+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

{2} \rho \frac{d l}{S}(1)$$

называют сопротивлением участка цепи между сечениями 1 и 2. В выражении (1) имеем $\rho$ – удельное сопротивление проводника, S – площадь поперечного сечения проводника, dl — элемент длины проводника.

Если проводник является однородным ($\rho$=const) и имеет форму цилиндра (S=const), то формула (1) может быть представлена как:

$$R=\rho \frac{l}{S}(2)$$

где l – длина участка рассматриваемого проводника.

Надо отметить, что удельное сопротивление проводника ($\rho$) – это сопротивление проводника единичной длины с поперечным сечением равным единице. Или иначе говорят, что удельное сопротивление вещества – это сопротивление куба с ребром 1 м изготовленного из рассматриваемого вещества, которое выражено в Ом, при токе, который параллелен ребру куба. Величина обратная удельному сопротивлению:

$$\sigma=\frac{1}{\rho}(3)$$

называется удельной проводимостью. Измеряется удельное сопротивление в системе СИ в [$\rho$]=Ом•м.{-2}}=100$$

Ответ. n=100

Читать дальше: Формула внутренней энергии.

Содержание

Индуктивное сопротивление катушки — Основы электроники

Так как самоиндукция препятствует всякому резкому изменению силы тока в цепи, то, следовательно, она представляет собой для переменного тока особого рода сопротивление, называемое индуктивным сопротивлением.

Чисто индуктивное сопротивление отличается от обычного (омического) сопротивления тем, что при прохождении через него переменного тока в нем не происходит потери мощности.

Под чисто индуктивным сопротивлением мы понимаем сопротивление, оказываемое переменному току катушкой, проводник которой не обладает вовсе омическим сопротивлением. В действительности же всякая катушка обладает некоторым омическим сопротивлением. Но если это сопротивление невелико по сравнению с индуктивным сопро¬тивлением, то им можно пренебречь.

При этом наблюдается следующее явление: в течение одной четверти периода, когда ток возрастает, магнитное поле потребляет энергию из цепи, а в течение следующей четверти периода, когда ток убывает, возвращает ее в цепь. Следовательно, в среднем за период в индуктивном сопротивлении мощность не затрачивается. Поэтому индуктивное сопротивление называется реактивным (прежде его неправильно называли безваттным).

Индуктивное сопротивление одной и той же катушки будет различным для токов различных частот. Чем выше частота переменного тока, тем большую роль играет индуктивность и тем больше будет индуктивное сопротивление данной катушки. Наоборот, чем ниже частота тока, тем индуктивное сопротивление катушки меньше. При частоте, равной нулю (установившийся постоянный ток), индуктивное сопротивление тоже равно нулю.

 Рисунок 1. Зависимость индуктивного сопротивления катушки от частоты переменного тока. Реактивное сопротивление катушки возрастает с увеличением часторы тока.

Индуктивное сопротивление обозначается буквой XL и измеряется в омах.

Подсчет индуктивного сопротивления катушки для переменного тока данной частоты производится по формуле

XL=2π• f •L

где XL — индуктивное сопротивление в ом; f—частота переменного тока в гц; L — индуктивность катушки в гн

Как известно, величину 2π• f называют круговой частотой и обозначают буквой ω (омега). Поэтому приведенная выше формула может быть представлена так:

XL=ω•L

Отсюда следует, что для постоянного тока (ω = 0) индуктивное сопротивление равно нулю. Поэтому, когда, нужно пропустить по какой-либо цепи постоянный ток, задержав в то же время переменный, то в цепь включают последовательно катушку индуктивности.

Для преграждения пути токам низких звуковых частот ставят катушки с железным сердечником, так называемые дроссели низкой частоты, а для более высоких радиочастот — без железного сердечника, которые носят название дросселей высокой частоты.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Формула активного сопротивления в цепи переменного тока

В электротехнике активное сопротивление в цепи переменного тока, так же как и реактивная нагрузка, относится к разряду труднодоступных для понимания тем. Только немногие специалисты могут понятно объяснить, какие процессы происходят на участке электрической схемы. Для начала понимания нужно обратиться к словарю и узнать, что означает слово «активный». Это деятельный, инициативный и энергичный элемент или объект. В электротехнике под сопротивлением с активным свойством понимают элемент, способный потреблять электроэнергию и превращать ее в иной вид энергии (свет, тепло или химические реакции). Специалисты его называют еще ваттным сопротивлением. К активным элементам в электрической схеме тока с переменной характеристикой относят различные накаливаемые элементы и, конечно же, лампы с нитью накаливания. Графически активное сопротивление рисуют в виде резистора.

Графическое обозначение элемента с активным свойством в электротехнике

Сопротивление с активным свойством в цепи с переменной характеристикой

Если в цепь с переменной характеристикой тока подключить активную нагрузку, то по проводнику начнет протекать электрический ток по синусоидальной траектории. Это происходит за счет видоизменения напряжения по синусоиде:

u = Um sin ωt.

Отсюда и силу тока можно выразить формулой:

i = Im sin ωt,

где максимальная амплитуда силы тока считается по формуле:

Im =Um/R.

Важно знать! Сила тока в цепи с переменной характеристикой переменяется по тому закону, что и напряжение. То есть прохождение нулевой отметки у них происходит синхронно, так же как и достижение пиковой вершины.

Графика видоизменения силы тока и напряжения

Из графика видно, что за счет идеального активного в цепи сопротивления ток и напряжение совмещаются по фазе. Если в формуле:

i = Im sin ωt

каждую сторону поделить на √2, то получим формулу, выражающую закон Ома:

I=U/R.

Отсюда следует вывод, что для электрической схемы с переменной характеристикой, имеющей активное сопротивление, основополагающим законом является закон Ома.

Характеристики потерь

Причиной потерь с активной нагрузкой в схеме с переменной характеристикой тока являются:

  1. Омическое сопротивление самого материала проводника;
  2. Кроме этого, нельзя не обращать внимания на другие причины, как, например, наличие конденсатора (в электротехнике под ним можно подразумевать, например, кабель в изоляции).В такой схеме энергия теряется за счет постоянно изменяющего поляризацию диэлектрика такой изоляции. Это происходит за счет систематического «переворачивания» парных зарядов молекул, в свою очередь, приводящее к нагреву диэлектрического слоя. Такие потери в электротехнике называют диэлектрическими утечками;
  3. Кроме диэлектрических потерь в конденсаторном элементе, в схеме переменного тока присутствует потеря утечки. Она возникает за счет несовершенства материала изоляции;
  4. Также нельзя исключать потери на гистерезис, за счет постоянного присутствия переменного магнитного поля. Это приводит к нагреванию металлических частей схемы, так как наличествует систематическое переворачивание в такт с частотой переменного тока магнитиков;
  5. Токи Фуко также порождают высокие утраты в электрической цепи с переменной характеристикой. Они представляют собой индуктивные круговые токи и подвергают нагреванию все элементы схемы.

Присутствие всех перечисленных потерь значительно увеличивает активное сопротивление в схеме с переменным током.

Мощность в схеме с активной нагрузкой

Когда схема функционирует на переменном напряжении и токе, то напряженность преобразования электрической энергии в иной вид энергии изменяется. Отсюда получается, что такое изменение меняет мощность. Из формулы:

p  = Umsinωt * Imsinωt = UmImsin2ωt

следует, что мгновенная мощность равноправна произведению мгновенного напряжения на мгновенную составляющую силы тока.

Генерация активной составляющей мощности

После тригонометрических переустройств видим, что мгновенная мощность одинакова по сумме с мгновенной и постоянной составляющими:

р = Р + р’, где Р = UmIm√2.

Важно знать! Под понятием активная мощность следует понимать, что она представляет собой среднее арифметическое мгновенных составляющих за определенный период времени.

На простом языке активная мощность – это положительная характеристика электрической схемы с переменным током. Она относится к разряду основных свойств в ходе выбора электрических нагрузок и учета потребления электрической энергии.

Взгляд на эффект с поверхностным влиянием

Активное сопротивление электрической цепи, функционирующей от переменного напряжения, постоянно больше от сопротивления с активной функцией в цепи постоянного напряжения. Основанием этому является то, что переменный ток по равноправному уровню разделяется по всей поперечной плоскости проводника. От этого полезная плоскость значительно убавляется, а сопротивление растет. Этот физический процесс называется эффектом поверхностного действия.

При поверхностном эффекте заряженные частицы в основном двигаются по внешней оболочке проводника, так как поверхность проводника становится полезным сечением. С увеличением частоты электроны двигаются, максимально приближаясь к внешним границам. Для понижения данного явления изготавливают провода специального устройства. Их делают с трубчатыми жилами или покрывают жилы металлами, имеющими идеальную проводимость. Схемы с серебряными выводами очень хорошо знакомы многим специалистам.

Понижение поверхностного эффекта

На практике для повышения активной мощности в электрических схемах применяют специальные устройства и технологии, позволяющие снизить потери и уменьшить реактивную характеристику мощности. Самыми распространенными являются компенсирующие конденсаторные установки, а в быту – это индивидуальные блоки питания. Также перед созданием электрической сети в проекты закладываются проводники с наибольшей проводимостью и требуемым от нагрузок сечением. Кроме этого, в сложных схемах немаловажным является равномерное распределение активных нагрузок потребителей.

Видео

Оцените статью:

Что такое сопротивление | Самое простое объяснение

Что такое сопротивление?

Сопротивление (электрическое сопротивление) – это свойство какого-либо проводника оказывать сопротивление электрическому току, проходящему через него. Вот так все просто!

Давайте проведем аналогию с гидравликой. В нашем случае получается, что проводник электрического тока – это шланг или труба. Теперь давайте подумаем, какой из предметов будет оказывать бОльшее сопротивление потоку воды: садовый шланг или нефтяная труба?

Понятное дело, что садовый шланг, так как его диаметр в разы меньше, чем диаметр нефтяной трубы.

Тогда другой вопрос. Какой шланг будет обладать бОльшим сопротивлением потоку воды с учетом того, что их длины и диаметры равны?

Разумеется, гофрированный. Вода будет “цепляться” за его стенки, что приведет к тому, что они будут мешать потоку воды.

Тогда еще вот такая задачка. Есть два абсолютно одинаковых шланга, но один длиннее, а другой короче. Какой из шлангов будет оказывать бОльшее сопротивление потоку воды?

Думаю тот, который длиннее. Ответ очевиден.

Сопротивление проводника


Так почему бы все эти свойства не применить также к проводнику?

Чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен.

Поэтому, окончательная формула будет принимать вид

формула сопротивления проводника

 

В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом × мм2 /м.  Чтобы перевести  в Ом × м, достаточно умножить на 10-6, так как 1 мм2=10-6 м2

удельное сопротивление веществ

Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником. Ну а самым распространенными и дешевыми проводниками являются медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.

Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс полупроводников.

Что такое сопротивление 1 Ом?

Проводник обладает сопротивлением 1 Ом, если на его концах напряжение составляет 1 Вольт при силе тока, проходящей через него в 1 Ампер.

сопротивление 1 Ом

Это самое простое объяснение, что такое 1 Ом. В электротехнике и электронике сопротивление обозначается буквой R .

Как найти сопротивление в цепи?

Его можно узнать из закона Ома, который связывает силу тока, напряжение и сопротивление. В этом случае, оно рассчитывается по формуле

формула сопротивления через закон Ома

где

R – сопротивление, Ом

U – напряжение на концах проводника, Вольты

I – сила тока, текущая через проводник, Амперы

То есть нам достаточно замерить напряжение на концах какого-либо проводника и измерить силу тока, проходящую через него. После применить формулу и рассчитать сопротивление проводника.  Давайте для закрепления решим простую задачу.

Задача

Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 Вольт и сила тока, проходящая через него 0,1 Ампер.

Решение

Используем формулу

В электронике и электротехнике используют специальные радиоэлементы, которые обладают сопротивлением электрическому току – резисторы. Более подробно про них можно прочитать в этой статье.

постоянные резисторы

 

Также вот вам видео, где очень умный преподаватель объясняет, что такое сопротивление

 

Близкие темы к этой статье

Электрический проводник

Напряжение

Сила тока

Резисторы

Закон Ома

Входное и выходное сопротивление

Онлайн расчёт сопротивлений проводов. Площадь сечения проводов от мощности.

На первый взгляд может показаться, что эта статья из рублики «Электрику на заметку».
С одной стороны, а почему бы и нет, с другой — так ведь и нам, пытливым электронщикам, иногда нужно рассчитать сопротивление обмотки катушки индуктивности, или самодельного нихромового резистора, да и чего уж там греха таить — акустического кабеля для высококачественной звуковоспроизводящей аппаратуры.

Формула тут совсем простая R = p*l/S, где l и S соответственно длина и площадь сечения проводника, а p — удельное сопротивление материала, поэтому расчёты эти можно провести самостоятельно, вооружившись калькулятором и Ля-минорной мыслью, что все собранные данные надо привести к системе СИ.

Ну а для нормальных пацанов, решивших сберечь своё время и не нервничать по пустякам, нарисуем незамысловатую таблицу.

ТАБЛИЦА ДЛЯ РАСЧЁТА СОПРОТИВЛЕНИЯ ПРОВОДНИКА

Страница получилась сиротливой, поэтому помещу-ка я сюда таблицу для желающих связать своё время с прокладкой электропроводки, подключить мощный источник энергопотребления, либо просто посмотреть в глаза электрику Василию и, «похлёбывая из котелка» задать справедливый вопрос: «А почему, собственно? Может разорить меня решил? Зачем мне тут четыре квадрата из бескислородной меди для двух лампочек и холодильника? Из-за чего, собственно?»

И расчёты эти мы с вами сделаем не от вольного и, даже не в соответствии с народной мудростью, гласящей, что «необходимая площадь сечения провода равна максимальному току, делённому на 10», а в строгом соответствии нормативными документами Минэнерго России по правилам устройства электроустановок.
Правила эти игнорируют провода, сечением, меньшим 1,5 мм2. Проигнорирую их и я, а за компанию и алюминиевые, в силу их вопиющей архаичности.
Итак.

РАСЧЁТ ПЛОЩАДИ СЕЧЕНИЯ ПРОВОДОВ В ЗАВИСИМОСТИ ОТ МОЩНОСТИ НАГРУЗКИ

Потери в проводниках возникают из-за ненулевого значения их сопротивления, зависящего от длины провода.
Значения мощности этих потерь, выделяемых в виде тепла в окружающее пространство, приведены в таблице.
В итоге к потребителю энергии на другом конце провода напряжение доходит в несколько урезанном виде — меньшим, чем оно было у источника. Из таблицы видно, что к примеру, при напряжении в сети 220 В и 100 метровой длине провода, сечением 1,5мм2, напряжение на нагрузке, потребляющей 4 кВт, окажется не 220, а 199 В.
Хорошо, это или плохо?
Для каких-то приборов — безразлично, какие-то работать будут, но при пониженной мощности, а какие-то взбрыкнут и пошлют Вас к едрене фене вместе с вашими длинными проводами и умными таблицами.
Поэтому Минэнерго — минэнергой, а собственная голова не повредит ни при каких обстоятельствах. Если ситуация складывается подобным примеру образом — прямая дорога к выбору проводов, большего сечения.

 

Физика 8 класс. Электрическое сопротивление. Удельное сопротивление :: Класс!ная физика

Физика 8 класс. ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

Электрическое сопротивление ( R ) — это физическая величина, численно равная отношению
напряжения на концах проводника к силе тока, проходящего через проводник.
Величину сопротивления для участка цепи можно определить из формулы закона Ома для участка цепи.

Однако, сопротивление проводника не зависит от силы тока в цепи и напряжения, а определяется только формой, размерами и материалом проводника.

где l — длина проводника ( м ), S — площадь поперечного сечения (кв.м ),
r ( ро) — удельное сопротивление (Ом м ).

Удельное сопротивление

— показывает, чему равно сопротивление проводника, выполненного из данного вещества,
длиной в 1м и с поперечным сечением 1 м кв.

Единица измерения удельного сопротивления в системе СИ: 1 Ом м

Однако, на практике толщина проводов значительно меньше 1 м кв,
поэтому чаще используют внесистемную единицу измерения удельного сопротивления:


Единица измерения сопротивления в системе в СИ:

[R] = 1 Ом

Сопротивление проводника равно 1 Ом, если при разности потенциалов на его концах в 1 В,
по нему протекает ток силой 1 А.

___

Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристалической решетки проводника. Из-за различия в строении криталической решетки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга.

ЗАПОМНИ !

Существует физическая величина обратная сопротивлению — электрическая проводимость.

R — это сопротивление проводника,
1/R — это электрическая проводимость проводника
___

Величины проводимости проводников и изоляторов различаются в большое число раз,
измеряемое единицей с двадцатью двумя нулями!

ЗНАЕШЬ ЛИ ТЫ ?

… что сопротивления кожи человека обычно изменяется от 1 кОм ( для влажной кожи )
до 500 кОм ( для сухой кожи ). Сопротивление других тканей тела равно от 100 до 500 Ом.

Устали? — Отдыхаем!

6.4. Сопротивление в цепи синусоидального тока

      Если напряжение подключить к сопротивлению R, то через него протекает ток

     (6.7)

     Анализ выражения (6.7) показывает, что напряжение на сопротивлении и ток, протекающий через него, совпадают по фазе.
        Формула (6.7) в комплексной форме записи имеет вид

     (6.8)

      где     и     — комплексные  амплитуды  тока и напряжения.
     Комплексному уравнению (6.8) соответствует векторная диаграмма (рис. 6.4).

     Из анализа диаграммы следует, что векторы напряжения и тока совпадают по направлению.

     Сопротивление участка цепи постоянному току называется омическим, а сопротивление того же участка переменному току — активным сопротивлением.

                               Рис.6.4
     Активное сопротивление больше омического из-за явления поверхностного эффекта. Поверхностный эффект заключается в том, что ток вытесняется из центральных частей к периферии сечения проводника.

6.5. Индуктивная катушка в цепи синусоидального тока

     Сначала рассмотрим идеальную индуктивную катушку, активное сопротивление которой равно нулю. Пусть по идеальной катушке с индуктивностью L протекает синусоидальный ток . Этот ток создает в индуктивной катушке переменное магнитное поле, изменение которого вызывает в катушке ЭДС самоиндукции

     (6.9)

     Эта ЭДС уравновешивается напряжением, подключенным к катушке: u = eL = 0.

     (6.10)

     Таким образом, ток в индуктивности отстает по фазе от напряжения на 90o из-за явления самоиндукции.
     Уравнение вида (6.10) для реальной катушки, имеющей активное сопротивление R, имеет следующий вид:

     (6.11)

     Анализ выражения (6.11) показывает, что ЭДС самоиндукции оказывает препятствие (сопротивление) протеканию переменного тока, из-за чего ток в реальной индуктивной катушке отстает по фазе от напряжения на некоторый угол φ (0oo), величина которого зависит от соотношения R и L.      Выражение (6.11) в комплексной форме записи имеет вид:

     (6.12)

      где ZL — полное комплексное сопротивление индуктивной катушки ;
            ZL — модуль комплексного сопротивления;
            — начальная фаза комплексного сопротивления;
          — индуктивное сопротивление (фиктивная величина, характеризующая реакцию электрической цепи на переменное магнитное поле).
      Полное сопротивление индуктивной катушки или модуль комплексного сопротивления

.

       Комплексному уравнению (6.12) соответствует векторная диаграмма (рис.6.5).


Рис. 6.5

       Из анализа диаграммы видно, что вектор напряжения на индуктивности опережает вектор тока на 90o.
    В цепи  переменного тока напряжения на  участках цепи складываются не арифметически, а геометрически.
       Если мы поделим стороны треугольника напряжений на величину тока Im, то перейдем к подобному треугольнику сопротивлений (рис. 6.6).

     Из треугольника сопротивлений получим несколько формул:
                     ;                     ;
    Рис. 6.6

;

;           .

6.6. Емкость в цепи синусоидального тока

     Если к конденсатору емкостью C подключить синусоидальное напряжение, то в цепи протекает синусоидальный ток

;

.    (6.13)

      Из анализа выражений 6.13 следует, что ток опережает напряжение по фазе на 90o.

      Выражение (6.13) в комплексной форме записи имеет вид:

,    (6.14)

       где — емкостное сопротивление, фиктивная расчетная величина, имеющая размерность сопротивления.

        Если комплексное сопротивление индуктивности положительно
       , то комплексное сопротивление емкости отрицательно

        .

       На рис. 6.7 изображена векторная диаграмма цепи с емкостью.
       Вектор тока опережает вектор напряжения на 90o.


Рис. 6.7

6.7. Последовательно соединенные реальная индуктивная


катушка и конденсатор в цепи синусоидального тока

       Катушка с активным сопротивлением   R  и индуктивностью   L  и конденсатор емкостью  С  включены последовательно (рис.6.8). В схеме протекает синусоидальный ток

.

     Определим напряжение на входе схемы.
       В соответствии со вторым законом Кирхгофа,

               (6.15)

       Подставим эти формулы в уравнение (6.15). Получим:

            (6.16)

     Из выражения (6.16) видно: напряжение в активном сопротивлении совпадает по фазе с током, напряжение на индуктивности опережает по фазе ток на 90o, напряжение по емкости отстает по фазе от тока на 90o.
     Запишем уравнение (6.16) в комплексной форме:

(6.17)

           Рис. 6.8

       Поделим левую и правую части уравнения (6.17) на √2.
       Получим уравнение для комплексов действующих значений токов и напряжений

       ,     (6.18)

       где — комплексное сопротивление цепи;
      — модуль комплексного сопротивления, или полное сопротивление цепи;
              — начальная фаза комплексного сопротивления.

       При построении векторных диаграмм цепи рассмотрим три случая.

  1. XL > XC, цепь носит индуктивный характер. Векторы напряжений на индуктивности и емкости направлены в противоположные стороны, частично компенсируют друг друга. Вектор напряжения на входе схемы опережает вектор тока (рис.6.9).
  2. Индуктивное сопротивление меньше емкостного. Вектор напряжения на входе схемы отстает от вектора тока. Цепь носит емкостный характер (рис.6.10).
  3. Индуктивное и емкостное сопротивления одинаковы. Напряжения на индуктивности и емкости полностью компенсируют друг друга. Ток в цепи совпадает по фазе с входным напряжением. В электрической цепи наступает режим резонансного напряжения (рис.6.11).

       Ток в резонансном режиме достигает максимума, так как полное сопротивление (z) цепи имеет минимальное значение.

         Условие возникновения резонанса: , отсюда резонансная частота равна

      .

         Из формулы следует, что режима резонанса можно добиться следующими способами:

  1. изменением частоты;
  2. изменением индуктивности;
  3. изменением емкости.

      В резонансном режиме входное напряжение равно падению напряжения в активном сопротивлении. На индуктивности и емкости схемы могут возникнуть напряжения, во много раз превышающие напряжение на входе цепи. Это объясняется тем, что каждое напряжение равно произведению тока I0 (а он наибольший), на соответствующее индуктивное или емкостное сопротивление (а они могут быть большими).

.

Рис. 6.9                            Рис. 6.10                              Рис. 6.11

6.8. Параллельно соединенные индуктивность, емкость


и активное сопротивление в цепи синусоидального тока

       К схеме на рис. 6.12 подключено синусоидальное напряжение . Схема состоит из параллельно включенных индуктивности, емкости и активного сопротивления.
       Определим ток на входе схемы.

      В соответствии с первым законом Кирхгофа:
            ,     (6.19)
      где
            — активная проводимость.

                    Рис. 6.12                                            

        Подставим эти формулы в уравнение (6.19). Получим:

,     (6.20)

       где   — индуктивная проводимость;
                — емкостная проводимость.

      Из уравнения (6.20) видно, что ток в ветви с индуктивностью отстает по фазе от напряжения на 90o, ток в ветви с активным сопротивлением совпадает по фазе с напряжением, ток в ветви с емкостью опережает по фазе напряжение на 90o.
        Запишем уравнение (6.20) в комплексной форме.

,     (6.21)

        где   — комплексная проводимость;
              — полная проводимость;
              — начальная фаза комплексной проводимости.

        Построим векторные диаграммы, соответствующие комплексному уравнению (6.21).

Рис. 6.13                            Рис. 6.14                              Рис. 6.15

      В схеме на рис. 6.12 может возникнуть режим резонанса токов. Резонанс токов возникает тогда, когда индуктивная и емкостная проводимости одинаковы. При этом индуктивный и емкостный токи, направленные в противоположные стороны, полностью компенсируют друг друга. Ток в неразветвленной части схемы совпадает по фазе с напряжением.
      Из условия возникновения резонанса тока получим формулу для резонансной частоты тока

.

       В режиме резонанса тока полная проводимость цепи — минимальна, а полное сопротивление — максимально. Ток в неразветвленной части схемы в резонансном режиме имеет минимальное значение. В идеализированном случае R = 0,

      и      .

        Ток в неразветвленной части цепи I = 0. Такая схема называется фильтр — пробкой.

6.9. Резонансный режим в цепи, состоящей


из параллельно включенных реальной индуктивной
катушки и конденсатора

           Комплексная проводимость индуктивной ветви

           где   — активная проводимость индуктивной катушки;
                   — полное сопротивление индуктивной катушки;
                   — индуктивная проводимость катушки;
                   — емкостная проводимость второй ветви.

           В режиме резонансов токов справедливо уравнение:

  или  

           Из этого уравнения получим формулу для резонанса частоты

     (6.22)

           На рисунке 6.16 изображена векторная диаграмма цепи в резонансном режиме.

     Вектор тока I2 опережает вектор напряжения на 90o. Вектор тока I1 отстает от вектора напряжения на угол φ,

     где             .

     Разложим вектор тока I1 на две взаимно перпендикулярные составляющих, одна из них, совпадающая с вектором напряжения, называется активной составляющей тока Iа1, другая — реактивной составляющей тока Iр1.

                  Рис. 6.16

     В режиме резонанса тока реактивная составляющая тока Iр1 и емкостный ток I2 , направленные в противоположные стороны, полностью компенсируют друг друга, активная составляющая тока Iа1 совпадает по фазе с напряжением (рис. 6.17). Ток I в неразветвленной части схемы совпадает по фазе с напряжением.

                  Рис. 6.17

Закон

Ома: сопротивление и простые схемы

Цели обучения

К концу этого раздела вы сможете:

  • Объясните происхождение закона Ома.
  • Рассчитывайте напряжения, токи или сопротивления по закону Ома.
  • Объясните, что такое омический материал.
  • Опишите простую схему.

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В, , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В, . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :

[латекс] I \ propto {V} \\ [/ латекс].

Это важное соотношение известно как закон Ома . Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

Сопротивление и простые схемы

Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R .Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или

.

[латекс] I \ propto \ frac {1} {R} \\ [/ latex].

Так, например, при удвоении сопротивления ток уменьшается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

[латекс] I = \ frac {V} {R} \\ [/ латекс].

Это соотношение также называется законом Ома.Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими . К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R , которое не зависит от напряжения В и тока I . Объект, который имеет простое сопротивление, называется резистором , даже если его сопротивление невелико.Единица измерения сопротивления — Ом, и обозначается символом Ω (заглавная греческая омега). Перестановка I = V / R дает R = V / I , поэтому единицы сопротивления равны 1 Ом = 1 вольт на ампер:

[латекс] 1 \ Omega = 1 \ frac {V} {A} \\ [/ латекс].

На рисунке 1 показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R .

Рис. 1. Простая электрическая цепь, в которой замкнутый путь прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Пример 1. Расчет сопротивления: автомобильная фара

Какое сопротивление проходит у автомобильной фары? 2.50 А при подаче на него 12,0 В?

Стратегия

Мы можем изменить закон Ома в соответствии с I = V / R и использовать его для определения сопротивления.

Решение

Перестановка I = V / R и замена известных значений дает

[латекс] R = \ frac {V} {I} = \ frac {\ text {12} \ text {.} \ Text {0 V}} {2 \ text {.} \ Text {50 A}} = \ text {4} \ text {.} \ text {80 \ Omega} \\ [/ latex].

Обсуждение

Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары.Как мы увидим в разделе «Сопротивление и удельное сопротивление», сопротивление обычно увеличивается с температурой, поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

Сопротивления варьируются от многих порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, тогда как сопротивление человеческого сердца составляет примерно 10 3 Ом.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление». Дополнительное понимание можно получить, решив I = V / R для V , что дает

В = ИК

Это выражение для В, можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I .Для этого напряжения часто используется фраза IR drop . Например, фара в Пример 1 выше имеет падение IR на 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывая ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления.Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (схема с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, так как PE = q Δ V , и то же самое q протекает через каждую. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.(См. Рисунок 2.)

Рис. 2. Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Установление соединений: сохранение энергии

В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму одним резистором. Мы обнаружим, что сохранение энергии имеет другие важные применения в схемах и является мощным инструментом анализа схем.

Исследования PhET: закон Ома

Посмотрите, как уравнение закона Ома соотносится с простой схемой. Отрегулируйте напряжение и сопротивление и посмотрите, как изменяется ток по закону Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

Щелкните, чтобы запустить моделирование.

Сводка раздела

  • Простая схема — это схема , в которой есть один источник напряжения и одно сопротивление.
  • Одно из утверждений закона Ома дает соотношение между током I , напряжением В и сопротивлением R в простой схеме как [латекс] I = \ frac {V} {R} \\ [/ latex] .
  • Сопротивление выражается в единицах Ом (Ом), относящихся к вольтам и амперам на 1 Ом = 1 В / А.
  • Имеется падение напряжения IR на резисторе, вызванное протекающим через него током, равным В = IR .

Концептуальные вопросы

  1. Падение напряжения IR на резисторе означает изменение потенциала или напряжения на резисторе.Изменится ли ток при прохождении через резистор? Объяснять.
  2. Как падение IR в резисторе похоже на падение давления в жидкости, протекающей по трубе?

Задачи и упражнения

1. Какой ток протекает через лампочку фонаря на 3,00 В, когда ее горячее сопротивление составляет 3,60 Ом?

2. Вычислите эффективное сопротивление карманного калькулятора с батареей на 1,35 В, через которую протекает ток 0,200 мА.

3.Каково эффективное сопротивление стартера автомобиля, когда через него проходит 150 А, когда автомобильный аккумулятор подает на двигатель 11,0 В?

4. Сколько вольт подается для работы светового индикатора DVD-плеера с сопротивлением 140 Ом, если через него проходит 25,0 мА?

5. (a) Найдите падение напряжения в удлинителе с сопротивлением 0,0600 Ом, через который проходит ток 5,00 А. (b) Более дешевый шнур использует более тонкую проволоку и имеет сопротивление 0.300 Ом. Какое в нем падение напряжения при протекании 5.00 А? (c) Почему напряжение на любом используемом приборе снижается на эту величину? Как это повлияет на прибор?

6. ЛЭП подвешена к металлическим опорам со стеклянными изоляторами, имеющими сопротивление 1,00 × 10 9 Ом. Какой ток протекает через изолятор при напряжении 200 кВ? (Некоторые линии высокого напряжения — постоянного тока.)

Глоссарий

Закон Ома:
— эмпирическое соотношение, указывающее, что ток I, пропорционален разности потенциалов В, , ∝ В, ; его часто записывают как I = V / R , где R — сопротивление
сопротивление:
электрическое свойство, препятствующее току; для омических материалов это отношение напряжения к току, R = V / I
Ом:
единица сопротивления, равная 1Ω = 1 В / А
омическое:
тип материала, для которого действует закон Ома
простая схема:
схема с одним источником напряжения и одним резистором

Избранные решения проблем и упражнения

1.0,833 А

3. 7,33 × 10 −2 Ом

5. (а) 0,300 В

(б) 1,50 В

(c) Напряжение, подаваемое на любой используемый прибор, снижается, поскольку общее падение напряжения от стены до конечной мощности прибора является фиксированным. Таким образом, если падение напряжения на удлинителе велико, падение напряжения на приборе значительно уменьшается, поэтому выходная мощность прибора может быть значительно уменьшена, что снижает способность прибора работать должным образом.

Омическое сопротивление — обзор

Электрические и магнитные эффекты

Помимо медленных эффектов массопереноса и двойного электрохимического слоя, в батарее обнаруживаются гораздо более быстрые явления.

Омическое сопротивление R B представляет собой сумму сопротивления электролита, сопротивления токосъемника, активной массы и переходного сопротивления между токосъемником и активной массой. Теоретически напряжение на омическом сопротивлении немедленно следует за током батареи в соответствии с законом Ома.

Каждая ячейка имеет последовательную индуктивность, обусловленную геометрией. Для свинцово-кислотной батареи типичные значения от 10 до 100 нГн на элемент для ячеек 100 Ач. В случае батарей необходимо добавить индуктивность последовательно соединенных элементов. Далее следует учитывать индуктивность проводки. Индуктивность ограничивает максимальную скорость нарастания тока. Однако этот эффект представляет интерес только для больших аккумуляторов (свинцово-кислотных) и для частот выше 1 кГц. В случае небольших батарей индуктивность намного меньше, и для отображения характеристики проводимости необходимы гораздо более высокие частоты (10–100 кГц).

С увеличением частоты глубина проникновения ионов в пористую структуру уменьшается. Электроды все больше напоминают плоские электроды. На этих высоких частотах два электрода образуют простой пластинчатый конденсатор C P (межэлектродная емкость). Типичное значение для свинцово-кислотной батареи составляет порядка 10 нФ на элемент. На рисунке 17 представлена ​​эквивалентная электрическая схема для высокочастотной характеристики.

Рисунок 17. Высокочастотная эквивалентная электрическая схема аккумулятора.

Вместе конденсатор и проводимость образуют резонансный контур. Значения 30 нГн и 30 нФ дают резонансную частоту ~ 5 МГц. О таких резонансных частотах иногда сообщают рабочие группы, разрабатывающие импульсные устройства для десульфатации свинцово-кислотных аккумуляторов.

Еще один эффект, которым нельзя пренебрегать на высоких частотах, — скин-эффект. Глубина проникновения переменного тока в проводящие материалы ограничена из-за эффектов электромагнитного поля. Текущая глубина зависит от свойств материала и частоты.Для цилиндрических материалов текущая глубина рассчитывается по формуле

[6] d = 1kμπf

, где κ — проводимость, а μ — проницаемость материала.

Токовая глубина уменьшает полезную площадь поперечного сечения токосъемника, особенно если текущая глубина мала по сравнению с радиусом токосъемника. На практике это увеличивает омическое сопротивление батареи. Следует учитывать, что скин-эффект действителен только для части переменного тока протекающего тока батареи.На сопротивление части постоянного тока также совершенно не влияет скин-эффект, если накладываются высокочастотные переменные токи. На рисунке 18 показана глубина тока для различных типичных материалов токосъемников батареи в зависимости от частоты.

Рис. 18. Скин-эффект для различных материалов, обычно используемый для батарей. Предполагается, что материал имеет цилиндрическую форму.

Как показано на рисунке, свинец имеет очень большую глубину проникновения тока. Однако сетки в свинцово-кислотных аккумуляторах толстые по сравнению с другими аккумуляторными технологиями.В зависимости от технологии сети токосъемник имеет толщину 1–5 мм. Следовательно, скин-эффект проявляется на частотах выше нескольких килогерц.

Материалы, используемые в литий-ионных батареях (алюминий, медь), показывают глубину тока примерно только одну треть глубины свинца; однако толщина токоприемника для этой аккумуляторной технологии находится в диапазоне 0,1 мм. Только на частотах выше примерно 10 кГц — или, возможно, также выше 100 кГц — скин-эффект влияет на омическое сопротивление.

Никель и железо используются в качестве токоприемников для никель-кадмиевых (Ni-Cd) и Ni-MH аккумуляторов. С приклеенными или спеченными электродами никелевая подложка имеет толщину ∼0,1 мм (ячейки размера AA). В электродах из вспененного материала токоприемник намного тоньше. Следовательно, скин-эффект влияет только на частотах выше 10 кГц в случае никель-кадмиевых и никель-металлогидридных аккумуляторов. С более толстыми электродами в более крупных Ni-Cd батареях скин-эффект становится заметно сильнее.

Что такое закон Ома — формульное уравнение »Электроника

Закон Ома — один из самых фундаментальных законов теории электричества.Формула или уравнение закона Ома связывает напряжение и ток со свойствами проводника, то есть его сопротивлением в цепи.


Resistance Tutorial:
Что такое сопротивление Закон Ома Омические и неомические проводники Сопротивление лампы накаливания Удельное сопротивление Таблица удельного сопротивления для распространенных материалов Температурный коэффициент сопротивления Электрическая проводимость Последовательные и параллельные резисторы Таблица параллельных резисторов


Закон Ома — один из самых фундаментальных и важных законов, регулирующих электрические и электронные схемы.Он связывает ток, напряжение и сопротивление для линейного устройства, так что, если известны два, можно вычислить третье.

Поскольку ток, напряжение и сопротивление являются тремя основными величинами цепи, это означает, что закон Ома также чрезвычайно важен.

Закон Ома используется во всех областях электротехники и электроники. Он используется для расчета номинала резисторов, необходимых в цепях, а также может использоваться для определения тока, протекающего в цепи, где напряжение может быть легко измерено на известном резисторе, но более того, закон Ома используется в огромное количество вычислений во всех формах электрических и электронных схем — практически везде, где течет ток.

Открытие закона Ома

Существует математическая зависимость, связывающая ток, напряжение и сопротивление. Немецкий ученый Георг Ом провел множество экспериментов, пытаясь показать связь между ними. В те дни, когда он проводил свои эксперименты, не было счетчиков в том виде, в каком мы их знаем сегодня.

Только после значительных усилий и со второй попытки ему удалось разработать то, что мы сегодня знаем как закон Ома.

Примечание о Георге Оме:

Родившийся в Эрлангене, примерно в 50 милях к северу от Мюнхена в 1879 году, Георг Ом стал одним из тех, кто много исследовал новую науку, связанную с электричеством, обнаружив взаимосвязь между напряжением и током в проводнике — этот закон теперь назвал Закон Ома, отдавая дань уважения проделанной им работе.

Подробнее о Георг Ом.

Что такое закон Ома?

Закон

Ома описывает способ протекания тока через материал при приложении различных уровней напряжения. Некоторые материалы, такие как электрические провода, имеют небольшое сопротивление току, и этот тип материала называется проводником. Следовательно, если этот провод, например, проложить прямо напротив батареи, будет протекать большой ток.

В других случаях другой материал может препятствовать прохождению тока, но все же пропускать некоторые из них. В электрических схемах эти компоненты часто называют резисторами. Однако другие материалы практически не пропускают ток, и эти материалы называются изоляторами.


Посмотрите наше видео о законе Ома

Ом посмотрел на то, как ток течет в различных материалах, и смог разработать свой закон, который мы теперь называем законом Ома.

Чтобы получить первое представление о том, что происходит, можно сравнить электрическую ситуацию с потоком воды в трубе.Напряжение представлено давлением воды в трубе, ток представлен количеством воды, протекающей по трубе, и, наконец, сопротивление равно размеру трубы.

Можно представить, что чем шире труба, тем больше воды будет течь. Причина этого в том, что большему количеству воды легче течь по более широкой трубе, чем по более узкой — более узкая труба оказывает большее сопротивление потоку воды. Кроме того, если давление в электронной трубе больше, то по той же трубе будет течь больше воды.

Ом определил, что для обычных материалов удвоение напряжения удваивает ток, протекающий для данного компонента. Различные материалы или одни и те же материалы с разной формой будут иметь разные уровни сопротивления току.

Определение закона Ома

Закон Ома гласит, что ток, протекающий в цепи, прямо пропорционален приложенной разности потенциалов и обратно пропорционален сопротивлению в цепи.

Другими словами, удвоив напряжение в цепи, удвоится и ток. Однако, если сопротивление увеличено вдвое, ток упадет вдвое.

В этом математическом соотношении единица сопротивления измеряется в Ом.

Формула закона Ома

Формула или уравнение закона Ома очень проста.

Закон Ома можно выразить в математической форме:

Где:
В = напряжение, выраженное в вольтах
I = ток, выраженный в амперах
R = сопротивление, выраженное в Ом

Формулой можно манипулировать так, чтобы, если известны любые две величины, можно было вычислить третью.

Треугольник закона Ома

Чтобы помочь запомнить формулу, можно использовать треугольник с одной стороной, горизонтальной, и вершиной наверху в виде пирамиды. Иногда это называют треугольником закона Ома.

В верхнем углу треугольника закона Ома находится буква V, в левом углу — буква I, а в правом нижнем углу — R.

Чтобы использовать треугольник, закройте неизвестное количество, а затем вычислите его из двух других. Если они выстроены в линию, они умножаются, но если один находится поверх другого, их следует разделить.Другими словами, если необходимо рассчитать ток, напряжение делится на сопротивление, то есть V / R и так далее.

Если необходимо рассчитать напряжение, оно определяется путем умножения силы тока на сопротивление, т. Е. I x R.

Пример расчета закона Ома

Если на резистор 500 Ом подается напряжение 10 В, определите величину тока, который будет протекать.

Глядя на треугольник закона Ома, ток неизвестен, а напряжение и сопротивление остаются известными значениями.

Таким образом, ток определяется делением напряжения на сопротивление.

I = VR = 10500 = 0,02 A = 20 мА

Пример 2
Аналогичным образом можно использовать закон Ома для определения сопротивления, если известны ток и напряжение. Возьмем, например, напряжение 10 вольт, а ток 0,1 А. Используя треугольник закона Ома, можно увидеть, что:

Пример 3
Наконец, другая комбинация состоит в том, что если сопротивление и ток известны, тогда можно рассчитать ожидаемое напряжение на сопротивлении.Возьмем, к примеру, расстояние 250 Ом, через которое протекает ток 0,1 А, тогда напряжение можно рассчитать следующим образом:

V = I R = 0,1 × 250 = 25 вольт

Проводники омические и неомические

Используя закон Ома, можно увидеть, что если бы напряжение и ток были нанесены на график для фиксированного резистора или отрезка провода и т. Д., То была бы прямая линия.

Видно, что удвоение напряжения удваивает ток, который проходит через конкретный элемент схемы.

График напряжения и тока для линейного сопротивления

На графике есть две линии, одна для более высокого сопротивления — эта требует приложения большего напряжения для данного протекающего тока. Соответственно, у него должно быть более высокое сопротивление. И наоборот, кривая для более низкого сопротивления показывает компонент, который требует приложения более низкого напряжения для данного тока.

Компоненты, имеющие прямую или прямую линию, подчиняются закону Ома и известны как омические проводники.Однако не все электрические электронные компоненты имеют прямолинейный график для напряжения и тока. По разным причинам они могут иметь разные вольт-амперные характеристики. Эти проводники часто называют неомическими.

Закон Ома — одно из самых основных понятий в области электротехники и электроники. Концепция элемента, имеющего определенное сопротивление, которое определяет количество тока, протекающего через него при определенном напряжении, является ключом к работе практически всех цепей.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность РЧ шум
Вернуться в меню «Основные понятия электроники». . .

Закон Ома | Электрические цепи

Закон 11,2 Ома (ESBQ6)

Три величины, которые являются фундаментальными для электрических цепей: ток, напряжение (разность потенциалов) и сопротивление .Резюме:

  1. Электрический ток, \ (I \), определяется как скорость прохождения заряда через цепь.

  2. Разность потенциалов или напряжение \ (В \) — это количество энергии на единицу заряда, необходимое для перемещения этого заряда между двумя точками в цепи.

  3. Сопротивление, \ (R \), является мерой того, насколько «трудно» протолкнуть ток через элемент схемы.

Теперь посмотрим, как эти три величины связаны друг с другом в электрических цепях.

Важная взаимосвязь между током, напряжением и сопротивлением в цепи была обнаружена Георгом Симоном Омом и называется законом Ома .

Закон Ома

Величина электрического тока через металлический проводник при постоянной температуре в цепи пропорциональна напряжению на проводнике и может быть описана как

. \ (I = \ frac {V} {R} \)

где \ (I \) — ток через проводник, \ (V \) — напряжение на проводнике, а \ (R \) — сопротивление проводника.Другими словами, при постоянной температуре сопротивление проводника постоянно, независимо от приложенного к нему напряжения или проходящего через него тока.

Закон Ома говорит нам, что если проводник имеет постоянную температуру, ток, протекающий через проводник, прямо пропорционален напряжению на нем. Это означает, что если мы нанесем напряжение на ось x графика, а ток на ось y графика, мы получим прямую линию.

Наклон прямолинейного графика связан с сопротивлением проводника как \ [\ frac {I} {V} = \ frac {1} {R}.\] Это можно изменить с точки зрения постоянного сопротивления как: \ [R = \ frac {V} {I}. \]

Закон Ома

Цель

Для определения взаимосвязи между током, протекающим через резистор, и разностью потенциалов (напряжением) на том же резисторе.

Аппарат

4 ячейки, 4 резистора, амперметр, вольтметр, соединительные провода

Метод

Этот эксперимент состоит из двух частей. В первой части мы будем изменять приложенное к резистору напряжение и измерять результирующий ток в цепи.Во второй части мы будем изменять ток в цепи и измерять результирующее напряжение на резисторе. После получения обоих наборов измерений мы исследуем взаимосвязь между током и напряжением на резисторе.

  1. Изменение напряжения:

    1. Установите схему в соответствии со схемой 1), начиная с одной ячейки.

    2. Нарисуйте следующую таблицу в своем лабораторном журнале.

      Количество ячеек

      Напряжение, В (\ (\ text {V} \))

      Ток, I (\ (\ text {A} \))

      \ (\ text {1} \)

      \ (\ text {2} \)

      \ (\ text {3} \)

      \ (\ text {4} \)

    3. Попросите учителя проверить электрическую цепь перед включением питания.

    4. Измерьте напряжение на резисторе с помощью вольтметра и ток в цепи с помощью амперметра.

    5. Добавьте в схему еще одну ячейку \ (\ text {1,5} \) \ (\ text {V} \) и повторите измерения.

    6. Повторяйте, пока не получите четыре ячейки и не заполните таблицу.

  2. Изменение тока:

    1. Установите схему в соответствии со схемой 2), начиная с одного резистора в цепи.

    2. Нарисуйте следующую таблицу в своем лабораторном журнале.

      Напряжение, В (\ (\ text {V} \))

      Ток, I (\ (\ text {A} \))

    3. Попросите учителя проверить вашу схему перед включением питания.

    4. Измерьте ток и напряжение на единственном резисторе.

    5. Теперь добавьте еще один резистор последовательно в схему и снова измерьте ток и напряжение только на исходном резисторе. Продолжайте добавлять резисторы, пока у вас не будет четырех последовательно, но не забывайте каждый раз измерять напряжение только на исходном резисторе. Введите измеренные вами значения в таблицу.

Анализ и результаты

  1. Используя данные, записанные в первой таблице, постройте график зависимости тока от напряжения.Поскольку напряжение — это переменная, которую мы изменяем напрямую, это независимая переменная, которая будет отложена по оси \ (x \). Ток является зависимой переменной и должен быть нанесен на ось \ (y \).

  2. Используя данные, записанные во второй таблице, постройте график зависимости напряжения от тока. В этом случае независимой переменной является ток, который должен быть нанесен на ось \ (x \), а напряжение является зависимой переменной и должно быть нанесено на ось \ (y \).

Выводы

  1. Изучите график, который вы построили из первой таблицы. Что происходит с током через резистор при увеличении напряжения на нем? т.е. увеличивается или уменьшается?

  2. Изучите график, который вы построили на основе второй таблицы. Что происходит с напряжением на резисторе, когда ток через резистор увеличивается? т.е. увеличивается или уменьшается?

  3. Подтверждают ли результаты ваших экспериментов закон Ома? Объяснять.

Вопросы и обсуждение

  1. Для каждого из ваших графиков вычислите градиент и по нему определите сопротивление исходного резистора. Получаете ли вы одно и то же значение, когда рассчитываете его для каждого из ваших графиков?
  2. Как вы можете найти сопротивление неизвестного резистора, используя только источник питания, вольтметр и известный резистор \ (R_0 \)?

Присоединяйтесь к тысячам учащихся, улучшающих свои научные оценки онлайн с помощью Siyavula Practice.

Зарегистрируйтесь здесь

Закон Ома

Упражнение 11.1

Постройте график напряжения (по оси X) и тока (по оси Y).

Какой тип графика вы получите (прямолинейный, парабола, другая кривая)

прямая линия

Рассчитайте градиент графика.

Градиент графика (\ (m \)) — это изменение тока, деленное на изменение напряжения:

\ begin {align *} m & = \ frac {\ Delta I} {\ Delta V} \\ & = \ frac {(\ text {1,6}) — (\ text {0,4})} {(\ text {12}) — (\ text {3})} \\ & = \ текст {0,13} \ end {выровнять *}

Подтверждают ли результаты ваших экспериментов закон Ома? Объяснять.

Да. График с прямой линией получается, когда мы строим график зависимости напряжения от тока.

Как вы можете найти сопротивление неизвестного резистора, используя только источник питания, вольтметр и известный резистор \ (R_ {0} \)?

Вы начинаете с подключения известного резистора в цепь с источником питания. Теперь вы читаете напряжение источника питания и записываете его.

Затем вы последовательно подключаете два резистора.Теперь вы можете измерить напряжение для каждого из резисторов.

Итак, мы можем найти напряжения для двух резисторов. Теперь отметим, что:

\ [V = IR \]

Итак, используя это и тот факт, что для резисторов, включенных последовательно, ток одинаков во всей цепи, мы можем найти неизвестное сопротивление.

\ begin {align *} V_ {0} & = IR_ {0} \\ I & = \ frac {V_ {0}} {R_ {0}} \\ V_ {U} & = IR_ {U} \\ I & = \ frac {V_ {U}} {R_ {U}} \\ \ frac {V_ {U}} {R_ {U}} & = \ frac {V_ {0}} {R_ {0}} \\ \ поэтому R_ {U} & = \ frac {V_ {U} R_ {0}} {V_ {0}} \ end {выровнять *}

Омические и неомические проводники (ESBQ7)

Проводники, подчиняющиеся закону Ома, имеют постоянное сопротивление, когда на них изменяется напряжение или увеличивается ток через них.Эти проводники называются омическими проводниками . График зависимости тока от напряжения на этих проводниках будет прямолинейным. Некоторыми примерами омических проводников являются резисторы цепи и нихромовая проволока.

Как вы видели, когда мы говорим о законе Ома, есть упоминание о постоянной температуре . Это связано с тем, что сопротивление некоторых проводников изменяется при изменении их температуры. Эти типы проводников называются неомическими проводниками , потому что они не подчиняются закону Ома.Лампочка — типичный пример неомического проводника. Другими примерами неомических проводников являются диоды и транзисторы.

В лампочке сопротивление нити накала резко возрастает по мере того, как она нагревается от комнатной до рабочей температуры. Если мы увеличим напряжение питания в реальной цепи лампы, то увеличение тока приведет к увеличению температуры нити накала, что приведет к увеличению ее сопротивления. Это эффективно ограничивает увеличение тока.В этом случае напряжение и ток не подчиняются закону Ома.

Явление изменения сопротивления при изменении температуры присуще почти всем металлам, из которых сделано большинство проводов. Для большинства приложений эти изменения сопротивления достаточно малы, чтобы их можно было игнорировать. При применении металлических нитей накала ламп, температура которых сильно повышается (примерно до \ (\ text {1 000} \) \ (\ text {℃} \) и начиная с комнатной температуры), изменение довольно велико.

В общем, для неомических проводов график зависимости напряжения от тока не будет прямолинейным, что указывает на то, что сопротивление не является постоянным для всех значений напряжения и тока.

Включен рекомендуемый эксперимент для неформальной оценки. В этом эксперименте учащиеся получат данные о токе и напряжении для резистора и лампочки и определят, какой из них подчиняется закону Ома. Вам потребуются лампочки, резисторы, соединительные провода, источник питания, амперметр и вольтметр. Учащиеся должны обнаружить, что резистор подчиняется закону Ома, а лампочка — нет.

Омические и неомические проводники

Цель

Чтобы определить, подчиняются ли два элемента схемы (резистор и лампочка) закону Ома

Аппарат

4 ячейки, резистор, лампочка, соединительные провода, вольтметр, амперметр

Метод

Две схемы, показанные на схемах выше, одинаковы, за исключением того, что в первой есть резистор, а во второй — лампочка.Настройте обе схемы, указанные выше, начиная с 1 ячейки. Для каждого контура:

  1. Измерьте напряжение на элементе схемы (резисторе или лампочке) с помощью вольтметра.

  2. Измерьте ток в цепи с помощью амперметра.

  3. Добавьте еще одну ячейку и повторяйте измерения, пока в вашей цепи не будет 4 ячейки.

Результаты

Нарисуйте в своей книге две таблицы, которые выглядят следующим образом.У вас должна быть одна таблица для измерений первой цепи с резистором и другая таблица для измерений второй цепи с лампочкой.

Количество ячеек

Напряжение, В (\ (\ text {V} \))

Ток, I (\ (\ text {A} \))

\ (\ text {1} \)

\ (\ text {2} \)

\ (\ text {3} \)

\ (\ text {4} \)

Анализ

Используя данные в ваших таблицах, нарисуйте два графика \ (I \) (\ (y \) — ось) vs.\ (V \) (\ (x \) — ось), один для резистора и один для лампочки.

Вопросы и обсуждение

Внимательно изучите свои графики и ответьте на следующие вопросы:

  1. Как должен выглядеть график зависимости \ (I \) от \ (V \) для проводника, подчиняющегося закону Ома?

  2. Один или оба ваших графика выглядят так?

  3. Какой можно сделать вывод о том, подчиняются ли резистор и / или лампочка закону Ома?

  4. Имеет ли лампочка омический или неомический провод?

Использование закона Ома (ESBQ8)

Теперь мы готовы увидеть, как закон Ома используется для анализа цепей.

Рассмотрим схему с ячейкой и омическим резистором R. Если сопротивление резистора равно \ (\ text {5} \) \ (\ text {Ω} \), а напряжение на резисторе равно \ (\ text { 5} \) \ (\ text {V} \), то мы можем использовать закон Ома для расчета тока, протекающего через резистор. Наша первая задача — нарисовать принципиальную схему. При решении любой проблемы с электрическими схемами очень важно составить схему схемы перед тем, как производить какие-либо расчеты. Принципиальная схема для этой проблемы выглядит следующим образом:

Уравнение закона Ома: \ [R = \ frac {V} {I} \]

, который можно преобразовать в: \ [I = \ frac {V} {R} \]

Ток, протекающий через резистор:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {\ text {5} \ text {V}} {\ text {5} \ Omega} \\ & = \ текст {1} \ текст {А} \ end {align *}

Рабочий пример 1: Закон Ома

Изучите принципиальную схему ниже:

Сопротивление резистора равно \ (\ text {10} \) \ (\ text {Ω} \), а ток, проходящий через резистор, равен \ (\ text {4} \) \ (\ text {A} \ ).Какова разность потенциалов (напряжение) на резисторе?

Определите, как подойти к проблеме

Нам задают сопротивление резистора и ток, проходящий через него, и просят вычислить напряжение на нем. Мы можем применить закон Ома к этой проблеме, используя: \ [R = \ frac {V} {I}. \]

Решить проблему

Измените приведенное выше уравнение и замените известные значения на \ (R \) и \ (I \), чтобы найти \ (V \). \ begin {align *} R & = \ frac {V} {I} \\ R \ times I & = \ frac {V} {I} \ times I \\ V & = I \ раз R \\ & = \ текст {10} \ times \ text {4} \\ & = \ текст {40} \ текст {V} \ end {align *}

Напишите окончательный ответ

Напряжение на резисторе равно \ (\ text {40} \) \ (\ text {V} \).

Присоединяйтесь к тысячам учащихся, улучшающих свои научные оценки онлайн с помощью Siyavula Practice.

Зарегистрируйтесь здесь

Закон Ома

Упражнение 11.2

Вычислите сопротивление резистора, разность потенциалов которого равна \ (\ text {8} \) \ (\ text {V} \), когда ток равен \ (\ text {2} \) \ (\ text {A} \) протекает через него. Перед расчетом нарисуйте принципиальную схему.

Сопротивление неизвестного резистора равно:

\ begin {align *} R & = \ frac {V} {I} \\ & = \ frac {8} {2} \\ & = \ текст {4} \ текст {Ω} \ end {выровнять *}

Какой ток будет проходить через резистор \ (\ text {6} \) \ (\ text {Ω} \) при разности потенциалов \ (\ text {18} \) \ (\ text {V} \) на концах? Перед расчетом нарисуйте принципиальную схему.

Сопротивление неизвестного резистора равно:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {18} {6} \\ & = \ текст {3} \ текст {А} \ end {выровнять *}

Какое напряжение на резисторе \ (\ text {10} \) \ (\ text {Ω} \) при токе \ (\ text {1,5} \) \ (\ text {A} \) течет хоть это? Перед расчетом нарисуйте принципиальную схему.

Сопротивление неизвестного резистора равно:

\ begin {align *} V & = I \ cdot R \\ & = (\ текст {1,5}) (10) \\ & = \ текст {15} \ текст {V} \ end {выровнять *}

Переплет резисторов последовательно и параллельно (ESBQ9)

В 10 классе вы узнали о резисторах и познакомились со схемами, в которых резисторы подключены последовательно и параллельно.В последовательной цепи есть один путь, по которому течет ток. В параллельной цепи есть несколько путей, по которым течет ток.

Когда в цепи более одного резистора, мы обычно можем рассчитать общее суммарное сопротивление всех резисторов. Это известно как сопротивление , эквивалентное .

Эквивалентное последовательное сопротивление

В цепи, в которой резисторы включены последовательно, эквивалентное сопротивление — это просто сумма сопротивлений всех резисторов.

Эквивалентное сопротивление в последовательной цепи,

Для последовательно подключенных n резисторов эквивалентное сопротивление составляет:

\ [R_ {s} = R_ {1} + R_ {2} + R_ {3} + \ ldots + R_ {n} \]

Применим это к следующей схеме.

Резисторы включены последовательно, следовательно:

\ begin {align *} R_ {s} & = R_ {1} + R_ {2} + R_ {3} \\ & = \ text {3} \ text {Ω} + \ text {10} \ text {Ω} + \ text {5} \ text {Ω} \\ & = \ текст {18} \ текст {Ω} \ end {align *}
Эквивалентное параллельное сопротивление

В цепи, в которой резисторы соединены параллельно, эквивалентное сопротивление определяется следующим определением.

Эквивалентное сопротивление в параллельной цепи

Для резисторов \ (n \), включенных параллельно, эквивалентное сопротивление составляет:

\ [\ frac {1} {R_ {p}} = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} + \ ldots + \ frac {1} {R_ {n}} \]

Применим эту формулу к следующей схеме.

Какое полное (эквивалентное) сопротивление в цепи?

\ begin {align *} \ frac {1} {R_ {p}} & = \ left (\ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}) } \верно) \\ & = \ left (\ frac {1} {\ text {10} \ text {Ω}} + \ frac {1} {\ text {2} \ text {Ω}} + \ frac {1} {\ text { 1} \ text {Ω}} \ right) \\ & = \ left (\ frac {\ text {1} \ text {Ω} + \ text {5} \ text {Ω} + \ text {10} \ text {Ω}} {\ text {10} \ text { Ω}} \ right) \\ & = \ left (\ frac {\ text {16} \ text {Ω}} {\ text {10} \ text {Ω}} \ right) \\ R_ {p} & = \ text {0,625} \ text {Ω} \ end {align *}

Последовательное и параллельное сопротивление

Упражнение 11.3

Два резистора \ (\ text {10} \) \ (\ text {kΩ} \) соединены последовательно. Рассчитайте эквивалентное сопротивление.

Поскольку резисторы включены последовательно, мы можем использовать:

\ [R_ {s} = R_ {1} + R_ {2} \]

Эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {1} + R_ {2} \\ & = \ text {10} \ text {kΩ} + \ text {10} \ text {kΩ} \\ & = \ текст {20} \ текст {кОм} \ end {выровнять *}

Два резистора соединены последовательно.Эквивалентное сопротивление равно \ (\ text {100} \) \ (\ text {Ω} \). Если один резистор равен \ (\ text {10} \) \ (\ text {Ω} \), вычислите номинал второго резистора.

Поскольку резисторы включены последовательно, мы можем использовать:

\ [R_ {s} = R_ {1} + R_ {2} \]

Эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {1} + R_ {2} \\ R_ {2} & = R_ {s} — R_ {1} \\ & = \ text {100} \ text {Ω} — \ text {10} \ text {Ω} \\ & = \ текст {90} \ текст {Ω} \ end {выровнять *}

Два резистора \ (\ text {10} \) \ (\ text {kΩ} \) подключены параллельно.Рассчитайте эквивалентное сопротивление.

Поскольку резисторы включены параллельно, можно использовать:

\ [\ frac {1} {R_ {p}} = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \]

Эквивалентное сопротивление:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \\ & = \ frac {1} {\ text {100}} + \ frac {1} {\ text {10}} \\ & = \ frac {1 + 10} {\ text {100}} \\ & = \ frac {11} {\ text {100}} \\ R_ {p} & = \ text {9,09} \ text {kΩ} \ end {выровнять *}

Два резистора подключены параллельно.Эквивалентное сопротивление равно \ (\ text {3,75} \) \ (\ text {Ω} \). Если сопротивление одного резистора равно \ (\ text {10} \) \ (\ text {Ω} \), каково сопротивление второго резистора?

Поскольку резисторы включены параллельно, можно использовать:

\ [\ frac {1} {R_ {p}} = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \]

Эквивалентное сопротивление:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \\ \ frac {1} {R_ {2}} & = \ frac {1} {R_ {p}} — \ frac {1} {R_ {1}} \\ & = \ frac {1} {\ text {3,75}} — \ frac {1} {\ text {10}} \\ & = \ frac {\ text {10} — \ text {3,75}} {\ text {37,5}} \\ & = \ frac {\ text {6,25}} {\ text {37,5}} \\ R_ {2} & = \ текст {6} \ текст {Ω} \ end {выровнять *}

Рассчитайте эквивалентное сопротивление в каждой из следующих цепей:

a) Резисторы включены параллельно, поэтому мы используем:

\ [\ frac {1} {R_ {p}} = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \]

Эквивалентное сопротивление:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \\ & = \ frac {1} {\ text {3}} + \ frac {1} {\ text {2}} \\ & = \ frac {\ text {2} + \ text {3}} {\ text {6}} \\ & = \ frac {\ text {5}} {\ text {6}} \\ R & = \ текст {1,2} \ текст {Ω} \ end {выровнять *}

b) Резисторы включены параллельно, поэтому мы используем:

\ [\ frac {1} {R_ {p}} = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} + \ frac {1} {R_ {4}} \]

Эквивалентное сопротивление:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} + \ гидроразрыв {1} {R_ {4}} \\ & = \ frac {1} {\ text {2}} + \ frac {1} {\ text {3}} + \ frac {1} {\ text {4}} + \ frac {1} {\ text { 1}} \\ & = \ frac {\ text {6} + \ text {4} + \ text {3} + \ text {12}} {\ text {12}} \\ & = \ frac {\ text {25}} {\ text {12}} \\ R & = \ text {0,48} \ text {Ω} \ end {выровнять *}

c) Резисторы включены последовательно, поэтому мы используем:

\ [R_ {s} = R_ {1} + R_ {2} \]

Эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {1} + R_ {2} \\ & = \ text {2} \ text {Ω} + \ text {3} \ text {Ω} \\ & = \ текст {5} \ текст {Ω} \ end {выровнять *}

d) Резисторы включены последовательно, поэтому мы используем:

\ [R_ {s} = R_ {1} + R_ {2} + R_ {3} + R_ {4} \]

Эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {1} + R_ {2} + R_ {3} + R_ {4} \\ & = \ text {2} \ text {Ω} + \ text {3} \ text {Ω} + \ text {4} \ text {Ω} + \ text {1} \ text {Ω} \\ & = \ текст {10} \ текст {Ω} \ end {выровнять *}

Использование закона Ома в последовательных и параллельных цепях (ESBQB)

Используя определения эквивалентного сопротивления для резисторов, включенных последовательно или параллельно, мы можем проанализировать некоторые схемы с этими установками.

Цепи серии

Рассмотрим схему, состоящую из трех резисторов и одиночная ячейка соединена последовательно.

Первый принцип, который нужно понять в отношении последовательных цепей, заключается в том, что величина тока одинакова через любой компонент в цепи. Это потому, что существует только один путь для движения электронов в последовательной цепи. По способу подключения батареи мы можем сказать, в каком направлении будет течь ток. Мы знаем, что ток по условию течет от положительного к отрицательному.Обычный ток в этой цепи будет течь по часовой стрелке от точки A к B, от C к D и обратно к A.

Мы знаем, что в последовательной цепи ток должен быть одинаковым во всех компонентах. Итак, мы можем написать:

\ [I = I_ {1} = I_ {2} = I_ {3}. \]

Мы также знаем, что полное напряжение цепи должно быть равно сумме напряжений на всех трех резисторах. Итак, мы можем написать:

\ [V = V_ {1} + V_ {2} + V_ {3} \]

Используя эту информацию и то, что мы знаем о вычислении эквивалентного сопротивления резисторов, включенных последовательно, мы можем решить некоторые проблемы схемы.

Рабочий пример 2: Закон Ома, последовательная цепь

Вычислите ток (I) в этой цепи, если оба резистора омические по своей природе.

Определите, что требуется

Нам необходимо рассчитать ток, протекающий в цепи.

Определите, как подойти к проблеме

Поскольку резисторы имеют омическую природу, мы можем использовать закон Ома. Однако в цепи два резистора, и нам нужно найти полное сопротивление.

Найдите полное сопротивление в цепи

Поскольку резисторы включены последовательно, общее (эквивалентное) сопротивление R составляет:

\ [R = R_ {1} + R_ {2} \]

Следовательно,

\ begin {align *} R & = \ текст {2} + \ текст {4} \\ & = \ текст {6} \ текст {Ω} \ end {align *}

Применить закон Ома

\ begin {align *} R & = \ frac {V} {I} \\ R \ times \ frac {I} {R} & = \ frac {V} {I} \ times \ frac {I} {R} \\ I & = \ frac {V} {R} \\ & = \ frac {12} {6} \\ & = \ текст {2} \ текст {А} \ end {align *}

Напишите окончательный ответ

В цепи протекает ток \ (\ text {2} \) \ (\ text {A} \).

Рабочий пример 3: Закон Ома, последовательная цепь

Два омических резистора (\ (R_ {1} \) и \ (R_ {2} \)) соединены последовательно с ячейкой. Найдите сопротивление \ (R_ {2} \), учитывая, что ток, протекающий через \ (R_ {1} \) и \ (R_ {2} \), равен \ (\ text {0,25} \) \ ( \ text {A} \) и что напряжение на ячейке равно \ (\ text {1,5} \) \ (\ text {V} \). \ (R_ {1} \) = \ (\ text {1} \) \ (\ text {Ω} \).

Нарисуйте схему и введите все известные значения.

Определите, как подойти к проблеме.

Мы можем использовать закон Ома, чтобы найти полное сопротивление R в цепи, а затем вычислить неизвестное сопротивление, используя:

\ [R = R_ {1} + R_ {2} \]

, потому что он находится в последовательной цепи.

Найдите общее сопротивление

\ begin {align *} R & = \ frac {V} {I} \\ & = \ frac {\ text {1,5}} {\ text {0,25}} \\ & = \ текст {6} \ текст {Ω} \ end {align *}

Найдите неизвестное сопротивление

Мы знаем, что:

\ [R = \ text {6} \ text {Ω} \]

и что

\ [R_ {1} = \ text {1} \ text {Ω} \]

с

\ [R = R_ {1} + R_ {2} \] \ [R_ {2} = R — R_ {1} \]

Следовательно,

\ [R_ {1} = \ text {5} \ text {Ω} \]

Рабочий пример 4: Закон Ома, последовательная цепь

Для следующей схемы рассчитайте:

  1. падение напряжения \ (V_1 \), \ (V_2 \) и \ (V_3 \) на резисторах \ (R_1 \), \ (R_2 \) и \ (R_3 \)

  2. сопротивление \ (R_3 \).

Определите, как подойти к проблеме

Нам даны напряжение на ячейке и ток в цепи, а также сопротивления двух из трех резисторов. Мы можем использовать закон Ома для расчета падения напряжения на известных резисторах. Поскольку резисторы включены в последовательную цепь, напряжение равно \ (V = V_1 + V_2 + V_3 \), и мы можем вычислить \ (V_3 \). Теперь мы можем использовать эту информацию, чтобы найти напряжение на неизвестном резисторе \ (R_3 \).

Рассчитать падение напряжения на \ (R_1 \)

Используя закон Ома: \ begin {align *} R_1 & = \ frac {V_1} {I} \\ I \ cdot R_1 & = I \ cdot \ frac {V_1} {I} \\ V_1 & = {I} \ cdot {R_1} \\ & = 2 \ cdot 1 \\ V_1 & = \ текст {2} \ текст {V} \ end {align *}

Рассчитать падение напряжения на \ (R_2 \)

Снова используя закон Ома: \ begin {align *} R_2 & = \ frac {V_2} {I} \\ I \ cdot R_2 & = I \ cdot \ frac {V_2} {I} \\ V_2 & = {I} \ cdot {R_2} \\ & = 2 \ cdot 3 \\ V_2 & = \ текст {6} \ текст {V} \ end {align *}

Рассчитать падение напряжения на \ (R_3 \)

Поскольку падение напряжения на всех резисторах вместе должно быть таким же, как падение напряжения на ячейке в последовательной цепи, мы можем найти \ (V_3 \), используя: \ begin {align *} V & = V_1 + V_2 + V_3 \\ V_3 & = V — V_1 — V_2 \\ & = 18-2-6 \\ V_3 & = \ текст {10} \ текст {V} \ end {align *}

Найдите сопротивление \ (R_3 \)

Мы знаем напряжение на \ (R_3 \) и ток через него, поэтому мы можем использовать закон Ома для вычисления значения сопротивления: \ begin {align *} R_3 & = \ frac {V_3} {I} \\ & = \ frac {10} {2} \\ R_3 & = \ text {5} \ Omega \ end {align *}

Напишите окончательный ответ

\ (V_1 = \ text {2} \ text {V} \)

\ (V_2 = \ text {6} \ text {V} \)

\ (V_3 = \ text {10} \ text {V} \)

\ (R_1 = \ text {5} \ Omega \)

Параллельные цепи

Рассмотрим схему, состоящую из одной ячейки и трех резисторов, соединенных параллельно.

Первый принцип, который нужно понять в отношении параллельных цепей, заключается в том, что напряжение одинаково на всех компонентах в цепи. Это связано с тем, что в параллельной цепи есть только два набора электрически общих точек, а напряжение, измеренное между наборами общих точек, всегда должно быть одинаковым в любой момент времени. Итак, для показанной схемы верно следующее:

\ [V = V_ {1} = V_ {2} = V_ {3}. \]

Второй принцип параллельной схемы состоит в том, что все токи, проходящие через каждый резистор, должны в сумме равняться общему току в цепи:

\ [I = I_ {1} + I_ {2} + I_ {3}.\]

Используя эти принципы и наши знания о том, как рассчитать эквивалентное сопротивление параллельных резисторов, мы теперь можем подойти к некоторым проблемам схемы, связанным с параллельными резисторами.

Рабочий пример 5: Закон Ома, параллельная цепь

Вычислите ток (I) в этой цепи, если оба резистора омические по своей природе.

Определите, что требуется

Нам необходимо рассчитать ток, протекающий в цепи.

Определите, как подойти к проблеме

Поскольку резисторы имеют омическую природу, мы можем использовать закон Ома.Однако в цепи два резистора, и нам нужно найти полное сопротивление.

Найдите эквивалентное сопротивление в цепи

.

Поскольку резисторы включены параллельно, общее (эквивалентное) сопротивление R составляет:

\ [\ frac {1} {R} = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}}. \] \ begin {align *} \ frac {1} {R} & = \ frac {1} {R_1} + \ frac {1} {R_2} \\ & = \ frac {1} {2} + \ frac {1} {4} \\ & = \ frac {2 + 1} {4} \\ & = \ frac {3} {4} \\ \ text {Следовательно,} R & = \ text {1,33} \ Omega \ end {align *}

Применить закон Ома

\ begin {align *} R & = \ frac {V} {I} \\ R \ cdot \ frac {I} {R} & = \ frac {V} {I} \ cdot \ frac {I} {R} \\ I & = \ frac {V} {R} \\ I & = V \ cdot \ frac {1} {R} \\ & = (12) \ left (\ frac {3} {4} \ right) \\ & = \ текст {9} \ текст {А} \ end {align *}

Напишите окончательный ответ

В цепи протекает ток \ (\ text {9} \) \ (\ text {A} \).

Рабочий пример 6: Закон Ома, параллельная цепь

Два омических резистора (\ (R_1 \) и \ (R_2 \)) подключены параллельно ячейке. Найдите сопротивление \ (R_2 \), учитывая, что ток, протекающий через ячейку, равен \ (\ text {4,8} \) \ (\ text {A} \) и что напряжение на ячейке равно \ (\ текст {9} \) \ (\ text {V} \).

Определите, что требуется

Нам нужно рассчитать сопротивление \ (R_2 \).

Определите, как подойти к проблеме

Поскольку резисторы омические и нам даны напряжение на ячейке и ток в ячейке, мы можем использовать закон Ома, чтобы найти эквивалентное сопротивление в цепи.\ begin {align *} R & = \ frac {V} {I} \\ & = \ frac {9} {\ text {4,8}} \\ & = \ text {1,875} \ \ Omega \ end {align *}

Рассчитайте значение для \ (R_2 \)

Поскольку мы знаем эквивалентное сопротивление и сопротивление \ (R_1 \), мы можем использовать формулу для параллельных резисторов, чтобы найти сопротивление \ (R_2 \). \ begin {align *} \ frac {1} {R} & = \ frac {1} {R_1} + \ frac {1} {R_2} \ end {выровнять *} Переставляем решение для \ (R_2 \): \ begin {align *} \ frac {1} {R_2} & = \ frac {1} {R} — \ frac {1} {R_1} \\ & = \ frac {1} {\ text {1,875}} — \ frac {1} {3} \\ & = \ текст {0,2} \\ R_2 & = \ frac {1} {\ text {0,2}} \\ & = \ текст {5} \ \ Omega \ end {align *}

Напишите окончательный ответ

Сопротивление \ (R_2 \) равно \ (\ text {5} \) \ (\ Omega \)

Рабочий пример 7: Закон Ома, параллельная цепь

Ячейка на 18 В подключена к двум параллельным резисторам \ (\ text {4} \) \ (\ Omega \) и \ (\ text {12} \) \ (\ Omega \) соответственно.Рассчитайте ток через ячейку и через каждый из резисторов.

Сначала нарисуйте схему, прежде чем производить какие-либо вычисления

Определите, как подойти к проблеме

Нам нужно определить ток через ячейку и каждый из параллельных резисторов. Нам дана разность потенциалов на ячейке и сопротивления резисторов, поэтому мы можем использовать закон Ома для расчета тока.

Рассчитать ток через ячейку

Чтобы рассчитать ток через элемент, нам сначала нужно определить эквивалентное сопротивление остальной части цепи.Резисторы включены параллельно и поэтому: \ begin {align *} \ frac {1} {R} & = \ frac {1} {R_1} + \ frac {1} {R_2} \\ & = \ frac {1} {4} + \ frac {1} {12} \\ & = \ frac {3 + 1} {12} \\ & = \ frac {4} {12} \\ R & = \ frac {12} {4} = \ text {3} \ \ Omega \ end {выровнять *} Теперь, используя закон Ома, чтобы найти ток через ячейку: \ begin {align *} R & = \ frac {V} {I} \\ I & = \ frac {V} {R} \\ & = \ frac {18} {3} \\ I & = \ text {6} \ text {A} \ end {align *}

Теперь определите ток через один из параллельных резисторов

Мы знаем, что для чисто параллельной схемы напряжение на ячейке такое же, как напряжение на каждом из параллельных резисторов.Для этой схемы: \ begin {align *} V & = V_1 = V_2 = \ text {18} \ text {V} \ end {выровнять *} Начнем с расчета тока через \ (R_1 \) по закону Ома: \ begin {align *} R_1 & = \ frac {V_1} {I_1} \\ I_1 & = \ frac {V_1} {R_1} \\ & = \ frac {18} {4} \\ I_1 & = \ text {4,5} \ text {A} \ end {align *}

Рассчитайте ток через другой параллельный резистор

Мы можем снова использовать закон Ома, чтобы найти ток в \ (R_2 \): \ begin {align *} R_2 & = \ frac {V_2} {I_2} \\ I_2 & = \ frac {V_2} {R_2} \\ & = \ frac {18} {12} \\ I_2 & = \ text {1,5} \ text {A} \ end {выровнять *} Альтернативный метод вычисления \ (I_2 \) заключался бы в использовании того факта, что токи через каждый из параллельных резисторов должны составлять суммарный ток через ячейку: \ begin {align *} I & = I_1 + I_2 \\ I_2 & = I — I_1 \\ & = 6 — 4.5 \\ I_2 & = \ text {1,5} \ text {A} \ end {align *}

Напишите окончательный ответ

Ток через ячейку равен \ (\ text {6} \) \ (\ text {A} \).

Ток через резистор \ (\ text {4} \) \ (\ Omega \) равен \ (\ text {4,5} \) \ (\ text {A} \).

Ток через резистор \ (\ text {12} \) \ (\ Omega \) равен \ (\ text {1,5} \) \ (\ text {A} \).

Закон Ома в последовательной и параллельной цепях

Упражнение 11.4

Рассчитать номинал неизвестного резистора в цепи:

Сначала мы используем закон Ома для вычисления полного последовательного сопротивления:

\ begin {align *} R & = \ frac {V} {I} \\ & = \ frac {9} {1} \\ & = \ текст {9} \ текст {Ω} \ end {выровнять *}

Теперь мы можем найти неизвестное сопротивление:

\ begin {align *} R_ {s} & = R_ {1} + R_ {2} + R_ {3} + R_ {4} \\ R_ {4} & = R_ {s} — R_ {1} — R_ {2} — R_ {3} \\ & = 9 — 3 — 3 — 1 \\ & = \ текст {2} \ текст {Ω} \ end {выровнять *}

Рассчитайте значение тока в следующей цепи:

Сначала находим общее сопротивление:

\ begin {align *} R_ {s} & = R_ {1} + R_ {2} + R_ {3} \\ & = \ text {1} + \ text {2,5} + \ text {1,5} \\ & = \ текст {5} \ текст {Ω} \ end {выровнять *}

Теперь мы можем рассчитать текущую:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {9} {5} \\ & = \ текст {1,8} \ текст {А} \ end {выровнять *}

Три резистора с сопротивлением \ (\ text {1} \) \ (\ text {Ω} \), \ (\ text {5} \) \ (\ text {Ω} \) и \ (\ text {10} \) \ (\ text {Ω} \) соответственно соединены последовательно с батареей \ (\ text {12} \) \ (\ text {V} \).Рассчитайте значение тока в цепи.

Рисуем принципиальную схему:

Теперь мы находим общее сопротивление:

\ begin {align *} R_ {s} & = R_ {1} + R_ {2} + R_ {3} \\ & = \ текст {1} + \ текст {5} + \ текст {10} \\ & = \ текст {16} \ текст {Ω} \ end {выровнять *}

Теперь мы можем рассчитать текущую:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {12} {16} \\ & = \ текст {0,75} \ текст {A} \ end {выровнять *}

Рассчитайте ток через ячейку, если оба резистора омические по своей природе.

Сначала находим общее сопротивление:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \\ & = \ frac {1} {\ text {1}} + \ frac {1} {\ text {3}} \\ & = \ frac {3 + 1} {\ text {3}} \\ & = \ frac {4} {\ text {3}} \\ & = \ текст {0,75} \ текст {Ω} \ end {выровнять *}

Теперь мы можем рассчитать текущую:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {9} {\ text {0,75}} \\ & = \ текст {12} \ текст {А} \ end {выровнять *}

Рассчитайте номинал неизвестного резистора \ (R_ {4} \) в цепи:

Сначала находим общее сопротивление:

\ begin {align *} R & = \ frac {V} {I} \\ & = \ frac {24} {\ text {2}} \\ & = \ текст {12} \ текст {Ω} \ end {выровнять *}

Теперь мы можем рассчитать неизвестное сопротивление:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} + \ гидроразрыв {1} {R_ {4}} \\ \ frac {1} {R_ {4}} & = \ frac {1} {R_ {p}} — \ frac {1} {R_ {1}} — \ frac {1} {R_ {2}} — \ гидроразрыв {1} {R_ {3}} \\ & = \ frac {1} {\ text {12}} — \ frac {1} {\ text {120}} — \ frac {1} {\ text {40}} — \ frac {1} {\ text { 60}} \\ & = \ frac {10 — 1 — 3 — 2} {\ text {120}} \\ & = \ frac {4} {\ text {120}} \\ & = \ текст {30} \ текст {Ω} \ end {выровнять *}

значение тока через аккумулятор

Рисуем принципиальную схему:

Чтобы вычислить значение тока через батарею, нам сначала нужно вычислить эквивалентное сопротивление:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} \\ & = \ frac {1} {\ text {1}} + \ frac {1} {\ text {5}} + \ frac {1} {\ text {10}} \\ & = \ frac {10 + 2 + 1} {\ text {10}} \\ & = \ frac {13} {\ text {10}} \\ & = \ текст {0,77} \ текст {Ω} \ end {выровнять *}

Теперь можем посчитать ток через батарею:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {20} {\ text {0,77}} \\ & = \ текст {26} \ текст {А} \ end {выровнять *}

значение тока в каждом из трех резисторов.

Для параллельной схемы напряжение на ячейке такое же, как напряжение на каждом из резисторов. Для этой схемы:

\ [V = V_ {1} = V_ {2} = V_ {3} = \ text {20} \ text {V} \]

Теперь мы можем рассчитать ток через каждый резистор. Начнем с \ (R_ {1} \):

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {20} {\ text {1}} \\ & = \ текст {20} \ текст {А} \ end {выровнять *}

Затем мы вычисляем ток через \ (R_ {2} \):

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {20} {\ text {5}} \\ & = \ текст {4} \ текст {А} \ end {выровнять *}

И наконец вычисляем ток через \ (R_ {3} \):

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {20} {\ text {10}} \\ & = \ текст {2} \ текст {А} \ end {выровнять *}

Вы можете проверить, что они в сумме составляют общий ток.

Последовательные и параллельные сети резисторов (ESBQC)

Теперь, когда вы знаете, как работать с простыми последовательными и параллельными цепями, вы готовы заняться цепями, которые объединяют эти две схемы, например, следующую схему:

Рисунок 11.1: Пример последовательно-параллельной сети. Пунктирными прямоугольниками обозначены параллельные участки цепи.

Проработать такие схемы относительно легко, потому что вы используете все, что вы уже узнали о последовательных и параллельных схемах.Единственная разница в том, что вы делаете это поэтапно. На рисунке 11.1 схема состоит из 2 параллельных частей, которые затем включены последовательно с ячейкой. Чтобы вычислить эквивалентное сопротивление для схемы, вы начинаете с вычисления общего сопротивления каждой из параллельных частей, а затем последовательно складываете эти сопротивления. Если бы все резисторы на рисунке 11.1 имели сопротивление \ (\ text {10} \) \ (\ text {Ω} \), мы можем вычислить эквивалентное сопротивление всей цепи.

Начнем с расчета общего сопротивления параллельной цепи 1 .{-1} \\ & = \ текст {5} \, \ Omega \ end {align *}

Теперь вы можете рассматривать схему как простую последовательную схему следующим образом:

Следовательно, эквивалентное сопротивление: \ begin {align *} R & = R_ {p1} + R_ {p2} \\ & = 5 + 5 \\ & = 10 \, \ Omega \ end {align *}

Эквивалентное сопротивление цепи на рисунке 11.1 равно \ (\ text {10} \) \ (\ text {Ω} \).

Последовательные и параллельные сети

Упражнение 11.5

Начнем с определения эквивалентного сопротивления параллельной комбинации:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \\ & = \ frac {1} {4} + \ frac {1} {2} \\ & = \ frac {3} {4} \\ R_ {p} & = \ text {1,33} \ text {Ω} \ end {выровнять *}

Теперь у нас есть цепь с двумя последовательно включенными резисторами, поэтому мы можем вычислить эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {3} + R_ {p} \\ & = \ текст {2} + \ текст {1,33} \\ & = \ текст {3,33} \ текст {Ω} \ end {выровнять *}

Начнем с определения эквивалентного сопротивления параллельной комбинации:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} \\ & = \ frac {1} {1} + \ frac {1} {2} \\ & = \ frac {3} {2} \\ R_ {p} & = \ text {0,67} \ text {Ω} \ end {выровнять *}

Теперь у нас есть цепь с тремя последовательно включенными резисторами, поэтому мы можем вычислить эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {3} + R_ {4} + R_ {p} \\ & = \ текст {4} + \ текст {6} + \ текст {0,67} \\ & = \ текст {10,67} \ текст {Ω} \ end {выровнять *}

Начнем с определения эквивалентного сопротивления параллельной комбинации:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} \\ & = \ frac {1} {3} + \ frac {1} {5} + \ frac {1} {1} \\ & = \ frac {23} {15} \\ R_ {p} & = \ text {0,652} \ text {Ω} \ end {выровнять *}

Теперь у нас есть цепь с двумя последовательно включенными резисторами, поэтому мы можем вычислить эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {4} + R_ {p} \\ & = \ текст {2} + \ текст {0,652} \\ & = \ текст {2,652} \ текст {Ω} \ end {выровнять *}

ток \ (I \) через ячейку.

Чтобы найти ток \ (I \), нам сначала нужно найти эквивалентное сопротивление. Начнем с расчета эквивалентного сопротивления параллельной комбинации:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} \\ & = \ frac {1} {3} + \ frac {1} {5} + \ frac {1} {1} \\ & = \ frac {23} {15} \\ R_ {p} & = \ text {0,652} \ text {Ω} \ end {выровнять *}

Теперь у нас есть цепь с двумя последовательно включенными резисторами, поэтому мы можем вычислить эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {4} + R_ {p} \\ & = \ текст {2} + \ текст {0,652} \\ & = \ текст {2,652} \ текст {Ω} \ end {выровнять *}

Значит, ток через ячейку:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {\ text {12}} {\ text {2,652}} \\ & = \ текст {4,52} \ текст {А} \ end {выровнять *}

ток через резистор \ (\ text {5} \) \ (\ text {Ω} \).

Ток через параллельную комбинацию резисторов равен \ (\ text {4,52} \) \ (\ text {A} \). (Ток одинаков при последовательном соединении резисторов, и мы можем рассматривать весь параллельный набор резисторов как один последовательный резистор.)

Используя это, мы можем найти напряжение через параллельную комбинацию резисторов (не забудьте использовать эквивалентное параллельное сопротивление, а не эквивалентное сопротивление цепи):

\ begin {align *} V & = I \ cdot R \\ & = (\ text {4,52}) (\ text {0,652}) \\ & = \ текст {2,95} \ текст {V} \ end {выровнять *}

Поскольку напряжение на каждом резисторе в параллельной комбинации одинаково, это также напряжение на резисторе \ (\ text {5} \) \ (\ text {Ω} \).

Итак, теперь мы можем рассчитать ток через резистор:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {\ text {2,95}} {\ text {5}} \\ & = \ текст {0,59} \ текст {A} \ end {выровнять *}

Если ток, протекающий через ячейку, равен \ (\ text {2} \) \ (\ text {A} \), и все резисторы омические, рассчитайте напряжение на ячейке и на каждом из резисторов, \ (R_1 \ ), \ (R_2 \) и \ (R_3 \) соответственно.

Чтобы найти напряжение, нам сначала нужно найти эквивалентное сопротивление.Начнем с расчета эквивалентного сопротивления параллельной комбинации:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} \\ & = \ frac {1} {2} + \ frac {1} {4} \\ & = \ frac {3} {4} \\ R_ {p} & = \ text {1,33} \ text {Ω} \ end {выровнять *}

Теперь у нас есть цепь с двумя последовательно включенными резисторами, поэтому мы можем вычислить эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {1} + R_ {p} \\ & = \ text {4,66} + \ text {1,33} \\ & = \ текст {5,99} \ текст {Ω} \ end {выровнять *}

Итак, напряжение на ячейке:

\ begin {align *} V & = I \ cdot R \\ & = (\ текст {2}) (\ текст {5,99}) \\ & = \ текст {12} \ текст {V} \ end {выровнять *}

Ток через параллельную комбинацию резисторов равен \ (\ text {2} \) \ (\ text {A} \).(Ток одинаков при последовательном соединении резисторов, и мы можем рассматривать весь параллельный набор резисторов как один последовательный резистор.)

Используя это, мы можем найти напряжение на каждом из резисторов. Начнем с нахождения напряжения на \ (R_ {1} \):

\ begin {align *} V & = I \ cdot R \\ & = (\ текст {2}) (\ текст {4,66}) \\ & = \ текст {9,32} \ текст {V} \ end {выровнять *}

Теперь находим напряжение на параллельной комбинации:

\ begin {align *} V & = I \ cdot R \\ & = (\ текст {2}) (\ текст {1,33}) \\ & = \ текст {2,66} \ текст {V} \ end {выровнять *}

Поскольку напряжение на каждом резисторе в параллельной комбинации одинаково, это также напряжение на резисторах \ (R_ {2} \) и \ (R_ {3} \).

ток через ячейку

Чтобы найти ток, нам сначала нужно найти эквивалентное сопротивление. Начнем с расчета эквивалентного сопротивления параллельной комбинации:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} \\ & = \ frac {1} {1} + \ frac {1} {1} \\ & = 2 \\ R_ {p} & = \ text {0,5} \ text {Ω} \ end {выровнять *}

Теперь у нас есть цепь с двумя последовательно включенными резисторами, поэтому мы можем вычислить эквивалентное сопротивление:

\ begin {align *} R_ {s} & = R_ {1} + R_ {4} + R_ {p} \\ & = \ text {2} + \ text {1,5} + \ text {0,5} \\ & = \ текст {4} \ текст {Ω} \ end {выровнять *}

Значит, ток через ячейку:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {\ text {10}} {\ text {4}} \\ & = \ текст {2,5} \ текст {А} \ end {выровнять *}

падение напряжения на \ (R_4 \)

Ток через все резисторы равен \ (\ text {2,5} \) \ (\ text {A} \).(Ток одинаков при последовательном соединении резисторов, и мы можем рассматривать весь параллельный набор резисторов как один последовательный резистор.)

Используя это, мы можем найти напряжение через \ (R_ {4} \):

\ begin {align *} V & = I \ cdot R \\ & = (\ text {2,5}) (\ text {1,5}) \\ & = \ текст {3,75} \ текст {V} \ end {выровнять *}

ток через \ (R_2 \)

Ток через все резисторы равен \ (\ text {2,5} \) \ (\ text {A} \).(Ток одинаков при последовательном соединении резисторов, и мы можем рассматривать весь параллельный набор резисторов как один последовательный резистор.)

Используя это, мы можем найти ток через \ (R_ {2} \).

Сначала нам нужно найти напряжение на параллельной комбинации:

\ begin {align *} V & = I \ cdot R \\ & = (\ text {2,5}) (\ text {0,5}) \\ & = \ текст {1,25} \ текст {V} \ end {выровнять *}

Теперь мы можем найти ток через \ (R_ {2} \), используя тот факт, что напряжение одинаково на каждом резисторе в параллельной комбинации:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {\ text {1,25}} {\ text {1}} \\ & = \ текст {1,25} \ текст {А} \ end {выровнять *}

калькулятор расчета закона Ома рассчитать формулы мощности математический закон Ома круговая диаграмма электрическое падение напряжения электрический ток формула сопротивления закон Ватта ЭДС магический треугольник уравнение подсказка онлайн напряжение вольт сопротивление резистора амперы аудиотехника EV = IR — P = VI вычисление зависимости удельного сопротивления проводимости

Ом закон вычисление калькулятор вычислить формулы мощности математический закон Ома круговая диаграмма электрическое падение напряжения электрический ток формула сопротивления закон Ватта ЭДС магический треугольник уравнение подсказка онлайн напряжение вольт сопротивление резистора амперы амперы аудиотехника EV = IR — P = VI calc проводимость связь удельное сопротивление связь — sengpielaudio Sengpiel Berlin


= сбросить.

Формулы: V = I R I = V / R R = V / I

Математические формулы закона Ома

Закон Ома можно переписать тремя способами для расчета тока, сопротивления и напряжения.
Если ток I должен протекать через резистор R , можно рассчитать напряжение В .
Первая версия формулы (напряжения): V = I × R

Если есть напряжение В на резисторе R , через него протекает ток I . I можно вычислить.
Вторая версия (текущей) формулы: I = V / R

Если через резистор протекает ток I , а на резисторе имеется напряжение В . R можно рассчитать.
Третья версия формулы (сопротивления): R = V / I

Все эти вариации так называемого «закона Ома» математически равны друг другу.

Имя Знак формулы Установка Символ
напряжение V или E вольт В
текущий Я ампер (ампер) A
сопротивление R Ом Ом
мощность п. ватт Вт

Какая формула для электрического тока?
При постоянном токе:
I = Δ Q / Δ t
I — ток в амперах (A)
Δ Q — электрический заряд в кулонах (C),
, который течет во время продолжительности Δ t в секундах (с).

Напряжение В = ток I × сопротивление R

Мощность P = напряжение В × ток I

В электрических проводниках, в которых ток и напряжение пропорциональны
друг другу, применяется закон Ома: В ~ I или В I = const.

Проволока из константана или другая металлическая проволока, выдерживаемая при постоянной температуре, хорошо соответствует закону Ома.

« V I = R = const.» ist не закон ома. Это определение сопротивления.
После этого в каждой точке, даже с изогнутой кривой, можно рассчитать значение сопротивления.

Для многих электрических компонентов, например диодов, закон Ома не применяется.

«Закон Ома» не был изобретен мистером Омом

« U I = R = конст.»- это , а не закон Ома или закон Ома. Это определение сопротивления.
После этого в каждой точке — даже с изогнутой кривой — значение сопротивления может быть вычислено.
Закон Ома» постулирует «следующие отношения: Когда к объекту прикладывается напряжение, электрический ток
, протекающий через него, изменяет силу, пропорциональную напряжению. Другими словами, электрическое сопротивление
, определяемое как отношение напряжения к току, является постоянным, и оно равно
независимо от напряжения. и ток.Название закона «почитает» Георга Симона Ома, который смог
доказать эту взаимосвязь для некоторых простых электрических проводников в качестве одного из первых исследователей.
«Закон Ома» действительно не был изобретен Омом.


Совет: магический треугольник Ома

Волшебный треугольник V I R можно использовать для расчета всех формулировок закона Ома.
Используйте палец, чтобы скрыть вычисляемое значение. Два других значения
показывают, как производить расчет.

Обозначение I или J = латиница: приток, международный ампер и R = сопротивление. В = напряжение или
разность электрических потенциалов, также называемая падением напряжения, или E = электродвижущая сила (ЭДС = напряжение).
Расчет падения напряжения — расчет постоянного / однофазного тока
Падение напряжения В в вольтах (В) равно току в проводе I в амперах (A), умноженном на два
длины провода L в футах (футах), умноженном на сопротивление провода на 1000 футов R в омах (Ω / kft)
деленное на 1000:
V падение (V) = I провод (A) × R провод (Ом)
= I провод (A) × (2 × L (фут) × R провод (Ом / kft) / 1000 (ft / kft))

Падение напряжения В в вольтах (В) равно току провода I в амперах (А), умноженному на два
, длина провода L в метрах (м), умноженная на сопротивление провода на 1000 метров R в омах
(Ом / км) разделить на 1000:
В падение (В) = I провод (A) × R провод (Ом)
= I провод (A) × (2 × L (м) × R провод (Ом / км) / 1000 (м / км))

Если требуется блок питания P = I × V и напряжения V = I · R ,
ищите Формулы большой мощности »:
Расчеты: мощность (ватт), напряжение, ток, сопротивление

Некоторые считают, что Георг Симон Ом рассчитал «удельное сопротивление».
Поэтому они думают, что только следующее может быть истинным законом Ома.

Величина сопротивления
R = сопротивление Ом
ρ = удельное сопротивление Ом × м
l = двойная длина кабеля м
A = поперечное сечение мм 2

Электропроводность (проводимость) σ (сигма) = 1/ ρ
Удельное электрическое сопротивление (удельное сопротивление) 50 50 50 = 1/ σ

Разница между удельным электрическим сопротивлением и электропроводностью

Проводимость в сименсах обратно пропорциональна сопротивлению в омах.

Просто введите значение слева или справа.
Калькулятор работает в обоих направлениях знака .
Величина электропроводности (проводимости) и удельного электрического сопротивления
(удельное сопротивление) зависит от температуры материала постоянной. Чаще всего его дают при 20 или 25 ° C.
Сопротивление R = ρ × ( л / A ) или R σ × A )

Для всех проводников удельное сопротивление изменяется в зависимости от температуры.В ограниченном диапазоне температур
это примерно линейно:
где α — температурный коэффициент, T — температура, а T 0 — любая температура,
, например, T 0 = 293,15 K = 20 ° C, при котором удельное электрическое сопротивление ρ ( T 0 ) известен.

Площадь поперечного сечения — поперечное сечение — плоскость среза

Теперь возникает вопрос:
Как рассчитать площадь поперечного сечения (плоскость среза) A
из диаметра проволоки d и наоборот?

Расчет поперечного сечения A (плоскость среза) от диаметра d :

r = радиус проволоки
d = диаметр проволоки

Расчетный диаметр d из поперечного сечения A (плоскость среза ) :

Поперечное сечение A провода в мм 2 , вставленное в эту формулу, дает диаметр d в мм.

Расчет — Круглые кабели и провода:
• Диаметр к поперечному сечению и наоборот •

Электрическое напряжение В = I × R (закон Ома VIR)
Электрическое напряжение = сила тока × сопротивление (закон Ома)
Введите два значения , будет рассчитано третье значение.
Электроэнергия P = I × В (Power law PIV)
Электрическая мощность = сила тока × напряжение (закон Ватта)
Введите два значения , будет рассчитано третье значение.
Закон Ома. В = I × R , где В, — это потенциал на элементе схемы, I — это ток
через него, а R — его сопротивление. Это не общеприменимое определение сопротивления
. Это применимо только к омическим резисторам, сопротивление которых R является постоянным
в интересующем диапазоне, а В, подчиняется строго линейной зависимости от I . Материалы
считаются омическими, если V линейно зависит от R .Металлы являются омическими, пока
поддерживает их постоянную температуру. Но изменение температуры металла немного меняет R
. Когда ток изменяется быстро, например, при включении света или при использовании источников переменного тока
, может наблюдаться слегка нелинейное и неомическое поведение. Для неомических резисторов
R зависит от тока, и определение R = d V / d I гораздо более полезно. Это значение
, которое иногда называют динамическим сопротивлением.Твердотельные устройства, такие как термисторы,
неомичны и нелинейны. Сопротивление термистора уменьшается по мере его нагрева, поэтому его динамическое сопротивление
отрицательно. Туннельные диоды и некоторые электрохимические процессы
имеют сложную кривую от I до В с областью действия отрицательного сопротивления. Зависимость сопротивления
от тока частично связана с изменением температуры устройства
с увеличением тока, но другие тонкие процессы также способствуют изменению сопротивления
в твердотельных устройствах.

Расчет: калькулятор параллельного сопротивления (резистора)

Калькулятор цветового кода для резисторов

Электрический ток, электрическая мощность, электричество и электрический заряд

Колесо формул — формулы электротехники

In acoustics используйте «закон Ома в качестве акустического эквивалента »



Как работает электричество.
Закон Ома ясно объяснен.

[начало страницы]

Калькулятор закона

Ом

Укажите любые 2 значения и нажмите «Рассчитать», чтобы получить другие значения в уравнениях закона Ома V = I × R и P = V × I.

Связано: счетчик резисторов

Закон Ома

Закон

Ома гласит, что ток через проводник между двумя точками прямо пропорционален напряжению. Это верно для многих материалов в широком диапазоне напряжений и токов, а сопротивление и проводимость электронных компонентов, изготовленных из этих материалов, остаются постоянными.Закон Ома верен для цепей, содержащих только резистивные элементы (без конденсаторов или катушек индуктивности), независимо от того, является ли управляющее напряжение или ток постоянным (DC) или изменяющимся во времени (AC). Его можно выразить с помощью ряда уравнений, обычно всех трех вместе, как показано ниже.

Где:

В — напряжение в вольтах
R — сопротивление в Ом
Я ток в амперах

Электроэнергетика

Мощность — это скорость, с которой электрическая энергия передается электрической цепью в единицу времени, обычно выражается в ваттах в Международной системе единиц (СИ).Электроэнергия обычно вырабатывается электрическими генераторами и поставляется предприятиям и домам через электроэнергетику, но также может поставляться от электрических батарей или других источников.

В резистивных цепях закон Джоуля можно объединить с законом Ома для получения альтернативных выражений для количества рассеиваемой мощности, как показано ниже.

Где:

P — мощность в ваттах

Колесо формул закона Ома

Ниже приведено колесо формул для соотношений по закону Ома между P, I, V и R.По сути, это то, что делает калькулятор, и это просто представление алгебраической манипуляции с уравнениями выше. Чтобы использовать колесо, выберите переменную для поиска в середине колеса, затем используйте соотношение для двух известных переменных в поперечном сечении круга.

3.2: Закон Ома, закон Джоуля и рядные / параллельные формулы

Закон Ома

V. Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению : I ∝ V.

Закон Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

ParseError: «(» ожидается (щелкните, чтобы узнать подробности)
 Стек вызовов:
    в (Книжные полки / Строительство / Книга: _Building_Mainote_and_Construction _-_ Tools_and_Tasks_Tasks_ (Rutherford) /3:_Mat Mathematics_for_Main maintenance_Techs/3.2:_Ohm’s_Law,_Joules_Law,_and_Series/03.2: _Ohm’s_Law, _Joules_Law, _and_Series // Parallel_Formulas), / content / body / div [1] / div [1] / p [1] / @ if, строка 1, столбец 3
 

Установление соединений: Соединения в реальном мире

V = IR) — это фундаментальное соотношение, которое может быть представлено линейной функцией, в которой наклон линии является сопротивлением. Сопротивление представляет собой напряжение, которое необходимо приложить к резистору для создания в цепи тока 1 А. График (на рисунке ниже) показывает это представление для двух простых схем с резисторами, которые имеют разное сопротивление и, следовательно, разные наклоны.

На рисунке показано соотношение между током и напряжением для двух разных резисторов. Наклон графика представляет значение сопротивления, которое составляет 2 Ом и 4 Ом для двух показанных линий.

1012 Ом или больше. Сопротивление сухого человека может составлять 105 Ом, тогда как сопротивление человеческого сердца составляет около 103 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10-5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны).Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление».

I = для V, что дает V = IR.

В можно интерпретировать как падение напряжения на резисторе, создаваемое током I. Для этого напряжения часто используется фраза IR drop . Например, фара в примере имеет падение ИК-излучения 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе.Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывая ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку PE = qΔV, и через каждую из них протекает одинаковое q.Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны. (См. Рисунок.)

Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Последовательные и параллельные резисторы

Рисунок. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.

Изображение показывает (а) Последовательное соединение резисторов.(б) Параллельное соединение резисторов.

Закон Джоуля

Рисунок (a).) Поскольку оба работают при одинаковом напряжении, лампа мощностью 60 Вт должна потреблять больше тока, чтобы иметь большую номинальную мощность. Таким образом, сопротивление лампы на 60 Вт должно быть ниже, чем у лампы на 25 Вт. Если мы увеличиваем напряжение, мы также увеличиваем мощность. Например, когда лампочка мощностью 25 Вт, рассчитанная на работу от 120 В, подключена к 240 В, она на короткое время очень ярко светится, а затем перегорает. Как именно напряжение, ток и сопротивление связаны с электроэнергией?

qV, где q — это перемещенный заряд, а V, — напряжение (точнее, разность потенциалов, через которую проходит заряд).Мощность — это скорость перемещения энергии, поэтому электрическая мощность составляет P = =.

I = ( обратите внимание, что Δt = t здесь), выражение для мощности принимает вид P = IV.

P) просто произведение тока на напряжение. Мощность имеет знакомые единицы ватт. Поскольку единицей СИ для потенциальной энергии (PE) является джоуль, мощность выражается в джоулях в секунду или ваттах. Таким образом, 1 A⋅V = 1 Вт. Например, в автомобилях часто есть одна или несколько дополнительных розеток, с помощью которых можно заряжать сотовый телефон или другие электронные устройства.Эти розетки могут быть рассчитаны на 20 А, так что цепь может выдавать максимальную мощность P = IV = (20 А) (12 В) = 240 Вт. В некоторых приложениях электрическая мощность может выражаться в вольтах. амперы или даже киловольт-амперы 1 кА⋅В = 1 кВт.

I = V / R дает P = () V = V 2 / R . Аналогично, замена V = IR дает P = I (IR) = I 2 R . Для удобства здесь собраны три выражения для электроэнергии:

P = IV

P = V 2 / R

P = I 2 R.

P может быть мощностью, рассеиваемой одним устройством, а не полной мощностью в цепи.)

P = V 2 / R Подразумевает, что чем ниже сопротивление, подключенное к данному источнику напряжения, тем больше выдается мощность. Кроме того, поскольку напряжение возведено в квадрат в P = V 2 / R , эффект от приложения более высокого напряжения, возможно, больше, чем ожидалось. Таким образом, когда напряжение увеличивается вдвое до лампочки мощностью 25 Вт, ее мощность увеличивается почти в четыре раза и составляет примерно 100 Вт, что приводит к ее перегоранию.Если бы сопротивление лампы оставалось постоянным, ее мощность была бы ровно 100 Вт, но при более высокой температуре ее сопротивление также будет выше.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *