датчик и датчик перекрестного типа

Схема расположения линейного и крестового датчиков

Датчик крестового типа с высокой точностью автофокусировки
A: обнаруживает горизонтальную линию объекта
B: обнаруживает вертикальную линию объекта

На датчике автофокусировки цифровой зеркальной камеры есть два типа датчиков: линейный датчик и датчик крестового типа. Линейные датчики ориентированы либо вертикально, либо горизонтально, следовательно, они могут обнаруживать только горизонтальную или вертикальную линию объекта.Однако датчики крестового типа, которые состоят из линейных датчиков, расположенных крест-накрест, способны обнаруживать как вертикальные, так и горизонтальные линии объекта, и, как следствие, имеют более высокую точность в достижении фокусировки.

Камеры начального уровня, такие как EOS 1300D, обычно имеют только одну точку автофокусировки крестового типа, расположенную в центре. Однако более новые модели камер, такие как EOS 77D и EOS 800D, оснащены датчиками крестового типа для всех 45 точек автофокусировки. Этот дизайн подходит даже для опытных пользователей, которые хотят иметь возможность организовать свою композицию таким образом, чтобы их объект можно было разместить в любом месте кадра.Благодаря большему количеству датчиков крестового типа фокусировка может быть достигнута быстро, даже если объект находится по краям кадра.

Связанная концепция 2: Dual Pixel CMOS AF

На камерах, оснащенных Dual Pixel CMOS AF, фазовый автофокус можно использовать в режиме Live View в широкой области, отмеченной красным, без использования отдельного датчика автофокусировки. Быстрая и точная фокусировка может быть достигнута даже на движущихся объектах.

Dual Pixel CMOS AF — это новейшая система автофокусировки, разработанная Canon.Он позволяет использовать фазовый автофокус в режиме Live View и при видеосъемке, тогда как его можно было использовать только при съемке с использованием видоискателя на предыдущих зеркалках. Поскольку все пиксели на датчике изображения Dual Pixel CMOS AF оснащены датчиками определения фазы, для него не требуется отдельный датчик AF, поэтому он может быть реализован в беззеркальных камерах, таких как серия EOS M. Наряду с плавной и быстрой фокусировкой он может легко фокусироваться даже на движущихся объектах.

В следующем ролике показано, как Dual Pixel CMOS AF помогает при видеосъемке — некоторые моменты применимы и к фотографии!

Получайте последние новости о фотографии, советы и рекомендации, подписавшись на нас!

Что такое фазовый автофокус? (И почему это важно)

Камеры обманчиво просты на первый взгляд.Возьмите свою зеркалку, посмотрите в видоискатель, зафиксируйте фокус и снимайте.

Конечно, за этим стоит гораздо больше, в том числе процесс, называемый «автофокусировка с определением фазы». Эта фраза часто встречается в мире зеркальных и беззеркальных камер. Но что это на самом деле означает?

Прочтите, чтобы узнать больше о том, как работает автофокусировка с определением фазы.

© Тамара Кедвес

[ Примечание: ExpertPhotography поддерживается читателями. Ссылки на продукты на ExpertPhotography являются реферальными.Если вы воспользуетесь одним из них и что-то купите, мы заработаем немного денег. Нужна дополнительная информация? Посмотрите, как это все работает. ]

Что такое автофокус?

Начнем с основ. Есть два типа фокусировки: автоматический и ручной.

Ручная фокусировка — это когда пользователь должен управлять фокусировкой, поворачивая кольцо фокусировки влево или вправо для достижения фокусировки. В новых камерах у нас часто есть так называемая функция пика фокуса, помогающая в этой процедуре.

Автофокус — это когда камера делает все за вас.Он использует компьютер для запуска миниатюрного мотора, который вращает кольцо фокусировки.

У вас даже есть возможность переключать AF-MF вперед и назад на вашем объективе или в камере. Если вы нажмете кнопку спуска затвора наполовину, вы активируете автофокусировку. После этого вы можете использовать кольцо ручной фокусировки для точной настройки фокуса.

Это кольцо фокусировки перемещает внутренний компонент объектива внутрь и наружу. Это действие повторяется до тех пор, пока не будет проецироваться самое резкое изображение объекта. Но давайте разберемся с этим более подробно.

Все цифровые фотоаппараты имеют гистограмму. Они говорят вам об экспозиции того, что вы фотографируете. Гистограмма показывает вам, насколько равномерно экспонируется ваша фотография после того, как вы ее сделали.

Автофокусировка с обнаружением контраста работает, оценивая эту гистограмму (которая связывается с датчиком). Затем камера постепенно перемещает объектив. Он продолжает переоценивать, есть ли более или менее контраст с тем, что вы снимаете.

Если камера обнаруживает увеличение контрастности, она перемещает объектив в этом направлении с более высокой контрастностью, пока не достигнет своего полного потенциала.Если контраст уменьшается, камера перемещает объектив в другом направлении.

Этот процесс повторяется снова и снова, пока не появится высокий контраст. Обнаружение контраста помогает получить хорошо сфокусированное изображение с высокой контрастностью.

С автофокусом с определением фазы подумайте немного о луне и ее различных фазах. Для камеры, когда определенная точка оказывается в идеальном фокусе, есть световых лучей .

Фотография, находящаяся в фокусе, будет иметь световые лучи, которые будут отбрасывать свет на противоположные стороны линзы.Именно тогда появляется термин «в фазе», например, как работают фазы луны.

Камера может определить, когда фокус не достигается, потому что противоположная сторона больше не освещается (это называется не в фазе). Это происходит, когда линза неправильно фокусируется на точке. Он может быть перед ним или позади него.

Как понять фазовый автофокус

Внутри камеры находится призм . Для определения фазы изображение, которое вы видите, попадает в призму, а затем разделяется на два изображения.Если эти изображения совпадают, ваш объект находится в фокусе. Если они не совпадают, значит, ваш объект не в фокусе.

Частично причина того, что зеркальные камеры такие тяжелые, заключается в том, что в них есть настоящая призма. Это разделяет изображение на датчик фокусировки.

Итак, как в этом случае получить что-то в фокусе? Это очень похоже на игру в угадывание, не так ли? На самом деле камеры умнее этого.

Датчик внутри камеры знает, какое разделенное изображение является каким.Таким образом, он может связываться с камерой и сообщать ей, в каком направлении следует перемещать фокус, чтобы изображения совпадали.

Давайте сделаем его более продвинутым.

Помните, как мы упоминали выше световые лучи? Световые лучи проходят через линзу, и этот свет обнаруживается датчиком автофокусировки. Затем система автофокусировки может определить, фокусируется ли объект спереди или сзади. Камера получает прямую информацию о том, как следует повернуть кольцо фокусировки, чтобы зафиксировать объект.

Беззеркальные камеры меньше и легче, потому что они достигают того же результата, делая это на датчике.

После совмещения изображений система отправляет подтверждающее сообщение о том, что объект находится в фокусе. И вся эта сложность происходит за доли секунды!

Система фазового автофокуса

отлично подходит для съемки движения, потому что она невероятно быстрая.

Итак, если вы когда-либо участвовали в игре о покупке, вы наверняка слышали о точках определения фазы.Цифровая камера имеет определенное количество этих точек. Есть много точек датчика автофокусировки, где можно сравнить разделенное изображение. Чем их больше, тем точнее будет фокус.

Беззеркальная камера Sony A7 III лидирует в этом отношении с 693 точками, которые покрывают 93% площади изображения. Это означает, что у нее гораздо больше шансов правильно сфокусироваться, чем у камеры, у которой значительно меньше точек фокусировки.

Для чего используется фазовый автофокус?

Этот тип автофокусировки очень хорошо подходит для съемки в движении.Лучше всего он работает при использовании с отслеживанием изображения и режимами AI / AF Servo / Continuous Focus.

Некоторые новые техники фокусировки также были внедрены за последние пару лет. Например, система автофокуса Sony Eye AF создана специально для съемки животных. Он отслеживает глаза животного, чтобы найти фокус. Система автофокусировки с распознаванием лиц делает то же самое, но для человеческих лиц и довольно точна.

Обнаружение фазы работает и для других типов фотографии, таких как портреты и натюрморты.Но фотографы-активисты будут очень благодарны за включение этой системы.

Есть несколько других преимуществ автофокусировки с определением фазы. К ним относятся скорость и возможность сенсора оценивать глубину резкости изображения.

Вы также можете получить точное представление о глубине резкости еще до того, как сделаете снимок.

© Тамара Кедвес

Каковы недостатки фазового детектирования?

Это сложный процесс, требующий точности. Программное обеспечение для определения фазы должно быть правильно установлено и выровнено.В противном случае это может привести к отключению автофокусировки. Это вызывает проблемы с выравниванием датчика.

Как только камера обнаруживает эту проблему, она автоматически калибрует точки фокусировки. Вот почему так важно постоянно обновлять прошивку камеры.

Возможно, он не сможет сфокусироваться на малоконтрастных объектах так же точно, как в других режимах фокусировки. Также ему трудно сфокусироваться при слабом освещении.

Эти проблемы также относятся к автофокусировке с определением контраста. Но в целом такой способ фокусировки более точен, когда дело доходит до сложных световых ситуаций.При обнаружении контраста калибровка объектива не требуется.

Заключение

Понимание того, как работает автофокус с определением фазы, определенно пригодится. Вы можете избавиться от некоторых проблем с фокусировкой и знать, когда что-то не работает в вашей камере.

Попробуйте, экспериментируйте и наслаждайтесь преимуществами!

Вы когда-нибудь хотели иметь с собой все полезные советы по фотографии? Наши шпаргалки по быстрому захвату делают именно это.Посмотрите их здесь.

Хотите больше? Шпаргалки по нашим фотографиям

Эти шпаргалки — прекрасный визуальный инструмент, который поможет вам овладеть фотографией.

Они всегда под рукой… в телефоне или в сумке для фотоаппарата… и они были тщательно продуманы, чтобы вы могли понять все с первого взгляда.

Вы больше никогда не забудете ключевой совет по фотографии!

Что такое PDAF? Объяснение автофокусировки с определением фазы

Роберт Триггс / Android Authority

iPhone 12 Pro Max (L), Samsung Galaxy S21 Ultra (R)

Технология автофокуса является одним из ключевых столпов мобильной фотографии, обеспечивая четкие и чистые снимки даже самые быстро движущиеся объекты.Но знаете ли вы, что автофокус бывает разных типов, в зависимости от датчика внутри вашего смартфона или камеры? Сегодня мы собираемся погрузиться в фазовый автофокус (PDAF), один из наиболее распространенных типов автофокусировки.

Многие современные камеры смартфонов имеют автофокус с определением фазы. Это быстрее и точнее, чем классическое определение контраста. Обнаружение контраста — самый простой и дешевый вид автофокусировки, но также и самый медленный и наименее точный при съемке движущихся объектов.Так что же делает PDAF намного лучше?


Что такое PDAF и как он работает?

Как и все хорошие технологии камеры, PDAF уходит корнями в традиционные камеры и зеркальные фотокамеры. В зеркальных камерах зеркала отражают копии света основного датчика на специальном датчике определения фазы. Смартфоны не имеют одинакового пространства для размещения всех этих частей. Вместо этого мобильные датчики имеют специальные пиксели PDAF, встроенные в датчик изображения, подход, заимствованный у компактных камер.

Самый простой способ понять, как работает PDAF, — это начать с размышлений о свете, проходящем через объектив камеры с самых крайних краев. В идеальной фокусировке свет даже от этих крайних сторон объектива будет преломляться назад, чтобы встретиться в точной точке на датчике камеры. Эта точка фокусировки / встречи, установленная перед датчиком изображения или за ним, приводит к размытому изображению. Регулировка объектива для изменения этой точки фокусировки — это именно то, как работает фокусировка камеры.

Другими словами, мы можем определить, находится ли изображение в фокусе, потому что даже свет, исходящий из двух разных точек линзы, сходится в одной точке.В зеркальных фотокамерах и беззеркальных камерах с фазовой автофокусировкой используются два специальных датчика PDAF для получения отдельных изображений для сравнения. У компактных фотоаппаратов и смартфонов нет такой роскоши. Вместо этого эта двойная перспектива должна быть создана с помощью специальных фазовых фотодиодов на датчике изображения.

Связано: Компактная камера против перестрелки со смартфоном

Эти фотодиоды физически замаскированы, так что свет достигает их только с одной стороны объектива. Это создает пиксели левого и правого взгляда на одном датчике изображения, что дает нам два наших изображения для сравнения фокуса.Для определения точки фокусировки вычисляется разность фаз между двумя изображениями. Схема Samsung ниже предлагает интуитивно понятный взгляд на это, сравнивая эти левые / правые пиксели с нашими глазами.

Получая изображения со смещением влево и вправо, PDAF работает как человеческий глаз.

Если изображение не в фокусе, данные о разности фаз между изображениями используются для расчета того, как далеко нужно переместить объектив, чтобы сфокусировать его. Это то, что делает фокусировку PDAF такой быстрой по сравнению с обнаружением контраста.Однако, когда половина пикселя заблокирована, эти фотодиоды дают меньше света, чем обычный пиксель. Это может вызвать проблемы с фокусировкой при слабом освещении, когда традиционное определение контраста все еще часто используется в качестве гибридного решения. Кроме того, вертикальные полосы означают, что камеры могут иметь проблемы с фокусировкой на горизонтальных линиях, поэтому более совершенные датчики используют шаблоны перекрестного фокуса.

Как видите, нам не нужно использовать каждый пиксель камеры, чтобы определить фокус. Вместо этого подойдет несколько полосок пикселей на сенсоре.Обычно для автофокусировки зарезервировано от 5 до 10% пикселей сенсора. Однако некоторые современные датчики высокого класса с улучшенным PDAF позволяют использовать каждый пиксель для фокусировки, что делает их еще более быстрыми и точными.

См. Также: Лучшие телефоны с камерой, которые вы можете получить в 2021 году


PDAF за и против

По сравнению с традиционной контрастной автофокусировкой, фазовая автофокусировка работает быстрее и обычно более точна. Контрастный автофокус занимает много времени, потому что ему приходится сканировать весь диапазон фокусных точек, чтобы найти наиболее резкий фокус.По сути, это метод проб и ошибок. С PDAF разность фаз используется для почти немедленного расчета того, как далеко нужно переместить линзу, чтобы достичь фокусировки.

Фазовый АФ быстрее и точнее, чем традиционный контрастный АФ.

Однако PDAF на датчике имеет несколько недостатков по сравнению с PDAF DSLR. Природа небольших сенсоров смартфонов и даже меньших пикселей может создавать проблемы с шумом, что проблематично в условиях низкой освещенности. Даже фазовой автофокусировке может потребоваться несколько попыток для получения идеальной фокусировки в менее чем идеальных условиях.Хотя использование большего количества пар детекторов помогает ускорить процесс. В результате смартфоны иногда используют гибридный подход для устранения этого недостатка.

Автофокусировка с определением фазы — это незаменимая вещь для серьезного мобильного фотографа. К счастью, вы найдете эту технологию во всех смартфонах высокого и даже среднего уровня, выпущенных за последние несколько лет. Фактически, камеры смартфонов высокого класса теперь оснащены значительно улучшенной автофокусировкой Dual Pixel.

Далее: Что такое автофокусировка All Pixel?

фото видео | B&H Explora

0 Просмотры

Опубликовано 27.07.21,

В прошлом году Sony попробовала что-то новое, представив ZV-1.В этом году компания придерживается той же философии и переходит на беззеркалку с ZV-E10. ZV-E10 с набором функций, идеально подходящим для видеоблогеров, представляет собой камеру, которая выглядит знакомой в линейке с байонетом E, но имеет более специализированные возможности, заимствованные у ZV-1 и нацеленные непосредственно на создателей контента. ZV-1 взял хорошо зарекомендовавший себя форм-фактор Sony RX100 и качество изображения и немного изменил его, чтобы понравиться видеоблогерам. Sony улучшила запись звука, изменила корпус и дизайн экрана для облегчения записи на лицевой стороне и добавила множество специализированных режимов съемки.Компания применяет ту же формулу к беззеркальной камере с ZV-E10, которая, безусловно, похожа на другие камеры с байонетом E формата APS-C, но затем добавляет те же специальные возможности съемки и улучшения управления, которые впервые были замечены в ZV-1. Sony ZV-E10 ZV-E10 отличается от своего меньшего брата ZV-1 тем, что уделяет основное внимание качеству изображения и универсальности, поскольку это беззеркальная камера с широким диапазоном опций объективов. Что касается характеристик изображения, здесь представлен проверенный 24,2-мегапиксельный CMOS-датчик Exmor вместе с процессором изображения BIONZ X, который обеспечивает полезный баланс качества изображения и скорости.Этот сенсор формата APS-C примерно в 3 раза больше, чем 1-дюймовый сенсор в ZV-1, и примерно в 10 раз больше, чем размеры сенсора обычных смартфонов. Такой увеличенный размер значительно улучшает чувствительность, снижает шум, улучшает контроль глубины резкости и помогает для создания изображений с более плавными градациями цвета и более широким динамическим диапазоном. В сочетании с процессором BIONZ X датчик предлагает максимальную собственную чувствительность ISO 32000, которая подходит для использования при слабом освещении, а также это быстродействующая система с верхней скорость непрерывной съемки 11 кадров в секунду.Что касается видео, ZV-E10 предлагает запись UHD 4K с разрешением до 30p с полным считыванием пикселей и передискретизацией 6K. Также поддерживается запись в формате Full HD с разрешением 120p, а настройка гаммы S-Log3 доступна для улучшения динамического диапазона и управления цветокоррекцией во время пост-обработки. Кроме того, запись видео улучшается за счет активной электронной стабилизации изображения SteadyShot, которая помогает сгладить дрожание камеры, особенно при движении во время записи. Помимо качества изображения и скорости, усовершенствованная конструкция сенсора также обеспечивает сложную систему быстрой гибридной автофокусировки, которая использует массив из 425 точек для быстрой и точной работы автофокуса.Эта система фокусировки также обеспечивает автофокусировку по глазам в реальном времени и отслеживание объекта в реальном времени и поддерживает специальные режимы съемки, такие как автоэкспозиция с приоритетом лица и эффект мягкой кожи. Кроме того, другим ключевым преимуществом беззеркальной платформы является возможность работы с любым из десятков объективов с байонетом E; и Vario-Tessar T * E 16-70mm f / 4 ZA OSS и Sonnar T * E 24mm f / 1.8 ZA — особенно хороший выбор для видеоблога, представляя хороший баланс между скоростью, универсальностью и портативностью. Переходя к другим ключевым особенностям ZV-E10, одна выдающаяся особенность, унаследованная от ZV-1, — это внимание, уделяемое аудиозаписи.Признавая, что качество звука так же важно, как и качество изображения, Sony предоставила камере направленный трехкапсульный микрофон для более качественного и реалистичного звука с уклоном в сторону записи звука перед камерой. Этот модернизированный встроенный микрофон также оснащен дополнительным ветрозащитным экраном для более четкого звука в ветреную погоду. Для большего контроля над аудио верхняя мультиинтерфейсная колодка также поддерживает цифровой аудиоинтерфейс и совместима со специальными микрофонами от Sony, такими как ECM-W2BT.При необходимости есть порты для наушников 3,5 мм и для внешнего микрофона. Это правда, что ZV-E10 напоминает некоторые камеры Alpha, но его физические характеристики также были настроены для ведения видеоблога с включением сенсорного ЖК-дисплея с переменным углом наклона, который откидывается в сторону, чтобы не мешать микрофонам, установленным сверху. или быть закрытым какими-либо креплениями. Среди других тактильных деталей есть специальные кнопки для нескольких режимов съемки: режим S&Q, который позволяет мгновенно переключаться на замедленную или ускоренную запись, и режим расфокусировки фона, который помогает быстро достичь желаемой малой глубины резкости.Другие особенности съемки для видеоблогов включают настройку Product Showcase, которая быстро распознает объект крупным планом и плавно меняет фокус в соответствии с видеообзором продукта. Также имеется индикаторная лампа на передней панели, а на ЖК-дисплее может отображаться красная рамка, чтобы было легче узнать, когда идет запись. Наконец, ZV-E10 также является хорошим выбором для использования в качестве веб-камеры с поддержкой стандартов UVC и UAC и может напрямую подключаться к компьютеру или мобильному устройству, например XPERIA 1, для простого использования в прямом эфире.Поскольку видеоблог стал чрезвычайно популярным жанром для создания контента, ZV-E10 является идеальным выбором для удовлетворения уникальных потребностей этой ниши в видео и фото. По своей сути, эта камера представляет собой компактную портативную гибридную камеру, которая сочетает в себе ключевые возможности беззеркального корпуса с байонетом E и определенный набор атрибутов, предназначенных для видеоблогеров. Для получения дополнительной информации о том, как эта камера сочетается с другими вариантами в мире видеоблогов, ознакомьтесь с нашей сопутствующей статьей, в которой сравнивается ZV-E10 с ZV-1, a6400 и некоторыми дополнительными популярными вариантами от других производителей.Также присоединяйтесь к нам в прямом эфире B&H и Sony Tech Talk, запланированном на среду, 28 июля, с 11:00 до полудня: Что вы думаете о такой специализированной камере? Есть ли у вас опыт работы с другими камерами для видеоблогов? Какие отличительные особенности ZV-E10 вам нравятся больше всего? Сообщите нам свои мысли в разделе комментариев ниже.

0 Просмотры

Опубликовано 23.07.21,

Присоединяйтесь к Лизе Лэнгелл в полевых условиях, когда она фотографирует диких животных и делится своими советами по фотосъемке с лодки.Она дает советы по фотосъемке дикой природы, настройкам камеры, правильному оснащению камеры и многому другому! Вы когда-нибудь пробовали фотографировать птиц в дикой природе? Расскажите нам о своем опыте в разделе комментариев ниже!

0 Просмотры

Опубликовано 16.07.21,

Важно проявлять уважение, подходя к незнакомцам и фотографируя их. Фотограф-документалист и художник Sony Ира Блок делится своими советами по портретной фотографии, чтобы запечатлеть людей из разных культур с вежливостью и уважением.Что вы испытываете при съемке туристических портретов? Расскажите нам о них в разделе комментариев ниже.

0 Просмотры

Опубликовано: 21/09/9

Ищете творческие идеи для фотографии? Сюрреалистический фотограф Наталья Сет, также известная как Escaping Youth, делится своими творческими советами по портретной фотографии, которые помогут вывести ваши изображения на новый уровень. Есть ли у вас какие-нибудь советы относительно того, как вы делаете портреты? Расскажите нам о них в разделе комментариев ниже.

0 Просмотры

Опубликовано 02.07.21,

Пейзажный фотограф и мастер Sony Artisan Крис Буркард делится своими советами по съемке природы.Он обсуждает такие темы, как оборудование для камеры, композиция, настройки камеры и текстуры для фотосъемки. Буркард будет выступать на OPTIC 2021; обязательно загляните на его выступление и посмотрите другие интересные презентации. Поделитесь с нами своими советами по фотографированию природы в разделе комментариев ниже.

0 Просмотры

Опубликовано 28.06.21,

Откройте для себя стильную ретро-камеру Nikon Z fc с полным набором функций! Любители и поклонники Nikon наверняка знакомы с богатой историей компании, и трудно не воодушевиться, когда команда дизайнеров камеры создает совершенно новую цифровую камеру с внешним видом, напоминающим времена пленки Nikon. эпоху фотографии и линейку 35-мм фотоаппаратов, которые на протяжении десятилетий устанавливали стандарты фотографии.Хотя кажется, что он только что сошел с производственной линии Nikon FM2, новый Z fc представляет собой цифровую электростанцию ​​с DX-сенсором (APS-C) со всеми функциями и характеристиками, которые вы ожидаете от современной цифровой камеры. Nikon Z fc — новейший представитель линейки беззеркальных фотокамер Nikon Z со сменным объективом. Датчик APS-C Z fc имеет разрешение 20,9 МП и оснащен процессором Nikon EXPEED 6. Диапазон ISO составляет от 100 до 51200 единиц ISO с возможностью расширения до 204800 единиц при необходимости. Видеооператоры могут наслаждаться записью 4K со скоростью 30 кадров в секунду, используя полный сенсор, без кадрирования.Также доступны замедленное видео со скоростью 120 кадров в секунду в формате HD 1080p, а также покадровая съемка 4K продолжительностью до 8 часов. Z fc также предлагает 20 творческих режимов съемки для тех, кто хочет немного повеселиться и волшебство в своих снимках, а также режимы автофокусировки с обнаружением глаз человека и животных. Порт USB-C для зарядки и передачи данных Z FC позволяет снимать на привязи, подключать камеру к внешнему источнику питания и заряжать аккумулятор. Это позволяет снимать фото и видео намного дольше, чем заряд батареи, пока вы подключены к источнику питания.Кроме того, камера готова стать вашей следующей потрясающей веб-камерой с быстрой передачей данных USB-C и встроенным разъемом для микрофона. Последний раз, когда Nikon перешел в ретро-стиль, это было с камерой Nikon Df, которая все еще доступна, которая объединила полнокадровый сенсор и процессор D4 с ретро-дизайном — вплоть до не выделенного курсивом логотипа Nikon — приятный штрих и заметная особенность на сегодняшнем новом Z FC. На корпусе Z fc расположены отдельные диски для регулировки выдержки, ISO и компенсации экспозиции. Цифровая индикация показывает выбранные вами настройки, поэтому вы можете прочитать их все, прежде чем поднести камеру к глазу.В сочетании с ретро-дизайном Z fc датчик DX позволил корпусу оставаться маленьким и легко переносимым. При весе всего 14 унций камера оснащена 3-дюймовым ЖК-экраном с регулируемым углом наклона, который откидывается и смотрит вперед для видеоблога и развлечений. Электронный видоискатель OLED имеет тактовую частоту 2360K пикселей, а камера имеет полный набор функций Wi-Fi для передача файлов или возможность удаленного управления камерой. Вместе с Z fc выпускается соответствующая серебряная версия Nikon Z DX 16-50mm f / 3.Объектив 5-6.3 VR, самый маленький и легкий из доступных объективов с байонетом Z — весит всего 4,8 унции. Поле зрения, эквивалентное полнокадровому полнокадровому изображению, составляет 24–75 мм, что делает его идеальным универсальным объективом. Эта серебристая версия также доступна в комплекте с камерой. Еще одно дополнение к линейке DX с байонетом Z — это новый Nikon Z DX 18-140mm f / 3.5-6.3 VR — версия Z DX универсального зума. Обладая эквивалентным фокусным расстоянием 27–210 мм, позволяющим перейти от широкоугольного к телеобъективу, эта камера станет идеальным спутником в путешествии для Z fc и других камер системы DX Z.Также с Z fc доступен объектив Nikon Z 28mm f / 2.8 Special Edition, который не является объективом DX, подходит для полнокадровых камер Z и дает фотографам Z fc нормальное поле зрения 42-мм полнокадрового объектива. В Z fc Nikon привносит баланс функций и технологий в DX-сторону системы с байонетом Z с добавленным чутьем красивого ретро-дизайна. Что вы думаете о дизайне и функциях новой камеры? Дайте нам знать в комментариях ниже!

0 Просмотры

Опубликовано 28.06.21,

Когда дело доходит до широкоугольной фотографии, Canon только что выпустила новый универсальный широкоугольный зум для своей полнокадровой беззеркальной системы: RF 14-35mm f / 4L IS USM.По сравнению с более традиционными зумами 16-35 мм, этот объектив немного расширился для еще более широкого поля зрения, сохраняя при этом гладкий профиль, постоянную максимальную диафрагму f / 4 и желаемые оптические и физические качества дизайна. ожидайте от объектива L-серии. Объектив Canon RF 14-35mm f / 4L IS USM Этот зум — идеальный универсальный вариант для пейзажных, природных и архитектурных фотографов, охватывающий широкий диапазон фокусных расстояний для различных типов и размеров объектов. Постоянная максимальная диафрагма f / 4 также способствует этому диапазону и способствует уменьшению размера и легкости конструкции, которая уравновешивает производительность и портативность.Кроме того, этот объектив 14-35 мм, несколько уникальный среди сверхширокоугольных объективов, оснащен механизмом оптического стабилизатора изображения, который компенсирует дрожание камеры до 5,5 ступеней или до 7 ступеней в паре с камерами с функцией IBIS для получения сверхстабильных и четких изображений. при съемке с рук. В объективах серии L усовершенствованная оптическая конструкция является обязательной, а специальные элементы корректируют различные аберрации для обеспечения высокой резкости и точной цветопередачи. Были также применены покрытия как Sub-Wavelength (SWC), так и Air Sphere (ASC), которые уменьшают блики и ореолы, обеспечивая высокую контрастность и точность цветопередачи при работе при сильном освещении.Как и другие объективы RF серии L, этот зум включает в себя Nano USM для плавной, быстрой и бесшумной фокусировки, которая дополняет рабочие процессы видео и фото. Минимальное расстояние фокусировки всего 7,9 дюйма дает максимальное увеличение 0,38x, что также идеально для создания уникальных снимков крупным планом с увеличенной глубиной резкости. RF 14-35mm f / 4L IS USM также оснащен программируемым кольцом управления. в его основании для управления настройками, имеет пыле- и атмосферостойкую конструкцию и поставляется с подходящей блендой объектива EW-83P.Этот объектив входит в линейку объективов Canon RF как более компактный и легкий широкоугольный зум-объектив, чем впечатляющий RF 15-35mm f / 2.8L IS USM. Конечно, немного более старый объектив 15-35 мм имеет очевидное преимущество f / 2,8 по сравнению с f / 4, но новый объектив имеет немного более широкое фокусное расстояние 14 мм по сравнению с 15 мм. Что касается размеров и веса, то 14-35 мм f / 4 имеет размеры 3,3 x 3,9 дюйма и весит 1,2 фунта по сравнению с 15-35 мм f / 2,8, который имеет размеры 3,5 x 5 дюймов и вес 1,85 фунта. более гладкий профиль и немного более широкое поле зрения за счет потери только одной остановки скорости.Что вы думаете о новейшем широкоугольном зум-объективе Canon? Вы предпочитаете этот меньший и более широкий 14-35 мм f / 4? Или вы поклонник быстрого 15-35mm f / 2.8? Сообщите нам свои мысли в разделе комментариев ниже.

0 Просмотры

Опубликовано 25.06.21,

Джейк Эстес и Бобби Сансиверо тестируют восьмиугольный софтбокс Angler FastBox во время портретной фотосессии на открытом воздухе. Как следует из названия, этот софтбокс настраивается быстро и легко, защелкивается и фиксируется одним движением.Если вы портретный или свадебный фотограф, вам просто необходимо иметь восьмиугольный софтбокс Angler FastBox! Не могли бы вы добавить это в свой список фотографического оборудования? Поделитесь своими мыслями в разделе комментариев ниже.

0 Просмотры

Опубликовано 25.06.21,

Фотограф National Geographic Джим Ричардсон делится своими пятью советами по съемке мест и путешествий. Как можно лучше фотографировать из путешествий? О чем нужно помнить, когда вы выезжаете на место? Если вы хотите стать фотографом-путешественником, вам нужно знать, как снимать самые разные предметы, от пейзажа до портрета.Каковы ваши собственные советы по фотографии из путешествий? Поделитесь ими с нами в разделе комментариев ниже.

0 Просмотры

Опубликовано 15.06.21,

Когда ваша фотосессия будет завершена, самое время выбрать изображения и подготовить их к ретуши! Фотограф Питер Херли шаг за шагом выполняет свой рабочий процесс после съемки. Какие выводы вы сделали из этого видео? Как вы будете включать элементы процесса Питера в свой собственный? Свяжитесь с нами в комментариях ниже.Хотите узнать больше от Питера Херли? Посмотрите остальные эпизоды этой серии: Часть 1: Естественное и непрерывное освещение для снимков в голову Часть 2: Вспышки и вспышки для снимков в голову Часть 3: Направление и позирование для снимков в голову Часть 4: Оборудование камеры и настройки для снимков в голову

Условия обрыва фазы в электроэнергетических системах

На этой странице:

Краткое изложение технической проблемы

Системы атомных электростанций питаются от электроэнергии, подаваемой по трем линиям или «фазам» внешнего источника энергии.Если одна фаза потеряна или «разомкнута», двигатели и другие компоненты могут быть повреждены, а аварийные источники питания могут выйти из строя. NRC и атомные электростанции США работают над безопасным устранением «условий открытой фазы».

30 января 2012 г. блок 2 атомной электростанции Байрон-Стейшн в Иллинойсе благополучно остановился после события «открытой фазы». Остановка была вызвана несбалансированным электрическим напряжением, поступающим на станцию ​​из региональной электросети. Одна из трех фаз подключения к сети завода больше не работала.Однако установка не была спроектирована для автоматического отключения или «отключения» цепей, чтобы изолировать этот внешний источник питания и переключиться на аварийное резервное питание. Операторы завода диагностировали проблему за восемь минут и вручную заменили источники питания.

Это и другие подобные ему события побудили NRC и атомную энергетику оценить условия разомкнутой фазы. Потеря одной или двух фаз с заземлением или без него на первичной (высоковольтной) стороне трансформатора, подключенного к системе передачи, может вызвать несбалансированное напряжение на вторичной (низковольтной) стороне трансформатора, подключенного к оборудованию безопасности предприятия.Если условие не обнаружено, неисправную внешнюю линию электропитания нельзя отключить. Тогда оборудование, необходимое для безопасного останова завода, может не переключиться на другой работающий источник электроэнергии. Следовательно, у него может не хватить мощности для правильной работы. Такое состояние возможно на 98 из 99 действующих в США ядерных реакторов.

На каждой пострадавшей атомной электростанции в США приняты временные меры по снижению риска, связанного с обрывом фазы во время нормальной эксплуатации.Эти положения включают повышение осведомленности оператора диспетчерской и изменение процедур для обеспечения переключения станций на аварийные источники энергии в случае необходимости. Персонал СРН рассмотрел и согласился с временными мерами, а региональные инспекторы проверили меры.

Дополнительный опыт эксплуатации

Атомные электростанции США выявили связанные проблемы проектирования, такие как те, которые описаны в следующих отчетах о событиях:

  • Проект Южного Техаса, Блок 2 (Отчет о событии лицензиата (LER) 50 499 / 2001-001, ADAMS Accession No.ML011010017)

  • Электростанция Бивер-Вэлли, блок 1 (LER 50-334 / 2007-002, регистрационный номер ADAMS ML080280592)

  • Девять миль, блок 1 (LER 50-220 / 2005-04, регистрационный номер ADAMS ML060620519)

  • Электростанция Джеймса А. Фитцпатрика (LER 50-333 / 2005-06, регистрационный номер ADAMS ML060610079 )

Эти события касались внешних силовых цепей с одной разомкнутой фазой. В большинстве случаев это состояние оставалось незамеченным в течение нескольких недель, потому что внешнее питание оборудования безопасности электростанции не было подключено во время нормальной работы.Вместо этого это оборудование приводилось в действие собственным турбогенератором завода. Операторы по проверке межфазного напряжения не выявили потери одной фазы. В Южно-Техасском проекте, блок 2, внешнее электроснабжение обычно поставляло заводское оборудование, поэтому в условиях разомкнутой фазы отключились три циркуляционных водяных насоса. В результате операторы вручную остановили реактор.

Международный опыт работы в условиях открытой фазы включает:

  • декабря22 августа 2012 г. блок 1 на электростанции Брюс в Канаде был остановлен из-за отключения насоса системы технического охлаждения. Операторы пытались вручную запустить оба насоса, но не смогли запустить их из-за особенностей электрической системы. Операторы выявили обрыв одной из трех фаз воздушной линии электропередачи.

  • 30 мая 2013 г. компания Forsmark Unit 3 в Швеции сообщила о происшествии, вызванном человеческой ошибкой. Завод находился в перебоях с перегрузкой, несколько выключателей были открыты на техническое обслуживание.Когда операторы проверяли главный генератор, оставшийся внешний силовой выключатель получил ошибочный сигнал отключения. Одна из трех фаз не открылась, что привело к двойному открытию фазы. Некоторое рабочее оборудование отключилось из-за разбаланса фаз, а другое оборудование перегрелось и вышло из строя.

  • 27 апреля 2014 года на электростанции Dungeness B в Соединенном Королевстве произошло случайное отключение больших нагрузок в результате потери одной из трех фаз в электросети 400 кВ на объект.Обрыв фазы был результатом неправильного контакта в одном полюсе выключателя.

В событиях, описанных выше, устройство защитного электрического реле не обнаружило обрыв фазы. В результате вышедшие из строя источники энергии продолжали снабжать заводское оборудование, а дизельные генераторы на объекте не подключались автоматически для обеспечения необходимой мощности.

В результате этой проблемы Институт эксплуатации ядерной энергетики (INPO) выпустил отчет INPO уровня 2, который требовал корректирующих действий со стороны операторов станции.

Ответ NRC

NRC предупредил операторов реакторов об операционном событии на станции Байрон, выпустив Информационное уведомление 2012-03 «Уязвимость конструкции в электроэнергетической системе» от 1 марта 2012 г. (номер доступа ADAMS ML120480170). Затем, 27 июля 2012 года, сотрудники выпустили Бюллетень NRC 2012-01 «Уязвимость конструкции в электроэнергетической системе» (номер доступа ADAMS ML12074A115), чтобы подтвердить, что лицензиаты соблюдают соответствующие требования для электроэнергетических систем, такие как:

NRC запросил конкретную информацию о:
  1. Защитный подход для обнаружения и автоматического реагирования на однофазный разрыв цепи или замыкание на землю с высоким сопротивлением в силовых цепях, важных для безопасности.
  2. Рабочая конфигурация инженерных средств безопасности «Автобусы на мощности».

Персонал NRC задокументировал свой анализ ответов лицензиата в отчете от 26 февраля 2013 г. (номер доступа ADAMS ML13052A711). Персонал рекомендовал потребовать от лицензиатов обнаруживать однофазный разрыв цепи и автоматически реагировать на него. Персонал NRC также получил дополнительную информацию для поддержки принятия решений посредством общего запроса ко всем лицензиатам действующих реакторов (ADAMS Accession No.ML13351A314).

Институт ядерной энергии (NEI) от имени ядерной промышленности предложил систему изоляции открытой фазы, которая решит выявленную проблему. Персонал NRC отправил свой ответ, включая четыре функциональных критерия, которые должны быть достигнуты при внедрении предложенной системы, в NEI 25 ноября 2014 г. (номер доступа ADAMS ML14120A203). Кроме того, сотрудники NRC разработали Техническую позицию 8-9 филиала «Условия разомкнутой фазы в электроэнергетической системе», чтобы предоставить персоналу рекомендации по рассмотрению предлагаемых лицензиатами и заявителями решений этой проблемы.

Комиссия поручила персоналу SRM-SECY-16-0068 убедиться, что лицензиаты надлежащим образом реализовали добровольную отраслевую инициативу. Первоначально сотрудники выпустили временную инструкцию TI-2515/194 «Проверка выполнения лицензиатом отраслевой инициативы, связанной с уязвимостями конструкции с разомкнутой фазой в электроэнергетических системах» (номер доступа в ADAMS ML17137A416) для проверки реализации инициативы. на четырех пилотных заводах.

Некоторые операторы атомных электростанций внедряют постоянное решение этой проблемы либо посредством запросов на внесение поправок в лицензию для изменения схем защитной релейной защиты, либо путем установки систем изоляции разомкнутой фазы.Доработки и системы изоляции установлены на нескольких объектах. Некоторые из них уже обеспечивают активную функцию изоляции, а другие в настоящее время работают в режиме мониторинга, чтобы убедиться, что системы могут адекватно определять условия обрыва фазы до включения функций автоматического срабатывания.

20 февраля 2019 года NEI сообщила NRC, что опыт эксплуатации показал, что схема системы изоляции разомкнутой фазы может быть чувствительной к переходным процессам в электроустановке, возникающим в результате переключения выключателя.Таким образом, существовала вероятность ложного срабатывания, которое могло привести к непреднамеренной потере внешнего питания. Впоследствии NEI выпустила редакцию 3 для добровольной отраслевой инициативы и разработала руководящий документ (NEI 19-02), который позволяет лицензиатам использовать подход с учетом рисков, при котором система будет выдавать аварийный сигнал и индикацию состояния обрыва фазы в системе управления. комната. Затем операторы будут диагностировать тревогу и реагировать на нее, выполняя действия вручную, в отличие от автоматического срабатывания системы.

Персонал NRC выпустил Редакцию 1 и Редакцию 2 TI-2515/194 (инвентарные номера ADAMS ML19339D067 и ML20230A328, соответственно), чтобы предоставить дополнительные инструкции для проверки того, что предприятия, использующие ручные действия оператора вместо автоматических защитных функций, надлежащим образом реализуют этот параметр добровольной отраслевой инициативы. Эти проверки продолжаются и, как ожидается, будут завершены к концу 2021 года.

Последняя редакция / обновление страницы 14 апреля 2021 г.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *