+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как определить ноль и фазу индикаторной отверткой

В процессе выполнения электромонтажных работ каждый специалист сталкивается с необходимостью точного определения фазного и нулевого проводников сети. Если провода распределены в соответствии с цветом изоляции, то определить принадлежность каждого из них не будет сложной проблемой. Однако, так бывает далеко не всегда, особенно в старых сетях, и тогда приходится определять ноль и фазу индикаторной отверткой или другим способом. В этом нет ничего сложного, если знать общее устройство электрической сети и основные правила пользования указателями напряжения.

Особенности домашних электрических сетей
Практически во всех квартирах электричество подается через однофазную сеть, с напряжением 220 вольт и частотой 50 Гц. Общее питание к жилому дому подводится посредством мощной трехфазной линии, а потом электроэнергия коммутируется в распределительных щитах. Дальнейшее движение тока к потребителям осуществляется по однофазным линиям с фазным и нулевым проводами.

Распределение нагрузки на каждую фазу должно быть максимально равномерным, чтобы избежать перекосов в процессе эксплуатации. В современных домах дополнительно прокладывается контур защитного заземления. Таким образом, в электрической сети добавляется еще один провод, который в дальнейшем тоже придется идентифицировать при необходимости.

Во многих старых зданиях защитный заземляющий контур отсутствует, следовательно в сети имеется лишь фазный и нулевой провода. С целью повышения уровня электробезопасности при выполнении электромонтажных работ внутренние сети довольно часто подвергаются усовершенствованию и реконструкции путем добавления проводника РЕ.

В частном секторе нередко используются трехфазные линии. Напряжение в 380 вольт может напрямую подводиться к отдельным потребителям – отопительным котлам, электродвигателям и другому оборудованию. Однако для внутренней разводки внутри частного дома все равно используются однофазные линии, в которых равномерно распределяются все три фазы. Таким образом, к розеткам оказывается подведенными три провода – фазный, нулевой и заземление.

Фаза и ноль в электрической сети
Многие потребители даже не догадываются о настоящем предназначении фазы и нуля. Поэтому, если намечается работа с электропроводкой, данный пробел в знаниях должен быть ликвидирован.

Изначально электрическая энергия подводится к жилым домам от трансформаторной подстанции, где она преобразуется из высокого напряжения в допустимые 380 вольт. В общем вводно-распределительном устройстве жилого дома электричество распределяется и расходится по отдельным щиткам, установленным в каждом подъезде. От них в квартиры заводится уже по одной фазе номиналом 220 вольт и заземляющий провод, если он предусмотрен схемой электропроводки.

Один из проводников подающий ток к потребителю, считается фазным. В трансформаторе все три фазы соединяются по схеме «звезда». Их общая точка является нейтралью, защищенной на подстанции заземляющим контуром. Данная нейтраль и выполняет функции нуля, отдельно подводимого к нагрузке.

Основной задачей нулевого провода является обеспечение протекания тока обратно, в направлении источника электроэнергии. Дополнительно, нулевой проводник способствует выравниванию фазного напряжения.

Многие потребители не видят особой разницы в подключении бытовой техники в сеть с переменным током 220 вольт. При обычном включении в розетку можно не соблюдать полярность, а при смене контактов напряжение остается неизменным. Но так бывает не всегда. При работах с электропроводкой требуется точно обнаружить расположение фазного и нулевого проводов. Перемена их местами приводит к неправильному подключению, вызывающему сбой в работе оборудования и поражение током.

Определение принадлежности проводов без приборов
Для того чтобы избежать неприятных последствий, необходимо узнать, где и какой провод расположен. Обычно используется индикаторная отвертка, но при её отсутствии проблема может разрешиться другими способами.

Чаще всего принадлежность проводов, в том числе определение фазы, устанавливается визуально, путем изучения цветной маркировки.

Если прокладка линий выполнялась квалифицированными специалистами, они обязательно используют стандарт IEC 60446-2004. В соответствии с этим нормативом, нулевой провод маркируется синим или голубым цветом, заземление – желто-зеленым, а фазный – коричневым или другим нейтральным цветом. Самое главное, чтобы расцветка фазы полностью отличалась от нуля и заземления. Рассмотреть маркировку можно внутри распределительной коробки, а также в местах подключений.

Если нет приборов – указателей напряжения, существует вариант проверить сеть с использованием контрольки, состоящей из патрона с лампой накаливания и подключенными проводами. Конец одного из проводников соприкасается с металлическими трубами системы отопления, а другой проводник касается проверяемого участка. Если лампочка загорелась, значит в этом месте есть фаза. Данный способ считается опасным, так как вероятность получения электротравмы очень велика.

Безопаснее всего определить фазу и ноль индикаторной отверткой, с помощью которой выполнить все необходимые проверки сетевых параметров.

Принцип действия индикаторных отверток
Для того чтобы эффективно и правильно пользоваться индикаторными отвертками, рекомендуется ознакомиться с их устройством и общими принципами работы. Несмотря на внешние различия, у каждой из них основной функцией является проверка наличия и отсутствия напряжения, определение фазы и нуля. Для этого достаточно подключиться рабочим органом к одному из контактов.

Наиболее простым устройством считается индикаторная отвертка с неоновой лампочкой. В ее конструкцию входит металлический токопроводящий стержень, на конце у которого расположено плоское жало. В схему индикаторной отвертки дополнительно включен токоограничивающий резистор и неоновая лампочка. Стальная пружина прижимает лампу к резистору.

Одновременное касание жалом контакта фазы и касание пальцем контактной кнопки на рукоятке, приведет к свечению неоновой лампочки. Если фаза отсутствует – лампа погаснет. Данный инструмент обладает ограниченной функциональностью, для определения фазы ему требуется непосредственный контакт.

Нижний предел напряжения составляет 90 вольт, более низкие значения не поддаются определению.

Отвертка на светодиоде может работать и с более низким напряжением – до 45 вольт. Для нормального функционирования требуется импульсный режим, то есть, с увеличением силы тока пропорционально снижается время непрерывного горения светодиода. Кроме ограничительного резистора, в схеме имеется диодный мост, выполняющий функцию выпрямителя. Незначительное количество тока, появившееся на контактах моста, поступает к накопительному конденсатору. Далее через транзистор пульсирующий ток подается на светодиод, который начинает гореть мерцающим светом.

Наиболее эффективной, но и самой дорогой считается индикатор, в конструкции которого имеется светодиодный сигнализатор и собственные элементы питания. Данное устройство позволяет не только определить ноль и фазу индикаторной отверткой, но и успешно искать скрытую проводку.

Принцип работы с такой отвёрткой заключается в следующем. Человеческое тело представляет собой своеобразный конденсатор с достаточной емкостью. Когда палец касается сенсора, в цепи возникают слабые электрические токи в пределах 0,5 мкА. Если жало инструмента одновременно касается фазного проводника, происходит увеличение силы тока до значения, достаточного для открытия транзистора. Далее выполняется подключение питающего элемента к светодиоду, который начинает излучать свет.

Показатель напряжения срабатывания составляет около 50 вольт. Порог чувствительности удается снизить за счет использования собственных источников питания. Это дает возможность отличить ложные срабатывания, возникающие под действием наводок электрического поля.

Правила работы с индикаторной отверткой
При отсутствии заземляющего провода решить задачу, как определить фазу будет очень легко. Достаточно воспользоваться обыкновенной индикаторной отверткой.

В этом случае действия происходят следующим образом:

Вначале обесточивается сеть путем отключения автомата. После этого на проводах острым ножом зачищается изоляция примерно на 1-1,5 см. Жилы нужно развести между собой, чтобы исключить случайное соприкосновение.
Включается автомат и подается напряжение. Концом индикаторного устройства нужно по очереди коснуться зачищенных мест проводников. При попадании на фазовый провод светодиод начнет светиться.
Обнаруженную фазу следует отметить, после чего вновь выключить автомат и сделать все запланированные подключения.

Подключая освещение, выключатель нужно соединять с фазным проводом. Именно он будет обеспечивать разрыв контакта, выключение и включение осветительных приборов.
При работе с трехпроводной сетью все проводники могут оказаться одинакового цвета, поэтому нужно обязательно установить назначение каждого из них. Процесс обнаружения происходит в следующем порядке:

Задача, как найти фазу решается теми же способами, что и в двухпроводной сети, после этого провод нужно отметить, отделив его от других проводов.
Ноль и землю определяют мультиметром в режиме измерения напряжения. Один щуп касается фазного провода, а другой – нулевого и заземляющего, по очереди. Меньшее напряжение показывает нулевой провод.
В случае одинакового напряжения измеряется сопротивление провода заземления. Оно должно быть не выше 4 Ом, а сопротивление нуля будет заметно выше.

мультиметром, индикаторной отверткой, без приборов Как отличить провод фаза от нуля

Проще работать, когда электрический контур снабжения дома заземлен правильно, покажем, что выход найдется всегда. Поясним, как понять, где фаза, и как узнать, где ноль. Хватайте любимый М890С! Посмотрим, как определить фазу и ноль мультиметром.

Простейшие методики нахождения фазы, нуля мультиметром

Организованный правильно контур заземления дома устраняет проблемы. Во-первых, изоляция PEN желто-зеленого цвета. Спутать с коричневой (красной) фазой, синей нейтралью невозможно. Случается, проводка проложена, нарушая требования, цвета перепутаны, отсутствуют вовсе (алюминиевый кабель). Поиск фазы мультиметром осуществляем простым алгоритмом:

  1. Допустим, квартира располагает тремя проводами: фаза, нуль, земля.
  2. Ставим мультиметр на диапазон переменного напряжения 750 вольт, начинаем попарно тестировать проводку.
  3. Между фазой и любым другим проводом будет 230 вольт (действующее значение), перемычка земля-нейтраль дает приближено 0.

Мультиметр

Подъездный щиток располагает минимум пятью проводами, фаз три. Дальнейший процесс определяется фантазией местных электриков. Хорошие мастера вешают стикеры А, В, С, указывающие местоположение фаз. Заземление желто-зеленое, нейтраль чаще синяя.

Меж соседними фазами напряжение 380 (400) вольт. Квартиры высоток иногда снабжают двумя фазами. Электрические плиты мощностью выше 10 кВт стараются разделить потребление. Уменьшаются требования к проводке. Советуем немедленно взять маркер, пометить изоляцию нужными цветами. Дом, лишенный заземления, обычно получает два провода: фазу, нейтраль. Трансформатор подстанции гонит три фазы. Сколько окажется в квартире, следует выяснить.

Проблемы начнутся, когда отсутствует маркировка проводов, фаза приходит одна. Между опасными проводами напряжение составит… нуль!

  • Два провода несут фазу, нейтраль одна, заземление забыли проложить. Между питающими жилами круглый нуль, при оценке нулевого провода получаем 230 вольт. Ситуация выглядит, будто фазные жилы стали нейтралью и нулем. Напутали при прокладке – что поделаешь? Требуется искать дополнительный источник опоры. Подойдет отвертка-индикатор.
  • Два провода одной фазы, вторая пара – заземление, нейтраль. Попарно покажут нуль, перекрестно – 230 В. Воспользуйтесь опорным ориентиром.

Отсутствует щуп-отвертка, заручившись помощью тестера как ни звони проводку, проблема останется. Требуется опорный источник, гарантированно заземленный. Подходят:


Ввиду разнообразия методик, ненадежности рекомендуется до начала серьезных работ провести тесты. Измерить потенциал между указанными ориентирами, фазой розетки. Расстояние между ориентиром, точкой назначения велико? Берем удлинитель. Особенно хорош фильтр питания персонального компьютера, снабженный характерной подсвечивающейся кнопкой. Фаза слева, левый штырь штекера (смотря какой стороной повернуть) помечаем маркером.

Затем вызваниваем с розеткой (без питания, понятное дело), делаем отметку с нужной стороны. Поясняем, можно обойтись без этого, с электрикой лучше отставить шутки. Осталось найти фазу, пользуясь помощью М890С. Ставим диапазон выше 380 вольт (между двумя фазами), начинаем измерять разность потенциалов между клеммами и щитком. Полагаем, дальнейший алгоритм понятен.

Правильно измерить потребление фазы

Измерим нагрузку фаз. Чтобы поставить правильные автоматы, соблюсти равномерное потребление. По правилам трехфазной сети каждую ветвь загружают одинаково, избегая перекосов на стороне поставщика. Оценим, какие фазы входят в квартиру. Проще заглянуть в подъездный щиток. Неопытный человек обязан прекратить попытки лезть туда. Легко получить удар током.

Дом старый – на виду увидите большую стальную пластину, которая явно соединяется с корпусом. Означенное – нейтраль. Дом питается трехфазным напряжением 380 вольт. Каждую квартиру снабжают чаще одной фазой. Тройку зажимов наблюдаем помимо заземлительной клеммы. Посмотрите, куда идут провода: автоматы, рубильники (сообразно счету квартир). Типичное количество соседей по площадке количеством три упрощает задачу анализа.

Теперь знаем метод отыскания фазы мультиметром, можем смело (с осторожностью, соблюдая меры безопасности) потыкать щупами. Потрудитесь выставить правильный диапазон, не сжечь прибор. Измерениями подтвердите или опровергните предположения. Фаз две – каждую нагрузите поровну. Изучите распаячные коробки, в большинстве старых домов находящиеся под потолком (большие круглые отверстия стены). Отключив снабжение квартиры, вооружившись тестером, поймите, куда и что идет. Используйте радикальный метод – отрубите одну пробку, посмотрите, где пропало питание.

Нагрузка двух фаз неравномерная – поправьте. Лучше сделать для автоматов и пробок, что положительно скажется на уменьшении стоимости оборудования распределительного щитка. В довершение по этой теме скажем, что правила работы предусматривают выполнение подобных мероприятий числом не менее двух лиц. Один обязательно страхует и готов отрубить подачу энергии, обрезать токоведущую жилу или ногой оттолкнуть страдающего от удара электричеством с опасной территории.

Схема питания квартиры двумя фазами

Как измерить трехфазное напряжение мультиметром

В этом разделе речь скорее пойдет о специфике трехфазных сетей. Большинство мультиметров позволяет измерять напряжение до 750 вольт переменного тока, чего вполне достаточно для работы с серьезными промышленными сетями. Каждый дом снабжается от трех фаз. А то, что в промышленности называют нейтралью, мы именуем нулевым проводом.

Сети предприятий прокладывают двух типов:

  1. Механизмы с изолированной нейтралью нулевым проводом не пользуются. Внутри нагрузки фаз уравнены, токи утекают через эти же провода, которых в сумме три. Устанете искать нейтраль – линия отсутствует. Три провода фазные, относительно земли покажут напряжение 230 вольт, между собой – 380.
  2. Заземленная нейтраль представляет нулевой провод. Помечается буквой N на коробках. Полезно смотреть принципиальные схемы промышленных приборов, приведенные на корпусе. Поможет понять раскладку.

Освоив методики работы с трехфазным напряжением, каждый сможет лучше понять электрическую разводку многоэтажного дома. Где из-под щитка поднимаются четыре жилы: три фазы и нейтраль.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

С поиском фазы многие из нас не сталкивались никогда, другие это делают постоянно, а третьим это нужно от случая к случаю. Зачем? Ситуации бывают всякие. Вот хотя бы некоторые из них:

  1. Надо повесить люстру, имеющую два, три или более плафонов.
  2. Вы купили электроприбор, который требует соблюдения полярности, а наши розетки на это не рассчитаны (и такое бывает, хоть и редко).
  3. Вы ремонтируете проводку в квартире или делаете разводку в доме, а провода у вас еще советские, все одного цвета. Вам вроде много и не надо — всего лишь узнать, как найти фазу и ноль индикаторной отверткой, которая у вас есть.
  4. Вам надо найти оголенный провод, который является источником опасности (такая ситуация встречается при разборке зданий, ремонте в незнакомых помещениях, а отключить все это не представляется возможным).

Но перед тем как начать наши поиски, разберемся, что мы ищем.

Все мы из школьного курса физики знаем, что в наших электросетях течет переменный ток. Некоторые даже знают, насколько он переменный — 50Гц. То есть за одну секунду носители заряда дергаются туда-сюда пятьдесят раз. График напряжения и тока в сети графически выглядит как синусоида.

Амплитуда колебания напряжения составляет около 310 В. Если пропустить этот ток через и выпрямить, то мы получим действующее напряжение в сети — 220 В. Фактически это среднее значение по всей синусоиде, получается оно делением амплитуды на квадратный корень из двойки.

А вот дальше интереснее. Мало кто из обывателей знает, что в России трехфазное электроснабжение. Наглядно это выглядит так: из трансформаторной будки в вашем микрорайоне выходит не один питающий провод, а три, и еще один, называемый нейтралью или нулем. Разница между первыми тремя состоит в том, что синусоиды тока и напряжения в них смещены друг относительно друга на 2π/3. Это значит, что если в одном проводе цикл находится в одной трети, то второй только начался, а третий еще не догнал. Трудно представить? Можно привести такую картинку:

Это явление и получило название сдвига по фазе.

В каждую квартиру подводится один такой провод и нейтраль, соединяющая вас с концами всех трех обмоток вашего дворового трансформатора и с землей. Впрочем, у вас должна быть еще и отдельная земля, чтобы отводить статику от корпусов бытовой техники.

Из этого рисунка вы можете понять, что утверждение «в нуле напряжения нет» не совсем верно. Его там не будет тогда, когда у всех в квартирах будут стоять электроприборы, работающие от трех фаз — тогда нагрузка на них будет симметричной. Но мало кому в голову придет ставить в квартиру электродвигатели от промышленных агрегатов, и симметричной нагрузка бывает редко. Поэтому какое-то напряжение в нулевом проводе всегда есть.

Поиск фазы

В настоящее время мы без труда можем определить фазовый провод с помощью специальных устройств. Эта несложная операция под силу любому человеку. Сделаем это двумя способами — с помощью индикаторной отвертки и мультиметра. А в конце поговорим, можно ли найти фазу и ноль без приборов и как это сделать.

Как определить индикаторной отверткой

Индикаторная отвертка представляет собой устройство с прозрачной ручкой, внутри которой находится лампочка-конденсатор, а конец ручки представляет собой проводник. Выглядит это так:

Принцип работы такого индикатора прост. Вы вставляете отвертку в розетку, и если попадаете на фазу и нажимаете на контактную пластину на ручке, то увеличиваете емкость конденсатора засчет своего тела — неоновая лампочка горит. Фазу вы найдете легко. А вот ноль, даже если в нем есть напряжение — нет. Оно там не бывает больше 60 В, а ниже этого порога индикаторная отвертка ничего не покажет. Этого и не нужно: когда лампочка загорается только при соприкосновении с фазой, такая отвертка является лучшим определителем фазы.

Более продвинутые варианты индикаторов (со светодиодом, звуковым сигналом и на батарейках) тут не помощники: они покажут и более низкое напряжение. Если его показывать, то тогда уж и с величиной. И для определения этой величины мы лучше воспользуемся мультиметром. А вот применять такие индикаторы для поиска скрытой проводки лучше всего. Есть и более продвинутые приборы для этой цели. Одни из них реагируют на поле, создаваемое переменным током, другие — на металл в стене. Но у всех этих приборов другая область применения, которая находится за пределами этой темы.

Ищем с помощью мультиметра

Это несложно. Для начала выставим на переключателе вашего тестера на функцию (либо этот сектор будет называться ACV, либо будет стоять V~) с пределом выше 220 В. У кого-то это будет 500, у кого-то 800. Тестеры бывают разные. Черный щуп вставим в общее гнездо (около него написано COM), а красный — в гнездо для замеров тока, напряжения и сопротивления. Не надо ставить в гнездо для работы с десятиамперным током, у вас там его, скорее всего, нет. Затем оба вторых конца щупов вставляем в отверстия розетки. Если она рабочая, на дисплее высветится значение вашего напряжения — от 220 до 230 В.

Остается узнать, где тут фаза. Вставляем красный щуп в одно из отверстий розетки, а черный либо держим пальцами, либо подсоединяем к земле, например, к батарее центрального отопления (найдите место, где краска отвалилась, или счистите немного). Если вы попали на фазу, то на дисплее отобразится действующее напряжение около 220 В. А если на нуль, то больше 60 В вы не увидите (чаще — не больше 30 В).


Определение фазовых и нулевого проводов для установки трехфазной розетки

Такая ситуация может случиться в доме с электроплитами советского производства. Пять проводов у вас есть, они одного цвета, розетка будет несимметричной, и нам надо знать точно, где тут три фазы, где нуль, а где земля. И это важно — все виды трехфазных розеток у нас несимметричные.

Тут вам нужна небольшая справка. Если между одной фазой и нейтралью у нас 220 В, то между двумя фазами со сдвигом на 120 градусов (2π/3) 220 надо будет умножить на квадратный корень из трех, и мы получим действующее напряжение 380 В.

Так что запасаемся цветными маркерами, бумажкой и ручкой, и начинаем разгадывать головоломку. Помечаем изоляцию маркерами разных цветов, ищем фазы таким же образом, как и в обычной розетке, записываем результаты на бумажку. Выделить три фазы будет сравнительно просто. А затем потребуется найти нуль и заземление. Если заземление сделано правильно, то напряжение в нем будет равно нулю, а в нейтрали будет несколько десятков вольт.

Для контроля измерим напряжение между фазами. Оно должно быть 380 В, и между нулем и каждой фазой должно получиться 220 В.

Еще одно интересное применение мультиметра

Тестер можно применять для поиска скрытой проводки в квартире, если она находится под напряжением. Обычно это можно сделать и без него, если проводка проведена по правилам. В этом случае можно ориентироваться по распределительным коробкам. Хуже, если квартира вам досталась после доморощенного евроремонта, когда все лишнее просто залепили штукатуркой.

Для обнаружения проводки вам понадобится тестер и транзистор КП303 (можно и другой полевой).

Переведите переключатель в режим где-то на 200 кОм. Щупы вставьте в стандартное положение (COM и универсальное гнездо) и присоедините их концы к истоку и стоку транзистора. На затвор можно намотать проволочную антенну. Если в стене есть провод под напряжением, то он будет создавать электромагнитное поле, пусть и небольшое, которое будет изменять внутреннее сопротивление транзистора.

Если нет приборов

А что делать, если у вас нет в наличии ни тестера, ни индикаторной отвертки? Как определить фазу и ноль без приборов? Оказывается, и это возможно.

Правда, прежде чем это делать, посмотрите в свой щиток: может быть, делать ничего и не придется. Если дом новый и проводка в нем сделана по правилам, то провода можно определить по цветам. Так, ноль делают синим, фазу — любым другим цветом, а заземление желто-зеленым. Обратите также внимание на автоматические выключатели (вроде маленьких рубильников): они должны стоять на фазе. Если вы открутите розетку и увидите землю на своем месте, то, скорее всего, ноль с фазой электрики тоже не перепутали.

Вообще же существуют бытовые способы диагностики проводки, вот некоторые из них:

  1. с помощью пробника;
  2. с помощью картошки;
  3. с применением старых предохранителей и плоскогубцев;
  4. «голыми» руками.

По понятным причинам последние три мы обсуждать не будем.

Использование пробника

Пробником называется лампа накаливания в патроне с двумя выведенными проводами. Советовать такой способ проверки не совсем этично: инструкциями этот способ запрещен. Не стоит его применять в ситуациях, когда вы не знаете, сколько фаз проведено в помещение и где там что включается и выключается.

Но иногда использовать пробник приходится. Например, чтобы отличать нуль от заземления при отсутствии розеток (мы рассматриваем ситуацию, когда розетки не установлены, а из стены торчат три провода).

В последнее время в жилые помещения ставят трехжильную проводку. Если электрики пренебрегли правилами цветовой , можно отличить, где нуль, а где земля именно с помощью пробника. Для этого в щитке нужно отключить один из нулей, если вы не знаете, какой из них настоящий, и проверить работоспособность будущей розетки. Если вы отключили нуль, то розетки работать не будут, и лампочка не загорится — квартирное заземление не связано с цепью. А при отключении земли лампочка будет работать.

Чего делать не надо

На самом деле вы и так знаете основные правила работы с проводкой , но некоторые хотелось бы повторить.

  1. Не хватайте щупы мультиметра за оголенные части. Надеюсь, не надо объяснять, почему.
  2. У некоторых граждан есть привычка искать скрытую проводку голыми руками. Если вы к таким относитесь, нет смысла вас отговаривать. Но совет дать можно: проделывайте это тыльной стороной ладони. При ударе током вы отскочите от стены, в противном случае вы рискуете не отпустить оголенный провод из-за судороги.
  3. Иногда можно для индикации нуля и фазы измерять сопротивление, а не напряжение. Будьте внимательны: при работе тестером в таком режиме не замыкайте фазу на заземление, так как может произойти короткое замыкание.
Чтобы не попадать в дальнейшем в ситуации, когда вам придется сортировать провода, хотелось бы посоветовать промаркировать их. В дальнейшем вам будет проще производить ремонт и подключение электроприборов. Ну и обязательно обзаведитесь индикаторной отверткой. Стоит она копейки, а инструмент в хозяйстве нужный. Поверьте, порядок в вашем щитке и безопасность электроснабжения вашего жилья дорогого стоят.

В данной статье рассмотрим вопрос о том, как найти фазу и ноль при помощи пробника и мультиметра.

При необходимости обслуживания квартирной электрики, в частности замены розеток, выключателей освещения или проведении мелких ремонтных работ, возникает необходимость определения фазы и ноля. Если у человека есть некоторые познания в области основ электротехники, то ему не составит труда найти фазу и ноль. А что делать, если вы не имеете данных навыков? Поиск фазы и ноля не такой сложный процесс, как это может показаться. Рассмотрим несколько способов определения фазы и ноля.

Во-первых, определимся, что такое фаза и ноль. Вся наша энергосистема является трехфазной, в том числе и низковольтные линии, которые питают жилые дома и квартиры. Как правило, напряжение между двумя любыми фазами составляет 380 вольт — это линейное напряжение. Всем известно, что напряжение бытовой сети — 220 вольт. Как получить это напряжение?

Для этого в электроустановках рабочим напряжением 380 вольт предусмотрен нулевой провод. Если взять одну из фаз и нулевой провод, то между ними будет разность потенциалов в 220 вольт, то есть это фазное напряжение.

Для человека, не имеющего познаний в области электротехники, вышесказанное не очень понятно. Для нас важно знать, что в каждую квартиру или дом приходит одна фаза и один ноль. Подробно, что такое фаза и ноль рассмотрено .

Итак, у вас есть два провода и вам необходимо определить, какой из них фаза, а какой ноль. Во-первых, необходимо их обесточить путем отключения автоматического выключателя, который питает данную линию электрической проводки.

Затем необходимо зачистить оба провода, то есть снять с него 1-2 см изоляции. Зачищенные проводники необходимо немного развести, для того, чтобы при подаче напряжения не произошло короткого замыкания в результате их соприкосновения.

Следующий шаг — определение фазного провода. Включаем автомат, посредством которого подается напряжение на проводники. Берем индикаторную отвертку за рукоятку и одним пальцем прикасаемся до металлической части у основания рукоятки.

Помните, что категорически запрещено брать пробник ниже рукоятки, то есть за рабочую часть. Подносим пробник к одному из проводов и прикасаемся к нему рабочей частью. При этом палец остается на металлической части рукоятки.

Если лампочка индикаторной отвертки загорелась, то значит этот провод фазный, то есть фаза. Другой провод соответственно — ноль.

Если при прикосновении к проводу не загорается лампа пробника, то это нулевой провод. Соответственно другой провод — это фаза, проверить это можно прикосновением индикаторной отвертки.

А что делать, если проводка в квартире выполнена тремя проводами? В этом случае у вас есть не только фаза и ноль, но и . При помощи пробника можно без труда определить, где из трех проводов находится фаза.

Но как определить где ноль, а где защитный проводник, то есть заземляющий? В данном случае одной индикаторной отверткой не обойтись. Рассмотрим способ определения ноля в трехпроводной бытовой сети.

Определить где ноль, а где защитный (заземляющий проводник), можно при помощи мультиметра. Итак, мы уже определили фазный провод при помощи пробника. Берем мультиметр и включаем его на диапазон измерения переменного напряжения величиной 220 вольт и выше.

Берем два щупа измерительного прибора и прикасаемся одним из них к фазе, а другим к одному из двух оставшихся проводников. Фиксируем значение напряжения, которое показывает мультиметр.

Затем один из щупов оставляем на фазе, а другим прикасаемся к другому проводу и снова фиксируем значение напряжения. При прикосновении одновременно к фазе и к нулю будет показываться значение напряжение бытовой электросети, то есть примерно 220 вольт. Если прикоснуться к фазе и защитному проводнику, то значение напряжения будет несколько меньше предыдущего.

Если у вас нет пробника, то фазу можно найти и мультиметром. Для этого выбираем диапазон измерения переменного напряжения значением выше 220 вольт. К мультиметру подключены два щупа в гнезда «COM» и «V» соответственно.

Берем в руки тот щуп, который включен в гнездо с маркировкой «V» и прикасаемся им к проводникам. Если вы прикоснулись к фазе, то прибор покажет небольшое значение — 8-15 вольт. При прикосновении к нулевому проводу показания прибора останутся на нуле.

В каждом доме имеются электроприборы и электропроводка, в работе которых возникают некоторые сложности. Вызов профессионального электрика по каждому малейшему поводу обойдется в копеечку, гораздо проще решить проблему самостоятельно. Для этих целей может понадобиться мультиметр, который измеряет параметры сети. Однако инструмент является дорогостоящим, и не всегда его приобретение целесообразно для использования в домашних условиях. Его функции может заменить индикаторная отвертка. Что это такое и как ее использовать? Как определить, где фаза, а где ноль?

Принцип работы

Как работает индикаторная отвертка? Внешний вид прибора схож с обыкновенной отверткой, однако он имеет встроенный в полость ручки индикатор. Металлическая часть отвертки выполняет роль щупа, при этом он способен сокращать силу подаваемого электричества, чтобы использование прибора было максимально безопасным. Также прибор имеет светодиод, который располагается в верхней части ручки. Кроме этого, отвертка имеет металлическую пластину контактного типа.

Принцип работы довольно прост — щуп отвертки касается проводника электричества, затем, проходя по нему, сила тока значительно уменьшается, после чего человек прикасается пальцем к контактной пластине. Происходит замыкание цепи, отчего загорается лампочка. Отвертка необходима для того, чтобы показать наличие в сети постоянного или переменного тока.

Разновидности отверток

На сегодняшний день в ассортименте любого строительного магазина представлены следующие разновидности индикаторных отверток:

  1. Многофункциональная отвертка Safeline.
  2. MS 18.
  3. Lek ОП 1.
  4. Lek ОП 2Э.
  5. ВМ 1141 220 250В.
  6. Индикаторная отвертка с батарейкой.

Представленные модификации устройства имеют некоторую разницу в функциональности.

Опции отвертки

Стандартный прибор предназначен для следующих целей:

  1. Индикаторная отвертка показывает фазу или ноль.
  2. Определение скрытой проводки бесконтактным способом.
  3. Определение места обрыва кабеля.
  4. Определение полярности элементов питания.
  5. Проверка целостности электрической цепи.

В зависимости от модификации отвертки она может иметь другие дополнительные функции.

Определение ноля и фазы

Многие начинающие электрики и люди, которые решили самостоятельно заняться ремонтом электроприборов, интересуются, как найти фазу и ноль индикаторной отверткой. Для этого следует придерживаться следующего алгоритма работы:

  • сначала проводка обесточивается;
  • провода, которые необходимо протестировать, нужно зачистить от изоляционной обмотки;
  • после чего необходимо включить электричество;
  • щупом поочередно необходимо касаться проводов, при этом следует помнить о том, что цепь должна быть замкнута пальцем на контактной пластине;
  • тот провод, при касании к которому загорается лампочка, является фазой электрической цепи.

Как найти фазу и ноль индикаторной отверткой в розетке? Для этого нужно поочередно помещать щуп в отверстия розетки. При обнаружении фазы будет загораться лампочка. Свечения не будет, если отвертка показывает ноль. Если при касании к обоим отверстиям розетки лампочка не загорается, это свидетельствует об обрыве ноля.

Кроме использования индикаторной отвертки, можно определить фазу по цвету провода:

  • желто-зеленый провод является заземлением;
  • цвет провода фазы — черный;
  • ноль имеет синий цвет провода.

Если цветовое распределение не соблюдено, понадобится индикаторная отвертка для определения.

Проверка исправности ламп накаливания

При покупке очередной лампочки накаливания важно проверить ее работоспособность прямо в магазине. Если нет соответствующего стенда, сделать это можно при помощи обыкновенной индикаторной отвертки. Для этого нужно взять лампу одной рукой за металлический цоколь, а щупом индикаторной отвертки в другой руке прикоснуться к центральному контакту на лампочке. Если она исправна, то светодиод на приборе загорится.

Несмотря на то, что способ действенный, в результате может быть сбой, если лампочка разгерметизирована. В таком случае электрическая цепь сохраняется, но лампа все равно не загорится. Однако такое случается довольно редко.

Проверка нагревательного ТЭНа

Проверить работоспособность нагревательного элемента стиральной машины можно, даже не вынимая его. Достаточно обеспечить доступ к контактам, остальные провода при этом нужно отсоединить. Для проверки нужно прикоснуться рукой к одному из контактов ТЭНа, щупом отвертки — к другому. При этом цепь замыкается прикосновением к металлической пластине на устройстве. Если лампа загорится, то нагревательный элемент исправен.

Проверка напряжения в изолированном проводе

Как работает индикаторная отвертка? Ее функционал позволяет не только определять фазу и ноль, но и проверять напряжение в проводах с изоляцией. Не рекомендуется перекусывать неизвестный провод, так как часто бывает непонятно, под напряжением он или нет. В таком случае проводятся следующие манипуляции:

  • взять индикаторную отвертку необходимо непосредственно за щуп;
  • металлическую пластину нужно приложить к проводу;
  • если кабель под напряжением, то индикатор на отвертке покажет это.

Такой способ определения подходит даже для проводов, которые находятся под штукатуркой, однако свечение при этом может быть менее ярким.

Поиск обрыва провода

Инструкция к индикаторной отвертке отмечает многофункциональность прибора. Это очень важно и удобно в домашнем использовании. Разобравшись, как найти фазу и ноль индикаторной отверткой, ею можно также отыскать обрыв провода. Если переноска вдруг перестала работать, то первым делом нужно проверить целостность электрической цепи:

Аналогичным образом выполняется поиск обрыва провода и в проводке дома.

Электронная индикаторная отвертка

Можно найти фазу и ноль как индикаторной отверткой со светодиодом, так и электронной. Различия лишь в их конструкции. Электронная индикаторная отвертка может быть как с жидкокристаллическим экраном, так и без него.

Вместо светового сигнала такой прибор оповещает о наличии напряжения звуковым сигналом. Кроме этого, большим преимуществом такого устройства является вывод информации о напряжении на жидкокристаллический экран, если таковой имеется. Принцип работы электронного устройства является таким же, как и у обычной индикаторной отвертки.

Проверка работоспособности

Перед тем как определить, где фаза, а где ноль, нужно проверить работоспособность самой отвертки, так как она, как и любой другой прибор, может быть неисправна. Для этого следует обратить внимание на такие нюансы:

  1. Корпус устройства должен сохранять свою целостность. Работа с электричеством требует хорошей изоляции без повреждений.
  2. Для точности показаний следует проверить отвертку. Для этого следует щупом прикоснуться к проводнику, который на 100% находится под напряжением.
  3. Если используется изделие на батарейках, то нужно вовремя их заменять.

Безопасность при использовании отвертки крайне важна, поэтому при обнаружении неисправности рекомендовано приобрести новое устройство. Стоимость варьируется от 50 до 1000 р. в зависимости от модификации.

Меры безопасности

При работе с устройством нужно соблюдать следующие меры безопасности:

  1. Не следует разбирать отвертку, замене подлежат только батарейки, если таковые имеются.
  2. Использование поврежденной отвертки строго запрещается.
  3. Запрещается использовать устройство без винта.
  4. При контакте щупа с электричеством запрещено браться руками за оголенную часть прибора.
  5. Не стоит использовать прибор при напряжениях выше, чем это указано в технических характеристиках.

Для того чтобы узнать, светится фаза или ноль на индикаторной отвертке, нужно выполнить все рекомендации, изложенные выше. При этом важно следить за исправностью устройства и не пренебрегать правилами безопасного использования индикаторной отвертки.

Как определить фазу? Чаще всего таким вопросом задаются тогда, когда надо определить фазу в домашней розетке либо в проводке. Сетевое напряжение, которое заходит в ваш дом, поступает по двум проводам, одним из которых является фаза, а другой – ноль. В этой статье вы найдете два способа, чтобы определить фазу в вашей домашней проводке либо в розетке.

С помощью индикаторной отвертки

На рынке либо в радиомагазине часто можно увидеть фазоиндикаторные отвертки. Чаще всего их называют пробниками. На вид пробник – это плоская отвертка, которая состоит из железного щупа, высокоомного а и неоновой лампочки. Все они подключаются последовательно.

Давайте же на практике попробуем определить фазу с помощью нашей фазоиндикаторной отвертки. Для того, чтобы это сделать, нам надо коснутся пальцем вершины отвертки, тем самым мы замкнем цепь фаза-пробник-мы-земля, если тыкнем на фазу. Через потечет ток, но он будет настолько слабым, что вы даже ничего не почувствуете. Тем временем на отвертке загорится неоновая лампочка. Значит, мы попали на фазу.

Втыкаем пробник и попадаем на “ноль”. Неоновая лампочка не горит. Значит, другой контакт розетки точно фаза.


Проверяем и убеждаемся. Неоновая лампочка горит, значит это у нас фаза .


С помощью мультиметра

А что, если у нас нет индикаторной отвертки? Как быть в этом случае? Для этих целей можно использовать обыкновенный . Ставим крутилку на измерение переменного напряжения и берем любой мультиметра в руки.


Второй щуп втыкаем в розетку и смотрим, что у нас мультиметр покажет на дисплее. Если мы касаемся нуля, то на дисплее мультиметра высветятся нули или несколько вольт. Если касаемся фазы, то на дисплее мультиметра появится приличное напряжение – это и есть фаза. Внизу на фото мы определили фазу.


Если также показывает нули, то одной рукой возьмитесь за батарею, а другой – за щуп мультиметра. Возможно, что ваш пол очень хорошо изолирован от земли. Когда будете измерять таким способом, главное не перепутайте режим измерения напряжения и силы тока. Если вы случайно поставите крутилку мультиметра в режим измерения силы тока и коснетесь батареи, то это может привести даже к летальному исходу! Будьте очень внимательны, если будете использовать этот способ.

Все те же самые операции касаются и трехфазной сети, где у нас три фазных провода и один ноль.

Главная » Наружная канализация » Правила определения фазы, нуля и заземления в сети. Как определить фазу и ноль: мультиметром, индикаторной отверткой, без приборов Как отличить провод фаза от нуля

Как определить фазу и ноль индикаторной отверткой: инструкция и меры предосторожности

Как определить фазу и ноль: индикаторной отверткой, мультиметром, визуально. Определение фазы и ноля двухполюсным указателем напряжения. Что нельзя делать при определении фазы и нуля. Как найти фазу в розетке.

Понятия ноля и фазы

Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой — преобразование высокого напряжения чаще всего в 380 В. К домам электроэнергия подземным или воздушным способом подводится на вводной распределительный щит. Затем напряжение подается к щиткам каждого подъезда. В квартиру от него заходит только одна фаза с нулем, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).

Таким образом, проводник, обеспечивающий подачу тока к потребителю, называется фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.

Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение — защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.

Источник: http://odinelectric.ru/equipment/kak-najti-nol-i-fazu-indikatornoj-otvertkoj-multimetrom

Для чего нужно знать, где фаза?

Определение фазного проводника необходимо в таких случаях:

  • Монтаж выключателей. Выключатели на свет размыкают исключительно фазу. Если перепутать и посадить на выключатель ноль, тогда патрон всегда будет находиться под напряжением и замена лампочек или ремонт патрона может быть опасной для жизни человека.
  • Монтаж автоматов. Обычно автоматы применяются одноконтактные, и на них заходит только фаза. Ноль же остается неразмыкаемым. Поэтому, чтобы не перепутать и не завести ноль на автомат, необходимо четко определить фазный провод.

Источник: http://ichip.ru/sovety/remont/kak-najti-fazu-prostye-i-dejstvennye-sposoby-707802

Наиболее распространенные заблуждения

Приведем часто встречающиеся заблуждения, связанные с определением нулевого и фазного провода:

  • на нулевую жилу не поступает напряжение. Это предположение полностью неверно, поскольку она является полноценным участником электроснабжения;
  • при наличии заземления короткое замыкание не возникнет. Полностью абсурдное предположение. Да, у заземления потенциал намного ниже, чем у фазы, но «вывести» через себя все излишки оно не сможет. Собственно, это и не является функциональным назначением «земли», ее задача – удаление паразитных токов, к которым относятся и статические;
  • знать, где в розетке фаза и ноль необязательно, поскольку на работе оборудования это не отразится. Такое утверждение не является абсолютно верным, поскольку существует оборудование, требующее для нормальной функциональности соблюдения полярности.

В качестве примера такого оборудования можно привести контролер, управляющий работой газового котла. При индикации ошибки «недостаточно напряжения» требуется поменять полярность.

Подобная проблема может возникнуть на генераторе импульсов, а также при подключении лабораторного измерительного оборудования;

  • если в кабеле три жилы, и одна из них разноцветная, то она является заземлением. Никогда нельзя быть уверенным в этом, особенно учитывая, какая была неразбериха с ГОСТами в последнее десятилетие прошлого века. Поэтому лучше всегда проверять кабель.

Источник: http://asutpp.ru/kak-opredelit-fazu-i-nol.html

Понятия «нуля» и «фазы»

Электрический ток — это упорядоченное движение отрицательно заряженных частиц.

Если электроны перемещаются только в одном направлении, такой ток называют постоянным, если в разных — переменным.

Проводники бывают трех видов:

  1. «Фаза» — рабочий контакт. На него подается напряжение.
  2. «Ноль» («нуль») — проводник, по которому ток протекает обратно к генератору, замыкая цепь.
  3. «Земля» — провод, соединяющий любую точку сети с заземляющим элементом. Он нужен для защиты от удара электрическим током.

Источник: http://elektrika.expert/bez-rubriki/najti-fazu-i-nul-v-rozetke.html

Инструкция по использованию

Применяя данное устройство, надо быть очень осторожным, так как при несоблюдении мер безопасности можно получить электрический удар. Ни в коем случае нельзя прикасаться к открытому, неизолированному кончику индикаторной отвертки.

На линию, на которой проводится работа, надо подать питание, но потребители электроэнергии (компьютеры, телевизоры и т.п.) должны быть отключены.

Есть очень простой способ, как найти фазу и ноль индикаторной отверткой. Для этого нужно разместить ее на проверяемой поверхности и нажать на кнопку, расположенную на ручке. Если индикатор горит, то это силовой провод. Если жало будет размещено на проверяемой поверхности и после нажатия на кнопку вы увидите, что лампочка на ручке не горит – значит, это ноль. Таким нехитрым действием можно пользоваться во время электротехнических работ. По указанной методике можно узнать, как определить фазу в розетке, автомате и патроне.

Источник: http://pauk.top/kak-opredelit-fazu-i-nol-indikatornoy-otvertkoy.html

Как определить фазу и ноль индикаторной отверткой

Один из способов выявить, где фаза и ноль в розетке либо в силовом кабеле, — использовать индикаторную отвертку. Инструмент внешне напоминает отвертку, но внутри у него есть специальная начинка со светодиодом. Прежде чем приступить к измерениям, нужно отключить рубильник, через который напряжение подается в помещение. После этого требуется зачистить концы проверяемых проводов, для чего снимают 1,5 см изолирующего материала.

Во избежание короткого замыкания между проводами после включения автомата их следует направить в разные стороны. Когда все подготовительные мероприятия будут выполнены, необходимо включить автомат для подачи напряжения. Чтобы понять, как найти фазу и ноль, необходимо выполнить следующие действия:

  1. Отвертку зажимают между двумя пальцами — средним и большим, избегая касания оголенной части жала инструмента.
  2. Указательным пальцем касаются металлического наконечника с противоположной стороны отвертки.
  3. Плоским концом индикатора поочередно дотрагиваются до зачищенных проводников.
  4. При касании тестером фазы светодиод загорится. Второй провод будет соответствовать нулевому. При отсутствии индикации изначально проводник будет являться нулевым.

Источник: http://odinelectric.ru/equipment/kak-najti-nol-i-fazu-indikatornoj-otvertkoj-multimetrom

Определение с помощью картошки

Еще одним известным методом определения без специальных приборов является вариант, в котором задействуется обычная сырая картошка. Многие специалисты относятся к таким действиям довольно скептически, но подобное решение все равно является действенным.

Для его осуществления необходимо осуществить следующую последовательность:

  1. Взять одну сырую картофелину и разрезать ее на две части.
  2. Зачистить концы двух проводников и воткнуть их в одну из частей картофелины.
  3. Подождать около 10 минут, после чего вытащить оба провода.
  4. Осмотреть картофелину: в месте, где образовался зеленоватый след, был воткнут фазный проводник.

Источник: http://slarkenergy.ru/solar/kak-opredelit-fazu-i-nul.html

Что может показывать индикаторная отвертка

Определение каких-либо неисправностей в электрической сети индикатором напряжения имеет смысл только в том случае, когда в квартире нет света, но электричество точно есть в других по подъезду. То же самое касается частных домов – первым делом надо узнать, есть ли свет у соседей.

Если проблема всё-таки в своей квартире, то чаще всего индикаторная отвертка показывает два диаметрально противоположных результата:

  • Фазы нет ни в одном из контактов розетки. Причин этому может быть очень много и большинство из них требуют вмешательства профессионалов. Своими силами можно только определить не перегорела ли пробка (чаще вместо нее установлен «автомат» – прибор автоматического отключения, при превышении номинальных значений силы тока в цепи). Для этого надо найти возле счетчика пробки и проверить тестером есть ли напряжение на контактах до и после нее. Если пробка перегорела, то ее надо менять, а если стоит автомат, то его могло выбить – на нем есть рычажок, который в рабочем положении повернут вверх (если устройство правильно установлено).
  • Фаза есть на всех контактах розеток. Практически со стопроцентной гарантией это значит что отгорел нулевой провод возле счетчика. Если нет навыка электромонтажных работ, то для решения проблемы надо приглашать электрика.

Источник: http://YaElectrik.ru/elektroprovodka/kak-opredelit-fazu-i-nol-indikatornoi-otvertkoi

Заземляющая шина в распределительной коробке

Этот способ лучше не использовать, так как его действенность и безопасность находятся не на должном уровне. Достоверность результатов зависит от способа прокладки электропроводки, а также коммутации в распределительном щитке.

Следует отключить шину заземления от подводящего контура или удалить с нее провод, который будет проверяться. После этого производится прозвон проводников. В результате выявляется ноль и земля.

Источник: http://StrojDvor.ru/elektrosnabzhenie/opredelenie-fazy-i-nulya-v-elektroprovodke-s-instrumentami-i-bez-nix/

Как определить фазу и ноль без приборов

Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.

Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:

  • синий или голубой — ноль;
  • коричневый — фаза;
  • заземление — зелено-желтый.

Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.

Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим — проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.

Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.

Источник: http://odinelectric.ru/equipment/kak-najti-nol-i-fazu-indikatornoj-otvertkoj-multimetrom

Стоит ли искать фазу лампочкой?

Некоторые электрики предпочитают искать фазу контрольной лампочкой. Для этого они берут обычную лампу накаливания, патрон и два многожильных провода. Провода соединяются с патроном, а лампочка соответственно вкручивается в него. Затем один конец провода прикасается к металлической трубе отопления, а второй вставляется в контакт для поиска фазы. Где лампочка загорелась, там и фаза.

Мы такой способ не рекомендуем, так как он чреват поражением тока – при неосторожном движении можно коснуться оголенного провода. Также были случаи, когда лампа накаливания взрывалась в момент прикосновения к фазе. По этим причинам лучше воздержаться от подобного «народного» метода определения фазы и воспользоваться специализированными приборами.

Читайте также:

  • Электрокамины: есть ли в них смысл и стоит ли покупать?
  • Тепловая пушка: лучший обогреватель для гаража или ремонтного бокса

Источник: http://ichip.ru/sovety/remont/kak-najti-fazu-prostye-i-dejstvennye-sposoby-707802

Поиск обрыва провода

Инструкция к индикаторной отвертке отмечает многофункциональность прибора. Это очень важно и удобно в домашнем использовании. Разобравшись, как найти фазу и ноль индикаторной отверткой, ею можно также отыскать обрыв провода. Если переноска вдруг перестала работать, то первым делом нужно проверить целостность электрической цепи:

  1. Необходимо убедиться в отсутствии короткого замыкания – для этого нужно освободить переноску от включенных в нее приборов, взять рукой за один контакт вилки, к другой прикоснуться щупом. Если свечение отсутствует – значит, короткого замыкания нет.
  2. Для поиска поврежденного провода нужно зажать пальцами один из контактов вилки. Щупом отвертки при этом поочередно выполнить касания к гнездам розеток удлинителя. В каком из гнезд не будет свечения, в том и наблюдается обрыв.
  3. Его нужно пометить маркером. Затем нужно узнать расположение – где фаза, а где ноль, как только это будет сделано, вилку нужно вставить в розетку так, чтобы эти показатели совпали.
  4. После чего металлической пластиной индикаторной отвертки выполняется поиск обрыва. На этом месте светодиод должен потухнуть.

Аналогичным образом выполняется поиск обрыва провода и в проводке дома.

Источник: http://FB.ru/article/362743/kak-nayti-fazu-i-nol-indikatornoy-otvertkoy-instruktsiya-k-indikatornoy-otvertke

Полезные советы и общие рекомендации

Работа с электропроводкой требует внимательности и осторожности.

Электрики советуют:

  1. Не полагаться полностью на цветовую дифференциацию проводов или их маркировку, проверять контакты тестерами еще раз. Случаи нарушения норм электромонтажа нередки.
  2. По возможности избегать определения напряжение в проводниках с помощью «контрольки» или картофелины. Такие способы считаются экстремальными, и без опыта работы ими лучше не злоупотреблять.
  3. При эксплуатации мультиметра подробно изучить инструкцию перед применением. Обратить внимание на настройку прибора.

Монтаж проводки по стандартам облегчит дальнейшее подключение приемников и продлит срок службы всей электросети. Кроме того, выполнение необходимых норм по установке сделает потребление электроэнергии комфортным и безопасным.

Источник: http://elektrika.expert/bez-rubriki/najti-fazu-i-nul-v-rozetke.html

как найти и определить землю в щитке? Как проверить фазу и отличить ее от нуля?

Неполадки электропроводки и электрических приборов в наши дни являются обычным делом, которое должен легко решать каждый уважающий себя мужчина, который даже не имеет соответствующего технического образования. Следует сказать, что это возможно по причине существования массы вспомогательных приборов для устранения неполадок электрической проводки. И владея основами того, каким образом устроена электропроводка и основные приборы такого типа, можно с легкостью разрешить множество проблем. Например, определить ноль и фазу либо отличить от нуля фазу с применением особенной индикаторной отвертки.

Разновидности и функции отверток

Чисто внешне рассматриваемый прибор выглядит как самая простенькая отвертка. Разница будет видна в ручке. В рассматриваемой версии данного инструмента в корпусе ручки имеется резистор, соединенный с жалом, выполненным из металла. Именно оно и будет выступать проводником.

Наличие сопротивляющейся части позволяет сократить токовую силу до максимума, что дает возможность применять подобную отвертку максимально безопасно. В каркас устройства еще и встроен световой диод либо лампочка на основе неона, что подсоединяются к пятачку внешнего типа на пластине контакта, что расположена с внешней стороны прибора. Получается, что электричество идет по щупу и в дальнейшем по резистору, снижается до такого уровня, чтобы его показатель был максимально безопасным для осуществления работ. Именно это и является главным аспектом использования индикаторной отвертки.

Если говорить о категориях подобных отверток, то новейшие модели, представленные на рынке, могут найти напряжение в жиле даже через глиняный, побелочный или штукатурный слой, что будет крайне удобно, ведь избавит от необходимости разбивать часть стены, чтобы добраться непосредственно до провода.

Вообще, алгоритм действия подобных инструментов в большинстве случаев одинаков. Хотя существуют различия, возникающие в зависимости от категорий, моделей и наявных функций, которые есть у той или иной модели с индикаторной функцией. Бывает так, что по своему функционалу такая отвертка индикаторного типа может заменить целый ряд довольного дорогостоящего оборудования. Например, есть решения на батарейках, что позволяют проверить целостность проводов, даже когда они обесточены, и ток по ним не идет.

Подобные варианты дадут следующие данные о цепи, что проверяется:

  • присутствие звукового сигнала позволит понять, есть ли в цепи напряжение либо оно отсутствует;
  • цифровое табло показывает величину напряжения, что обычно отображается в вольтах;
  • использование рассматриваемой отвертки дает возможность проверить цепь постоянного и переменного тока в бытовой электротехнике;
  • установить сетевую полярность;
  • прозвонка электрической цепи звуковой либо световой индикацией.

Важно! Любая отвертка индикаторного типа обязательно будет иметь нижний и верхний предел замера напряжения. Выход за эти рамки практически в 100% случаев приведет к неисправности и поломке устройства.

Вообще, существуют две категории отверток такого типа.

  • С неоновой лампой. Этот вариант является распространенным и его устройство описано выше. Преимуществом такого решения будет дешевизна и простота. А недостатком является малый диапазон напряжения, с котором можно работать. Как правило, речь идет о диапазоне от 90 до 380 вольт. Да и фазный провод определить в указанном случае можно исключительно при непосредственном электроконтакте.
  • Со светодиодом. Вариант с сигнализатором на светодиоде будет чуть другим. Тут следует отметить, что для его питания силы тока при обычной схеме будет мало. Поэтому используется так называемый временной трансформатор. Диод будет функционировать в импульсном режиме. Во сколько раз будет снижаться непрерывное свечение, в такое же количество раз будет подниматься токовая сила, проходящая через диод.

Благодаря наличию резистора ограничения щуп подключается к контакту с разными полярностями у диодного мостовыпрямителя. А второй контакт выводится на индикаторную рукоять, чтобы можно было прикоснуться пальцем. Малый постоянный, который возник, уходит на накопительный конденсатор. После этого активируется транзистор лавинного типа, который активирован по инверсной схеме. В финале всего этого светодиод получает пульсирующий ток. Такая отвертка может осуществить определение фазы даже при напряжении от 45 вольт. А если подключить не щуп, а маленькую антенну, то можно легко найти электрополе переменного типа.

Если говорить об области применения, то при помощи подобных отверток можно выполнять следующие типы работ:

  • проверка к розеточному или выключательному контакту подключается проводник фазы;
  • если розетка на удлинителе не функционирует, то можно осуществить проверку всех гнезд с применением пробника;
  • осуществить проверку, куда именно подведена фаза на патроне: на основной контакт или на резьбу;
  • узнать, есть ли напряжение в определенном электрическом приборе;
  • проверить, насколько исправен заземлительный проводник.

Как проверить фазу и ноль?

Теперь перейдем непосредственно к проверке ноля и фазы. Но перед стартом работ подобного типа, следует проверить работоспособность самого прибора, чтобы он отображал правильные данные, которые позволили провести нужные действия, выполняя следующие действия:

  1. сначала следует осуществить визуальный осмотр и убедиться, что конструкция прибора полностью целостна и не имеет повреждений механического характера;
  2. после выполнения этого действия, если никаких изъянов не найдено, следует протестировать устройство;
  3. щуп следует при проверке вставить в оба отверстия рабочей розетки, одновременно с этим требуется большой палец руки держать на части рукояти диэлектрического сенсора – если что-то не так, индикатор не сработает;
  4. при применении решения с индикатором неонового типа на батарейке можно зажать пальцами отверточное жало и пятачок; в случае активации светового диода, это будет означать исправность устройства.

    Объясним определение фазы и ноля на самой обычной розетке. Нужно вставить отвертку в одно из розеточных отверстий и, как описано выше, прикоснуться пальцем к рукояточной пластинке. Если индикатор активировался, значит, удалось найти фазу. Потом вставляем устройство в иное отверстие – активации лампочки произойти не должно. Если все так, как и должно быть – это ноль.

    Если же она и тогда светится от нулевого провода, чего вроде как быть не может, это значит, что есть две фазы. Не следует бояться, ведь это возможно, если просто исчез контакт на нулевом кабеле. Например, это можно произойти где-то в коробке. В розетке не может быть две фазы никоим образом: одна будет просто идти во второе отверстие через какие-то включенные электрические приборы (лампочки, стиральные машины, холодильники и так далее).

    Следует отметить, что довольно часто многие путают простую индикаторную отвертку с прозвоночным вариантом. Во втором случае у отверток имеется батарейка. Если с использованием такой отвертки осуществить определение земли, то нет необходимости касаться пятки. Либо же лампочка будет активна, как в случае касания фазы, как и при касании нуля.

    Меры безопасности

    Если вы будете работать с отверткой индикаторного типа, следует знать следующие правила:

    • использовать отвертку без винта ни в коем случае нельзя;
    • из устройства можно вытаскивать только батарейку и ничего другого;
    • при замене батарейки винт следует закрутить максимально плотно, что делается по часовой стрелке;
    • запрещено применять устройство, имеющее повреждения механического типа;
    • не следует использовать отвертку при высокой влажности;
    • использовать ее в сетях с несоответствующим нормативом напряжения крайне опасно.

    Не будет лишним помнить следующие основные меры безопасности при работе с проводкой:

    • не следует хватать щупы приборов за оголенные части, чтобы избежать удара током;
    • ни в коем случае не следует искать проводку голыми руками – делать это необходимо в резиновых перчатках и иметь обувь на подошве из резины;
    • руки также должны быть сухими;
    • иногда для индикации ноля и заземления можно замерять сопротивление, а не напряжение; следует быть предельно внимательным в данном случае.

    Это ряд довольно простых правил, но их неукоснительное и четкое выполнение станет гарантией сохранения здоровья и безопасности работ. А в целом, как можно убедиться, определить фазу и ноль индикаторной отверткой очень легко. Главное – соблюдать правила техники безопасности и принципы работы с электрическими приборами, а также с электросетями.

    Как определить фазу и ноль индикаторной отверткой, смотрите в видео ниже.

    Как определить фазу и ноль индикаторной отверткой: советы

    Если принимаетесь за самостоятельную установку новых розеток и выключателей, подключаете бытовую технику, важно понять, где проходят функциональные жилы проводки. Чтобы определить фазу и ноль, необязательно иметь под рукой профессиональные устройства. Как обойтись подручными инструментами, к примеру индикаторной отверткой, об этом дальше.

    Приборы для фиксации фазы и ноль

    Советы, которые можно увидеть на тематических форумах, по вопросу, как определить фазу и ноль, сведены в такой список:

    • из приборов понадобится мультиметр;
    • указатель напряжения;
    • самый простой способ – воспользоваться индикаторной отверткой, которая есть у каждого хозяина.

    Эти варианты наиболее доступны для использования в домашних условиях. Поэтому на уровне бытового применения их отличает высокая популярность.

    Читайте также: Какие преимущества имеет индикаторная отвертка

    Использование индикаторной отвертки

    Этот способ подойдет тем, кто не желает при поиске фазы и ноля тратить финансы. Покупая инструмент, обратите внимание – на рукоятке должна присутствовать надпись о напряжении, которое улавливает индикатор (от 500 В и более).

    Рабочей деталью является жало инструмента. Поэтому оно не покрыто пластиком. Касаться к оголенному жалу во время работы нельзя. Приспособление должно быть сухим, без растрескиваний и сколов металла.

    Рассмотрим, как определить фазу и ноль индикаторной отверткой на примере розетки. Следуйте пошаговой инструкции и все получится:

    1. Возьмите отвертку за рукоятку и подойдите к исследуемой розетке.
    2. Расположите жало внутри розетки. Следите за изменениями цвета.
    3. Если неоновая лампочка засветилась, это сигнализирует о фазе.
    4. В оставшемся отверстии после размещения жала с большей долей вероятности свет не появится. Это прямое указание – здесь находится ноль.
    5. Если свечение индикатора возникает сразу в двух отверстиях розетки, значит, фазы две. Вывод – нет контакта нулевого кабеля.

    Приступая к работе, не путайте индикаторный инструмент с предназначенным для прозвонки. Последнее приспособление снабжено батарейкой. Если другого прибора нет, тогда проверку осуществляют без касания к «пятке» устройства. В противном случае лампочка станет светиться и при сочетании с фазой, и с нулем.

    Видеоинструкция по использованию индикаторной отверткой при обнаружении фазы и ноля показана ниже: https://www.youtube.com/watch?v=mOh6dC68h5I.

    Как правильно пользоваться мультиметром

    Приобрести мультиметр можно с множеством функций. Способ, который описывает, как зафиксировать фазу и ноль, предлагаемый специалистами, подойдет даже для простейших изделий. Первым делом необходимо покопаться в настройках приспособления, замеряющего переменное напряжение. Как установить оптимальные настройки?

    1. Разместите в разъемах щупы.
    2. Установите переключатель режимов на измерении переменного формата напряжения в показателе 750 вольт.

    Далее используйте пошаговую инструкцию:

    1. Один щуп мультиметра вставьте в разъем розеточного устройства. Не имеет значения, какого он цвета.
    2. Оставшийся щуп прижмите двумя пальцами. Если значения близки к 0, вам удалось найти проводник ноль.
    3. Переставьте щуп в следующий разъем. Если показания остановились в значении 20-60 вольт, речь идет о фазном проводе.

    Не важно, на сколько пунктов показывает мультиметр выше 0. На значения может влиять изоляция напольного покрытия, обуви. Еще один вариант вычисления фазы и ноля с помощью мультиметра, состоит из таких шагов:

    1. Вставьте щуп в разъем розетки.
    2. Второй удерживайте возле розетки и ни к чему не прикладывайте.
    3. Если к полюсу розеточного механизма зафиксирован ноль, значения на мультиметре будут нулевые.
    4. Затем переставьте щуп в следующий разъем. Вторым снова-таки прикасаться ни к чему не нужно. Оставьте его свободно свисающим.
    5. Если к этому полюсу подходит фаза, оборудование установит напряжение 3-10 вольт.

    Правила использования двухполюсного указателя напряжения

    Указатель напряжения, рассчитанный на 2 полюса, насчитывает 2 рабочие части, соединенные друг с другом мягкой проводкой. Этот инструмент считается наиболее близким к профессиональному. На одной рабочей области присутствует шкала, где индикаторные лампочки указывает на напряжение в разных значениях.

    К сожалению, профессиональный аппарат не всегда позволяет обнаружить, где фаза и ноль. Какой указатель напряжения точно справится с этой задачей? Например, ПСЗ-3. Если напряжение есть, прибор издает выраженный сигнал. Также срабатывает индикатор.

    Читайте также: Как выбрать и использовать динамометрическую отвертку

    Чем опасно пользоваться

    От каких методов для обнаружения фазы и ноля лучше отказаться? Одни из них опасны для жизни, другие попросту не отражают реальное положение дел. Итак, безуспешными считаются следующие варианты:

    1. Вкручивание в патрон контрольной лампы, а по существу – обычной лампочки. Существует реальный риск взрыва осветительного прибора.
    2. Откажитесь от применения водопровода или батареи отопления.
    3. Бесполезным считают полагаться на цветовую маркировку проводки. Кабель окрашен в разный цвет для дополнительного ориентирования. Электрики, которые занимались монтажом проводки, могли перепутать кабель. Часто встречаются случаи, когда к проводу заземления подсоединяют фазу.

    Как понять где фаза. Как определить фазу и ноль тремя способами. Приборы и инструменты

    Каждый, кто хоть в какой-то степени разбирается в электротехнике, знаком со многими терминами и определениями. А профессиональные электрики и подавно. Но большая часть жителей не знают, что такое ноль и фаза. Что же обозначают данные слова? Как определить, где и что есть? В рамках данной статьи попробуем внести ясность.

    Общие сведения

    В нашей повседневной жизни мы сталкиваемся с электричеством практически в любом месте, где пребываем. Будь это работа или различные заведения: кино, театр, магазины, спортивные комплексы — перечислять можно очень долго. Что и говорить, мы пользуемся многими электроприборами ежедневно, причем лет так 20 или 30 лет назад их было не так много, как в настоящее время. Причем их число растет с завидной периодичностью.

    Но все электрическое оборудование не может работать вечно и рано или поздно оно начинает ломаться, что просто неизбежно. Вечного двигателя пока еще никто не изобрел, поэтому на чудо надеяться не стоит. Некоторые люди хотят научиться чему-то новому, неизведанному и электричество не является исключением. Хотя бы потому, что можно самостоятельно проводить ремонт бытовой техники. Конечно, лучше приглашать специалиста, но легкую работу можно выполнить самостоятельно. Только для этого необходимо изучить фундаментальные понятия, дабы разобраться, что такое ноль и фаза.

    Что такое электричество?

    Описание тока следует начать с понятия электрического заряда, который, по сути, является скалярной величиной. Если взять эбонитовую палочку и потереть о шерсть, то у нее появится отрицательный заряд. Это связано с избытком электронов в результате контакта с шерстью. Это именуется статическим электричеством и бывает на волосах. Только в этом случае заряд положительный, поскольку теряются электроны.

    Что касается электрического тока, то это упорядоченное движение заряженных частиц по какому-нибудь проводнику. Движение это возникает из-за электромагнитного поля. Ток может быть двух видов:

    • Постоянным — его значение и направление не меняются.
    • Переменным — он уже меняется во времени.

    Фаза

    Сами по себе термины «фаза», «ноль» и «земля» хорошо знакомы профессиональным электрикам. Но, к примеру, фаза встречается и в физике — под этим определением можно назвать несколько состояний воды:

    • жидкое;
    • твердое;
    • газообразное.

    Помимо этого, под фазой можно понимать несколько стадий колебания, что может относиться к волновому движению. В астрономии здесь несколько иное значение, что можно понять по наблюдению за луной.

    Чуть выше было рассмотрено, как рождается электричество на станциях. Так вот именно на рабочую фазу, которую электрики называют просто — фазой, подается напряжение. Чтобы более точно представить себе, что это значит, следует раскрыть следующее понятие — ноль.

    Ноль

    Как известно в розетках два отверстия, соответственно, у вилок имеется по два штырька. Обычно такое встречается в старых домах, где к каждому потребителю подходят лишь два провода ноль, фаза.

    В странах Европы и с недавнего времени на территории России стал применяться евростандарт. Здесь вместо двух жил или проводов уже три, за счет включения дополнительного защитного проводника.

    Но что такое ноль и нужен ли он вообще? Ответ однозначен: нужен! Чтобы возник электрический ток и начал питать какой-нибудь бытовой прибор (фен, чайник, утюг и так далее), необходима замкнутая цепь. Это обеспечивается нулем и фазой. То есть по фазному проводу электроэнергия поступает в наши дома, проходит сквозь потребитель (совершается работа) и возвращается обратно по нулевому проводнику.

    При этом важно, чтобы подключенный прибор работал — машинка стирала, телевизор показывал, утюг и чайник грелись и т. п. Иначе ток протекать не будет, однако напряжение на фазе никуда не денется. Поэтому важно следить, чтобы малыши ничего не вставляли в розетку.

    Земля

    Важно не только знать, как определить фазу и ноль, нужно и отличать заземление, которое стало применяться в новостройках. Как теперь известно, без фазы и нуля не бывает электричества, то есть он течет между двумя этими проводами. Только стоит еще прояснить, что такое переменное напряжение. В России и ряде стран электросеть характеризуется частотой 50 Гц (герц). Это означает, что ток меняет свое направление от фазы к нулю и наоборот очень часто — 50 раз за секунду!

    Если по фазе проходит напряжение, то его нет у нулевого проводника. Так как большинство домов на территории Российской Федерации было построено еще во времена СССР, то в вводном электрическом щитке нулевой провод соединен с «землей» и дополнительно еще с заземлителем, который вкопан в грунт. При этом «земля» напрямую соединена с корпусом щитка, а ноль располагается в изолированной колодке.

    Способы определения фазы и нуля

    Мало понимать, что такое ноль и фаза, ни в коем случае нельзя их путать! Если при включении это не имеет значения, то делая монтаж проводки, в особенности самостоятельно, это необходимо учитывать. В противном случае можно устроить в цепи короткое замыкание. Поэтому нужно четко понимать, где фаза, а где ноль.

    При необходимости провести замену розетки выключателя или люстры, первым делом стоит определить, где именно располагается ноль с фазой. У подготовленного человека это не вызовет никаких проблем, а вот для большинства людей это серьезная задача.

    Но не стоит отчаиваться, так найти эти провода не так сложно, как может показаться на первый взгляд. Существует несколько способов, которые ниже будут рассмотрены.

    Цветовая ориентация

    Это самый безопасный способ по определению фазного и нулевого проводов. Необходимо знать, какими цветами они обозначаются, а чтобы не было никакой путаницы, введены следующие цвета фазы ноля и земли:

    • Синий либо сине-белый цвет — это рабочий ноль.
    • Желто-зеленым цветом принято обозначать защитный ноль.
    • Красным, белым, черным, коричневым цветом окрашиваются фазные проводники.

    В каждой стране принят свой цвет фазы. Только стоить заметить, что такой способ подойдет лишь новостройкам, которых разводка проводов оформлена в соответствии со стандартом IEC 60446, принятым в 2004 году. Определить фазу и ноль согласно цветовой маркировке в старых домах, таких как хрущевки, сталинки, брежневки, невозможно. В этом случае может подойти другой способ.

    Индикаторная отвертка в помощь

    Индикаторная отвертка является неотъемлемым инструментом в наборе каждого домашнего мастера на все руки. При помощи этого универсального средства можно не только откручивать крепежные элементы, но и найти фазу.

    Процедура выполняется очень легко, поскольку особых знаний и умений здесь не потребуется. Все что нужно, это:

    • Металлическим концом коснуться оголенного провода или одного из каналов в розетке.
    • Во время проверки ни в коем случае не касаться самой рабочей части!
    • Нужно коснуться большим пальцем (или любым другим) контактной площадки инструмента.

    Данный способ, как и определение фазы и нуля по цвету проводов, работает безотказно.

    Если напряжение присутствует, то загорится индикатор отвертки, в противном случае — это не фаза, а ноль. Помимо лампочки в отвертке имеется резистор, благодаря чему создается сопротивление протеканию тока и напряжение немного снижается. Поэтому проверка будет полностью безопасной.

    Определение фазы мультиметром

    Другой не менее известный среди радиолюбителей прибор — мультиметр, тоже может быть использован для нахождения фазы в домашней электросети. На приборе выбирается режим измерения переменного тока (как правило, обозначается V~) и выставляется передел более 220 В. Обычно тэто 500, 700 или 800 Вольт. Щупы должны быть подключены к разъемам COM (черный) и VΩmA (красный).

    Одним щупом (обычно красным) нужно коснуться оголенного участка провода или погрузить в какой-нибудь канал розетки. Другим (уже черным) щупом касаемся какой-либо заземленной поверхности (батарея отопления, стальные элементы стены и прочее). При этом если красный щуп будет на фазе, то на дисплее прибора появится значение напряжения в диапазоне от 100 до 230 В, при условии, что нет перебоев электроснабжения. В противном случае это будет ноль.

    Петля фаза-ноль

    Периодически стоит проводить замер сопротивления фаза-ноль, что позволит электроприборам работать в бесперебойном режиме. Главная причина в таких замерах — это частое срабатывание автоматов. Обычно это обусловлено перегрузками в электросети или наличием короткого замыкания. Все это отрицательно сказывается на работе бытовых приборов.

    Не все представляют, что значит петля фаза и ноль. Так обозначается контур, который образуется соединением нулевого провода, расположенного в заземленной нейтрали. Таким образом и получается петля.

    В заключение

    Можно найти много способов, как найти фазу и ноль без специального оборудования. К примеру, «умельцы» используют сырую картошку или водопроводную воду. Однако крайне не рекомендуется проводить такие опыты, поскольку есть большой риск для собственного здоровья.

    Есть проверенные способы, которые не представляют угрозы при соблюдении техники безопасности. Поэтому не стоит заново изобретать велосипед и придумывать невесть что.

    Проводя установку электрооборудования, например, подключая светильники и закрепляя выключатели, часто приходится решать проблему, как определить фазу и ноль. Самый простой способ определения, который подходит для любого пользователя, это метод выявления наличия тока с помощью индикаторной отвертки. На первый взгляд она такая же, как и обычная, имеет металлическое жало и рукоятку. Кроме этого имеется маленькая металлическая кнопка и лампочка.

    Профессиональные электрики, как правило, подводят ток в розетке с левой стороны, а в патроне светильника по центру. Но что бы быть точно в этом уверенным надо действовать следующим образом.

    Инструкция по использованию

    Применяя данное устройство, надо быть очень осторожным, так как при несоблюдении мер безопасности можно получить электрический удар. Ни в коем случае нельзя прикасаться к открытому, неизолированному кончику индикаторной отвертки.

    На линию, на которой проводится работа, надо подать питание, но потребители электроэнергии (компьютеры, телевизоры и т.п.) должны быть отключены.

    Есть очень простой способ, как найти фазу и ноль индикаторной отверткой. Для этого нужно разместить ее на проверяемой поверхности и нажать на кнопку, расположенную на ручке. Если индикатор горит, то это силовой провод. Если жало будет размещено на проверяемой поверхности и после нажатия на кнопку вы увидите, что лампочка на ручке не горит – значит, это ноль. Таким нехитрым действием можно пользоваться во время электротехнических работ. По указанной методике можно узнать, как определить фазу в розетке, автомате и патроне.

    Альтернативная методика с использованием тестера

    Для поиска нужного элемента можно воспользоваться мультиметром. Для того чтобы проверить, где находится искомый проводник тестером, сначала требуется перевести его в режим измерения переменного тока. Для этого необходимо повернуть ручку управления в положение, напротив которого будет указан знак V~. Такой знак есть на каждом мультиметре. Далее возможны два пути.

    · Для или автомате нужно зажать один щуп пальцами, а другим щупом подвести к контактам автоматического выключателя. Если видим на индикаторе незначительное напряжение, например, 4,15, то это говорит о том, что там ноль. Если показания, близкие к 200 вольтам, это указывает на то, что данный контакт силовой.

    · Второй вариант заключается в том, что один щуп прибора надо поставить на заведомо заземленный предмет, а вторым, так же как и в первом способе, прикоснуться к элементу. Если прибор показывает незначительное напряжение, например, 0,15, то это означает, что контакт нулевой, а показания прибора являются незначительно наводкой самого тестера. Так же как и в первом варианте, показания датчика, близкие к 220–230 В, свидетельствуют о наличии питания.

    Определение назначения проводов по цвету

    Изоляция силового проводника, заземления и т.п. окрашивается в определенные цветы. По Стандарту Европейского Союза МЭК 60445 от 2010 года провода с силовым питанием должны быть окрашены в коричневый, черный, серый цвет. Синей изоляцией обозначаются проводники с нулем. Заземление окрашивается в двухцветную обмотку зелено-желтого цвета. Кроме того, Стандартом запрещается использовать окрашивание заземление только желтым или только зеленым цветом. В России же распространён ГОСТ 50462 от 2009 г., который почти полностью соответствует Европейскому Стандарту и по которому окрашивание производится так же. Необходимо обратить внимание на то, что не лучшим решением является поиск наличия напряжения только по цветовой маркировке, так как специалисты-электрики могут по-разному проводить подключение.

    Применение контрольной лампы

    Контрольная лампа — это простая лампа накаливания, к которой присоединены две изолированные проволоки по несколько сантиметров каждая. Одним концом проволоки нужно дотронуться до радиатора отопления или трубопровода, а другим – до проверяемой области. Посмотрим, как определить фазу. Она находится там, где во время данной процедуры лампочка зажглась. Необходимо понимать, что такой способ является достаточно опасным в связи с большой вероятностью электроудара.

    Многие считают, что легко найти фазу без специальных устройств. Но на самом деле использование подручных средств опасно, с ними вы можете запросто расстаться с жизнью. Обязательно надо использовать приборы – пусть и несложные. Достаточно приобрести самый простой индикатор питания, который стоит совсем не дорого.

    Прибегать к помощи мультиметра, чтобы определить фазу и ноль сети в домашних условиях не всегда рационально. Да и стоимость сложного оборудования гораздо выше. Существует более упрощенный прибор, позволяющий выполнить эти функции. Это индикаторная отвертка. Она является простым прибором. Однако, работая с электричеством, необходимо соблюдать все правила безопасности, какое бы оборудование ни применялось.

    Конструкция индикаторной отвертки

    Принцип устройства индикаторных отверток довольно прост и внешне напоминает ее обычный аналог. Разница между ними состоит в ручке.

    Индикаторная отвертка имеет в корпусе резистор, к которому подключено металлическое жало инструмента. Оно выступает в роли проводника.

    Элемент сопротивления сокращает силу тока до максимально возможной величины. Это позволяет пользоваться индикаторной отверткой безопасно.

    В корпусе также находится небольшой светодиод или неоновая лампочка. Он подсоединяется к наружному пятачку контактной пластины, которая находится на внешней стороне отвертки.

    Ток, проходя по щупу и резистору, уменьшается, его сила становится безопасной для проведения работы.

    Это основной принцип работы такого прибора, как индикаторная отвертка. Как пользоваться прибором, расскажут правила.

    Человек должен дотрагиваться до пластины на внешнем крае инструмента. Цепь в этом случае замкнется и световой индикатор активируется.

    Фаза и ноль в отвертке

    Чтобы подключить провод к электрическому оборудованию, следует знать, как определить фазу и ноль индикаторной отверткой. Ток, питающий приборы, идет всегда по первому проводу — фазе. Второй провод нулевой. По нему электричество проходит в обратном направлении и возвращается к питающему источнику.

    При касании щупом отвертки к оголенному проводу индикаторная лампочка загорается. Если же этого не происходит, то это нулевой кабель.

    Провод должен находиться под напряжением. Иначе определить фазу и ноль простой индикаторной отверткой будет невозможно.

    Отсутствие напряжения на обоих проводах при включенной сети свидетельствует о разрыве на участке проводника.

    Область применения

    Представленный инструмент сможет выполнить не только самые простые функции — как определить фазу индикаторной отверткой — но и множество дополнительных.

    Возможно проверить кабель на обрыв, исправность удлинителя, обнаружить проводку в стене.

    Все функции необходимо проводить по определенной инструкции применения индикаторной отвертки. Замеры возможно производить контактным или бесконтактным способом.

    Контактный способ поможет найти напряжение в сети переменного тока. Это самая простая процедура. Щупом инструмента касаются оголенного кабеля. Если светодиод загорелся, значит найдена фаза. В случае когда индикатор не загорелся, это может быть нулевой провод, а также это случается при отсутствии в сети питания или ее обрыва.

    Бесконтактный способ поможет найти скрытую проводку. Для этого ручку подносят к поверхности, за которой находится провод. Если неоновый элемент загорелся, проводник найден.

    Типы индикаторных отверток

    Варианты отверток с индикацией различны по своей функциональности.

    Отвертки индикаторные без элемента питания позволят найти только фазу сети.

    Представленные модели являются наиболее простыми, надежными и широко используются для определения напряжения в сетях жилых домов.

    Ограничение минимального уровня силы тока до 60В делают инструмент непригодным для работы с маломощными системами.

    Существуют модели прибора с батарейкой, что позволяет определять бесконтактно такие параметры сети, как ноль и фаза. Индикаторная отвертка этого типа позволит определить целостность электрического провода. Прибор протестирует кабель даже без подачи тока.

    Универсальная индикаторная отвертка позволит определить ноль и фазу как контактным, так и бесконтактным способом. Может применяться в сетях низкого напряжения.

    Проверка устройства перед работой

    Перед началом процесса важно ознакомиться с правилами, как проверить индикаторную отвертку. Для этого производится визуальный осмотр на целостность конструкции, дабы исключить наличие механических повреждений.

    Выполнив это действие и не обнаружив отклонений от нормы внешнего вида инструмента, проводится его тестирование.

    Щуп индикаторной отвертки при проверке вставляется в каждое отверстие рабочей розетки. Большой палец при этом необходимо держать на пластине рукоятки диэлектрического сенсора. Если этого не сделать, индикатор не будет срабатывать.

    Также при использовании оборудования с неоновым индикатором на батарейке допустимо просто зажать пальцами жало отвертки и ее пятачок. Если светодиод загорится, инструмент исправен.

    Меры безопасности

    Чтобы работа была безопасной и не произошло никаких неприятных неожиданностей, следует ознакомиться с правилами пользования, которые обуславливает отвертка индикаторная. Инструкция оговаривает следующие меры предосторожности.

    1. Пользоваться прибором без винта запрещено.
    2. Извлекать из прибора допустимо только батарейку.
    3. Заменив элемент питания, винт плотно закручивается по часовой стрелке.
    4. Нельзя использовать инструмент с механическими повреждениями.
    5. Запрещено применять отвертку при повышенной влажности окружающей среды.
    6. Использовать прибор для сетей с несоответствующим напряжением категорически недопустимо.

    Это ряд достаточно несложных правил, однако неукоснительное их выполнение гарантирует сохранение здоровья и обеспечит безопасность деятельности.

    Инструкция пользования

    Множество функций позволит выполнить индикаторная отвертка. Как пользоваться ею правильно? Разработаны правила, это регламентирующие.

    Чтобы оценить провод на наличие обрыва, следует устранить вероятность отсутствия напряжения в сети. Затем, держа одной рукой провод, следует дотронуться жалом другого конца.

    Если провод исправен, светодиод станет светиться.

    При помощи данного прибора можно проверить состояние удлинителя. Для этого проводник отключают от сети. В оба отверстия розетки вставляются два провода. Держась за контакт вилки, следует проверить инструментом второй контакт.

    Если лампочка стала светиться, удлинитель исправен.

    Найти участок обрыва кабеля также достаточно просто. Щуп инструмента зажимается пальцами, а его ручка проводится вдоль кабеля. Где индикатор перестанет гореть, в том месте существует обрыв.

    Замена элемента питания

    Индикаторная отвертка, конструкция которой предусматривает наличие съемного элемента питания, со временем потребует его замены.

    Дабы избежать поломки и обеспечить безопасность эксплуатации прибора, следует проводить эту операцию по определенным правилам.

    Замена батарейки производится в момент, когда светодиод перестает работать при проверке.

    Самые часто используемые элементы питания для индикаторной отвертки имеют маркировку LR41, AG3, 392A, V3GA, G3-A.

    Производя замену, следует открутить винт на конце рукоятки. Он при помощи небольшой пружины удерживает на посадочном месте батарейку.

    Проволока, придерживающая элемент питания, отгибается, и производится его замена.

    Затем ушки держателей аккуратно и плотно прижимаются в исходное положение.

    Винт рукоятки необходимо хорошо закрутить. Использовать инструмент без этой детали или при плохом ее закрытии категорически запрещается.

    Производя ремонт электрики или замену ее элементов у себя дома, необходимо подобрать самый подходящий тип инструмента. Индикаторная отвертка поможет определить фазу и ноль сети, а также место ее обрыва.

    Соблюдая при использовании прибора все правила эксплуатации, предусмотренные инструкцией, можно гарантировать безопасность выполняемых работ. Ответственное отношение к использованию, замене элемента питания обеспечит сохранность здоровья пользователя. Довольно простой и удобный инструмент позволит выполнять самые обычные действия с элементами электросети у себя дома.

    1 8 987

    Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.

    • Земля будет жёлтой, зелёной либо жёлто-зелёной.
    • Ноль будет синим или голубым.
    • Фазе досталась самая богатая палитра, она бывает серой и красной, розовой и бирюзовой, оранжевой и фиолетовой, но чаще всего — коричневой, чёрной или белой.

    Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?

    Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!

    Ищем фазу

    Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.

    Важный момент! Отсоединив провода от розетки, обязательно разведите их в разные стороны.

    После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза — тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.

    В поиске земли

    Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.

    Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.

    Монтаж нового оборудования с частичной заменой электрической проводки или без нее обязательно включает четкое определение проводов с фазой, «нулем» и заземлением. С поиском фазы вопросов нет: воспользуйтесь отверткой со встроенным индикатором. Если на объекте применяется проводка с двумя жилами, то автоматически понятно — первая является «фазой», вторая — «нулем». Сложности возникают при работе с системами, состоящими из трех токоведущих кабелей, поэтому ниже рассказано о том, как отличить «ноль» от заземления.

    Проблемы связаны с фактически одинаковыми электрическими параметрами двух проводников. Именно поэтому не пытайтесь отличить «ноль» от «земли», используя обычную лампочку: светиться она будет в обоих случаях. Приблизительно идентичными будут значения напряжения при замере с помощью мультиметра на парах фаза-ноль и фаза-земля (около 220 В). Впрочем, данный метод все же актуален для определенных ситуаций.


    Контрольная лампа на 220В

    Определяем фазу

    Чтобы найти «фазу», достаточно воспользоваться индикаторной отверткой — простым инструментом, который должен быть у любого хозяина. Прикоснитесь жалом к каждому проводнику, одновременно удерживая палец на верхней, металлической части рукоятки отвертки. Когда световой индикатор внутри отвертки загорится, значит, вы коснулись фазного провода. Однако помните, что при выполнении соответствующих операций электрическая сеть не обесточивается.


    Поиск фазного провода индикаторной отверткой

    Методы определения

    Существует несколько способов, позволяющих отличить «ноль» от «земли».

    Цветовая маркировка проводов

    Профессиональные и добросовестные электрики никогда не будут монтировать проводку без соблюдения цветовой маркировки. При условии, что монтаж осуществлялся с соблюдением основных правил ПУЭ, каждый проводник имеет определенный цвет в зависимости от выполняемой функции:

    1. Синяя/голубая оболочка используется для маркировки нулевого проводника.
    2. Желто-зеленая оболочка (полосками) применяется для обозначения заземляющей жилы.
    3. С фазным проводом сложнее, поскольку он может иметь оболочку белого, черного, красного, оранжевого и других цветов. Независимо от выбранного цвета «фазы» такой монтаж будет правильным.

    Синим маркируется ноль, зелено-желтым – земля, красным – фаза

    Помните: даже если были обнаружены жилы соответствующих цветов, по которым можно определить «фазу», «ноль» и «землю», не стоит спешить с выводами. Быть полностью уверенным в правильности монтажа можно исключительно при условии, что вы выполнили его самостоятельно. В остальных ситуациях подобный метод поиска «ноля» и «земли» будет некорректным. Поэтому переходите к остальным способам.

    Дифференциальный ток

    Намного проще отличить «ноль» от «земли», если на обслуживаемом участке имеется устройство защитного отключения (УЗО) либо дифференциальный автомат. Воспользуйтесь лампой с проводами, подключите прибор к фазе и одному из двух проводников. Если защита не сработала, то лампочка подключена правильно — к паре фаза-ноль. Если сработало УЗО и ветка оказалась обесточенной, то была задействована пара фаза-земля.

    Если УЗО не сработало в обоих случаях, то возможны проблемы с функциональностью оборудования. О работоспособности устройства дифференциальной защиты можно судить по проведенному испытанию. На любом подобном оборудовании есть кнопка «Тест». Нажмите на нее.

    Примечание. Защитное устройство может не сработать по другой причине: если протекающий через лампу ток ниже номинального дифференциального значения (при котором оборудование должно выполнять обесточивание цепи). К примеру, лампа накаливания пропускает ток около 20-40 мА. Если используется УЗО на 100 мА, то логично, что прибор не сработает.

    Заземляющие контакты на розетках

    Этот способ подходит для любого объекта, на котором используются двухполюсный вводный автомат и заземляющие розетки. Отключите автомат, что гарантирует отсутствие связи между «нолем» и «землей». Сделайте аналогичное со всеми бытовыми приборами. Возьмите мультиметр, активируйте режим «Прозвонка» и выполните процедуру между заземляющим контактом на розетке и двумя неизвестными проводами.

    Когда заземляющий контакт розетки будет соединен с «нолем», на мультиметре будет показано огромное сопротивление, с «землей» — приближенное к нулевому значению. Данный метод поможет убедиться в правильности подключения заземляющих розеток.

    Использование мультиметра

    Перед проверкой токоведущих жил с помощью мультиметра следует зачистить проводку. Не забывайте о мерах предосторожности и обязательно выполните обесточивание электрической сети на обслуживаемом объекте.

    Если электрическая проводка не имеет цветовой/символьной маркировки либо монтаж выполнялся неизвестным мастером, тогда воспользуйтесь мультиметром. Однако сперва при помощи индикаторной отвертки определите «фазу». Настройте мультиметр, выбрав диапазон замера переменного напряжения более 220 В. Можно взять измерительный прибор любого типа. Не имеет значения конкретный размер диапазона: главное — выставить его выше 220 В.


    На паре фаза-земля напряжение будет меньше

    Соедините через мультиметр «фазу» с одним, а затем — другим проводником. На паре фаза-ноль значение напряжения будет ненамного выше, чем на паре фаза-земля. Это позволит отличить «ноль» от «земли».

    Примечание. Определение «земли» при помощи мультиметра актуально для более старых электрических сетей, построенных по конфигурации ТТ. Для современных топологий TN-C-S метод неактуален. Во втором случае нулевой и заземляющий проводники разделяются уже внутри здания, поэтому электрически являются идентичными и связанными между собой. У них одинаковое сопротивление, а, значит, при использовании мультиметра на обеих парах будет равная разница потенциалов.

    Не подходит мультиметр для поиска заземляющего проводника в электрической сети TN-S. «Ноль» и «земля» разделены от источника энергии до потребителя. Из-за разной длины проводов будет совершенно иное сопротивление, которое обуславливает полученную разницу в напряжении. Может оказаться, что разница потенциалов на паре фаза-земля будет выше, нежели на паре фаза-ноль.

    Отключение нулевого провода (электрический щиток)

    Убедитесь, что электрические приборы были отключены от сети, благодаря чему ток гарантированно не будет поступать на нулевой проводник. Загляните в распределительный щиток, расположение которого регламентируется правилами ПУЭ, отсоедините нулевой провод (открутите зажимы, вытащите кабель из вводного автомата и заизолируйте). Либо удалите проводник с нулевой шины, которая используется для дальнейшего разветвления нейтрали. В квартире или частном доме останутся два работающих проводника — заземляющий и фазный.

    Вновь возьмите в руки мультиметр, измерьте напряжение между фазой (определяется индикаторной отверткой) и двумя другими проводниками. Напряжение появится исключительно между «фазой» и «землей», поскольку нулевой провод отключен от щитка.

    Примечание. Существует такое понятие, как «наведенное напряжение». Не вдаваясь в подробности, отметим, что вследствие него при измерении пары фаза-ноль мультиметр покажет вольтаж, отличный от «0» (обычно не более 10 В).

    Метод прозвонки

    Прозвонка — один из самых популярных методов, использующихся мастерами для поиска мест обрыва электропроводки. Он подходит для определения «ноля» и «земли». Данный способ актуален при условии, что вы знаете расположение нулевого и заземляющего проводников на одном из концов. Например, когда прозвонка осуществляется от распределительного щитка, но по какой-то причине на другом конце провода имеют другую цветовую маркировку (либо одинакового цвета).

    Произведите полное обесточивание. Прозвонка может выполняться профессиональными приборами (на любых моделях мультиметра имеется соответствующая функция) или обычной схемой из лампочки, батарейки и проводов.

    Если длина измеряемых проводников небольшая, то воспользуйтесь куском кабеля, подсоединив отрезок к концам участка. Если требуется прозвонить проводник, идущий от распределительного щитка до розетки в дальней комнате, то лучше воспользоваться известной жилой: до обесточивания индикаторной отверткой определите и промаркируйте «фазу» (на обоих концах).

    Один щуп мультиметра (или самодельного прибора) подключите к отмеченному фазному проводу, другой — к одному, а затем — другому неизвестному проводнику. Переходите к противоположному концу линии. Подключите поочередно два конца неопределенных жил к промаркированному фазному кабелю. Обозначьте их.

    Разница между нулем и землей

    Последствия неправильной коммутации нулевого и заземляющего проводников могут быть разными:

    1. Неправильная работа приборов учета электроэнергии в меньшую или большую сторону. Соответственно в первом случае, когда компания-поставщик найдет ошибку, может быть начислен огромный штраф.
    2. Некорректная работа устройств защитного отключения и дифференциальных автоматов: при существенных перепадах напряжения будет постоянно перегорать бытовая техника.
    3. Отсутствие защиты человека от поражения током. Более того, неправильная схема может стать основной причиной удара.

    В статье были рассмотрены способы, позволяющие отличить нулевой и заземляющий проводники в трехжильных системах. Расположены они в порядке возрастания сложности действий. Только правильный монтаж электрической проводки гарантирует корректную работу УЗО, дифференциальных автоматов и розеток с заземляющим контуром. Если есть малейшие сомнения, лучше обратиться за помощью к квалифицированному специалисту, предоставляющему акт о проведении ремонтных работ.

    Как найти фазу и ноль индикаторной отверткой? | ENARGYS.RU

    Проверить функциональные возможности электросети в квартире или частном доме можно различными способами. С финансовой точки зрения оптимальным вариантом будет индикаторный пробник, который способен заменить мультиметр в домашних условиях.

    При выполнении монтажных работ с розетками и выключателями освещения часто возникает необходимость найти фазу и ноль. Конечно для опытных электриков, такая задача пустяк, но для тех, кто мало знаком с правилами устройства электрических сетей, этот вопрос может загнать в тупик.

    Индикаторная отвертка. Нюансы в использовании

    Учитывая количество электроприборов в каждой квартире, этот прибор должен быть у каждого. С его помощью будет возможно определить наличие тока в любом проводнике, розетке или электрощитке.

    Конструкция индикаторной отвертки

    Конструкция обыкновенного пробника в виде отвертки простое:

    • щуп, исполняет роль проводника;
    • к жалу подключен резистор, он нужен для понижения силы тока до безопасной для человеческого организма величины;
    • далее размещен светодиод, который соединяется с контактным пятачком, выведенным на торец отвертки;
    • корпус изготавливают из прозрачного пластика, это позволяет увидеть загорание светодиода.

    Фаза и ноль в отвертке

    Найти фазу и ноль индикаторной отверткой не составит труда. Когда щупом прикоснутся к проводу под напряжением, ток пройдет по стержню, далее через резистор, приведет светодиод к свечению, а затем попадет на руку, которая касается металлической пластины. Ток пройдет и сквозь тело человека, который производит данную операцию, а затем уйдет землю.

    Сам человек не ощутит проходящий через него ток, так как его величина слишком мала.

    Область применения

    Любые работы, которые касаются электропроводки, должны быть безопасными. Для этой цели каждый должен иметь в доме этот необходимый инструмент.

    Этот прибор может быть использован для таких целей:

    • проверить к какому контакту розетки или выключателя подведен фазовый проводник;
    • когда розетка удлинителя не работает, можно проверить все гнезда пробником;
    • с ее помощью можно выяснить, куда подведена фаза в патроне: к центральному контакту или к резьбе;
    • выяснить находится ли электроприбор под напряжением;
    • прикасаясь жалом инструмента к центральному контакту розетки, можно проверить исправность заземляющего проводника.

    Важно! Если электросеть с переменным током, то прижимать палец к пластине нет необходимости!

    Типы отверток

    Новые модели отверток могут обнаружить присутствие напряжения в жиле даже через слой побелки, штукатурки и глины. Их алгоритм действия практически всегда аналогичен. Но имеются и различия, которые возникают в зависимости от типов, моделей и ряда функций которыми обладает инструмент.

    Иногда по своей функциональности одна отвертка, может заменить несколько дорогостоящих приборов. Существуют приборы с батарейкой, это дает возможность проверять исправность провода, даже в обесточенном состоянии.

    Важно! Любая индикаторная отвертка имеет нижние и верхние пределы замеров напряжения. Их превышение может сломать устройство либо показывать неверную информацию.

    Такая модель сможет дать максимальное количество интересующих сведений об исследуемой цепи:

    • звуковой сигнал сообщит о том, что в цепи присутствует напряжение;
    • на цифровом табло отобразиться величина напряжения в вольтах;
    • дает возможность проверить цепи переменного и постоянного тока в бытовых электроприборах;
    • определит полярность сетей;
    • с ее помощью можно провести прозвонку электроцепи световой или звуковой индикацией.

    Проверка устройства перед использованием

    Перед применением индикаторный прибор должен быть проверен на исправность. Батарейка, которая находится внутри устройства, поможет в этом удостовериться. Потребуется прикоснуться одновременно к жалу и другим пальцем к металлическому контакту на рукоятке. Световой индикатор должен в этот момент загореться.

    Если устройство не предусматривает наличие батарейки, тогда понадобиться проводник под напряжением. К нему нужно прикоснуться жалом отвертки, а к металлу на рукоятке пальцем. В результате светодиод также будет светиться.

    Основные меры безопасности

    Обязательно следует соблюдать меры предосторожности:

    • запрещается использование пробника без винта;
    • допускается вынимание из устройства только батарейки;
    • после того как заменена батарейка, винт следует закрутить по часовой стрелке до упора;
    • если на пробнике имеются механическими повреждениями, то его использование запрещено;
    • не стоит использовать прибор выше пределов, указанных в технических характеристиках;
    • перед использованием пробника, потребуется его проверить в сети с точным наличием фазы;

    Важно! При проведении замеров электрических линий, пробник держат только за изолированные элементы. Исключением являются цепи без напряжения.

    Инструкция по использованию

    Согласно своих характеристик такие индикаторные приспособления предназначаются для:

    • возможности определить переменное напряжение контактным способом до 250 В;
    • бесконтактным способом до 600 В;
    • обследования цепи на целостность от 0 до 2 Мом;
    • установления полярности: от 1,5 В до 36 В;
    • инструмент должен храниться в сухом и защищенном от влаги месте;
    • все операции лучше проводить в перчатках, чтобы обеспечить бесконтактное обследование;
    • после работы, следует очищать инструмент от пыли и мусора.

    Рекомендации электрика

    Бесконтактные отвертки очень чувствительны, она может реагировать и на фазу и на нейтраль, хотя реальное напряжение будет только в одном проводе. Поэтому для обычного электрика такая отвертка не нужна. Тем ни менее, она может помочь в проверке качества экранирования кабелей и отсутствии излучения.

    В таких приборах существует три позиции переключателя. Две предусмотрены для осуществления дистанционного действия. В случае случайного прикосновения отверткой в этом режиме к токонесущей части провода, то вся электронная часть, состоящая из транзисторов и светодиода, выгорит.

    Электроприборы окружают человека в повседневной жизни. Рано или поздно в любой электрической системе возникают проблемы и неполадки. Не всегда эти проблемы стоят того чтобы приглашать опытного электрика, некоторые поломки можно устранить самостоятельно. Однако, что иметь возможность отыскать неисправность в сети обязательно потребуется специальный инструмент, который стоит, приобрети заранее.

    Определение фазного провода. Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов? Замена аккумулятора

    Чтобы понять, что такое фаза и ноль в розетке, обычному человеку (не специалисту) не нужно копаться в электрических джунглях. В качестве примера рассмотрим обычную розетку, в которую подается переменный ток.

    В розетку идут два электрических провода — ноль и фаза. Ток протекает только по одной из них — фазной (ее еще называют рабочей фазой).Второй провод — нейтраль (или нулевая фаза).

    Ноль и фаза в старых розетках

    Для подключения старой розетки используйте два провода. Один из них синего цвета (рабочий нулевой провод). Этот провод передает ток от источника электричества к прибору. Если взять токоведущий провод, но не прикасаться ко второму проводу, то не произойдет поражение электрическим током.

    Второй провод в розетке — фазный. Он бывает самых разных цветов, включая синий, зелено-желтый или голубой.

    Примечание! Любое напряжение, превышающее 50 вольт, опасно для жизни.

    Фаза и ноль в современной розетке

    Современные устройства имеют три провода. Фаза может быть любого цвета. Кроме фазы и нуля есть еще один провод (защитный ноль). Цвет этого проводника зеленый или желтый.

    Напряжение подается по фазе. Ноль используется для защитной нейтрализации. Третий провод нужен в качестве дополнительной защиты — для снятия перегрузки по току при коротком замыкании.Ток перенаправляется на землю или в обратном направлении к источнику электричества.

    Примечание! Не имеет практического значения, расположены фаза и ноль справа или слева. Однако чаще всего фаза находится слева, а ноль — справа.

    Определение фазы и нуля мультиметром или отверткой

    Мультиметр

    Прибор представляет собой комбинированный электроизмерительный прибор, способный выполнять несколько функций.В минимальную комплектацию входят вольтметр, омметр и амперметр. Некоторые модификации выполнены в виде токоизмерительных клещей. Доступны как аналоговые, так и электронные счетчики.

    Чтобы начать процесс измерения, необходимо перейти в режим измерения переменного напряжения. Измерение проводится одним из нескольких методов:

    1. Зажмите один из существующих датчиков двумя пальцами. Второй зонд наводим на контакт, который находится в выключателе или розетке.Если данные на мониторе незначительны (не превышают 10 вольт), речь идет о нуле. Если прикоснуться к другому контакту, показатель будет выше — это фаза.
    2. Если вас беспокоит необходимость прикасаться к щупу, есть другой способ. Направляем один из стержней в розетку. Вторым стержнем прикасаемся прямо к стене рядом с розеткой. Результат будет примерно таким же, как и в описанном выше случае.
    3. Есть третий способ измерения мультиметром.Прикоснитесь щупом к заземленной поверхности (например, к корпусу оборудования). Вторым щупом коснитесь измеряемой поверхности. Если провод фазный, мультитестер обнаружит напряжение 220 вольт.

    Индикатор — это простой способ определения фазы, доступный даже человеку, который впервые начал это дело. Управляющая отвертка выглядит как стандартная. Отличие в том, что индикаторная отвертка имеет внутреннее устройство. Рукоятка отвертки изготовлена ​​из специального прозрачного пластика.Внутри находится диод. Верхняя часть сделана из металла.

    Примечание! Не используйте индикаторную отвертку для других целей. Он не предназначен для откручивания и закручивания винтов. Неправильное использование тестовой отвертки приведет к ее выходу из строя.

    Чтобы найти фазу и ноль отверткой, необходимо выполнить следующую последовательность операций:

    1. Коснитесь контакта концом отвертки.
    2. Нажмите пальцем на металлическую кнопку в верхней части отвертки.
    3. Если светодиод горит, это фаза. Если он не отвечает, это ноль.

    Примечание! Индикаторная лампа на 220-380 вольт будет светиться при напряжении более 50 вольт.

    1. Не прикасайтесь к нижнему концу отвертки во время измерения.
    2. Держите отвертку в чистоте, иначе есть большой риск повреждения изоляции.
    3. Если необходимо определить отсутствие напряжения, сначала проверьте работоспособность устройства, которое находится под абсолютным напряжением.

    Совет! В сети постоянного тока полярность контактов определяется очень просто. Для этого достаточно опустить провода в емкость с водой. Возле одного из проводов будут образовываться пузыри — это минус. Второй провод — плюс.

    Индикаторную отвертку не следует путать с диалером. Наборная отвертка поставляется с батареями. При работе с таким устройством не нужно нажимать кнопку для определения нуля и фазы, так как отвертка будет светиться в любой возможной ситуации.

    Владелец квартиры или частного дома, решивший пройти любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или бра, неизменно сталкивается с необходимостью определения места расположения фазного и нулевого проводов. , а также заземляющий кабель находятся на месте работы. Это необходимо для того, чтобы правильно подключить навесной элемент, а также избежать случайного поражения электрическим током. Если у вас есть некоторый опыт работы с электричеством, то этот вопрос вас не смутит, но для новичка это может стать серьезной проблемой.В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличая их друг от друга.

    В чем разница между фазным проводом и нулевым проводом?

    Назначение фазного кабеля — подавать электроэнергию в нужное место … Если говорить о трехфазной электросети, то для единственного нейтрального провода (нейтрали) предусмотрено три подвода тока. Это связано с тем, что поток электронов в цепи такого типа имеет фазовый сдвиг 120 градусов, и наличия в ней одного нейтрального кабеля вполне достаточно.Разность потенциалов на фазном проводе составляет 220В, при этом ноль, как и заземляющий провод, не находится под напряжением. На паре фазных проводов значение напряжения 380 В.

    Линейные кабели предназначены для подключения фазы нагрузки к фазе генератора. Назначение нулевого провода (рабочего нуля) — соединение нулей нагрузки и генератора. От генератора поток электронов движется к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

    Нейтральный провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

    Назначение нейтрального провода — создать цепь с низким показателем сопротивления, чтобы в случае короткого замыкания тока хватило для немедленного срабатывания устройства аварийного отключения.

    Таким образом, за повреждением установки последует быстрое отключение от сети.

    В современной электропроводке оболочка нейтрального провода синего или голубого цвета.В старых схемах рабочий нейтральный провод (нейтраль) совмещен с защитным. Этот кабель имеет желто-зеленое покрытие.

    В зависимости от назначения ЛЭП может иметь:

    • Жестко заземленный нейтральный кабель.
    • Изолированный нейтральный провод.
    • Эффективно заземленный ноль.

    Линия первого типа все чаще используется при обустройстве современных жилых домов.

    Для того, чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами, а также передается по трем фазным проводам высокого напряжения.Рабочий ноль, то есть четвертый провод, подается от той же генераторной установки.

    Четко про разницу фазы и нуля на видео:

    Для чего нужен заземляющий кабель?

    Заземление предусмотрено во всех современных бытовых электроприборах. Это помогает снизить количество тока до безвредного для здоровья уровня, перенаправляя большую часть потока электронов на землю и защищая человека, который прикасается к устройству, от поражения электрическим током. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях — через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не вызывая пожара.

    На вопрос — как определить заземляющий провод — можно было бы ответить: по желто-зеленой оболочке, но цветовая кодировка, к сожалению, часто не соблюдается. Бывает и так, что электрик, не имеющий достаточного опыта, путает фазный кабель с нулевым, а то и подключает сразу две фазы.

    Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

    Бытовая электропроводка: найти ноль и фазу

    Можно установить дома, где какой провод располагается по-разному. Разберем только самое обычное и доступное практически любому человеку: с помощью обычной лампочки, индикаторной отвертки и тестера (мультиметра).

    О цветовой кодировке фазных, нулевых и заземляющих проводов на видео:

    Проверка с помощью электрической лампы

    Перед тем, как приступить к такому тесту, нужно собрать тестовое устройство с лампочкой.Для этого его следует вкрутить в патрон подходящего диаметра, а затем закрепить на клеммах провода, сняв с их концов изоляцию с помощью стриппера или обычного ножа. Затем проводники лампы необходимо поочередно приложить к испытуемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверить двухжильный кабель, то уже ясно, что второй будет нулевым.

    Проверка индикаторной отверткой

    Отвертка индикаторная — хороший помощник в электромонтажных работах.Этот недорогой инструмент основан на принципе протекания емкостного тока через корпус индикатора. Он включает следующие основные элементы:

    • Металлический наконечник в форме плоской отвертки, прикрепляемый к проводам для тестирования.
    • Неоновая лампа, которая загорается при прохождении тока и сигнализирует о фазовом потенциале.
    • Резистор для ограничения силы электрического тока, защищающий устройство от возгорания под действием мощного потока электронов.
    • Контактная площадка, позволяющая создать цепь при прикосновении.

    Профессиональные электрики используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными батареями, но простой прибор китайского производства вполне доступен каждому и должен быть доступен каждому хозяину дома.

    Если при дневном свете проверять наличие напряжения на проводе этим прибором, то в процессе работы придется присмотреться повнимательнее, так как свечение сигнальной лампы будет плохо видно.

    Когда острие отвертки касается фазового контакта, загорается индикатор. При этом он не должен светиться ни на защитном нуле, ни на земле, иначе можно сделать вывод, что в схеме подключения есть проблемы.

    При использовании этого индикатора будьте осторожны и не дотроньтесь рукой до провода под напряжением.

    Об обнаружении фазы четко на видео:

    Поверка мультиметром

    Для определения фазы с помощью домашнего тестера прибор необходимо перевести в режим вольтметра и измерять напряжение между контактами попарно.Между фазой и любым другим проводом этот показатель должен быть 220 В, а подключение щупов к земле и защитному нулю должно указывать на отсутствие напряжения.

    Заключение

    В этом материале мы подробно ответили на вопрос, какая фаза и ноль в современной электротехнике, для чего они нужны, а также разобрались, как определить, где в разводке находится фазовый провод. Какой из этих методов предпочтительнее — решать вам, но помните, что вопрос определения фазы, нуля и земли очень важен.Неправильные результаты теста могут привести к возгоранию приборов при подключении или, что еще хуже, к поражению электрическим током.

    Содержание:

    Наша бытовая электросеть все для нас. Особенно там, где для приготовления пищи не используется газ — все на электричестве. Мы привыкли пользоваться электроприборами очень просто: есть розетки и выключатели. Включите или выключите свет одним нажатием кнопки. Чтобы включить какое-то другое устройство, находим розетку, подключаем и пользуемся. Например, пылесос.

    А большинство устройств уже подключены и никогда не выдергиваются из сети как телевизор. Также выключатель, похожий на выключатель для лампы или люстры, и весь выключатель делается в одно касание. И даже вообще — холодильник стоит сам и сам, когда хочет, включается и выключается.

    Ну это значит в сети все нормально, и даже не нужно точно знать, что там, в розетках, провода разные по своей природе.

    Напряжение в нашей сети переменное, 220 вольт, частота 50 герц.Так устроена наша энергосистема. Генераторы обеспечивают трехфазное напряжение, в каком-то смысле это оптимально для доставки потребителям. Ведь если простое синусоидальное напряжение требует разводки из двух проводников, то трехфазное напряжение может передаваться комплексно, со всеми тремя фазами сразу. Но для передачи требуется не шесть проводов, как можно было ожидать, а всего четыре. То есть раза в полтора меньше. При передаче на большие расстояния это так важно для экономии металла.

    В наши дома и квартиры подается трехфазное напряжение с амплитудой 380 вольт. Но обычно на щите выбирается одна фаза. Это означает, что нам понадобится как минимум два провода для потребления энергии. И один из них называется фазовым, а другой — нулевым. Так было со старым подключением. А старые розетки делали без расчета подключения третьего провода — заземления. Сейчас заземление стало нормой, оно должно защищать нас от поражения электрическим током от наших бытовых приборов, если в них произойдет поломка, а 220 вольт прямо на металлическом корпусе или корпусе прибора.Поэтому необходимо, чтобы везде было заземление. Он присоединяется ко всем непроводящим устройствам металлоконструкций, и хорошо, если он будет заземлен как можно ближе к нам. Это сделано для того, чтобы сопротивление между заземленными частями устройств и реальной землей было как можно меньше. Тогда в случае аварийного обрыва провода, несущего фазу и корпус устройства, фаза сразу уходила бы в землю, не повредив нас.

    Но так бывает не всегда.Раньше и даже сейчас при отсутствии заземления устройств можно было определить, подключен ли он к сети, например, утюг или холодильник или нет, а может, перегорел его предохранитель. Если вы проведете рукой — особенно по чувствительной тыльной стороне локтя — просто «погладьте» утюг, слегка прикоснувшись к нему, вы почувствуете что-то вроде легкой вибрации или легкого покалывания. Это указывало на то, что к устройству была приложена фаза, а в незаземленном корпусе были наведены индуктивные напряжения.

    Сами по себе такие звукосниматели ничего хорошего нет, они иногда могут доходить до 100 вольт, да еще чутко «раскалывать» человека. Зависит от взаимной емкости фазных проводов и частей корпуса. В холодильнике побольше будет, утюга будет меньше.

    Собственно, это первый способ проверить фазу, хотя в этом нет необходимости — может треснуть, либо фокус вообще не сработает при нормальном заземлении. И таким образом совершенно непонятно, по каким проводам подаются ноль и фаза.Их присутствие будет только указано.

    Причем питание происходит минимум двумя (фазный и нулевой, как тут уже писали) провода, максимум — тремя. Это при однофазном подключении. А когда к какому-то потребителю подадут сразу три фазы проводов, их будет пять. Гораздо серьезнее три фазы, гораздо опаснее напряжение 380 вольт — часто приводит к летальному исходу, поэтому заземление таких установок всегда является обязательным условием.

    Однофазная сеть имеет один фазный провод, одну нейтраль и одну землю.

    Заземляющий провод выделяется сразу и не требует определения. А вот фазный и нейтральный провода в розетке могут быть как справа, так и слева. Нет правила, по которому это точно установлено. Вы можете видеть цвет изоляции соответствующих проводов, но они следующие:

    • проложены под крышкой розетки и скрыты в стене;
    • даже если вы дойдете до них, открутив винт и сняв крышку, все равно нет гарантии, что:
      • соблюдена цветовая кодировка фаз;
      • наблюдалось при выдергивании провода из распределительной коробки.

    Цветовая кодировка проводов в блоке питания предписывает:

    • обозначить нулевой провод синим цветом;
    • желто-зеленая полоска — провод заземления;
    • Провод другого цвета, кроме этих двух, указывает фазу (черный, красный, серый, фиолетовый …).

    Точно так же обозначается трехфазный поводок, только фазные провода должны быть всех цветов, а не синими или желто-зелеными.

    Это следует тщательно соблюдать при обычной профессиональной установке, но… Покупаем квартиры и переезжаем в новые места обитания и становимся собственниками. И мы делаем в своих квартирах то, что считаем полезным и правильным, и не всегда заботимся о соблюдении стандартов. Мы обычно помним, что делали, и легко находим при необходимости в розетке, поставленной своими руками, и фазировку, и нулевой провод без индикатора. Чего нельзя сказать о собственниках, которые нас заменят, если мы продадим квартиру.

    По этим причинам любому владельцу необходимо, и не только полезно, знать, как проверить исправность сети и как найти фазу и ноль в любом месте домашней сети.И, кроме того, проведите осмотр всей электрической сети и установите правильную маркировку на все проверенные жилы. Если не соблюдается стандартная маркировка испытуемых проводов по цветам, пометьте их кольцами из изоленты или термоусадочными трубками другого, но стандартного цвета. Следует особо отметить места неисправностей и как можно скорее приступить к исправлению всех обнаруженных неисправностей.

    Обнаружение фазы и нуля

    Это можно сделать с помощью различных устройств.Проще всего проверить фазу индикатором. Устройство, специально разработанное для этого. Как определить ноль, зная фазу? Если все нормально, то это тот провод, где нет фазы.

    Индикатор часто работает как отвертка. Могут открутить даже винтик, не сильно закрученный, но судьбу лучше не испытывать — это приспособление, и лучше использовать по прямому назначению. Он состоит из жала, от которого через большое сопротивление (около 1 МОм) идет провод к неоновой лампе.Другой контакт неона идет на другую сторону индикатора, и при измерении следует дотронуться до него пальцем. К нему необходимо прижать наконечник для проверки проводника. Поскольку человек имеет достаточно большую площадь поверхности, он образует своеобразный конденсатор с нейтрализованными / заземленными металлическими поверхностями сети. При наличии переменного напряжения на проводе, к которому прижимается жало, очень слабое, не опасное для человека, ток около 0,02 мА будет протекать через человека и неоновую лампу, что вызовет слабое свечение неона лампа, которая укажет на наличие фазы в проводе.Индикатор рассчитан на напряжение до 500 вольт. При высоком напряжении устройство (резистор в нем) может сломаться, потом оно выйдет из строя, и пользоваться им станет опасно. Поэтому на всякий случай необходимо работать со всеми мерами безопасности: чтобы находиться в изоляционной обуви, в помещении должно быть сухо. Потому что поражение электрическим током в случае поломки будет направлено от фазы через проверяющего человека к нулю, земле или любому заземленному металлу (корпус бытового прибора, радиатор, водопровод и т. Д.).

    Такой индикатор также чувствителен к напряжениям, возникающим в проводниках, где нет фазы. Бывает так: в розетке оба контакта дают свечение неоновой контрольной лампы. Фаза — одна из них. А другой — «плохой» ноль. Если ноль где-то в проводке срезан, сломан или перегорел, то в нем будет подхват фазы. Его напряжение, конечно, не такое, как в фазе, но этого достаточно, чтобы индикатор показал его неоновым свечением. Как же тогда отличить ноль от фазы? В данном случае успеха нет — ничего не определено.И другие средства должны применяться. Например, попробуйте найти фазу мультиметром.

    Может использоваться как однополюсный: прижать стержень одного полюса к контакту, где должна быть фаза, а второй полюс взять рукой. Но при обрыве в ноль показывает свечение на обоих контактах. В этом случае вы можете проверить падение напряжения между двумя разными контактами. Относительно земли, определяется где-то в другом розетке «хорошего» нуля. Два фазных провода в разных розетках, но на одной фазе разницы потенциалов не будет.

    При наличии напряжения между двумя полюсами индикатор неоновый светится.

    Использование контрольной лампы

    Сделан зонд для определения целостности проводов. Это лампочка с батареей и двумя довольно длинными проводами с удобными для подключения концами: концы штыря или крокодила. С помощью такого щупа тогда можно будет искать место обрыва нейтрального провода, о котором говорилось выше. Однако такие поиски уже нужно проводить при полностью обесточенной сети.

    Но нам нужен пробник для проверки напряжения. Еще ее называют контрольной лампой — это то же самое, что и двухполюсный индикатор, разница в том, что вместо неоновой лампы используется обычная лампа накаливания, рассчитанная на напряжение, фазу которого мы ищем. Преимущество такой конструкции в том, что лампочка загорается только при «родном» напряжении. Однако, если есть возможность расклеить его в двух разных фазах, он может сгореть. Но если такой вероятности нет (квартира запитана только на одну фазу), то можно смело использовать такой щуп.Вставив его одним полюсом в один контакт розетки, а другой подключив к ТОЧНОМУ нулю, мы получаем свет от лампочки, указывающий на то, что мы нашли фазу. Ломаный ноль в этом случае не даст никакого свечения. Равно как и неповрежденный.

    Как определить фазу и ноль с помощью мультиметра

    Для определения фазы и нуля можно использовать мультиметр или тестер. В этом случае просто определяется напряжение. Все почти так же, как и в предыдущем случае с лампочкой, только значение напряжения мы увидим по показаниям прибора.Необходимо только предварительно установить переменный ток (переменный ток — переменный ток) и диапазон измерения так, чтобы внутри него было наше сетевое напряжение 220 вольт, например, переключить диапазон «на 500 вольт».

    Полярность переменного тока не имеет значения; для определения фазы нужно проверить напряжение между двумя проводниками двумя щупами. А к «точному нулю» лучше цепляться крокодилом (или землю — батареей отопления, просто найти место, где нет краски — или оторвать), а фазу в контактах розетки проверить другим зонд.Сколько должна дать фаза? Правильно, 220 вольт или меньше, как обычно в нашей сети. Нулевое напряжение даст нам хороший ноль — то есть покажет непрерывную нулевую шину, а некоторые промежуточные значения означают плохую проводку. Либо фаза идет плохо — где-то в фазе плохие контакты и надо срочно искать — либо плохой ноль — обломался. Если на розетке плохой и ноль, и фаза, это означает, что проводка совсем не подходит, и вот-вот что-то случится в сети.

    А дальше начинается новый этап — найти, выяснить, выяснить все неисправности и устранить их.

    Проведение ремонтных работ в любом помещении, немаловажным моментом является оснащение этого помещения электричеством. Помимо разводки не забывайте о необходимости установки розеток и выключателей, с помощью которых будет регулироваться освещение. Здесь довольно важным моментом будет определение фазного, нулевого и заземляющего проводника системы.

    Для профессиональных установщиков эта задача очень проста, чего нельзя сказать об обычных людях, которые не всегда могут справиться с такой задачей.Тем не менее поиск нуля и фазы не так сложен, как может показаться изначально, и включает в себя несколько способов определения.

    Следует понимать, что проводка в квартире обычно имеет напряжение 220В, так как она предусматривает подключение к нулевому проводу и к одной из фаз. В этом случае заземление обязательно, что делает электрификацию помещения безопасной для жителей.

    Что такое фаза и ноль в электричестве для новичка

    Чтобы понять принцип нахождения фазы и нуля в сети, вы должны сначала определить для себя, что означают эти термины, что для простого обывателя может звучать как совершенно непонятные понятия.Любая система, независимо от ее протяженности, состоит из трех фаз, это касается и низковольтных линий, задачей которых является питание жилых домов.

    Между любыми двумя фазами возникает линейное напряжение 380 В. Однако напряжение бытовой сети 220В, основная задача — появление необходимого для сети напряжения. Для этого в любой сети есть нейтральный провод, который в сочетании с любой фазой образует разность потенциалов 200В, которая будет представлять собой фазное напряжение.

    Ноль в электрической цепи называется проводником, который подключается к цепи заземления и используется для создания нагрузки от фазы. Эта фаза подключена к противоположному концу обмотки на ТП. Таким образом, в стандартной розетке для наглядности один вход принят за фазу, а другой — за ноль.

    Проще говоря, фаза — это провод, по которому течет ток. Через нейтральный провод ток возвращается обратно к источнику. В зависимости от количества фаз система имеет несколько проводов.Допустим, в трехфазной цепи есть три фазных провода и один возврат, ноль.

    Цветовая кодировка. Нередко многих интересует вопрос, какого цвета у провода фаза от нуля к земле, как определить, где какой провод, часто становится возможным с помощью цветовых различий, используемых в электрике. Однако этот способ сработает только в том случае, если публикация действительно выполняется по всем правилам. Изоляция нулевого провода обычно обозначается синим или голубым цветом, земля сочетает сразу два цвета — зеленый и желтый.По правилам фазный провод обозначается коричневым, белым или черным цветом.

    Обозначение фаз и нулевых букв … Помимо цветовой кодировки, возможна также буквенная маркировка проводов. Фаза обычно обозначается латинской буквой «L», а нейтральный провод обычно обозначается буквой «N». Кроме того, заземление имеет собственное обозначение, которое обозначается буквой «Г».

    Как определить фазу и ноль индикаторной отверткой

    Для поиска фазы и нуля в сети можно использовать различные инструменты.Самым удачным изобретением в помощь начинающим электрикам является индикаторная отвертка, имеющая специальные чувствительные элементы и индикатор-отражатель.

    Проверить фазу и ноль в сети отверткой проще простого. Отвертку следует зажать между большим и средним пальцами. Не прикасайтесь к оголенной части лезвия отвертки. Указательный палец следует положить на металлический круглый выступ на конце ручки.

    Принцип работы индикаторной отвертки определить несложно, внутри нее есть специальная лампа, а также резистор, являющийся сопротивлением.Лампа загорается, если цепь замкнута. Благодаря сопротивлению во время теста можно не бояться поражения электрическим током, так как оно сводит его значение к минимуму.

    Как с помощью индикаторного щупа узнать где фаза а где ноль в розетке видео

    Найти ноль такой отверткой соответственно не получится. К тому же подобный способ часто не работает из-за не слишком хорошей чувствительности. В результате индикаторная отвертка, реагируя на помехи, может выдавать напряжение там, где оно полностью отсутствует.

    Определение фазы и нуля мультиметром

    Помимо индикаторной отвертки можно использовать мультиметр, который также позволит определять токоведущие провода в сети. Обязательным условием его использования является предварительная зачистка проводов.

    Перед использованием в приборе необходимо установить предельное значение переменного тока, значение которого должно превышать 220В. Также следует ориентироваться на маркировку гнезд, куда входят щупы прибора.Для этого типа теста потребуется, чтобы зонд был вставлен в гнездо с надписью «V».

    Сама проверка заключается в прикосновении щупа к одному из проводов при одновременном контроле показаний прибора. Если мультиметр определяет какое-либо напряжение, значит, этот провод фазный. Если другой провод показывает нулевое значение, то это, соответственно, нейтральный провод.

    Устройство может использоваться для работы любого типа — указателя или с цифровым индикатором. В любом случае важным моментом будет соблюдение техники безопасности, а также правильная индикация прибором показаний с проводов.Точность этого устройства обычно выше, чем у индикаторной отвертки.

    Главное правило при использовании мультиметра — запретить одновременное касание фазного провода и контура заземления. Такая халатность может привести к коротким замыканиям и, как следствие, к травматическим ожогам.

    Как найти фазу и ноль без приборов

    Несмотря на столь широкое использование инструментальных методов определения фазы и нуля в сети, далеко не всегда под рукой то искомое устройство, которое приведет к правильному выводу.В то же время неправильная идентификация проводов в сети «на глаз» может привести к довольно опасным последствиям.

    Первый способ справиться с этой задачей был описан в одном из разделов выше. Он заключается в нахождении проводов в зависимости от цвета их изоляции, а также от маркировки. Однако это будет верно только в том случае, если публикация была проведена по всем правилам.

    Второй способ их определения — сделать так называемую контрольную лампочку, используя доступные инструменты.Для этого потребуется простая лампа накаливания и два куска провода длиной примерно 50 сантиметров. Жилы проводов должны быть подключены к лампочке, при этом другой конец одного из проводов должен касаться труб отопления (зачищен), а второй должен касаться «звенящих» проводов. Провод, при касании лампочка загорается, фаза.

    Обнаружение фазы без индикатора и видеоустройства

    Следует отметить, что описанный метод очень опасен и может привести к поражению электрическим током при его использовании.Ни в коем случае не рекомендуется использовать его, если в сети есть предельное напряжение, а также не следует прикасаться к оголенным проводам.

    Альтернативой лампе накаливания может быть неоновая лампа, которая позволит определить полярность системы.

    В заключение следует отметить, что ответ на вопрос «как определить фазу и ноль» имеет несколько решений. А именно: индикаторная отвертка, мультиметр, можно и без инструментов. Все зависит от возможностей и наличия под рукой инструментов.При работе с электричеством обязательно соблюдать все меры безопасности.

    Необходимость разобраться, где находится фазный провод, а где нулевой, может возникнуть у любого хозяина дома или квартиры. Иногда это необходимо при проведении простейших электромонтажных работ, например, при установке выключателей и розеток, замене ламп. Это важно при диагностике неисправностей в домашней электросети, проведении профилактических или ремонтных мероприятий. А некоторые устройства, например, термостаты, при подключении к источнику питания требуют строгого соблюдения расположения проводов «L» и «N» в клеммной колодке.В остальном ничто не гарантирует ни их долговечность, ни правильность в работе.

    Следовательно, необходимо научиться самостоятельно определять фазный и нейтральный провод. Это не так уж и сложно — есть проверенные методики с использованием простых и недорогих устройств. Но вот некоторые пользователи по непонятной причине задают вопрос в поисковиках: как определить фазу и ноль без приборов? Что ж, давайте обсудим эту проблему.

    Несколько слов о домашней электросети

    В подавляющем большинстве случаев в квартирах используется однофазное электроснабжение 220 В / 50 Гц.К многоэтажному дому подключается трехфазная мощная линия, но затем в распределительных щитах переключение на потребителей (квартиру) осуществляется по одной фазе и нулевому проводу. Их стараются распределить максимально равномерно, чтобы нагрузка на каждую из фаз была примерно одинаковой, без сильных перекосов.

    В домах современной постройки практикуется укладка и контурирование защитным заземлением — современная мощная бытовая техника в большинстве своем требует такого подключения для обеспечения безопасности эксплуатации.Таким образом, для розеток или, например, многих осветительных приборов подходят три провода — фаза L (от англ. Lead), нулевой N (Null) и защитное заземление PE (Protective Earth).

    В зданиях старой постройки часто отсутствует заземляющая защитная цепь. Это означает, что внутренняя разводка ограничивается всего двумя проводами — нулевым и фазным. Он проще, но уровень безопасности при эксплуатации электроприборов не на должном уровне. Поэтому при проведении капитального ремонта жилого фонда часто включают мероприятия по усовершенствованию внутренних электрических сетей — добавляется цепь РЕ.


    В частных домах могут практиковаться вводные и трехфазные линии. И даже некоторые точки потребления часто организуются с подачей трехфазного напряжения 380 вольт. Например, это может быть отопительный котел или мощный технологический станок в домашней мастерской. Но внутренняя «бытовая» сеть все же сделана однофазной — всего три фазы равномерно распределены по разным линиям, чтобы не допустить перекоса. И в любой обычной розетке мы все равно увидим те же три провода — фазу, ноль и землю.

    Кстати, в данном случае однозначно говорится о заземлении. И это по той причине, что владелец частного дома ничем не связан и просто обязан его организовать, если такой схемы не было, скажем, при покупке ранее построенного дома.

    Заземление в частном доме — как сделать самому?

    Наличие цепи защитного заземления в вашем жилом доме означает значительное повышение уровня безопасности при эксплуатации электроприборов.А по большому счету — и вообще степень безопасности проживания в доме для всей семьи. Если его еще нет, то, не откладывая надолго, необходимо организовать. В помощь — статья нашего портала, на которую ведет рекомендуемая ссылка.

    Существуют ли принципиальные способы определения фазы и нуля без приборов?

    Прежде всего, сразу «возьмем быка за рога» и ответим на этот важный вопрос.

    Этот метод представлен в единственном числе , да и то в определенной степени можно считать условным.Речь идет о цветовой кодировке проводов проложенных силовых кабелей и проводов.

    Действительно, существует международный стандарт IEC 60446-2004, которого должны придерживаться производители кабелей и специалисты, выполняющие электромонтаж.

    Раз уж речь идет об однофазной сети, то тут все должно быть просто. Изоляция рабочего нулевого проводника должна быть синего или голубого цвета. Защитное заземление чаще всего характеризуется зелено-желтой полосатой окраской.И изоляция фазного провода — другого цвета, например коричневого, как показано на рисунке.


    Следует правильно понимать, что коричневый цвет для фазы это вовсе не догма. Очень распространены другие цвета — в широком диапазоне от белого до черного. Но в любом случае он будет отличаться и от нулевого провода, и от защитного заземления.


    Казалось бы, все очень просто и понятно. Вы не ошибетесь. Так почему же это единственный способ распознать провода без инструментов до сих пор считается условным?

    Дело в том, что увы не везде и не всегда придерживаются такой цветовой «распиновки».О старых домах говорить не приходится. Там проводка в основном сделана проводами в точно такой же белой изоляции, конечно, никому не говоря.

    А в случае, когда прокладываются кабели с проводами в изоляции разного цвета, нужно быть абсолютно уверенным, что специалисты, проводящие электромонтажные работы, строго соблюдали правила. Нередко приглашенные извне «мастера» берут на себя вольность в этих вопросах. Это значит, что вы можете быть уверены, что работа проходила под присмотром профессионального электрика с безупречной репутацией.Или если во время эксплуатации владельцы уже имели возможность убедиться в соблюдении «цветовой гаммы». И, наконец, если арендодатель провел всю установку самостоятельно, строго следуя рекомендованному стандарту.

    Кроме того, бывает, что для проводки используется цвет изоляции жил очень далек от стандартного «набора» — синий, зелено-желтый и фаза какого-то другого оттенка. Если схемы с описанием нет, то цвет проводов в данной ситуации ничего определенного не скажет.


    Это означает, что вам придется искать фазу и ноль другими способами, используя инструменты.

    Если читатель сейчас ждет объяснений о других способах определения нуля и фазы, используя какие-то «экзотические» устройства вроде сырого картофеля, то это совершенно напрасно. Автор статьи и сам никогда такими методами не баловался, а другие никогда и ни при каких обстоятельствах не рекомендуют .

    Мы даже не будем касаться надежности таких проверок.Не в этом суть. Такие «эксперименты» чрезвычайно опасны. Специально для человека неопытного в электротехнике. (А опытному, поверьте, всегда лучше использовать действительно надежную и безопасную технику). К тому же маленькие дети могут видеть такие манипуляции за грех. Разве позже не будет тревожно узнать о врожденном желании ребенка во многом подражать своим родителям?

    И, по большому счету, вряд ли можно представить ситуацию, при которой обстоятельства настолько накалены, что приходится прибегать к таким «языческим» методам? Сложно пойти в ближайший магазин и купить простую индикаторную отвертку за 30 ÷ 35 рублей и забыть о проблеме? Если вечер, то до утра не дотянуть с диагностикой? Да ведь нельзя же у соседа индикатор на несколько минут попросить?


    Кстати, картошка это другое дело… Есть «знатоки», которые на полном серьезе рекомендуют проверить наличие фазы легким прикосновением пальца к проводнику. Мол, если в сухом помещении, но в обуви с диэлектрической подошвой, то ничего страшного не произойдет. Я хотел бы спросить таких «советников» — уверены ли они, что все, кто прислушались к их рекомендациям, живы и здоровы? Что не произошло, когда человек, попробовавший фазу «наощупь», случайно коснулся телом заземленного предмета или другого оголенного проводника?

    Чтобы понять степень опасности подобных «проверок», рекомендуем ознакомиться с информацией об угрозах для жизни и здоровья этого «безвредного» электричества в сети 220 вольт.Возможно, после этого многие вопросы снимутся сами собой.

    «Бытовое» переменное напряжение 220 вольт может быть смертельным!

    Жизнь современного человека невозможно представить без электричества. Но не всегда он действует только как «друг и помощник». При пренебрежении правилами эксплуатации устройств, халатности, неточности и тем более — явном пренебрежении требованиями безопасности может наказывать мгновенно и крайне жестоко.Отдельная публикация нашего портала подробно рассказывает о человеческом теле.

    А посему — резюмируем. Нет никаких способов, кроме упомянутого, самостоятельно опередить положение нуля и фазы без приборов — не существует .

    Теперь рассмотрим возможные способы такой проверки.

    Определение фазы и нуля разными способами

    С помощью индикаторной отвертки

    Это, пожалуй, самый простой и доступный метод.Как уже было сказано, стоимость самого простого устройства очень низкая. А научиться с ним работать — дело нескольких минут.

    Итак, как работает обычная индикаторная отвертка:


    Вся «начинка» этого зонда собрана в пустотелом корпусе (поз. 1) из диэлектрического материала.

    Рабочий орган такой отвертки — металлический наконечник (поз. 2), чаще всего плоской формы. Чтобы уменьшить вероятность случайного контакта с другими проводящими частями рядом с тестируемым проводом, оголенный наконечник обычно имеет небольшой размер.Жало укорачивается само по себе, идет «надевается» в изолирующую оболочку.

    Важно — кончик индикаторной отвертки при проверке следует рассматривать именно как контактный наконечник. Да, при необходимости они могут выполнить простейшие монтажные операции, например, открутить винт, удерживающий крышку розетки или выключателя. Но регулярно использовать его как отвертку — большая ошибка. И долго при такой эксплуатации аппарат не проживет 0, он просто не рассчитан на большие нагрузки.

    Металлический стержень наконечника, входящий в корпус, становится проводником, контактирующим с внутренней цепью индикатора. А сама схема состоит, во-первых, из мощного резистора (поз.4) номиналом не менее 500 кОм. Его задача — снизить силу тока при замыкании цепи до безопасных для человека значений.

    Следующий элемент — неоновая лампа (поз. 5), которая может загораться при очень малых токах, протекающих через нее. Взаимный электрический контакт всех элементов схемы обеспечивает удерживающая пружина (поз.6). А он, в свою очередь, сжимается заглушкой, вкручиваемой в торец корпуса (поз. 7), которая может быть как полностью металлической, так и с металлической «пяткой». То есть этот штекер играет роль контактной площадки при проверках.

    Прикасаясь пальцем к контактной площадке, пользователь «включается» в схему. Человеческое тело, во-первых, само по себе имеет определенную проводимость, а во-вторых, это очень большой «конденсатор».

    Это основа принципа поиска фазы и нуля.Острие индикаторной отвертки касается зачищенного проводника (клеммы розетки или выключателя, другой тонкой несущей детали, например, контактного вывода патрона лампы). Затем прикоснитесь к контактной площадке пальцем.


    Если острие отвертки касается фазы, то при замыкании цепи напряжения достаточно, чтобы вызвать безвредный для человека ток, приводящий к свечению неоновой лампы.

    В этом же случае, если чек попал на нулевой контакт, то свечения не произойдет.Да, там тоже небольшой потенциал, особенно если в это время в квартире (доме) работают другие электроприборы. Но ток через резистор будет настолько мал, что не должен вызывать свечение индикатора.

    Точно так же и на заземлителе — там вообще не должно быть потенциала.

    В том же случае, если, скажем, два контакта в розетке показывают фазу, это повод искать причину столь серьезной неисправности.Но это уже тема для отдельного рассмотрения.

    Тест проводится немного иначе с помощью индикаторной отвертки более продвинутого типа. Такие щупы позволяют не только определять фазу и ноль, но и проводить проверки целостности и ряд других операций.

    Внешне такие индикаторные отвертки очень похожи на рассмотренные выше простейшие. Единственная разница в том, что вместо неоновой лампы используется светодиод. А в корпусе есть батарейки на 3 вольта, которые обеспечивают работу цепи.


    Если вы не уверены, какая отвертка есть у пользователя, можно выполнить простой тест. Они просто касаются наконечника и контактной площадки одновременно. В этом случае цепь замкнется, и светодиод сигнализирует об этом своим свечением.


    Для чего все это сказано? Да просто потому, что алгоритм определения фазы и нуля при использовании такой отвертки несколько меняется. Конкретно касаться контактной площадки не нужно. При простом прикосновении к фазовому проводу индикатор загорится.На рабочем нуле и на земле такого свечения не будет.

    В настоящее время в продаже широко представлены более дорогие индикаторные отвертки с электронной начинкой, световой и звуковой индикацией. Причем довольно часто — даже с цифровым жидкокристаллическим дисплеем, показывающим напряжение на проверяемом проводе. То есть по сути индикаторная отвертка становится упрощенной подобием

    .

    Использовать их тоже не составляет особого труда. Придется руководствоваться прилагаемой к прибору инструкцией — в любом случае прибор должен четко указывать наличие напряжения на фазном проводе и отсутствие — на нуле или земле.Главное, перед началом проверки убедиться, что возможности используемого устройства соответствуют напряжению в сети. Обычно это указывается прямо на корпусе индикатора.

    Еще один «родственник» индикаторных отверток — бесконтактный пробник напряжения. На его корпусе вообще нет токопроводящих частей. А рабочая часть — это удлиненный пластиковый «носик», который просто подводят к проверяемому проводнику (клемме).


    Удобство такого устройства заключается еще и в том, что вовсе не нужно снимать испытываемый провод с изоляции.Устройство реагирует не на контакт, а на переменное электромагнитное поле, создаваемое проводником. При определенном напряжении срабатывает цепь, и устройство сигнализирует о том, что перед нами фазный провод, включив световой и звуковой сигнал.

    Определение фазы и нуля с помощью мультиметра

    Еще один контрольно-измерительный прибор, который потребуется приобрести любому умелому домовладельцу, — это стоимость недорогих, но достаточно функциональных моделей — в пределах 300 ÷ 500 рублей.И сделать такое приобретение один раз вполне возможно — оно обязательно будет востребовано.


    Итак, как определить фазу мультиметром. Здесь могут быть разные варианты.

    A. Если разводка включает три провода, то есть фазу, ноль и защитное заземление, но с цветовой кодировкой или нет четкости или нет уверенности в ее надежности, то можно применить метод исключения.

    Это делается следующим образом:

    • Мультиметр готовится к работе.Черный щуп подключается к разъему COM, красный — к разъему измерения напряжения.
    • Переключатель режима работы переведен в сектор, предназначенный для измерения переменного напряжения (~ V или ACV), а стрелка установлена ​​на значение, которое превышает напряжение в сети. В разных моделях это может быть, например, 500, 600 или 750 вольт.
    • Далее измеряется напряжение между ранее зачищенными проводниками. Всего комбинаций в этом случае может быть три:
    1. Между фазой и нулем напряжение должно быть близким к номинальным 220 вольт.
    2. Может быть такая же картина между фазой и землей. Но, однако, если линия оборудована системой защиты от утечки тока (УЗО), то защита вполне может сработать и в этом случае. Если нет УЗО или ток утечки совсем незначительный, то напряжение, опять же, находится в номинальном районе.
    3. Между нулем и землей не должно быть напряжения.

    Это как раз последняя опция, которая покажет, что провод, не участвующий в этом измерении, является фазовым.


    После проверки необходимо отключить напряжение, заизолировать оголенные концы проводов и промаркировать. Например, приклеив полоски лейкопластыря белого цвета и сделав на них соответствующие надписи.

    Б. Можно проверить провод (контакт в розетке) и на прямом примере напряжение на нем. Делается это так:

    • Подготовка мультиметра к работе — аналогично тому, как показано выше.
    • Далее выполняется измерение управляющего напряжения.Здесь преследуются сразу две цели. Во-первых, нужно убедиться, что в линии нет обрыва, и мы не будем искать фазу и ноль, как говорится, с нуля. А во-вторых, тестируется само устройство. Если показания верны, значит, переключение произведено правильно, и в схему включен мощный резистор, который обеспечит должный уровень безопасности для последующих операций.
    • Коснитесь тестируемого провода красным щупом. Если это розетка, то в розетку вставляется зонд, если лучше зачищенный конец проводника, лучше использовать зажим «крокодил».
    • Второй датчик касается пальцем правой руки. И — наблюдайте за показаниями на дисплее мультиметра.

    — Если испытательный датчик был установлен на ноль, напряжение отображаться не будет. Или его значение будет предельно маленьким — измеряется в вольтах.


    — В этом же случае, когда провод управления в фазе, индикатор покажет напряжение в несколько десятков, а то и больше вольт. Конкретное значение не так важно — оно зависит от очень большого количества факторов.Это и установленный предел измерения используемой мультитестерной модели, и особенности сопротивления тела конкретного человека, и влажности, и температуры воздуха, и обуви, в которую обут мастера и т. Д. Главное, чтобы есть напряжение, и оно разительно отличается от второго контакта. То есть фаза найдена.


    Наверное, далеко не каждому удастся преодолеть психологический рубеж — дотронуться рукой до щупа при подключении мультитестера к розетке.Здесь нечего бояться — мы предварительно протестировали устройство, замерив напряжение. И ток, проходящий через него сейчас, когда цепь замкнута, мало чем отличается от того, который проходит через индикаторную отвертку. Но тем не менее — для некоторых такое прикосновение становится догологически невозможным.

    Ничего страшного, можно немного по другому. Например, просто прикоснитесь к стене вторым щупом — штукатуркой или даже обоями. Еще есть влага, и это приведет к замыканию цепи.Правда, показания индикатора, скорее всего, будут намного меньше. Но и этого будет достаточно, чтобы однозначно выяснить, какой из контактов фазовый.


    Такая проверка будет не хуже, если в качестве второго контакта использовать какой-либо заземленный прибор или предмет, например, радиатор отопления или водопровод … Подойдет и металлический корпус, даже без заземления. А иногда даже один зонд, подключенный к розетке, а второй просто лежит на полу или на столе, позволяет увидеть разницу.При проверке фазы тестер может показать единицы или пару десятков вольт. С нулевым проводником конечно будет ноль.

    IN. Как видите, с определением фазы особых проблем нет. Но что делать, если есть три провода. То есть мы определились с фазой, и теперь нам нужно выяснить, какая из двух оставшихся равна нулю, а какая — защитное заземление.

    Но это не так просто. Конечно, существует несколько доступных методов. Но ни один из них не может претендовать на звание «истины в последней инстанции».«То есть здесь требуются специальные устройства, которые есть в распоряжении профессиональных электриков.

    Но иногда помогает и самотестирование.

    Об одном из них уже упоминалось выше. Когда напряжение измеряется между фазой и нулем, это не должно вызывать никаких особенностей. Но при измерении между фазой и землей из-за неизбежной утечки тока может сработать система защиты — УЗО.


    Другой способ обнаружения нуля и защитного заземления — это звонок.То есть можно попробовать переключив мультиметр на измерение сопротивления в диапазоне, скажем, до 200 Ом и в обязательном порядке — отключив напряжение на экране, поочередно измерить сопротивление между этими проводниками и гарантированно заземленным объектом. На проводе РЕ это сопротивление, по идее, должно быть намного меньше.

    Но, опять же, надежностью этот способ не отличается, так как связи практикуются по-разному, и значения могут оказаться примерно одинаковыми, то есть ни о чем не говорят.


    Другой вариант — отключить шину заземления от ведущего к ней контура. Или снимите с него якобы провод для проверки. Затем — либо прозвонить, либо произвести поочередное измерение напряжения между фазой и двумя оставшимися проводниками. По результатам часто можно судить, где ноль, а где PE.

    Но, честно говоря, этот метод не кажется ни эффективным, ни безопасным. Опять же из-за различных нюансов разводки и включения коммутаторов результат может быть не совсем надежным.

    Узнайте, а также ознакомьтесь с его назначением и методами работы с видеоустройством, из нашей новой статьи на нашем портале.

    Так что если вам нужна гарантированная четкость, где ноль, а где заземление, а выяснить самостоятельно нет возможности, лучше обратиться к квалифицированному электрику. При всей схожести этих проводников в домашней электропроводке их ни в коем случае не следует путать.

    Итак, основные доступные способы определения фазы и нуля.Подчеркнем еще раз — если визуальный метод определения (по цветовой маркировке изоляции) не гарантирует достоверности информации, то все остальное следует проводить исключительно с помощью специальных приборов … Никакой «100% методики» со всем совершенно недопустимы сорта картошки, пластиковые бутылки, бидоны с водой и прочие «игрушки»!

    Кстати, в публикации ничего не говорится об использовании так называемого «контроля» — лампочки в розетке с двумя проводниками.Опять же, это связано с тем, что такие испытания прямо запрещены действующими правилами безопасной эксплуатации электроустановок. Не рискуйте собой и не представляйте потенциальную угрозу своим близким!

    В конце публикации — небольшой видеоролик по проблеме поиска фазы и нуля.

    Видео: Как определить расположение фазы и нуля Электромагнетизм

    — Как работает отвертка-тестер?

    Резистор, включенный последовательно с неоном, обычно является компонентом, ограничивающим ток.Он будет варьироваться между устройствами, но примерно 0,5 мА, по-видимому, является ограничивающим током (для ламп NE-2), и, учитывая, что сам неон будет «бить» примерно при 150 В (пиковое), резистор будет ограничивать ток примерно до 0,5. мА при напряжении на нем около 150В — это для цепи 220В переменного тока. Это подразумевает сопротивление около 300 кОм.

    Однако я подозреваю, что неоновые лампы, используемые внутри отверток, будут работать от 110 В переменного тока, и они, возможно, относятся к типу 60 В. Это означает, что падение напряжения на резисторе будет около 250 В (пиковое) при питании 220 В переменного тока, что подразумевает сопротивление около 500 кОм.Но при этом не учитывается последовательная емкость человеческого тела (см. Ниже).

    Вот что говорится в вики: —

    Недорогой тип испытательной лампы, которая контактирует только с одной стороной тестируемой цепи, и полагается на паразитную емкость и ток, проходящий через тело пользователя для замыкания цепи. Устройство может иметь форму отвертки. Кончик тестера прикасается к проверяемому проводнику (например, его можно использовать на проводе в выключателе или вставить в отверстие электрической розетки).Неоновая лампа требует очень небольшого тока для зажигания и, таким образом, может использовать емкость тела пользователя относительно земли для замыкания цепи.

    Ссылка: Здесь — прокрутите вниз до заголовка «Одноконтактные неоновые тестовые лампы».

    Внутри корпуса отвертки есть резисторы, соединенные последовательно с неоном, но нормальный импеданс в значительной степени является емкостным, поскольку резисторы там присутствуют в качестве предохранительного устройства, если неон будет напрямую подключен между фазой и нейтралью / землей: —

    Какую емкость обычно дает человеческое тело на конце отвертки? Модель человеческого тела для емкости, как определено Ассоциацией электростатических разрядов (ESDA), представляет собой конденсатор емкостью 100 пФ, соединенный последовательно с 1.Резистор 5кОм (исток)

    100 пФ при 50 Гц — это импеданс около 30 МОм, который затмевает сопротивление отвертки. Если принять как должное, что модель ESDA примерно верна, ясно, что ток через неон практически полностью определяется этой моделью.

    Сопротивление

    — полностью ли безопасны портативные тестеры мощности переменного тока (те, которые выглядят как отвертка)? Почему, почему нет?

    У этих отверток есть преимущество перед мультиметрами. Отвертка показывает, есть ли напряжение между проводом и землей (под вашими ногами), а не между двумя проводами.

    Я видел испорченную проводку, когда вы измеряете между горячим и предполагаемым нейтралью и получаете ноль вольт — потому что все подключено настолько неправильно, что провод с цветовой кодировкой нейтрали на самом деле горячий.

    В таких случаях лучше отвертка, чем счетчик. Измеритель показывает «нет разницы в напряжении между этими двумя проводами, все безопасно», но отвертка говорит: «напряжение между этим проводом и землей, это может вас убить».


    Не думаете, что это происходит? Несколько недель назад я пошла поставить новую лампу в гостиной квартиры дочери.

    Существующая лампа была подключена к двум синим проводам — ​​по цветовому коду, это нейтраль. Один из двух был горячим, а в распределительной коробке на потолке был черный (цветовой код для горячего).

    Итак, между одним синим и черным я бы измерил с помощью прибора 0 вольт, но отвертка показала горячую для черного и одного синего.

    Я установил новую лампу и сказал дочери пожаловаться домовладельцу. Реакция была «Мех. Это сделал электрик, должно быть, все в порядке.«


    Отверткам тоже не доверяю. Я всегда сначала проверяю, показывает ли он мощность на горячем и ничего на нейтральном. Затем я переворачиваю автоматический выключатель для этой цепи и проверяю, что теперь он показывает «разомкнутый» на «горячем» и «нейтральном». Если он был живым до и мертвым после включения выключателя, то я почти уверен, что питание действительно отключено.


    Еще одна вещь, которая делает его более безопасным, чем вы думаете, — это то, что угольные резисторы выходят из строя.

    Слишком большой ток, и резистор буквально перегорает.Он нагревается, углерод тлеет и прожигает. Это оставляет вас с разомкнутой цепью, поэтому вы не можете получить удар при использовании тестера отвертки.

    Углеродные резисторы также увеличивают сопротивление с возрастом. Они также не открываются при механическом повреждении — они трескаются и больше не проводят ток.

    Конечно, если он не откроется, вы можете подумать, что напряжение отсутствует, когда цепь находится под напряжением. Вот почему вы проверяете, работает ли он, прежде чем использовать его, чтобы убедиться, что провод действительно безопасно прикасаться.

    Amazon.com: Индикатор напряжения 100-500 В, крестовая и шлицевая отвертка, электрическая контрольная ручка, прочная изоляция, электрический инструмент для дома от Keaiduoa: инструменты и ремонт дома


    В настоящее время недоступен.
    Мы не знаем, когда и появится ли этот товар в наличии.
    Марка Тестеры Кеайдуоа
    Материал Металл и пластик
    Стиль головы Плоский

    • Убедитесь, что это подходит введя номер вашей модели.
    • ✔Материал: металл, пластик.
    • ✔Электрическая тестовая ручка двойного назначения может использоваться как отвертка (крестовая и шлицевая отвертка).
    • ✔Чик изготовлен из качественного пластикового экологического материала, с противоскользящей конструкцией частиц, очень прочный и безопасный в использовании.
    • ✔ Вал с изолированной крышкой обеспечивает безопасность и защиту от короткого замыкания.
    • ✔ Качественный диод внутри ручки, диод будет светиться при прохождении тока.

    Практическое устранение неисправностей электронных схем для инженеров и техников — EIT | Инженерный технологический институт: EIT

    3.2 Контрольно-измерительные приборы

    Существует множество типов испытательных и измерительных приборов, доступных для электронного поиска и устранения неисправностей.При выборе методов устранения неполадок учитывается определенное личное мнение. Один может предпочесть использовать вольтметр для поиска и устранения неисправностей, другой может использовать выводы осциллографа. Хотя всегда есть личный выбор, технический специалист должен быть знаком со всеми методами, преимуществами и недостатками, ограничениями и типами инструментов для поиска и устранения неисправностей.

    Аналоговый и цифровой мультиметр [вольт-ом-мультиметр (ВОМ)] доступен для поиска и устранения неисправностей аналоговых цепей.

    Мультиметр

    Мультиметр — самый полезный инструмент для специалистов по поиску и устранению неисправностей.Этот прибор позволяет измерять значения постоянного и переменного напряжения, постоянного тока и сопротивления. С соответствующими принадлежностями он также может измерять другие параметры, такие как высокочастотные сигналы, высокое напряжение и т. Д.

    Вольтметры и амперметры переменного и постоянного тока, а также омметры доступны в различных диапазонах и конфигурациях. Мультиметр представляет собой комбинацию всех этих измерителей, что делает его очень полезным в полевых условиях.

    Аналоговый мультиметр используется, когда требуется просто наличие значения рядом с указанным, а не измеренное значение, которое точно соответствует ожидаемому.Аналоговая индикация приблизительного значения напряжения наблюдается быстрее, чем цифровая индикация. Они менее восприимчивы к постороннему шуму.

    Когда требуется высокая точность, особенно когда необходимо обнаруживать очень небольшие изменения уровня, предпочтительнее цифровой мультиметр.

    Рисунок 3.11
    Аналоговый мультиметр

    Аналоговый мультиметр — это наиболее широко используемый тестовый и измерительный инструмент. Он работает с подвижной катушкой постоянного магнита, которая может стать вольтметром постоянного тока, вольтметром переменного тока, миллиамперметром постоянного тока или омметром.Иногда также присутствует устройство для измерения переменного тока.

    Он имеет катушку из тонкой проволоки, намотанную на прямоугольную алюминиевую раму. Он установлен в воздушном пространстве между полюсами постоянного подковообразного магнита. См. Следующий рисунок:

    Рисунок 3.12
    Измеритель с подвижной катушкой

    Когда электрический ток течет через катушку, создается магнитное поле, которое взаимодействует с магнитным полем постоянного магнита, заставляя катушку вращаться. Направление вращения зависит от направления потока электронов в катушке.Величина отклонения стрелки пропорциональна силе тока. В обычных приборах отклонение полной шкалы (FSD) составляет около 90 градусов.

    Использование мультиметра

    Мультиметр работает без ошибок, если некоторые предварительные настройки выполняются во время использования мультиметра. Шкала стандартного мультиметра показана на следующем рисунке:

    Рисунок 3.13
    Типичная шкала аналогового мультиметра

    Ниже приведены настройки мультиметра:

    • Поместите мультиметр на скамейку лицевой стороной вверх .
    • Установите переключатель диапазонов в положение ВЫКЛ.
    • Замкните два тестовых щупа вместе.
    • Обратите внимание, показывает ли стрелка измерителя ровно 0 на крайнем левом конце шкалы.
    • Если он не показывает 0, медленно поворачивайте винт механизма измерения, пока не будет получен правильный 0.

    Измерение тока

    Измеритель с подвижной катушкой в ​​основном чувствителен к току и поэтому является амперметром. Для измерения постоянного тока поместите измеритель (амперметр для измерения тока) последовательно со схемой.Когда амперметр включен в цепь, его внутреннее сопротивление складывается, тем самым уменьшая ток в измерительной ветви. Обычно это сопротивление невелико, и им можно пренебречь.

    Для измерения переменного тока используются счетчики выпрямительного типа, которые реагируют на среднее значение выпрямленного переменного тока. Измеритель должен быть откалиброван в амперах (среднеквадратичное значение) для измерения синусоидальных волн.

    Измерение напряжения

    Измеритель тока может использоваться для измерения напряжения.Измеритель с подвижной катушкой имеет постоянное сопротивление. Итак, ток через счетчик пропорционален напряжению.

    Для измерения разности потенциалов между двумя точками подключите два провода вольтметра к этим точкам. Таким образом, в отличие от амперметра, вольтметр подключается параллельно цепи, потенциал которой необходимо измерить.

    Для измерения переменного напряжения требуется выпрямление. Как и в измерителях переменного тока, вольтметры переменного тока реагируют на среднее значение выпрямленного напряжения, но калибруются в среднеквадратических вольтах для синусоидальной волны.

    Измерение сопротивления

    Измеритель с подвижной катушкой может использоваться для измерения неизвестного сопротивления. Измерительные щупы замкнуты накоротко, а ручка регулировки сопротивления повернута так, чтобы ток через полное сопротивление цепи имел отклонение на полную шкалу.

    Омметр никогда не используется во время работы цепи. Иногда сопротивление зависит от состояния цепи, в этом случае измерьте напряжение на сопротивлении, ток через него и вычислите сопротивление.

    Рекомендации по эксплуатации
    • Установите переключатель диапазонов в правильное положение перед выполнением любых измерений.
    • В случае неизвестного измерения всегда рекомендуется начинать с самого высокого диапазона. Никогда не подавайте больше напряжения или тока, чем указано в каждой позиции.
    • Удалите параллакс для наиболее точных показаний. Посмотрите на шкалу с точки, где совмещаются указатель и его отражение в зеркале.
    • Когда глюкометр не используется, удерживайте переключатель диапазонов в положении ВЫКЛ. И извлеките батареи.
    • Всегда подключайте измеритель последовательно к нагрузке при измерении тока. Выберите желаемый диапазон тока и подключите измеритель последовательно к проверяемой цепи.
    • Полярность проводов не важна при измерении переменного тока. Чувствительность измерителя разная для диапазонов переменного и постоянного тока.

    Практические советы
    • Не измеряйте напряжение в цепи с высоким сопротивлением или высоким сопротивлением с помощью измерителя с относительно низким входным сопротивлением.
    • Не используйте измеритель для измерения микросхем с полевым МОП-транзистором, если вы не знаете, что датчики не статичны.
    • Избегайте использования вольтметра (вместо логического пробника) для измерения логической 1 и логического 0 в цифровой цепи.
    • В случае измерений переменного тока движение измерителя реагирует на среднее значение выпрямленного тока, и поэтому может быть неточность измерения из-за разной формы волны. Если приложенная форма волны не синусоидальная (квадратная или треугольная), то выпрямленный тип вольтметров переменного тока подвержен ошибкам.Поэтому рекомендуется ознакомиться с таблицей производителя, чтобы узнать, какие факторы следует принимать во внимание, чтобы получить правильное значение.
    • Батарейки в измерителе следует часто проверять на правильность работы в диапазонах сопротивления.

    Цифровой мультиметр

    В мультиметре аналогового типа значение измеряемого параметра оценивается по положению указателя по калиброванной шкале. Даже при использовании высококлассного измерителя этого типа трудно снимать показания с точностью лучше, чем примерно 1 процент от значения полной шкалы.

    Это ограничение в значительной степени связано с физическим расположением шкалы и схемой указателя. Для более точных измерений было бы лучше, если бы фактическое значение напряжения или тока могло отображаться непосредственно в виде числового значения.

    Цифровой измеритель отображает измерения в виде дискретных цифр вместо отклонения стрелки на шкале. У них высокий входной импеданс, и пользователю нужно только установить переключатель функций и прочитать результат измерения.

    Основная выполняемая функция — аналого-цифровое преобразование.Вход аналогового сигнала может быть постоянным напряжением, переменным напряжением, сопротивлением или переменным или постоянным током. Таким образом, цифровое значение преобразуется в пропорциональную продолжительность времени, которая, в свою очередь, запускает или останавливает точный генератор. Выходной сигнал генератора подается на счетчик, который управляет устройством цифрового считывания значений напряжения.

    Рисунок 3.14
    Цифровой мультиметр

    Цифровой мультиметр классифицируется по количеству отображаемых полных цифр. Цифра выхода за пределы диапазона — это дополнительная цифра, позволяющая пользователю считывать значения за пределами полной шкалы.Цифра выхода за пределы диапазона иногда называется «половинной» цифрой. Например, если сигнал изменяется с 9,999 на 10,012, для четырехзначного дисплея потребуется изменение диапазона, а второе измерение будет показывать 10,01 В. 0,0002 не будет прочитан. На дисплее с четырьмя с половиной цифрами такой проблемы не возникает.

    Помимо считывания значений напряжения, тока и сопротивления, цифровой мультиметр может также использоваться для измерения температуры, частоты, рабочего цикла, емкости и других параметров с помощью дополнительных принадлежностей.Они используются для проверки диодов и непрерывности цепи.

    Проверка диода с помощью цифрового мультиметра

    Диод — это полупроводниковый прибор, который проводит постоянный ток только в одном направлении. Другими словами, диод показывает очень низкое сопротивление при прямом смещении и чрезвычайно высокое сопротивление при обратном смещении. Омметр подает известное напряжение от внутреннего источника (батарей) на измеряемый резистор. Теоретически это напряжение может достигать 1.5 В или 3 В. Для смещения диода требуется напряжение 0,7 В. Следовательно, если положительный измерительный провод омметра подключен к аноду, а отрицательный измерительный провод омметра подключен к катоду, диод становится смещенным в прямом направлении. В этом случае омметр показывает очень низкое сопротивление. Если измерительные провода поменять местами относительно анода и катода, диод становится смещенным в обратном направлении. Затем омметр показывает очень высокое сопротивление. Таким образом, для проверки диода можно использовать обычный омметр.

    Большинство цифровых мультиметров (DMM) имеют функцию проверки диодов . Он отмечен на переключателе выбора маленьким диодным символом. Когда цифровой мультиметр установлен в режим проверки диодов, он обеспечивает достаточное внутреннее напряжение для проверки диода в обоих направлениях. Положительный измерительный провод цифрового мультиметра (красного цвета) подключен к аноду, а отрицательный измерительный провод цифрового мультиметра (черного цвета) подключен к катоду. Если диод исправен, мультиметр должен отображать значение в диапазоне от 0.5 В и 0,9 В (обычно 0,7 В). Затем измерительные провода цифрового мультиметра меняют местами относительно анода и катода. Поскольку диод в этом случае выглядит как разомкнутая цепь для мультиметра, практически все внутреннее напряжение цифрового мультиметра будет появляться на диоде. Значение на дисплее зависит от внутреннего источника напряжения измерителя и обычно находится в диапазоне от 2,5 В до 3,5 В.

    Рисунок 3.15
    Правильно работающий диод

    Неисправный диод выглядит либо как разомкнутая цепь, либо как замкнутая цепь в обоих направлениях.Первый случай более распространен и в основном вызван внутренним повреждением pn-перехода из-за перегрева. Такой диод показывает очень высокое сопротивление как в прямом, так и в обратном смещении. С другой стороны, мультиметр показывает 0 В в обоих направлениях, если диод закорочен. Иногда неисправный диод может не показывать полное короткое замыкание (0 В), но может отображаться как резистивный диод , и в этом случае измеритель показывает одинаковое сопротивление в обоих направлениях (например, 1.5 В). Это показано на Рисунке 3.16.

    Рисунок 3.16
    Неисправные диоды

    Как упоминалось ранее, если в конкретном мультиметре не предусмотрена специальная функция проверки диодов, диод все равно можно проверить, измерив его сопротивление в обоих направлениях. Селекторный переключатель установлен в положение ОМ. Когда диод смещен в прямом направлении, измеритель показывает от нескольких сотен до нескольких тысяч Ом. Фактическое сопротивление диода обычно не превышает 100 Ом, но внутреннее напряжение многих измерителей относительно низкое в диапазоне Ом, и этого недостаточно для полного прямого смещения pn перехода диода.По этой причине отображаемое значение выше. Когда диод смещен в обратном направлении, измеритель обычно отображает какой-либо тип индикации выхода за пределы допустимого диапазона, например «OL», потому что сопротивление диода в этом случае слишком велико и не может быть измерено с помощью измерителя.

    Фактические значения измеренных сопротивлений не важны. Однако важно убедиться, что существует большая разница в показаниях, когда диод смещен в прямом направлении, а когда — в обратном. Фактически, это все, что вам нужно знать.Это говорит о том, что диод исправен.

    Осциллограф

    До сих пор мы рассматривали счетчики, которые отображают статические уровни напряжения или тока. Для более тщательных тестов работы схемы нам необходимо изучить, как сигнал изменяется во времени. Это включает отображение графика исследуемого сигнала в зависимости от времени, и инструментом, используемым для этого, является осциллограф.

    Он дает визуальную индикацию того, что делает схема, и показывает, что идет не так, быстрее, чем любой другой прибор.Мультиметр может обнаруживать наличие сигналов, и, если форма сигнала известна, можно вычислить среднее, пиковое, среднеквадратичное значение или от пика до пика. Однако, если форма волны неизвестна, это невозможно. На сигнал может накладываться шум, и мультиметр не сможет дать правильную информацию. Осциллограф дает точную и четкую картину осциллограмм.

    Осциллограф

    На следующем рисунке показаны все основные элементы управления на передней панели.Элементы управления могут иметь вид, отличный от показанного, но они должны присутствовать в осциллографе.

    Рисунок 3.17. контроль

    Иногда контроль ВКЛ / ВЫКЛ можно комбинировать с контролем интенсивности / яркости.

    Прибор подключается непосредственно к электросети. После включения прибора подождите некоторое время, пока нагреватель ЭЛТ нагреется. Поворачивайте регулятор яркости по часовой стрелке, пока не увидите горизонтальную линию следа на экране.

    Если кривая не появляется на экране, поверните регулятор Brilliance вправо до упора по часовой стрелке. Установите регулятор Time / cm на самую медленную скорость, но не в выключенное положение. При этих настройках на экране должно появиться светлое пятно, медленно перемещающееся слева направо.

    По-прежнему, если ничего не видно, поверните регулятор Trig / Level по часовой стрелке и посмотрите, не появится ли что-нибудь. Отрегулируйте элементы управления вертикальным и горизонтальным положением, пока не появится кривая.

    Если все вышеперечисленные шаги не приводят к отображению кривой на экране, прибор неисправен. Отключите от сети и проверьте предохранители.

    После получения кривой на экране используйте элементы управления вертикальным и горизонтальным положением, чтобы начать трассировку с левой стороны экрана и расположить ее вдоль центральной линии.Управление фокусировкой используется для получения максимально тонкой линии. Уменьшите настройку яркости до комфортного уровня просмотра.

    При проведении измерений с помощью осциллографа очень ценна пара пробников, которая упрощает установление контакта в точке измерения удобным способом. Зонды соединяют точки измерения в тестируемом устройстве со входами осциллографа.

    Входные пробники

    Когда исследуемые сигналы имеют относительно низкие частоты, такие как формы волны, ожидаемые от аудиоусилителя, емкость тестовых проводов обычно не вызывает проблем и мало влияет на форму волны сигнала отображается или проверяемой цепи.

    Когда исследуются высокочастотные сигналы или быстрые импульсы, емкость между сердечником и экраном входного кабеля может повлиять на отображаемые формы сигналов и может нарушить тестируемую цепь.

    Емкость между сердечником и экраном типичного входного кабеля длиной 1 метр может составлять около 50 пФ, что при добавлении к входной емкости усилителя 50 пФ даст общую шунтирующую емкость 100 пФ в тестируемой цепи.

    Предположим, что исследуемая схема представляет собой видеоусилитель с импедансом нагрузки 1 кОм, а исследуемый сигнал представляет собой прямоугольную волну с частотой 10 МГц.Форма волны, отображаемой на генераторе, станет треугольной, потому что конденсатор не может заряжаться и разряжаться достаточно быстро через нагрузочный резистор усилителя, чтобы иметь возможность следовать за прямоугольной волной 10 МГц.

    Одним из способов решения этой проблемы является использование специального щупа на входном конце тестового провода. Этот пробник обычно используется в качестве делителя на десять аттенюаторов, а схема схемы показана на рисунке ниже:

    Рисунок 3.18
    Схема простого входного пробника

    Постоянная составляющая сигнала ослабляется пара сопротивлений, образующих простой делитель потенциала.Чтобы уравновесить емкостное реактивное сопротивление, через R1 подключен небольшой последовательный конденсатор. Величина этого конденсатора регулируется таким образом, чтобы его значение емкости составляло 1/9 от емкости шунтирующего провода и входа усилителя осциллографа.

    Например, если осциллограф имеет шунтирующую емкость порядка 50 пФ, конденсатор последовательного включения становится примерно 5 пФ. Теперь, когда зонд используется для проверки схемы видеоусилителя, он имеет эффективное реактивное сопротивление около 3 кОм на частоте 10 МГц и, следовательно, будет иметь гораздо меньшее влияние на исследуемый сигнал.

    Тесты пробников

    Когда пробник включен во входную линию, важно согласовать пробник со входом осциллографа. Обычно это достигается путем регулировки небольшого компенсационного конденсатора в пробнике для получения правильных результатов на входе прямоугольной волны. Большинство осциллографов выдают прямоугольный тестовый сигнал для настройки входных пробников. Этот сигнал подается на вход пробника, и конденсатор пробника затем настраивается так, чтобы на экране отображался правильный квадрат.

    Если компенсационный конденсатор в пробнике слишком большой, он не будет обеспечивать правильный коэффициент затухания для высокочастотных сигналов. На входе прямоугольной волны это вызовет выбросы по краям прямоугольной волны, как показано на следующем рисунке:

    Рисунок 3.19
    Влияние регулировки компенсации пробника (a), (b)

    Когда компенсационный конденсатор слишком мало, более высокие частоты ослабляются слишком сильно, и это приводит к скругленным углам прямоугольной волны, как показано на рисунке (b).

    При правильной настройке компенсационного конденсатора не может быть перерегулирования или округления на краях прямоугольной волны, и форма волны отображается правильно.

    Калибровка пробника осциллографа

    При использовании осциллографа очень легко подключить пробник осциллографа и начать измерения. К сожалению, пробники осциллографов необходимо откалибровать, прежде чем на них подадут иск, чтобы гарантировать ровный отклик. Для этого практически в каждый осциллограф есть встроенный калибратор.Он обеспечивает выходной сигнал прямоугольной формы, а на датчике имеется небольшой предварительно установленный регулятор. Когда пробник осциллографа подключен к выходу калибратора, форма сигнала, отображаемого на экране, должна быть отрегулирована до идеальной квадратной формы. Если высокочастотная характеристика зонда понижается, края прямоугольной волны будут закруглены. Если он выше, то на краях прямоугольной волны будет наблюдаться перерегулирование.

    Несмотря на простую настройку, важно, чтобы она выполнялась для обеспечения правильной работы датчика.

    Измерение амплитуды с помощью осциллографа

    Осциллограф значительно и эффективно помогает в определении амплитуды напряжения.

    Рисунок 3.20
    Измерение напряжения

    Подсчитывается количество сантиметров на вертикальной шкале от отрицательного пика до положительного пика. Это количество умножается на значение переключателя вольт на сантиметр.

    Например: если значение 5 В / см соответствует настройке вольт / см, а форма волны составляет 4.8 В от пика к пику, тогда напряжение формы волны составляет 4,8 * 5 = 24 В от пика к пику.

    Измерение частоты с помощью осциллографа

    Для измерения частоты измеряется период времени одного полного цикла. Это просто расстояние по горизонтали между двумя одинаковыми точками на соседних волнах.

    Рисунок 3.21
    Измерение частоты

    Затем это расстояние умножается на значение переключателя Время / см и рассчитывается период одного цикла.Обратной величиной этого времени является частота волны.

    Например, если пики сигнала находятся на расстоянии 5 см друг от друга, а переключатель Время / см установлен на 200 μ с / см, время одного полного цикла составляет 5 * 200 = 1000 μ с = 1 мс, а частота 1/1000 = 1 кГц.

    Измерение разности фаз

    Если у нас есть два сигнала с одинаковой частотой и мы хотим измерить разность фаз между ними, мы можем сделать это с помощью двухканального осциллографа.Один сигнал подается на вход CHANNEL1, а другой — на вход CHANNEL2.

    Положение Vh2 настраивается для размещения кривой Ch2 таким образом, чтобы она была отцентрирована относительно горизонтальной оси экрана. Затем трасса Ch3 перемещается, чтобы поместить ее поверх кривой Ch2. Затем элемент управления положением X настраивается для перемещения точки пересечения кривой Ch2 с горизонтальной осью и выравнивания с левой вертикальной линией.

    Расстояние между точкой пересечения кривой Ch2 и соответствующей точкой кривой Ch3 затем измеряется по горизонтальной оси, как показано на следующем рисунке.Также измеряется общий период одного цикла формы сигнала Ch2:

    Рисунок 3.22
    Измерение разности фаз

    Сдвиг фазы представляет собой разницу в положении между двумя кривыми, деленную на общий период волны, а результат умножается. на 360, чтобы получить фазу в градусах.

    Фигуры Лиссажу

    Если нам нужно сравнить фазовое соотношение между двумя сигналами переменного тока, то подайте один сигнал на пластину X трубки, а другой сигнал — на пластину Y трубки.В результате получается изображение, которое обычно называют фигурой Лиссажу.

    На двухканальном осциллографе обычно есть положение переключателя TIME / DIV, которое выбирает сигнал Ch3. При выборе этого режима один сигнал подается на вход Ch2, а другой — на вход Ch3.

    Когда два подаваемых сигнала имеют одинаковую частоту и точно совпадают по фазе, результатом будет диагональная линия на электронно-лучевой трубке, которая будет проходить от нижнего левого угла экрана до верхнего правого, как показано на следующем рисунке ( а):

    Рисунок 3.23
    Отображение типичных фигур Лиссажу

    Если один из сигналов теперь поменял полярность, так что он на 180 градусов не совпадает по фазе с другим сигналом, в результате по-прежнему будет прямая диагональная линия, но теперь она будет проходить сверху слева направо внизу экрана, как показано на рисунке (b).

    Когда два сигнала не совпадают по фазе друг с другом, диагональная линия меняется на эллипс, идущий по диагонали от нижнего левого угла к верхнему правому краю экрана, как показано на рисунке (c).

    По мере увеличения разности фаз толщина эллипса будет увеличиваться, пока он не станет кругом, когда сигналы сдвинуты по фазе на 90 градусов, как показано на рисунке (d).

    Приведенные выше результаты предполагают, что сравниваемые сигналы являются синусоидальными волнами одинаковой амплитуды. Также предполагается, что чувствительность к отклонению цепей X и Y осциллографа одинакова. Если амплитуды сигналов или чувствительность к отклонению не идентичны, то результирующее изображение будет растянуто в направлении с более высокой чувствительностью.

    Когда исследуемые формы сигналов не являются синусоидальными волнами, отображение Лиссажу искажается, но обычно следует шаблону аналогичного типа.

    Анализ формы сигнала с помощью осциллографа

    Осциллограф — отличный инструмент для просмотра того, что происходит в цепи, и с опытом можно многое извлечь из правильной интерпретации того, что отображается.

    Если на усилитель подается синусоидальная волна и осциллограф показывает форму волны с плоской вершиной при подключении к его выходу, это означает, что в усилителе происходит ограничение сигнала.

    Калибровка осциллографов

    Осциллографы всегда были важным измерительным инструментом для инженера. Конструкция осциллографов медленно развивалась от ранних инструментов, которые использовались для простого просмотра формы сигнала, до осциллографов с калиброванными диапазонами и сеткой (сеткой) на дисплее, позволяющей проводить измерения, до современных цифровых запоминающих осциллографов (DSO), которые в стандартную комплектацию встроены многие расширенные функции измерения. В последних разработках теперь используются цифровые ЖК-дисплеи вместо традиционных ЭЛТ (электронно-лучевых трубок), что дает инженерам еще больше возможностей для измерения в еще более портативных приборах.Осциллограф все еще развивается, последний шаг — это осциллограф, который сочетает в себе функции осциллографа и цифрового мультиметра в одном приборе. Каждый шаг эволюции увеличивал измерительные возможности осциллографа, делая калибровку этих инструментов еще более важной.

    Все типы осциллографов требуют калибровки этих основных функций.

    Калибровка осциллографа: амплитуда

    Амплитуда осциллографа калибруется путем подачи низкочастотной прямоугольной волны и регулировки ее усиления в соответствии с высотой, указанной для различных уровней напряжения (показано делениями линии сетки на осциллографе).Напряжения, которые используются для калибровки, выбираются с помощью соответствующей настройки в соответствии с диапазонами амплитуды на осциллографе. Используя этот выходной сигнал, формы сигналов должны быть выровнены с отметками сетки на экране осциллографа. При калибровке усиления амплитуды осциллографа необходимо установить различные напряжения и убедиться, что усиление соответствует высотным линиям сетки на дисплее осциллографа в пределах технических характеристик, предоставленных производителем осциллографа.

    Калибровка осциллографа: временная развертка / горизонтальное отклонение

    Временная развертка осциллографа откалибрована для обеспечения соответствия горизонтального отклонения спецификациям производителя. Сигнал маркера времени генерируется калибратором, пики которого совмещены со шкалой координатной сетки на дисплее осциллографа.

    Калибровка осциллографа: эталон полосы пропускания

    Для калибровки полосы пропускания требуется синусоидальная волна постоянной амплитуды с переменной частотой до и выше указанной в спецификации осциллографа.Многие процедуры калибровки также требуют опорного уровня 50 кГц для установки начальной амплитуды.

    Калибровка осциллографа: уровень запуска

    Уровень запуска можно проверить, используя синусоидальный сигнал с высотой 6 делений и регулируя регулятор уровня запуска для получения стабильной кривой, начинающейся в любой точке положительного или отрицательного наклона в зависимости от выбора осциллографа. Чувствительность проверяется путем применения гораздо меньшего сигнала (обычно 10% от полной шкалы), и проверка стабильной кривой может быть получена даже тогда, когда элементы управления положением используются для перемещения кривой в верхнюю или нижнюю часть дисплея.Полоса пропускания срабатывания и работы фильтров ВЧ-шума на некоторых осциллографах может быть проверена путем использования выровненного выхода развертки и увеличения частоты или до тех пор, пока стабильное срабатывание не будет потеряно.

    Меры предосторожности

    Выполните следующие настройки перед включением осциллографа или после завершения его использования:

    • Настройте регулятор стабильности на автоматический режим
    • Поверните регулятор интенсивности в крайнее положение против часовой стрелки
    • Установите вертикальное и горизонтальное положение регуляторов на полпути
    • Поверните регулятор вольт / см на максимальное значение диапазона
    • Установите регулятор времени / см на 1 мс / см или его ближайшее значение

    Используйте полностью экранированные зонды на высоких частотах, чтобы избежать возможности сигнала деградация.Использование компенсированного пробника снижает эффект из-за затухания амплитуды и фазовых искажений в коаксиальном кабеле.

    Сведите интенсивность луча к минимуму, необходимому для конкретной настройки.

    Убедитесь, что вертикальное усиление установлено выше напряжения измеряемого сигнала. Начните с настройки максимального напряжения и минимальной чувствительности, затем уменьшайте диапазон до тех пор, пока не будет достигнута правильная настройка.

    Избегайте отображения неподвижной яркой точки в течение длительного времени.Это может привести к сгоранию люминофора на экране.

    Тестеры целостности цепи

    Простейшей формой измерения сопротивления является проверка целостности цепи, которая просто проверяет, есть ли токопроводящий путь между двумя точками в цепи. Этот тест просто показывает, высокое или низкое сопротивление между двумя точками, и удобен для отслеживания отдельных проводов через многожильный кабель или для отслеживания соединений дорожек на печатной плате. Одна из популярных схем для тестера непрерывности показана на следующем рисунке:

    Рисунок 3.24
    Тестер целостности цепи с использованием зуммера

    Здесь зуммер соединен последовательно с батареей и двумя измерительными проводами. Один испытательный щуп подключается к одному концу проверяемого провода или цепи, а второй щуп — к другому концу цепи. Если сопротивление между двумя контрольными точками низкое, раздается звуковой сигнал, указывающий на целостность цепи.

    В качестве альтернативы зуммеру прибор для проверки целостности цепи может использовать лампу накаливания или светоизлучающий диод в качестве индикатора непрерывности, как показано на следующих рисунках.Лампа или светодиод загораются, когда обнаруживается непрерывность между точками, к которым применяются испытательные щупы:

    Рисунок 3.25
    Тестер целостности с использованием (а) нити накала (б) светодиода

    Генераторы сигналов

    Самый современный звук Источники сигналов выдают не только синусоидальную волну, но также прямоугольные и треугольные сигналы. Эти инструменты обычно называют генераторами сигналов, чтобы отличить их от обычных генераторов сигналов, которые выдают только синусоидальный сигнал.

    В этом приборе основная треугольная форма волны генерируется с использованием конденсатора, заряжаемого и разряжаемого при постоянном токе, в качестве устройства синхронизации. Основная блок-схема такого устройства показана ниже:

    Рисунок 3.26
    Блок-схема генератора сигналов

    Треугольный сигнал генерируется с использованием напряжения, создаваемого на конденсаторе, который поочередно заряжается и разряжается путем переключения на ток. источник I1 и сток I2. Напряжение конденсатора подается на пару компараторов уровней, которые определяют, когда напряжение на конденсаторе достигает двух заданных уровней напряжения.Выход компараторов управляет триггером, который, в свою очередь, переключает источники постоянного тока I1 и I2 с помощью переключателя S1.

    Для нарастания треугольной волны конденсатор переключается так, что он заряжается линейно со временем от источника тока I1. Когда напряжение на конденсаторе достигает опорного уровня компаратора A1, выход A1 запускает схему триггера, которая, в свою очередь, приводит в действие переключатель S1. Конденсатор теперь разряжается источником тока I2 и линейно падает со временем, пока не достигнет контрольного уровня компаратора A2.

    Выход A2 используется для сброса триггера, и это приводит в действие переключатель S1, так что конденсатор снова разряжается с I1, чтобы начать новый цикл колебаний. В результате напряжение на конденсаторе линейно растет и падает между двумя опорными уровнями, создавая треугольную форму выходного сигнала.

    Амплитуда сигнала определяется опорными уровнями напряжения, приложенными к двум компараторам, а частота — емкостью конденсатора и уровнями тока от генераторов I1 и I2.

    Поскольку триггеры переключаются в состояние каждый раз, когда треугольник меняет свое направление, выходной сигнал триггера представляет собой прямоугольную волну, частота которой совпадает с частотой треугольной волны.

    Возникающая прямоугольная волна будет сдвинута по фазе на 90 градусов с треугольной волной, поскольку триггер переключается на пиках и впадинах треугольной волны.

    Ящики сопротивлений

    Для экспериментального поиска неисправностей полезным аксессуаром является переключаемый ящик сопротивления.Идеальная схема — это настоящая декада сопротивления, обеспечивающая, возможно, три десятилетия выбираемого сопротивления. Принципиальная схема этого типа ящика сопротивлений показана на следующем рисунке:

    Рисунок 3.27
    Расположение декадного ящика сопротивлений

    Для простоты на диаграмме показаны только две декады. В такой конфигурации коробка обеспечивает диапазон сопротивления от 0 до 9,9 кОм с шагом 100 Ом. Типичный блок может иметь четыре банка, самый низкий из которых дает шаг 10 Ом, а самый высокий дает шаг 10 кОм, что позволяет принимать значения сопротивления от 0 до 99.99 кОм следует выбирать с шагом 10 Ом.

    Таким образом, в банке 10 кОм каждый резистор имеет значение 10 кОм. В нулевом положении банк закорочен, но когда ротор переключателя перемещается на 10 кОм, резисторы добавляются последовательно между ротором и входной клеммой.

    Выход переключателя банка 10 кОм питает верхний конец банка резисторов 1 кОм, и здесь переключатель добавляет выбранное количество последовательно включенных резисторов по 1 кОм. Группы 100 Ом и 10 Ом подключаются таким же образом, и, наконец, перемычка селекторного переключателя 10 Ом выходит на другую входную клемму коробки сопротивлений.

    Переключатели могут быть дисковыми переключателями десятичного типа, а резисторы в коробках этого типа должны быть из оксидов металлов с допуском не менее 1% для получения полезных результатов.

    Для домашнего устройства, в котором используются компоненты с 1 процентом, только две наиболее значимые цифры показаний на переключателях должны считаться действительными при оценке значения сопротивления. В коммерческом боксе сопротивления резисторы обычно представляют собой компоненты с допуском 1%, которые были измерены и выбраны для получения правильных значений с точностью до 0.1 процент или лучше.

    Блоки конденсаторов

    Можно использовать блок коммутируемых конденсаторов, который работает аналогично блоку резисторов. В этом случае конденсаторы в каждой декаде подключаются последовательно параллельно, чтобы получить желаемое значение конденсатора, а общая емкость каждой декады подключается параллельно с емкостью других декад.

    Из-за эффектов паразитной емкости минимальное практическое приращение емкости составляет 100 пФ.Таким образом, блок может быть построен с первой декадой до 1 нФ и последующими десятилетиями до 10 нФ, 100 нФ и 1 мкФ соответственно.

    Для более низких десятилетий можно использовать конденсаторы из полистирола или серебряной слюды с допуском 2% для обеспечения разумной точности и хорошей стабильности. Для более высоких диапазонов можно использовать конденсаторы из металлизированной полиэфирной пленки с допуском 5%.

    % PDF-1.4 % 13017 0 объект > эндобдж xref 13017 386 0000000016 00000 н. 0000008100 00000 н. 0000008392 00000 п. 0000008547 00000 н. 0000008582 00000 н. 0000008643 00000 п. 0000016469 00000 п. 0000021421 00000 п. 0000021625 00000 п. 0000021697 00000 п. 0000021836 00000 п. 0000021943 00000 п. 0000022051 00000 п. 0000022165 00000 п. 0000022335 00000 п. 0000022455 00000 п. 0000022629 00000 п. 0000022780 00000 п. 0000022949 00000 п. 0000023164 00000 п. 0000023315 00000 п. 0000023465 00000 п. 0000023643 00000 п. 0000023764 00000 п. 0000023915 00000 п. 0000024094 00000 п. 0000024241 00000 п. 0000024388 00000 п. 0000024565 00000 п. 0000024678 00000 п. 0000024833 00000 п. 0000025013 00000 п. 0000025178 00000 п. 0000025307 00000 п. 0000025486 00000 п. 0000025587 00000 п. 0000025755 00000 п. 0000025923 00000 п. 0000026046 00000 п. 0000026203 00000 п. 0000026377 00000 п. 0000026489 00000 н. 0000026602 00000 п. 0000026734 00000 п. 0000026906 00000 п. 0000027071 00000 п. 0000027201 00000 п. 0000027311 00000 п. 0000027424 00000 н. 0000027530 00000 п. 0000027628 00000 н. 0000027801 00000 п. 0000027963 00000 н. 0000028082 00000 п. 0000028201 00000 п. 0000028321 00000 п. 0000028449 00000 п. 0000028570 00000 п. 0000028686 00000 п. 0000028853 00000 п. 0000028953 00000 п. 0000029055 00000 п. 0000029170 00000 п. 0000029269 00000 п. 0000029377 00000 п. 0000029531 00000 п. 0000029695 00000 п. 0000029873 00000 п. 0000029984 00000 н. 0000030102 00000 п. 0000030220 00000 п. 0000030356 00000 п. 0000030488 00000 п. 0000030600 00000 п. 0000030732 00000 п. 0000030860 00000 п. 0000031011 00000 п. 0000031142 00000 п. 0000031267 00000 п. 0000031400 00000 п. 0000031527 00000 п. 0000031658 00000 п. 0000031847 00000 п. 0000031964 00000 п. 0000032072 00000 н. 0000032263 00000 п. 0000032449 00000 п. 0000032639 00000 п. 0000032749 00000 п. 0000032893 00000 п. 0000033056 00000 п. 0000033238 00000 п. 0000033385 00000 п. 0000033505 00000 п. 0000033629 00000 п. 0000033764 00000 п. 0000033908 00000 п. 0000034094 00000 п. 0000034260 00000 п. 0000034382 00000 п. 0000034533 00000 п. 0000034668 00000 п. 0000034859 00000 п. 0000034996 00000 п. 0000035115 00000 п. 0000035288 00000 п. 0000035437 00000 п. 0000035604 00000 п. 0000035781 00000 п. 0000035888 00000 п. 0000036000 00000 н. 0000036107 00000 п. 0000036207 00000 п. 0000036329 00000 п. 0000036447 00000 п. 0000036576 00000 п. 0000036681 00000 п. 0000036810 00000 п. 0000036938 00000 п. 0000037052 00000 п. 0000037165 00000 п. 0000037295 00000 п. 0000037470 00000 п. 0000037573 00000 п. 0000037750 00000 п. 0000037921 00000 п. 0000038052 00000 п. 0000038153 00000 п. 0000038247 00000 п. 0000038357 00000 п. 0000038469 00000 п. 0000038607 00000 п. 0000038733 00000 п. 0000038846 00000 п. 0000038977 00000 п. 0000039106 00000 п. 0000039258 00000 п. 0000039386 00000 п. 0000039518 00000 п. 0000039704 00000 п. 0000039879 00000 п. 0000040045 00000 п. 0000040164 00000 п. 0000040321 00000 п. 0000040453 00000 п. 0000040618 00000 п. 0000040811 00000 п. 0000040948 00000 п. 0000041051 00000 п. 0000041156 00000 п. 0000041282 00000 п. 0000041419 00000 п. 0000041545 00000 п. 0000041668 00000 п. 0000041792 00000 п. 0000041951 00000 п. 0000042071 00000 п. 0000042173 00000 п. 0000042293 00000 п. 0000042416 00000 п. 0000042533 00000 п. 0000042671 00000 п. 0000042772 00000 н. 0000042956 00000 п. 0000043069 00000 п. 0000043202 00000 п. 0000043330 00000 п. 0000043512 00000 п. 0000043643 00000 п. 0000043750 00000 п. 0000043878 00000 п. 0000044020 00000 п. 0000044144 00000 п. 0000044316 00000 п. 0000044504 ​​00000 п. 0000044622 00000 н. 0000044717 00000 п. 0000044837 00000 п. 0000044963 00000 н. 0000045162 00000 п. 0000045283 00000 п. 0000045400 00000 п. 0000045550 00000 п. 0000045671 00000 п. 0000045809 00000 п. 0000045921 00000 п. 0000046037 00000 п. 0000046191 00000 п. 0000046301 00000 п. 0000046408 00000 п. 0000046530 00000 п. 0000046652 00000 п. 0000046876 00000 п. 0000046980 00000 п. 0000047096 00000 п. 0000047222 00000 п. 0000047328 00000 п. 0000047433 00000 п. 0000047535 00000 п. 0000047637 00000 п. 0000047739 00000 п. 0000047842 00000 п. 0000047945 00000 п. 0000048048 00000 п. 0000048151 00000 п. 0000048254 00000 п. 0000048357 00000 п. 0000048460 00000 н. 0000048564 00000 н. 0000048668 00000 н. 0000048772 00000 п. 0000048876 00000 н. 0000048980 00000 п. 0000049084 00000 п. 0000049188 00000 п. 0000049292 00000 п. 0000049396 00000 п. 0000049500 00000 п. 0000049604 00000 п. 0000049708 00000 п. 0000049812 00000 п. 0000049916 00000 н. 0000050020 00000 н. 0000050124 00000 п. 0000050228 00000 п. 0000050332 00000 п. 0000050436 00000 п. 0000050540 00000 п. 0000050644 00000 п. 0000050748 00000 п. 0000050852 00000 п. 0000050956 00000 п. 0000051060 00000 п. 0000051164 00000 п. 0000051268 00000 п. 0000051372 00000 п. 0000051476 00000 п. 0000051580 00000 п. 0000051684 00000 п. 0000051788 00000 п. 0000051892 00000 п. 0000051996 00000 п. 0000052100 00000 п. 0000052204 00000 п. 0000052308 00000 п. 0000052412 00000 п. 0000052516 00000 п. 0000052620 00000 н. 0000052724 00000 п. 0000052828 00000 п. 0000052932 00000 п. 0000053036 00000 п. 0000053140 00000 п. 0000053244 00000 п. 0000053348 00000 п. 0000053452 00000 п. 0000053555 00000 п. 0000053659 00000 п. 0000053763 00000 п. 0000053867 00000 п. 0000053971 00000 п. 0000054075 00000 п. 0000054179 00000 п. 0000054283 00000 п. 0000054387 00000 п. 0000054491 00000 п. 0000054595 00000 п. 0000054699 00000 н. 0000054803 00000 п. 0000054907 00000 п. 0000055011 00000 п. 0000055115 00000 п. 0000055219 00000 п. 0000055323 00000 п. 0000055427 00000 п. 0000055531 00000 п. 0000055635 00000 п. 0000055739 00000 п. 0000055843 00000 п. 0000055947 00000 п. 0000056051 00000 п. 0000056155 00000 п. 0000056259 00000 п. 0000056363 00000 п. 0000056467 00000 п. 0000056571 00000 п. 0000056675 00000 п. 0000056779 00000 п. 0000056883 00000 п. 0000056987 00000 п. 0000057091 00000 п. 0000057195 00000 п. 0000057299 00000 п. 0000057403 00000 п. 0000057507 00000 п. 0000057611 00000 п. 0000057715 00000 п. 0000057819 00000 п. 0000057923 00000 п. 0000058027 00000 п. 0000058131 00000 п. 0000058235 00000 п. 0000058339 00000 п. 0000058443 00000 п. 0000058547 00000 п. 0000058651 00000 п. 0000058755 00000 п. 0000058859 00000 п. 0000058963 00000 п. 0000059067 00000 н. 0000059171 00000 п. 0000059275 00000 п. 0000059379 00000 п. 0000059483 00000 п. 0000059587 00000 п. 0000059691 00000 п. 0000059795 00000 п. 0000059899 00000 н. 0000060003 00000 п. 0000060107 00000 п. 0000060211 00000 п. 0000060315 00000 п. 0000060419 00000 п. 0000060523 00000 п. 0000060627 00000 п. 0000060731 00000 п. 0000060835 00000 п. 0000060939 00000 п. 0000061043 00000 п. 0000061147 00000 п. 0000061251 00000 п. 0000061355 00000 п. 0000061459 00000 п. 0000061563 00000 п. 0000061667 00000 п. 0000061771 00000 п. 0000061875 00000 п. 0000061979 00000 п. 0000062083 00000 п. 0000062187 00000 п. 0000062291 00000 п. 0000062395 00000 п. 0000062499 00000 н. 0000062603 00000 п. 0000062707 00000 п. 0000062811 00000 п. 0000062915 00000 п. 0000063019 00000 п. 0000063123 00000 п. 0000063227 00000 н. 0000063331 00000 п. 0000063435 00000 п. 0000063539 00000 п. 0000063643 00000 п. 0000063747 00000 п. 0000063851 00000 п. 0000063955 00000 п. 0000064059 00000 п. 0000064163 00000 п. 0000064267 00000 п. 0000064371 00000 п. 0000064475 00000 п. 0000064579 00000 п. 0000064683 00000 п. 0000064787 00000 п. 0000064891 00000 п. 0000064995 00000 н. 0000065099 00000 п. 0000065204 00000 п. 0000065308 00000 п. 0000065412 00000 п. 0000065517 00000 п. 0000065622 00000 п. 0000065727 00000 п. 0000065833 00000 п. 0000066034 00000 п. 0000066669 00000 п. 0000066714 00000 п. 0000066938 00000 п.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *