+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Ограничитель перенапряжения — это… Что такое Ограничитель перенапряжения?

Ограничитель перенапряжений (ОПН)

Разря́дник — электрический аппарат, предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях.

Применение

В электрических сетях часто возникают импульсные всплески напряжения, вызванные коммутациями электроаппаратов, атмосферными разрядами или иными причинами. Несмотря на кратковременность такого перенапряжения, его может быть достаточно для пробоя изоляции и, как следствие, короткого замыкания, приводящего к разрушительным последствиям.[1] Для того, чтобы устранить вероятность короткого замыкания, можно применять более надежную изоляцию, но это приводит к значительному увеличению стоимости оборудования. В связи с этим в электрических сетях целесообразно применять разрядники.

Устройство и принцип действия

Разрядник состоит из двух электродов и дугогасительного устройства.

Электроды

Один из электродов крепится на защищаемой цепи, второй электрод заземляется. Пространство между электродами называется искровым промежутком. При определенном значении напряжения между двумя электродами искровой промежуток пробивается, снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику — гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).

Дугогасительное устройство

После пробоя импульсом искровой промежуток достаточно ионизирован, чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗиА, защищающих данный участок. Задача дугогасительного устройства — устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты.

Виды разрядников

Трубчатый разрядник

Трубчатый разрядник представляет собой дугогасительную трубку из полихлорвинила, с разных концов которой закреплены электроды. Один электрод заземляется, а второй располагается на небольшом расстоянии от защищаемого участка (расстояние регулируется в зависимости от напряжения защищаемого участка). При возникновении перенапряжения пробиваются оба промежутка: между разрядником и защищаемым участком и между двумя электродами. В результате пробоя в трубке возникает интенсивная газогенерация, и через выхлопное отверстие образуется продольное дутье, достаточное для погашения дуги .

Вентильный разрядник

Вентильный разрядник РВМК-1150

Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких однократных) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором. В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды. Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора — снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками. Вилит обладает особенным свойством — его сопротивление нелинейно — оно падает с увеличением значения силы тока. Это свойство позволяет пропустить больший ток при меньшем падении напряжения. Благодаря этому свойству вентильные разрядники и получили свое название. Среди прочих преимуществ вентильных разрядников следует отметить бесшумность срабатывания и отсутствие выбросов газа или пламени.

Магнитовентильный разрядник (РВМГ)

РВМГ состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов, заключенное в фарфоровый цилиндр.

При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля, создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.

ОПН

Различные ОПН

Ограничитель перенапряжения нелинейный (ОПН) — это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов. Принцип действия ОПН основан на том, что проводимость варисторов нелинейно зависит от приложенного напряжения. В нормальном режиме ОПН не пропускает ток, но как только на участке сети возникает перенапряжение, сопротивление ОПН резко снижается, чем и обуславливается эффект защиты от перенапряжения. После прохождения разряда через ОПН, его сопротивление опять возрастает. Переход из «закрытого» в «открытое» состояния занимает меньше 1 наносекунды (в отличие от разрядников с искровыми промежутками, у которых это время равняется нескольким микросекундам). Кроме быстроты срабатывания ОПН обладает еще рядом преимуществ. Одним из них является стабильность характеристики варисторов после неоднократного срабатывания вплоть до окончания указанного времени эксплуатации, что, кроме прочего, устраняет необходимость в эксплуатационном обслуживании.

Обозначение


На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727—68.
1. Общее обозначение разрядника
2. Разрядник трубчатый
3. Разрядник вентильный и магнитовентильный
4. ОПН

Примечания

  1. Общие принципы выбора варисторов для защиты от импульсных напряжений

Источники

  • Родштейн Л. А. Электрические аппараты: Учебник для техникумов. — 4-е изд., перераб. и доп. — Л.: Энергоатомиздат. Ленингр. отд-ние, 1981. — 304 с: ил.

Wikimedia Foundation. 2010.

dic.academic.ru

нормы, проверяемые параметры, образец протокола

Из-за угрозы возникновения перенапряжений в электрических сетях, и, как следствие, поломки приборов, разрушения изоляции и последующих затрат на восстановление, применяют защиту  в виде ограничителей перенапряжений (ОПН). Которые представляют собой нелинейные приборы, изменяющие величину сопротивления в ответ на возрастание напряжения в сети. Из-за старения и нарушения свойств вилитового материала, нелинейные ОПН могут утрачивать свои характеристики, перегреваться, в результате чего может произойти взрыв, угрожающий безопасности персонала и целостности оборудования. Для предотвращения подобных инцидентов производится испытание ОПН.

Зачем проводят испытания ограничителей перенапряжения?

Проведение испытаний ОПН требуется для контроля за их состоянием. Благодаря чему обеспечивается их работоспособность, как при вводе в работу, так и  в течении всего периода эксплуатации. А организация, эксплуатирующая электроустановку,  может быть уверена в полноценной защите электрооборудования на случай возникновения аварийного скачка напряжения. В зависимости от конкретной ситуации нелинейные ОПН могут подвергаться различным видам испытаний.

Типы испытаний

В зависимости от причин проведения, все испытания ОПН подразделяются на такие категории:

  • Приемо-сдаточные – выполняются для вновь смонтированных устройств с целью определения соответствия параметров уже установленных ОПН. Так как в процессе монтажа или наладки электроустановок разрядники и ОПН могли быть повреждены, из-за чего их характеристики будут отличаться от заявленных. Данная категория испытаний является обязательной для всех ограничителей перенапряжения.
  • Периодические – проводятся для тех моделей, которые уже включены в работу. Производятся с целью осуществления текущего контроля за состоянием защитного оборудования посредством проверки их параметров.
  • Квалификационные – предназначены для определения способности какого-либо предприятия к началу производства ОПН. При этом первая партия подвергается выборочной проверке по ряду параметров, наиболее сложный из которых — его реакция на нерасчетный режим. Во время протекания которого внешняя рубашка подвергается чрезмерному давлению изнутри и создается угроза взрыва.
  • Типовые – призваны учитывать особенности различных категорий, рассчитанных на особенности электроустановок определенного типа.

Периодичность

Испытания ОПН выполняются в соответствии с требованиями международного стандарта МЭК 60099-4:2004, который лег в основу разработки отечественного ГОСТ Р 52725-2007. Помимо них каждый изготовитель самостоятельно может ужесточать требования, в зависимости от индивидуальных особенностей сетей для которых выпускаются устройства. Этими НД регламентируется частота проведения тех или иных измерений.

Сопротивление проверяется с периодичностью: для моделей наружной установки – раз в 3 года, для внутренней – раз в 6 лет. Ток утечки должен проверяться ежегодно до начала грозового периода. Также рекомендуется осуществлять тепловизионный контроль с периодичностью раз в 3 года для сетей до 35 кВ, и раз в 2 года для 110 кВ и выше.

Параметры, проверяемые у ОПН

На различных этапах изготовления и последующей эксплуатации ограничители должны подвергаться тем или иным испытаниям, которые регламентируются вышеприведенными НД:

  • Сопротивление изоляции – проверяется мегаомметром для контроля изоляции;
  • Ток проводимости – позволяет проверить нелинейное сопротивление вилитовых дисков;
  • Воздействие электрическим напряжением – для проверки прочности и устойчивости в различных режимах;
  • Частичные разряды – используются для проверки устойчивости на пробой посредством амплитудных скачков тока;
  • Остаточное напряжение – характеризует способность устройства к накоплению заряда;
  • Механическая прочность – позволяет убедиться, что рубашка выдержит механические нагрузки; Принцип проверки механической прочностиРис. 1. Принцип проверки механической прочности
  • Герметичность – определяет сопротивление корпуса проникновению влаги внутрь.

Объем и нормы приёмо-сдаточных испытаний ОПН

Все испытания приемо-сдаточного характера проводятся в соответствии с требованиями, которые устанавливает раздел 1.8.31 ПУЭ 7. Именно он регламентирует методику и те проверки, которые должны проходить вентильные разрядники и ОПН.

В зависимости от класса напряжения на  ОПН подается испытательное напряжение определенной величины, после чего регистрируется величина тока. Также в зависимости от номинального напряжения проверяется сопротивление агрегата. Но мегаомметр, при измерении сопротивления, должен выставляться на определенную величину напряжения.

Измерение тока проводимости

Одной из двух величин, измеряемых для ОПН, является ток проводимости. Перед началом испытаний ОПН необходимо отключить от сети. С его поверхности, ребер и фланцев должна удаляться пыль, мусор и прочие засорители. Категорически запрещается проводить измерения на мокрых или влажных ограничителях, необходимо дожидаться их полного высыхания. К выполнению таких работ должны приступать только работники, которые прошли обучение, имеют соответствующую группу по электробезопасности и право на выполнение таких испытаний. Для измерения тока проводимости используется следующая схема.

Измерение тока проводимостиРис. 2. Измерение тока проводимости

Как видите, на данной схеме к выводам испытательной установки (АИИ-70) последовательно подключается сам ОПН и миллиамперметр (мА). С началом испытаний высоковольтного оборудования напряжение от АИИ-70 должно плавно повышаться до установленной величины со скоростью, приблизительно 2 кВ в секунду. При этом температура устройства должна находиться в пределах от – 15 до +20ºС.

После установки уровня напряжения до нормативной величины производится измерение тока. Затем эту величину сравнивают с заводской, которая указывается в паспортных параметрах изготовителем.

В зависимости от уровня напряжения, на которое рассчитаны ОПН, замер тока проводимости производится:

  • Устройствам до 3 кВ – величина не нормируется.
  • От 3 до 35 кВ подается наибольшая величина максимально допустимого напряжения, при котором и производится замер тока. В результате его сравнивают с паспортной нормой.
  • От 110 до 500 кВ на испытуемый объект подается 100 кВ промышленной частоты 50 Гц. Получаемый при этом ток сравнивается с данными заводской инструкции.

Замер сопротивления изоляции

Изоляция, при испытаниях ОПН, измеряется мегаомметром. При этом должен использоваться калиброванный прибор, имеющий отметку о такой поверке. В зависимости от уровня напряжения, на которое рассчитано устройство, изоляция электрооборудования проверяется в соответствии с такими принципами:

  • Для испытаний ОПН до 3 кВ должен применяться мегаомметр на 1 кВ, а величина сопротивления должна быть не менее 1000 МОм.
  • Если испытываются устройства от 3 до 35 кВ, то необходим мегаомметр на 2,5 кВ, а сопротивление, при этом, должно находиться в пределах установленных заводскими инструкциями.
  • Для устройств от 110 до 500 кВ также применяется мегаомметр на 2,5 кВ, а величина сопротивления, при этом, должна быть не менее 3000 МОм. Но при этом, не должна отличаться, от регламентируемой заводскими нормами, более чем на ±30%.

Пример и описание протокола испытания ОПН

Все результаты по испытанию высоковольтного оборудования, включая те же ОПН, должны вноситься в протокол.

Пример заполнения протокола испытанийРисунок 3. Пример заполнения протокола испытаний

Посмотрите на рисунок 3, как видите, протокол состоит из двух таблиц. В первой из них указываются паспортные данные. Эта таблица разделяется на 6 колонок, в которые вносятся тип, место его установки, изготовитель, присвоенный на заводе номер, даты выпуска и ввода в работу. Вся информация заносится для каждой фазы отдельно.

Во второй таблице указывается пофазный замер сопротивления. Где он сравнивается с паспортными и базовыми значениями. После проведения испытаний, в протоколе ставятся подписи работников, которые производили замеры.

Видео по теме

www.asutpp.ru

принцип действия, классификация и область применения

Опн принцип действияНе только производственное, офисное, но и домашнее электрооборудование постоянно находится под угрозой поломок, а то и полного выхода из строя. Причинами тому могут быть как грозовые разряды, так и сбои на линиях передач и в работе трансформаторных станций, провоцирующие резкие скачки напряжения. С защитой от подобных проблем успешно справляются, благодаря принципу действия ОПН.

От разрядников к ограничителям

Электросети — это не только линии высоковольтных передач. В широком смысле в систему входит множество оборудования, установок, приспособлений, к ней подключены промышленные и обычные потребители. Последствия сбоев здесь могут быть весьма серьезны. Пока рынок не стали занимать современные ограничители напряжения, те же задачи решали другие устройства — разрядники.

Особенности их таковы:

  • Работа простейшего разрядника состояла в приеме ненормативной электроэнергии и безопасном сбросе ее через систему заземления.
  •  ограничитель перенапряженияВ обычное состояние разрядник возвращал дугогаситель. Он нейтрализовал повышенную ионизацию.
  • Главной особенностью этих устройств являлся искровой промежуток. От ширины его зависела мощность системы. Но и увеличивать до бесконечности приборы было тоже нельзя.
  • Слабым местом таких «предохранителей» считалась опасность запаздывания устройства в нормативный режим после всплеска напряжения.
  • Разрядники постоянно совершенствовались. Изобретались и внедрялись воздушные, газовые, вентильные модели. Но все они имели недостатки, и в итоге на смену им пришли устройства нового типа — ОПН.

Казалось бы, уберечь технику от пробоев можно, просто отключив ее от сети.

Но если с приближением грозы это еще возможно успеть сделать, то технологический сбой непредсказуем. Да и оставить без электричества, например, доменный цех или операционную вообще недопустимо. Поэтому и необходимы приборы-предохранители.

Схема работы ОПН

ОПН — ограничитель перенапряжения. В числе других устройств его следует отнести к самым современным системам, способным уберегать приборы и проводку в экстремальных ситуациях. Можно сказать, что заложенная в его основе схема успешно решает комплекс проблем, которым ранее противостояли автоматические прерыватели и разрядники, а в бытовых условиях — стабилизаторы и домашние трансформаторы.

Схема ОПН строится на таких принципах:

  • Основой прибора является варистор, который мгновенно впитывает сверхнормативную энергию и отдает ее уже как тепло. Напряжение, которое поступает далее по сети, нормализуется.
  • Опн это ограничитель напряжения ОПН моментально возвращается в исходное состояние и сразу же способен принять еще один резкий импульс или даже их последовательную серию.
  • Первоначально один варистор или несколько их (соединенные вместе) и представляли приспособление. В случае внеплановых проблем из строя выходило все устройство.
  • Сейчас приборы представляют собой несколько блоков, подключенных последовательно (или параллельно). Это повышает защитные характеристики изделия, а также облегчает его ремонт, для которого бывает достаточно заменить один из модулей.
  • Варисторы заизолированы в полимерные или фарфоровые корпуса. Первые имеют специальные отверстия, а вторые — мембраны и герметизирующие кольца, а также выхлопные крышки. Это повышает взрыво- и пожаробезопасность приборов при работе с нестабильным напряжением.

Фарфоровые приборы мало подвержены колебаниям температур, обладают высокой прочностью, но имеют более низкие тепловые показатели и к тому же опаснее при взрыве.

Полимерные лучше по разрядным характеристикам и сопротивляемости вибрации, но чутки к сезонным изменениям. Поэтому на очереди сейчас — новые покрытия для аппаратов.

Классификация приборов защиты

Искровой промежуток разрядников ушел в прошлое, как и массивность приборов ОПН намного компактнее. К тому же они способны лучше справиться с резкими переменами сетевой нагрузки, даже если в общей линии с жильем есть и мощное производство, и работающий стройучасток.

Приборы имеют разную классификацию и, соотвественно, область применения:

  • Литера А. Эти приборы монтируются при переходах от линий электропередач к сети потребителя. Они призваны обеспечивать защиту как ЛЭП, так и принимающего объекта. Их же можно считать основными «предохранителями» промышленных установок.
  •  ограничитель импульсных перенапряженийЛитера В. Первая линия защиты непосредственно объекта-потребителя (например, дома или административного здания). Такие аппараты устанавливаются на входе линии в помещение.
  • Литера С. Место этих устройств — распределительные щиты, в которых обязательно должна быть предусмотрена система заземления.
  • Литера D. Квартирные ограничители. Их установка имеет смысл только при наличии хотя бы одной предварительной линии защиты. В то же время изделия этого класса монтируются и непосредственно в оборудовании, а также в переносной технике.
  • Те же четыре категории устройств могут быть обозначены и римскими цифрами начиная от I. Есть и комбинированные устройства. Большинство из аппаратов дополнительно оснащаются предохранителями.

Контроль за работоспособностью и состоянием изделия можно проводить визуально. Для этого устройства имеют специальные окошечки, которые в случае выхода ограничителя из строя сигнализируют затемнением или красным светом. Есть и модели, оснащенные системой звуковой сигнализации.

Комплексный вариант безопасности

Чтобы доставка, получение и использование электричества были полностью безопасны, лучше всего использовать не единичный ОПН, а комплекс ограничителей импульсных перенапряжений, как их еще называют. Их установку следует доверить профессионалам.

Принцип монтажа и работы единой системы прост:

  •  что такое опнПервым, на входе, монтируется самый мощный аппарат.
  • В щиток устанавливается прибор меньших токовых характеристик, а дальше — еще меньше.
  • В бытовых условиях достаточно варианта В и С или С и D.
  • Приборы в любой общей схеме работают по единому принципу. Они вступают в дело последовательно. Благодаря этому, напряжение снижается постепенно, на каждом этапе.

Слабое место такой системы такое же, как и в любой цепи: если из строя выйдет одно звено, неработоспособной будет вся сеть. Но приборы-потребители, скорее всего, к этому моменту уже будут защищены. После замены пострадавшего блока защитная схема будет восстановлена.

Рассуждая на тему, что такое ОПН, следует признать — вне зависимости от различных рабочих характеристик это, в первую очередь, современный способ защиты электрооборудования. Риски поражений приборов и установок, степень безопасности объектов и людей при использовании надежной аппаратуры снижаются многократно.

220v.guru

Сходство и отличия разрядника и ограничителя перенапряжения

В соответствии с правилами эксплуатации электроустановок обязательным условием является обеспечение защиты оборудования от напряжения, которое превышает номинальные показатели. Для этого используют  разрядники и ограничители перенапряжения нелинейного типа.

Вентильные разрядники, несмотря на усовершенствованную конструкцию, со временем исчерпали свои эксплуатационные возможности и на сегодняшний день практически вытеснены ОПН – современными устройствами, состоящими из варисторов, помещенных в герметичную оболочку.

В чем схожесть этих устройств?

Традиционные разрядники, как и новые ограничители перенапряжения, предназначены для защиты оборудования и приборов от воздействия пиковых токов, которые могут возникать вследствие коммутационных процессов или атмосферных явлений – грозы.

Аппаратура вентильного типа используется на подстанциях, трубчатые устройства – на линиях электропередач. ОПН в зависимости от вида могут быть использованы как в бытовых, так и в производственных условиях.

В плане конструкции, принципа действия и эффективности эти приспособления имеют определенные отличия.

Характерные отличия разрядника от ОПН

На сегодняшний день ограничители являются самыми эффективными устройствами, обеспечивающими надежную защиту электроустановок от воздействия сверхнапряжения. По сравнению с вентильными аппаратами у них отсутствуют искровые промежутки, основу конструкции составляют варисторы — сопротивления, которые находятся в герметичном корпусе.

Для наглядного сравнения приведем основные недостатки стандартных разрядников:

  • значительный вес и хрупкая структура изолятора;
  • небольшое число срабатываний – до 20 раз;
  • при загрязнении поверхности срабатывание может происходить при номинальных значениях;
  • сложность подбора параметров настройки;
  • изменение первоначальных характеристик после множественных срабатываний;
  • несоответствие уровня качества современным требованиям за счет применения устаревшей технологии производства;
  • частые поломки устройства вследствие негерметичной крышки.

В то же время современные ограничители имеют такие преимущества:

  • постоянство настроек и параметров в течение эксплуатации;
  • компактный размер и небольшая масса;
  • повышенная электрическая прочность и устойчивость к нагрузкам;
  • гарантированно высокое качество.

armatura-sip.su

7. Разрядники и ограничители перенапряжений.

В отличие от выключателей разрядники и ограничители перенапряжений не являются коммутационной аппаратурой, а предназначены для защиты линии, оборудования от атмосферных и коммутационных перенапряжений.

Разрядники предназначены для защиты от перенапряжений при атмосферных явлениях (гроза) и неправильных оперативных переключениях персонала. При грозовых разрядах напряжение достигает 10 млн. Вольт, что может вывести из строя любую электроустановку. От прямых ударов молнии защищают стержневые и тросовые молниеотводы. Разрядник представляет собой элемент, изменяющий свое сопротивление в зависимости от уровня напряжения. При нормальном рабочем напряжении его сопротивление — большое и разрядник является изолятором. При увеличении напряжения выше допустимого в разряднике происходит пробой и он становится проводником, по которому электрический разряд от проводов воздушной линии уходит в землю, т.к. разрядник одним концом присоединен к проводу   а другим к заземлителю. При уменьшении напряжения до нормального, разрядник опять становится изолятором.

В разрядниках применяются в качестве рабочего элемента воздушные промежутки и специальные диски из материалов, изменяющих свое сопротивление в зависимости от напряжения:(вилит, гирит, тервит, карбид кремния с миканитовыми, фарфоровыми или слюдяными прокладками).

         Величина воздушных промежутков зависит от напряжения:

6 кВ — 10 мм ; 10 кВ — 15 мм ; 35 кВ — 100 мм .

 Разрядники бывают вентильные (РВ) и трубчатые (РТ). Вентильные применяют на станциях (С) и подстанциях (П), трубчатые – на линиях. На ВЛ разрядники устанавливают в конце и в начале линий и через 150 м от начала и от конца ВЛ.

Типы разрядников:

РВО-6 — разрядник вентильный облегченный, на 6 кВ

РВП-10 —  подстанционный на 16 кВ, масса 2,5 кг

РВС-220 – станционный, на 220 кВ (масса 400 кг)

РВМ-35-вентильный с магнитным дутьем на 35 кВ; масса 220 кг, до 110 кВ

РВРД-10 – вентильный с растягиванием дуги, до 10 кВ

РТВ-6 – трубчатый винипластовый, на 6 кВ

РТФ-110 – трубчатый фибробакелитовый на 110 кВ асса 11 кг

ОПНК-6(10) – ограничитель перенапряжения карьерный на 6 (10) кВ

Содержит варисторы, т.е. нелинейные сопротивления (вилит, карборунд, графит).

Рисунок 26 – Разрядник РВО — 10

6.1 Ограничители перенапряжения нелинейные (ОПН).       Ограничители перенапряжения являются аппаратами для глубокого (до 1,6 – 1,85 Uф) ограничения коммутационных перенапряжения с несколько лучшими грозозащитными характеристиками, чем у традиционных разрядников. Ограничители представляют собой высоконелинейное сопротивление на основе оксида цинка. Ограничители ОПН и ОПНИ отличаются схемой соединения. Ограничители с искровыми промежутками (ОПНИ) ограничивают также междуфазные перенапряжения (ОПНИ – 500 – до 1260 кВ при токе 1200 кВ). длина пути утечки изоляции ограничителей – не менее 1,8 см / кВ.

      Пробивные напряжения искрового элемента ограничителя ОПНИ – 500 составляет не менее 800 – 1200 мкс  /100 кВ.

Ограничители типа ОПНО (облегчённые) устанавливаются только в тех точках распределительного устройства, которые при любых коммутациях не могут оказаться на разомкнутом конце односторонней питаемой линии.

Рисунок 27 — Электрические схемы ограничителей перенапряжения  ОПН и 

Реакторы — Электрические аппараты и оборудование выше 1000В

8. РЕАКТОРЫ                               

Реакторы предназначены для ограничения величины тока КЗ в мощных сетях, когда ток отключения выключателя меньше расчетной величины то КЗ сети, а также для ограничения величины пусковых токов мощных электродвигателей.

Реактор уменьшает скорость нарастания тока К3, как бы растягивая его во времени. Реактор представляет катушку с малым активным сопротивлением и большой индуктивностью, за счет чего и происходит «торможение» нарастания  тока  КЗ или пускового тока в каждой фазе.

 

 

Рисунок 28 — Схема устройства реактора РБАН — 10

Типы реакторов:

РБ — реактор бетонный с медным проводом, вертикальный;

РБА — алюминиевый вертикальный

РБУ (Г) — ступенчатый, Г-горизонтальное расположение;

РБД — с принудительным охлаждением:

Реакторы выбирают по напряжению, току, индуктивному сопротивлению, термической стойкости и динамической стойкости в режиме КЗ.

studfile.net

Ограничители перенапряжений нелинейные – ЗАО «ЗЭТО»

Назначение

Ограничители перенапряжений нелинейные с полимерной внешней изоляцией предназначены для защиты от коммутационных и атмосферных перенапряжений изоляции электрооборудования подстанций и сетей на классы напряжения 0,38 и 0,66 кВ.

Ограничители перенапряжений устанавливаются в сетях переменного тока частотой 50 Гц с глухо заземленной нейтралью и включаются параллельно защищаемому объекту.

Конструкция

Конструктивно ограничители перенапряжений выполнены в виде единичного нелинейного варистора, заключенного в полимерный корпус.

Ограничители перенапряжений типа ОПН—П1—0,38 УХЛ1 могут устанавливаться в тех местах электроустановок, где ранее предусматривалось применение разрядников типа РВН—0,5МНУ1 без изменения условий монтажа.

Технические характеристики

Класс напряжения сети, кВ действ. 0,38 0,66

Наибольшее рабочее напряжение (длительно действующее), Uн.р, кВ действ.


0,4

0,8

Номинальный разрядный ток, кА

2,5

Остающееся напряжение при импульсном токе 8/20 мкс, кВ, не более:

с амплитудой тока 250 А

с амплитудой тока 2500 А

с амплитудой тока 5000 А


1,4
1,6
1,7

2,8
3,2
3,4

Длина пути утечки внешней изоляции, см

 6,0 8,0 6,5 8,0

Расчетный ток коммутационного перенапряжения на волне 30/60 мкс, А


125

Остающееся напряжение при расчетном токе коммутационного перенапряжения, кВ, не более


1,3

2,6

Двадцатикратная (двадцать воздействий) токовая пропускная способность:

при прямоугольной волне тока длительностью 2000 мкс, А

при волне импульсного тока 8/20 мкс, кА

125
3

Удельная энергоемкость кДж/кВ Uн.р (за одно воздействие)

0,8

Группа вибропрочности и виброустойчивости по ГОСТ 17516.1–90

М6

Допустимое тяжение проводов в горизонтальном направлении, Н, не менее

10

Допустимый крутящий момент на выводе, Нм

2,5

Высота ограничителя, Н, мм

63 120 68 120

Срок службы, лет

25

Масса ограничителя, кг

0,14 0,32 0,17 0,35

Обозначение технических условии

ТУ 3414–003–00468683–93 (ИВЕЖ.674361.028ТУ)

zeto.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *