+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Как у однофазного двигателя определить рабочую и пусковую обмотки

Как у однофазного двигателя определить рабочую и пусковую обмотки

Однофазный двигатель — электродвигатель, конструктивно предназначенный для подключения к однофазной сети переменного тока.

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные  двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром.

Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Ранее ЭлектроВести писали, калифорнийская компания HyPoint утверждает, что ее новая конструкция топливного элемента с турбонаддувом позволяет в три раза увеличить мощность и в четыре раза срок службы обычного топливного элемента, открывая возможность создания высокоскоростных дальнемагистральных электрических самолетов VTOL с водородным двигателем. Плотность энергии новой системы в 3 раза выше, чем у литий-ионных аккумуляторов.

По материалам: electrik.info.

Коллекторные двигатели переменного тока: однофазные и трехфазные коллекторные электродвигатели

Во многих отраслях промышленности для выполнения технологических процессов необходимы коллекторные двигатели переменного тока: однофазные и трехфазные коллекторные электродвигатели. Конструктивно они практически не отличаются от своих «собратьев» постоянного тока. Механизм движка переменного тока состоит из:

  • ротора с петлевой (параллельной) или волновой (симметричной) обмоткой;
  • коллектора, к которому присоединяется обмотка;
  • статора, набранного из стальных электротехнических пластин.

Достоинства и недостатки коллекторных двигателей переменного тока

Агрегаты такого типа успешно решают задачи, зависящие от работы электропривода. Главным их достоинством является возможность плавного регулирования скорости в режиме энергосбережения.

Но они подходят для использования не на каждом производстве из-за:

  • сложности их изготовления;
  • дороговизны;
  • необходимости в трудоемком техническом обслуживании щеточного механизма и коллектора;
  • плохих токовых условий в коммутации якорной цепи.

Однофазные коллекторные электродвигатели

В комплектацию однофазного движка входят три обмотки. Первая размещается на электрических полюсах и выполняет функцию возбуждения. Вторая (компенсационная обмотка) расположена в роторных пазах и компенсирует отрицательное явление реакции якоря. Дополнительная обмотка предназначена для добавочных полюсов и шунтируется с помощью активного сопротивления.

Когда основная обмотка возбуждается, возникают компенсационные токи и магнитное поле, создающие вращающий момент. Его направление совпадает с направлением вращения магнитного поля. Переключая выводы возбуждающей обмотки, можно изменить направление вращающего момента.

Компенсационная обмотка уменьшает сопротивление индукции и потокосцепления якорной обмотки, а также увеличивает коэффициент мощности движка. Благодаря добавочным полюсам повышается качество коммутации. ЭДС вращения компенсирует реактивную и трансформаторную ЭДС. Легкость пуска достигается при взаимной компенсации ЭДС. Смена рабочего режима и отклонение токовых параметров от заданных величин приводят к тяжелому пуску агрегата.

Однофазные двигатели считаются универсальными устройствами, так как они могут подключаться к сети как постоянного, так и переменного тока. Они применяются как исполнительные механизмы в системах автоматики, в бытовой технике и электроинструментах. Самыми распространенными являются модели небольшой мощности (до 150Вт).

Трехфазные коллекторные электродвигатели

Эти агрегаты подключаются к трехфазной сети. У них обмотка возбуждения обладает качествами шунтового двигателя. Ротор движка подает питающее напряжение на механизм. Основную рабочую функцию выполняет роторная обмотка, подключенная к сети переменного напряжения с помощью токосъемных контактных колец. Статорная обмотка, расположенная в роторных пазах вместе с основной, всеми фазами соединяется с коллектором движка. Каждой фазе соответствуют определенные щетки, которые раздвигаются и сдвигаются с помощью подвижных траверс.

Для работы механизма в режиме асинхронного двигателя щетки устанавливаются на одни и те же пластины коллектора. Но, в отличие от асинхронного агрегата, в коллекторном двигателе роль первичной обмотки играет роторная обмотка, а роль вторичной обмотки – статорная. ЭДС в механизме создается за счет раздвижения щеток. ЭДС вызывает в статоре ток, который создает и определяет момент вращения механизма.

Для регулировки скорости в коллекторную цепь вводится отсутствующая мощность. Используя трансформаторную связь между обмотками, мощность статора возвращается в электрическую сеть, создавая эффект, позволяющий регулировать количество оборотов вала в экономном режиме. При раздвижении щеток на определенное расстояние частота вращения соответственно увеличивается или уменьшается.

Если щетки, соответствующие своим фазам, смещаются, ЭДС изменяется по фазе. Это дает возможность регулирования cosφ. Его качество повышается, когда значение скорости меньше синхронной, а щетки смещаются в противоположную направлению движения ротора сторону.

Электродвигатели, работающие от трехфазной сети, чаще всего применяются в полиграфии (на ротационных машинах), текстильной и легкой промышленности (на прядильных станках), металлургии (на металлорежущих станках).

Основной недостаток трехфазных агрегатов – плохие коммутационные условия. Это вызывает трудности при получении трансформаторной ЭДС, поскольку повышенная мощность приводит к увеличению магнитного потока. Поэтому в редких случаях для повышения ЭДС и экономичного регулирования количества оборотов вала в цепь вводится асинхронный электродвигатель.


Однофазные асинхронные электродвигатели 220 вольт

Компания «Мир Привода» предлагает широкий выбор оборудования различного назначения. На этой странице каталога вы можете подобрать и заказать однофазный асинхронный электродвигатель.

В наличии имеются агрегаты европейских производителей Bonfiglioli и Chiaravalli. Предоставляем возможность доставки электродвигателя в Москву и другие города РФ.

Сфера применения и отличительные особенности оборудования

Однофазные асинхронные электродвигатели используются для комплектации приводных систем бытовой и промышленной техники невысокой мощности. Это могут быть насосы, шлифовальные машины, станки, мясорубки, соковыжималки, компрессоры, вентиляторы и другие виды оборудования подобного типа.

Среди конструктивных особенностей представленных в каталоге однофазных электродвигателей:

  • на статоре имеется лишь одна рабочая обмотка;
  • подключается к однофазной сети переменного тока;
  • может работать от сети 220 Вольт.

Перечисленные особенности делают однофазный электромотор простым в обслуживании, бесшумным и долговечным агрегатом с высокой устойчивостью к различным типам перегрузок. За счет возможности подключения к сети 220 Вольт электрический двигатель можно успешно использовать не только в производстве, но и для решения задач бытового характера.

Примечателен также и тот факт, что устройство весьма экономично расходует электроэнергию.

У нас представлены однофазные асинхронные двигатели известных итальянских марок Bonfiglioli и Chiaravalli. Вы можете быть уверенными в том, что агрегаты полностью соответствуют заявленным описаниям, а также удовлетворяют требованиям европейских стандартов качества и отечественного ГОСТ. Обратите внимание, что на все представленные устройства распространяется официальная заводская гарантия (от 12 до 24 месяцев в зависимости от марки и модели оборудования).

Звоните по указанному на сайте телефону, если вы уже готовы купить однофазный асинхронный электродвигатель 220 Вольт либо хотите предварительно уточнить технические особенности, цену и сроки поставки интересующих агрегатов.

Типы электродвигателей — Однофазные электродвигатели , электродвигатели постоянного тока, асинхронные двигатели

Электродвигатель – это электрическая машина, служащая для преобразования электрической энергии в механическую энергию. Электродвигатель работает на основе  принципа электромагнитной индукции.

Существует множество видов электродвигателей, различающихся по конструкции, принципу действия, исполнению и другим характеристикам. Различают основные виды электродвигателей:

По типу протекающего тока двигатели различают:

  • Электродвигатели постоянного тока. Широко используют в качестве промышленного оборудования, привода электротранспорта и микропривода исполнительных механизмов.
  • Электродвигатели переменного тока. Нашли широкое применение для приводов всех типов технологического оборудования, автоматических регуляторов, электроинструментов. 

По конструкции электрические машины различают с вертикально и горизонтально расположенным валом. Электродвигатели также классифицируют по мощности, климатическому исполнению, степени защиты, назначению и другим характеристикам.

Со всеми типами электродвигателей вы можете познакомиться на информационном портале по электродвигателям electrodvigatel. com. Здесь вы найдете преимущества и недостатки, того или иного электродвигателя, полный список производителей электродвигателей, а также сможете узнать стоимость на электродвигатели.

Виды электродвигателей

Стоимость электродвигателя в основном зависит от следующих параметров:

  • Габарит (высота оси вращения)
  • Мощность
  • Климатическое исполнение

Стоит отметить, что с увеличением габарита электродвигателя усложняется технология изготовления электрических машин, уменьшается серийность выпуска и, соответственно, меняется экономика и ценообразование двигателей. Чем больше габарит двигателя – тем меньше производителей на рынке.

Конструкция электродвигателя

Вращающийся электродвигатель состоит из двух главных деталей:

  • статора — неподвижная часть
  • ротора — вращающаяся часть

У большинства двигателей внутри статора располагается ротор. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Электродвигатель в разрезе — 1 статор, 2 ротор, 3 подшипник

 

Условное обозначение электродвигателей

1 – тип электродвигателя:
общепромышленные электродвигатели:
АИ — обозначение серии общепромышленных электродвигателей
Р, С (АИР и АИС) — вариант привязки мощности к установочным размерам, т.е.
АИР (А, 5А, 4А, АД) — электродвигатели, изготавливаемые по ГОСТ
АИС (6А, IMM, RA) — электродвигатели, изготавливаемые по евростандарту DIN (CENELEC)
взрывозащищенные электродвигатели: ВА, АВ, АИМ, АИМР, 2В, 3В и др

2 — электрические модификации:

Электрические модификации

Определение

М

модернизированный электродвигатель: 5АМ

Н

электродвигатель защищенного исполнения с самовентиляцией: 5АН

Ф

электродвигатель защищенного исполнения с принудительным охлаждением: 5АФ

К

электродвигатель с фазным ротором: 5АНК

С

электродвигатель с повышенным скольжением: АС, 4АС  и др.

Е

однофазный электродвигатель 220V: АДМЕ, 5АЕУ

В

встраиваемый электродвигатель: АИРВ 100S2

П

электродвигатель для привода осевых вентиляторов в птицеводческих хозяйствах и т. д.

3 — габарит электродвигателя (высота оси вращения):
габарит электродвигателя равен расстоянию от низа лап до центра вала в миллиметрах 
50, 56, 63, 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 250, 280, 315, 355, 400, 450 и выше

4 — длина сердечника и/или длина станины:

Длина сердечника

Определение

А, В, С

длина сердечника (первая длина, вторая длина, третья длина) 

XK, X, YK, Y

длина сердечника статора высоковольтных двигателей 

S, L, М

установочные размеры по длине станины

 

5 — количество полюсов электродвигателя:
2, 4, 6, 8, 10, 12, 4/2, 6/4, 8/4, 8/6, 12/4, 12/6, 6/4/2, 8/4/2, 8/6/4, 12/8/6/4 и др.

6 — конструктивные модификации электродвигателя:

Модификации электродвигателя

Определение

Л

электродвигатель для привода лифтов: 5АФ 200 МА4/24 НЛБ УХЛ4

Е

электродвигатель с встроенным электромагнитным тормозом и ручкой расторможения: АИР 100L6 Е2 У3

Е2

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Б

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Ж

электродвигатель со специальным выходным концом вала для моноблочных насосов: АИР 80В2 ЖУ2

П

электродвигатель повышенной точности по установочным размерам: АИР 180М4 ПУ3 

Р3

электродвигатель для мотор-редукторов: АИР 100L6 Р3

С

электродвигатель для станков-качалок: АИР 180М8 СНБУ1 

Н

электродвигатель малошумного исполнения: 5АФ 200 МА4/24 НЛБ УХЛ4 

7 — климатическое исполнение электродвигателя:

Категория размещения

Определение

У

умеренного климатического исполнения

Т

тропического исполнения 

УХЛ

умеренно холодного климата 

ХЛ

холодного климата 

ОМ

для судов морского и речного флота

8 — категория размещения: 

Категория размещения

Определение

1

на открытом воздухе

2

на улице под навесом 

3

в помещении 

4

в помещении с искусственно регулируемыми климатическими условиями 

5

в помещении с повышенной влажностью 

9 — степень защиты электродвигателя:
первая цифра: защита от твердых объектов

  вторая цифра: защита от жидкостей

Степень защиты IP

Определение первой цифры  —

защита от твердых объектов

Определение второй цифры  — защита от жидкостей

0

без защиты

без защиты

1

защита от твердых объектов размерами свыше 50мм (например, от случайного касания руками)

защита от вертикально падающей воды (конденсация)

2

защита от твердых объектов размерами свыше 12 мм (например, от случайного касания пальцами)

защита от воды, пдпющей под углом 15º к вертикали

3

защита от твердых объектов размерами свыше 2,5 мм (например, инструментов, проводов)

защита от воды, падающей под углом 60º к вертикали

4

защита от твердых объектов размерами свыше 1мм (например, тонкой проволоки)

защита от водяных брызг со всех сторон

5

защита от пыли (без осаждения опасных материалов)

защита от водяных струй со всех сторон

10 – мощность электродвигателя

11 – обороты электродвигателя

12 — Монтажное исполнение электродвигателя

Двигатели переменного тока

            Двигатели переменного тока подразделяются на две группы: асинхронные и синхронные. Синхронные двигатели в свою очередь делятся на основные исполнения групп двигателей:

  • общепромышленное
  • специальное (крановые, для дробилок, лифтовые и другие)
  • взрывозащищенное. Дальнейшее подразделение — для химической отрасли и рудничные, рудничные специальные.

Асинхронными двигателями (АД) называют машины переменного тока, в которых основное магнитное поле создается переменным током и частота вращения ротора, не связанная жестко с частотой тока в обмотке статора, меняется с нагрузкой. Наибольшее применение получили бесколлекторные асинхронные машины, используемые главным образом в качестве электродвигателей. Значительно реже применяются коллекторные асинхронные электродвигатели — более дорогие и менее надежные в эксплуатации, чем бесколлекторные.

По количеству фаз двигатели переменного тока подразделяются:

Асинхронные двигатели наиболее распространены в настоящее время, чем другие виды электродвигателей.

Синхронные и асинхронные машины переменного тока обладают свойством обратимости — они могут работать как в режиме генератора, так и в режиме двигателя.

ᐉ Однофазные электродвигатели 220 Вольт

Вашему вниманию предлагается широкий ассортимент приспособлений для преображения электрической энергии в механическую. Однофазный электродвигатель представляет собой асинхронный двигатель переменного тока, который характеризуется тем, что функционирует при подключении к питанию однофазной сети 220 В — 230 В с частотой 50 гц. Этого вполне достаточно, чтобы генерировать мощность от 0,09 кВт до 3 кВт при оборотах 1500 — 3000 об./мин. Такие показатели производительности позволяют использовать однофазный асинхронный двигатель как в бытовой сфере, так и в областях легкой промышленности. Чаще всего данные устройства находят применение в вентиляторах, насосном оборудовании, маломощных производственных станках, редукторах, компрессорах и разного рода бытовой технике.

Общая характеристика однофазных асинхронных электродвигателей.

Конструктивной особенностью однофазных электродвигателей выступает наличие на статоре одной рабочей обмотки, которая подключается к сети однофазного тока. Запускается однофазный двигатель за счет вращающегося магнитного поля, создаваемого коллективной работой основной обмотки в паре с дополнительной обмоткой пуска меньших размеров, подключенной к основной сети через специальную емкость. Этот пусковой элемент расположен сдвинуто на 90 относительно главной обмотки и активируется только при запуске электродвигателя 220 В, после чего благополучно деактивируется. Сдвиг фаз осуществляет укомплектованный в электродвигатель однофазный конденсатор или резистор.

Все модели выпускаются преимущественно маломощными или средней мощности. Помимо этого, однофазные асинхронные двигатели мало чем отличаются от трехфазных вариантов конструкцией. Но можно выделить и записать в список однозначных преимуществ тот факт, что однофазный электродвигатель — асинхронный двигатель с короткозамкнутым ротором. Помимо этого, единственными параметрами отличия являются сравнительно скромные характеристики производительности и мобильные габаритные размеры.

Если вы решили купить электродвигатель однофазный, прежде всего рекомендуется сопоставить его максимальные возможности с требованиями целевого объекта применения. Если существующий модельный ряд однофазных двигателей не способен удовлетворить ваши ожидания, стоит поискать подходящий трехфазный электродвигатель повышенной мощности, но перед этим обязательно убедитесь, что рабочая область имеет возможность предоставить источник питания трехфазной сети 380 В — 400 В, чтобы избежать излишней потери производительности.

Не стоит упускать из виду и ряд существенных недостатков данного оборудования. В их число входит отсутствие или крайне слабый показатель пускового момента. Это связанно с тем, что однофазный двигатель не способен создавать вращающееся магнитное поля. Так же этим устройствам переменного тока характерны ощутимо заниженный коэффициент полезного действия (КПД), слабая перегрузочная способность и завышенная кратность пускового тока.

«ОВК КОПЛЕКТ» всегда поможет правильно выбрать однофазный асинхронный двигатель, купить его по выгодной цене и избежать подделок.

Современный рынок обильно заполоняет продукция китайских производителей. Никому не секрет, что цена таких изделий значительно ниже средней рыночной, но и качество, соответственно, было подвержено значительному ухудшению. Ненадежное исполнение составных частей или корпуса электродвигателя, незамедлительно приведет к сокращению срока службы, а в худшем случае — к выводу из строя, мало того, что самого двигателя, так и велика вероятность, что пострадает и сам объект применения. Да бы избежать такого рода нежелательных последствий, профессионалы рекомендуют купить электродвигатель 220 В однофазный исключительно у проверенного поставщика.

В основной состав ассортимента интернет-магазина «ОВК КОПЛЕКТ» входят изделия Белорусского производителя Могилевский завод «Электродвигатель» (МЭЗ), который уже не первый год является лидером стран СНГ по качеству исполнения однофазных электродвигателей. Венцом их творений являются асинхронные однофазные двигатели серии АИРЕ. Данные устройства заслужили огромное уважение от десятков тысяч пользователей за счет безупречной исполнительности конструкции, надежности и соотношения цены с качеством. Профессионалы со всей Украины отдают предпочтение именно электродвигателям АИРЕ практически во всех областях бытового и легкого промышленного применения.

Что вы получаете от сотрудничества с торговой площадкой «ОВК КОПЛЕКТ»? Мы предоставляем гарантию 100% высокого качества каждой единицы представленной продукции. Купить электродвигатель однофазный вы можете с полным комплектом документов и сертификатов, подтверждающих его высокое качество. Кроме того, мы берем на себя полную ответственность за товар и в случае явного брака, предоставляем возможность забрать вложенные средства или же обменять на новую модель. 

Спасибо, что вы с нами и желаем вам приятных покупок!

Однофазные асинхронные двигатели | Эксплуатация электрических машин и аппаратуры | Архивы

Страница 12 из 74

Преимущество однофазных двигателей перед трехфазными — их способность работать от однофазной сети.
Станина, сердечник статора и короткозамкнутый ротор в однофазных двигателях такие же, как и в трехфазных. Однофазная обмотка статора занимает 2/3 пазов сердечника. Переменный ток в однофазной обмотке создает пульсирующее, а не вращающее, магнитное поле. Такое поле не способно создать пусковой момент двигателя. Если ротор двигателя развернуть, то возникает момент, действующий в направлении вращения ротора. Однофазный двигатель с одной обмоткой на статоре не имеет преимущественного направления вращения: вращение ротора будет в направлении первоначального толчка.
Однофазные двигатели (рис. 41), кроме рабочей обмотки, имеют пусковую обмотку (фазу), которая занимает 1/3 пазов. Пусковую обмотку изготовляют из провода меньшего сечения, чем рабочую. Для получения фазы сдвига токов в обмотках последовательно с пусковой обмоткой включают активное сопротивление. Часто это сопротивление сосредоточено внутри пусковой обмотки.


Рис. 42. Схема однофазного конденсаторного двигателя: С — конденсатор.

Рис. 43. Схема конденсаторного двигателя с рабочей (Ср) и пусковой (Сп) емкостями.
Рис. 41. Схема однофазного асинхронного двигателя с пусковой обмоткой:
К — ключ; R — активное сопротивление.

При замкнутом ключе К и подаче напряжения к двигателю в системе двух обмоток образуется эллиптическое вращающееся магнитное поле; оно обусловливает пусковой момент. Когда скорость ротора достигнет 70—80% номинальной, пусковая обмотка отключается автоматически или вручную.
В однофазных двигателях с пусковой обмоткой небольшой пусковой момент, малая перегрузочная способность, низкие к. п. д. и Cos ср. Изготовляют такие двигатели мощностью ст нескольких десятков до нескольких сот ватт. Их применяют в стиральных машинах, холодильниках, вентиляторах и т. п.
Для увеличения пускового момента однофазного двигателя последовательно с пусковой обмоткой вместо активного сопротивления включают конденсатор. Благодаря емкости пусковые токи в фазах получаются сдвинутыми относительно друг друга на угол до 90°, что и обусловливает больший пусковой момент. После разбега двигателя пусковая обмотка с конденсатором отключается.

Однофазные конденсаторные двигатели на статоре имеют две обмотки (фазы), занимающие равное число пазов, и в одну из которых включен конденсатор (рис. 42). Постоянно включенный конденсатор обусловливает эллиптическое вращающееся магнитное поле, а в рабочем режиме при определенной нагрузке получается круговое поле, то есть такое же, как в трехфазном двигателе.
Конденсаторный двигатель обладает хорошими рабочими характеристиками. К. п. д. достигает 75%. cos φ = 0,9 и выше Пусковые характеристики этих двигателей неудовлетворительны. Пои пуске двигателя магнитное поле сильно отличается от кругового. Поэтому пусковой момент не превышает 30% номинального.

С целью увеличения пускового момента в однофазном конденсаторном двигателе параллельно рабочей емкости включают пусковую емкость, она после разбега двигателя отключается (рис. 43). Такой двигатель называют конденсаторным с пусковой емкостью.
Во всех однофазных двигателях — с пусковой обмоткой, с конденсаторным пуском и конденсаторных двигателях — для измене- нения направления вращения ротора нужно изменить направление тока в одной из обмоток, то есть переключить пусковую или рабочую фазу.
В однофазных асинхронных двигателях с двумя обмотками на статоре пусковой момент пропорционален произведению пусковых токов обмоток и синусу угла смещения этих токов. При заданных токах в обмотках пусковой момент будет наибольшим при фазе смещения токов на 90°, что можно достичь только включением емкости в одну (обычно пусковую) обмотку.
В однофазных конденсаторных двигателях для одной какой- либо нагрузки можно добиться строго кругового вращающегося магнитного поля. Для другой нагрузки изменением величины рабочей емкости можно уменьшить обратно вращающееся магнитное поле, но получить вновь строго круговое поле нельзя, оно будет эллиптическим.
Промышленность выпускает однофазные двигатели: АОЛБО с пусковой обмоткой и активным сопротивлением в качестве фазосдвигающего  элемента; АОЛГО с пусковой обмоткой и конденсатором в качестве фазосдвигающего пускового элемента; АОЛДО — конденсаторный однофазный двигатель, в котором для увеличения пускового момента на время пуска параллельно работающей емкости включается пусковой конденсатор.
Кроме однофазных двигателей с двумя обмотками на статоре, есть однообмоточные двигатели. В них статор явно полюсной системы (как в машинах постоянного тока). Для создания вращающегося поля при пуске используют короткозамкнутые витки, охватывающие часть сердечников полюсов. В этих двигателях нельзя изменить направление вращения ротора.

Однофазные асинхронные двигатели

Подробности
Категория: Электрические машины

Однофазный асинхронный двигатель получил распространение, по преимуществу, при мощности менее 0,5 кВт. Он имеет (рис. 1) однофазную рабочую обмотку статора 1 и короткозамкнутый ротор 3. Переменный ток I,, проходя по обмотке статора 1, вызывает пульсирующий магнитный поток, который не создает пускового момента.
Если каким-либо способом привести ротор во вращение в любую сторону, то он будет подхвачен тем вращающимся потоком статора, который вращается согласно с ротором.
Для получения вращающего пускового момента в статоре помещают вспомогательную обмотку 2, расположенную со сдвигом на 90° относительно рабочей обмотки. В обмотку 2 пропускают ток 12, сдвинутый при помощи конденсатора на 1/4 периода относительно тока I,.

Рис. 2. Однофазный электродвигатель с экранированными полюсами

Рис. 1. Схема однофазного асинхронного двигателя
Однофазный асинхронный двигатель с экранированными полюсами, выполняемый на мощности 0,5—30 Вт, очень прост по конструкции и получил широкое распространение там, где не требуется большой пусковой момент. На рис. 2  показан статор с выступающими полюсами 1, на которых помещена однофазная обмотка, состоящая из двух катушек 2. Эта обмотка создает пульсирующий поток. Полюсные наконечники имеют с одной стороны пазы, в которые помещены короткозамкнутые кольца 3, играющие роль вторичной обмотки трансформатора. В них наводятся токи, сдвинутые по фазе относительно тока в обмотке полюсов, и вследствие пространственного сдвига обмоток в воздушном зазоре получается слабый бегущий поток. Короткозамкнутый ротор 4 приходит во вращение. Для улучшения рабочих характеристик двигателя между полюсами накладываются магнитные шунты 5 из стальных пластинок.

Для однофазного питания трехфазного двигателя одну из обмоток  можно использовать как пусковую с включением ее в сеть пусковой емкости. Эта же обмотка может использоваться в качестве рабочей.

Круговое поле можно получить при условии
Максимальная мощность трехфазного двигателя при однофазном питании может быть получена » 0,7.

Однофазный двигатель

— Типы, применение, преимущества и недостатки

10 января 2017 г. — Однофазный двигатель — Типы, применение, преимущества и недостатки

В зависимости от типа машины и области применения, некоторые двигатели будут работать лучше, чем другие. Если вы используете меньшее оборудование, которое требует меньше мощности, однофазный двигатель лучше всего подойдет для ваших нужд.

Хотя этот тип двигателя обычно служит годами, со временем он изнашивается. Если вы хотите заменить однофазный двигатель, у Bonfiglio есть ряд BS — однофазных двигателей.Эти двигатели изготовлены в соответствии с применимыми стандартами IEC и относятся к закрытому типу, с внешней вентиляцией и постоянно подключенным рабочим конденсатором. Если вы заинтересованы в установке нового однофазного двигателя, запросите предложение у Гордона Рассела сегодня. Продолжайте читать, чтобы узнать больше об однофазных двигателях.

Разница между однофазным и трехфазным

Есть два типа двигателей: однофазный двигатель и трехфазный двигатель. Однофазные двигатели требуют меньшего обслуживания, чем трехфазные, и часто служат годами дольше.Эти двигатели обычно используются в устройствах и оборудовании, которым требуется меньшая мощность в лошадиных силах или когда использование трехфазного двигателя неэффективно.

Однофазные двигатели имеют конструкцию, аналогичную трехфазным двигателям, включая обмотку переменного тока, которая размещена на статоре, и короткозамкнутые проводники, помещенные в цилиндрический ротор. Самая большая разница между двумя двигателями заключается в том, что у однофазного двигателя к статору подается только одна фаза (отсюда и название).

Однофазные двигатели Сводка

Типы: Есть несколько различных типов однофазных двигателей; некоторые из них — двухклапанные конденсаторы, конденсаторные пускатели, электродвигатели с расщепленной фазой, постоянные разделенные конденсаторы, двигатели с фазным ротором и экранированные полюса. У каждого типа двигателя есть свои уникальные преимущества и недостатки.

Применение: Однофазные двигатели используются в оборудовании и машинах меньшего размера и требующих меньшей мощности (например, одной лошадиной силы).Сюда входит такое оборудование, как насосы, холодильники, вентиляторы, компрессоры и переносные дрели.

Эксплуатация: Однофазные асинхронные двигатели не могут запускаться самостоятельно без вспомогательной обмотки статора, приводимой в действие противофазным током. Вспомогательная обмотка двигателя с постоянным разделением конденсаторов имеет конденсатор, включенный последовательно с ней во время пуска и работы. Однофазные двигатели сами по себе не создают магнитного поля, поэтому их необходимо активировать выключателем, чтобы ротор вращался.Этот тип двигателя может работать только тогда, когда ротор приводится в движение и создается магнитное поле.

Преимущества: Однофазные двигатели обладают множеством преимуществ. Что касается стартеров, то однофазные двигатели дешевле в производстве, чем большинство других типов двигателей. Однофазные двигатели обычно требуют очень небольшого обслуживания, не часто требуют ремонта, а когда они требуются, их довольно легко завершить. Однофазные двигатели также прослужат годами, и обычно большинство отказов однофазных двигателей является результатом неправильного применения, а не производственным дефектом самого двигателя.

Недостатки: Однофазные двигатели просты с точки зрения механики, это не означает, что они идеальны и ничего не может выйти из строя. Иногда они, как известно, работают медленно, перегреваются или даже не запускаются, перегреваются или работают медленно. Если при прикосновении к двигателю ощущается толчок, это означает, что двигатель неисправен, и его необходимо немедленно отремонтировать.


Заинтересованы в установке или модернизации однофазного двигателя Bonfiglioli? Позвоните Гордону Расселу по телефону (604) 940-1627 (Британская Колумбия) или (403) 340-8856 (Альберта).Или запросите расценки онлайн сегодня!

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности.В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Британская энциклопедия, Inc.

Основы работы асинхронного двигателя могут быть разработаны, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора.На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке, ток в фазе a является максимально положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу.В момент времени t 2 на рисунке (т.е. одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный. Результат, как показано на рисунке для t 2 , снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора замкнуты накоротко на каждом конце, это приведет к протеканию токов в этих проводниках. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора за момент времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Британская энциклопедия, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей для создания магнитного поля и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичное напряжение питания находится в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, передаваемый от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Наиболее часто используемые типы однофазных двигателей в мире

10+ однофазных двигателей на дом

Вы должны знать, что однофазные двигатели редко имеют мощность выше 5 кВт. Фракционные двигатели, большинство из которых однофазные, составляют 80–90% от общего числа изготовленных двигателей и 20–30% от общей коммерческой стоимости. Типичный современный дом может иметь 10 или более однофазных двигателей в домашнем электрическом оборудовании.

Освоение однофазных двигателей (фото: repulsionmotor-repair.business.site)

Это делает однофазные двигатели наиболее часто используемыми типами двигателей в мире. Давайте рассмотрим эти типы по порядку.

Содержание:

  1. Серийный двигатель
    1. Универсальный двигатель
    2. Компенсированный двигатель
  2. Отталкивающий двигатель
  3. Асинхронные двигатели
    1. Теория вращающегося поля
    2. Пусковое сопротивление
    3. 3 Двигатель с расщепленными полюсами -фазный двигатель
    4. Конденсаторный двухфазный двигатель
    5. Отталкивающий индукционный двигатель
      1. Отталкивающий двигатель
      2. Отталкивающий индукционный двигатель

1.Серийный двигатель

Поскольку направление вращения и крутящий момент в последовательном двигателе постоянного тока не зависят от полярности питания, такой двигатель может работать от переменного тока при условии, что все ферромагнитные части магнитной цепи имеют многослойное покрытие для минимизации потерь в сердечнике.


1.1 Универсальный двигатель

При использовании дробных киловаттных размеров серийный двигатель имеет то преимущество, поскольку он не является синхронным, в том, что он может работать на скоростях от до 10 000 об / мин . Он очень хорошо приспособлен для работы со всасывающими очистителями, сверлами, швейными машинами и аналогичными маломощными вращающимися устройствами.

Возможность работы от постоянного и переменного тока сейчас не важна, но является источником термина « универсальный ».

Машина имеет «серийную» характеристику крутящего момента , скорость холостого хода ограничена механическими потерями. Коэффициент мощности составляет от 0,7 до 0,9 (в основном из-за индуктивности якоря), но это не имеет значения для небольших номиналов.

Типичные характеристики двигателя для питания постоянного тока и 50 Гц с одинаковым номинальным напряжением показаны на рисунке 1.

Рисунок 1 — Характеристики универсального двигателя мощностью 75 Вт.

Во всех электродвигателях с коммутатором переменного тока условия коммутации более обременительны, чем на постоянном токе, поскольку катушки, подвергающиеся коммутации, связывают главный переменный поток и имеют наведенные ЭДС частоты питания. ЭДС проходят через щетки с коротким замыканием и способствуют возникновению искры на коммутаторе.

Поскольку э.д.с. пропорциональны главному потоку, частоте и количеству витков на катушку якоря, они должны быть ограничены.Дополнительное ограничение тока в короткозамкнутой катушке обеспечивается угольными щетками с высоким сопротивлением.

Вернуться к таблице содержания ↑


1.2 Компенсированный двигатель

Коллекторные двигатели переменного тока серии

мощностью до 700 ± 800 кВт используются в нескольких европейских железнодорожных тяговых системах. Для удовлетворительной коммутации частота должна быть низкой, обычно 16 2/3 Гц, и напряжение также должно быть низким (400-500 В), это обеспечивается трансформатором, установленным на локомотиве.

Индуктивность обмотки якоря обязательно достаточно высока, поэтому должна быть установлена ​​компенсационная обмотка для нейтрализации реакции якоря , чтобы обеспечить приемлемый коэффициент мощности .

Двигатели этого типа были построены с ограниченной мощностью для работы в современных тяговых системах с частотой 50 Гц, но теперь их заменили двигатели постоянного тока с выпрямительным или тиристорным питанием. См. Рисунок 1а.

Рисунок 1a — Коллекторный двигатель переменного тока серии

Вернуться к таблице содержания ↑


2.Отталкивающий двигатель

Отталкивающий двигатель представляет собой разновидность последовательного двигателя с индуктивным возбуждением ротора, а не токопроводящим. . Обмотка ротора коммутатора рассчитана на низкое рабочее напряжение. Щетки соединяются коротким замыканием, и ось щетки смещается от оси однофазной обмотки статора (рисунки 2, 3 и 4).

Для нереверсивных двигателей (Рисунок 2) достаточно одной обмотки статора.

Рисунок 2 — Альтернативный вариант отталкивающего нереверсивного двигателя

Однако для реверсивных двигателей статор имеет дополнительную обмотку, соединенную в том или ином смысле последовательно с первой обмоткой, чтобы обеспечить требуемый угол между ротором и эффективными осями статора для два направления вращения, как на рисунке 3.

Рисунок 3 — Альтернативная форма отталкивающего двухстороннего двигателя

Обмотка статора N 1 витков, как в (a), может быть разделена на две составные обмотки, соответственно соосные и в квадратуре с осью обмотки ротора и имеющие соответственно витки N 1 sinα и N 1 cosα . Обмотки (b) образуют обмотки двух осей напрямую, хотя здесь витки могут быть спроектированы для достижения оптимального эффекта.

Коаксиальная обмотка наводит эл.МС и токи в роторе, и эти токи, лежащие в поле другой обмотки статора, развивают крутящий момент. Поскольку токи статора и ротора связаны, двигатель имеет «последовательную» характеристику . Когда двигатель работает, потоки прямой и квадратурной оси имеют фазовый сдвиг, приближающийся к 90 °, таким образом создавая поле бегущей волны эллиптической формы, которое становится почти однородным синхронно вращающимся полем на скоростях, близких к синхронной.

Частота вращения близка к синхронной, поэтому потери в сердечнике ротора малы и условия коммутации хорошие.

Небольшие двигатели могут быть легко включены для прямого пуска с 2,5–3-кратным током полной нагрузки и 3–4-кратным крутящим моментом при полной нагрузке . Нормальная рабочая скорость при полной нагрузке выбирается близкой к синхронной скорости или немного ниже нее, чтобы избежать чрезмерного искрения при малой нагрузке.

Рисунок 4 — Пусковые характеристики отталкивающего двигателя

Отталкивающие двигатели используются там, где требуется высокий пусковой момент и где трехфазное питание недоступно. Для небольших подъемников, подъемников и компрессоров их мощность редко превышает примерно 5 кВт .

Вернуться к таблице содержания ↑


3. Асинхронные двигатели

Однофазный асинхронный двигатель иногда строится на мощностей до 5 кВт , но обычно производится с номинальной мощностью от 0,1 до 0,5 кВт для бытовых холодильников. вентиляторы и небольшие станки, где требуется практически постоянная скорость. Поведение двигателя можно изучить с помощью теории вращающегося поля или теории поперечного поля.

Первый проще и дает более ясную физическую концепцию.

Вернуться к содержанию ↑


3.1 Теория вращающегося поля

Пульсирующая м.м.д. обмотки статора делится на двух «вращающихся» МДС постоянной и равной величины , вращающихся в противоположных направлениях. Предполагается, что эти МПС создают соответствующие потоки в зазоре, которые при неподвижном роторе имеют одинаковую величину и каждый равняется половине пикового пульсирующего потока.

Когда машина работает, компонент прямого поля f, i.е. который движется в том же направлении, что и ротор, ведет себя так же, как поле многофазной машины, и дает кривую крутящего момента , обозначенную «вперед» на рисунке 5.

Обратная составляющая b дает другую составляющую крутящего момента. , а чистый крутящий момент представляет собой алгебраическую сумму. При нулевой скорости составляющие крутящие моменты отменяются, так что двигатель не имеет собственного пускового крутящего момента, но если он запускается в любом направлении, возникает небольшой крутящий момент в том же направлении, и машина набирает скорость, близкую к синхронной, при условии, что крутящий момент нагрузки может быть преодоленным.

Рисунок 5 — Компоненты крутящего момента в однофазной индукции

Компоненты крутящего момента на рисунке 5 фактически изменяются током ротора. По сравнению с трехфазным асинхронным двигателем, однофазная версия имеет крутящий момент, падающий до нуля на скорости немного ниже синхронной, и скольжение имеет тенденцию к большему.

Также имеются потери в сердечнике ротора, вызванные обратным полем, что снижает эффективность. Кроме того, имеется двухчастотная пульсация крутящего момента, создаваемая обратным полем, которая может вызвать шум.

КПД находится между примерно 40% для двигателя мощностью 60 Вт и примерно 70% для двигателя мощностью 750 Вт, соответствующие коэффициенты мощности составляют приблизительно 0,45 и 0,65 .

Рисунок 6 — Простой однофазный асинхронный двигатель: эквивалентная схема

Эквивалентная схема рисунка 6 основана на теории вращающегося поля с параметрами, в целом аналогичными параметрам для трехфазной машины. ЭДС E f и E b генерируются соответственно прямой и обратной составляющими поля и пропорциональны им.

Соответствующие крутящие моменты компонентов пропорциональны I 2f 2 × r 2 / 2s и I 2f 2 × r 2 / [2 (2 — с)] , следующий крутящий момент является их разницей.

Вернуться к таблице содержания ↑


3.2 Пуск

Для пуска однофазного асинхронного двигателя предусмотрены средства для первоначального создания некоторой формы поля бегущей волны. Обычно принятые схемы приводят к появлению терминов « с расщепленными полюсами » и « с расщепленными фазами ».

Вернуться к таблице содержания ↑


3.3 Двигатель с расщепленными полюсами

Статор имеет выступающие полюса, при этом примерно одна треть каждого полюсного наконечника охвачена затеняющей катушкой. Этот поток, который проходит через затеняющую катушку, задерживается по сравнению с потоком в основной части полюса, так что получается грубый поток сдвига.

Пусковой крутящий момент ограничен, КПД низкий (из-за потерь в затеняющей катушке), коэффициент мощности составляет 0,5-0,6 , а момент отрыва составляет только 1-1.5-кратный крутящий момент при полной нагрузке .

Применения включают небольших вентиляторов мощностью не более 100 Вт .

Вернуться к таблице содержания ↑


3.4 Электродвигатель с разделенным фазным сопротивлением

Дополнительный поток создается вспомогательной пусковой обмоткой, расположенной под углом 90 ° (электрический) к основной (рабочей) обмотке . Если соответствующие токи обмотки равны I м и I s с относительным фазовым углом α , крутящий момент приблизительно пропорционален I м I s sin α .

При запуске ток основной обмотки отстает от приложенного напряжения на 70-80 ° . Пусковая обмотка, включенная параллельно основной обмотке, имеет высокое сопротивление или имеет последовательно включенный резистор, так что I с отстает на 30-40 ° .

Влияние этого сопротивления на пусковую характеристику показано на Рисунке 7 (а). При заданном количестве витков на обмотку и заданном сопротивлении основной обмотки для заданного напряжения и частоты питания существует конкретное значение сопротивления пусковой обмотки для максимального пускового момента.

Рисунок 7 — Однофазный асинхронный двигатель: запуск с разделением фаз, сопротивление

Соотношение может быть получено из векторной диаграммы. Рисунок 7 (b), на котором В 1 — напряжение питания, а I м при фазовом угле Φ м — ток главной обмотки. Геометрическим местом фазы I s пускового тока с изменением сопротивления является полукруг диаметром OD (что соответствует нулевому сопротивлению). Крутящий момент пропорционален I м I s sin (Φ м — Φ s ) и является максимальным для наибольшей длины линии переменного тока.

Из геометрии диаграммы видно, что для этого условия Φ s = 1/2 Φ м .

Прямое переключение обычно. Чтобы уменьшить потери, вспомогательная обмотка размыкается, как только двигатель достигает рабочей скорости. Пусковой крутящий момент для небольших двигателей мощностью до 250 Вт составляет 1,5-2-кратный крутящий момент при полной нагрузке, а для более крупных двигателей — несколько меньше, в каждом случае при 4-6-кратном токе полной нагрузки.

КПД 55-65% и коэффициент мощности 0.6−0,7 .

Вернуться к таблице содержания ↑


3.5 Конденсаторный двигатель с разделенной фазой

Большую разность фаз ( Φ м — Φ с ) можно получить, если установлен последовательный конденсатор. заменен последовательным резистором вспомогательной обмотки. Максимальный крутящий момент возникает при такой емкости, что вспомогательный ток опережает основной ток на (1 / 2πα) / 2.

Размер конденсатора составляет от 20-30 мФ для двигателя мощностью 100 Вт до 60-100 мФ для двигателя мощностью 750 Вт .По экономическим причинам емкость конденсатора настолько мала, что обеспечивает достаточный пусковой крутящий момент, и некоторые производители рекомендуют альтернативные размеры для различных уровней пускового крутящего момента.

Если конденсатор остается в цепи постоянно (конденсатор работает), коэффициент мощности повышается, и двигатель работает с меньшим шумом. В идеале, однако, значение емкости для работы должно составлять около одной трети от емкости для лучшего запуска. Если для запуска и работы используется один конденсатор, пусковой момент равен 0.Значение полной нагрузки в 5-1 раз больше, а коэффициент мощности во время работы близок к единице.

Вернуться к таблице содержания ↑


3.6 Отталкивающий асинхронный двигатель

В машинах сочетаются высокий пусковой момент отталкивающего двигателя с характеристиками работы асинхронного двигателя с постоянной скоростью .

Вернуться к таблице содержания ↑


3.6.1 Двигатель с отталкивающим пуском

Этот двигатель имеет обмотку статора, подобную обмотке отталкивающего двигателя, и обмотку коллектора внахлест, с добавлением устройства для короткого замыкания секторов коммутатора вместе за счет центробежного действия, когда скорость достигает примерно 75% от нормальной.Устройство также может сразу после этого отпускать щетки.

Таким образом, обмотка ротора коммутатора становится, по сути, короткозамкнутой обмоткой «индукционного» типа для работы .

Небольшие двигатели с прямым включением обеспечивают 3–4-кратный крутящий момент при полной нагрузке при примерно трехкратном токе при полной нагрузке. Меньший пусковой ток достигается последовательным подключением градуированного резистора к обмотке статора.

Вернуться к таблице содержания ↑


3.6.2 Отталкивающий асинхронный двигатель

Машина имеет обмотку статора отталкивающего типа , но переход от режима отталкивания к работе в индукционном режиме происходит постепенно по мере того, как машина набирает скорость. Ротор имеет две обмотки в пазах, напоминающих обмотки двухклеточного асинхронного двигателя. На внешних пазах установлена ​​обмотка коммутатора с щеточным устройством, во внутренних пазах находится клетка с низким сопротивлением с литыми алюминиевыми стержнями и концевыми кольцами, а его глубокая установка обеспечивает высокую индуктивность.

Во время ускорения реактивное сопротивление клетки падает, а ее крутящий момент увеличивается, стремится уравновесить падающий крутящий момент обмотки коммутатора . На скоростях выше синхронной крутящий момент сепаратора меняет направление на противоположное, обеспечивая тормозное действие, которое удерживает скорость холостого хода на уровне, лишь немного превышающем синхронную скорость.

Коммутация лучше, чем у обычного отталкивающего двигателя, и двигатель характеризуется хорошим коэффициентом мощности при полной нагрузке (например, с запаздыванием 0,85–0,9).

При прямом переключении пусковой момент составляет 2,5–3 раза , а текущий 3–3,5 раза значение полной нагрузки.

Вернуться к таблице содержания ↑

Источник: Справочник инженера-электрика М. А. Лотона и Д. Дж. Варна

Определение однофазных двигателей | Chegg.com

Однофазные двигатели — это электрические устройства с выходной мощностью около 1 л.с. (лошадиные силы).В основном это однофазные асинхронные двигатели. Он играет жизненно важную роль в бытовом применении. Большинство из этих бытовых применений — это вентиляторы, электрические игрушки, воздуходувки, центробежные насосы, стиральные машины и так далее.

При подаче однофазного напряжения на статор этих машин статор создает магнитный поток. Этот поток вращает и разрезает проводники ротора. Из-за этого индуцируется ЭДС. Когда цепь ротора замкнута, ток течет через проводник ротора. Этот ток ротора вызовет магнитный поток ротора.Эти потоки ротора также вращаются в направлении, противоположном потоку статора. Взаимодействие этих двух потоков приводит к результирующему крутящему моменту, который вращает двигатель. Но два потока (потоки статора и ротора) равны по величине, но противоположны по направлению. Из-за этого результирующие крутящие моменты компенсируются друг с другом. Следовательно, двигатель не будет вращаться. Это причина того, что однофазные двигатели не запускаются самостоятельно.

Для пуска этих однофазных двигателей дополнительно используется вспомогательная или пусковая обмотка с нормально работающей обмоткой возбуждения.Вспомогательная обмотка размещена с фазовым сдвигом 90 ° относительно бегущей обмотки и физически подключена параллельно бегущей обмотке. Существуют различные способы запуска этих машин. Основываясь на методах, они классифицируются как двигатели с расщепленной фазой, двигатели с экранированными полюсами и реактивные двигатели. Двигатели с расщепленной фазой снова классифицируются как двигатели с конденсаторным пуском, двигатели с конденсаторным пуском и двигатели с конденсаторным пуском с конденсатором.


См. Другие разделы по физике

Видео по физике

01:00

учебник

Конвергентные линзы и зеркала

01:00

учебник

Расходящиеся линзы и зеркала

01:00

учебник

Для решения линейного уравнения

01:00

учебник

Уравнения в квадратичной форме

01:00

учебник

Анатомия кометы

01:00

учебник

Ускорение — вектор

01:00

учебник

Сохранение энергии

01:00

учебник

Конденсаторы параллельно

01:00

учебник

Как определить смещение

Получите определения ключевых научных концепций от Чегга

В естествознании существует множество ключевых понятий и терминов, которые необходимо знать и понимать учащимся.Часто бывает трудно определить самые важные научные концепции и термины, и даже после того, как вы их определили, вам все равно нужно понять, что они означают. Чтобы помочь вам изучить и понять ключевые научные термины и концепции, мы выделили некоторые из наиболее важных из них и предоставили для них подробные определения, написанные и составленные экспертами Chegg.

BELLE Motor ™ | Решения для однофазного электропитания

Однофазные и трехфазные микросети, доступные в конфигурациях 50 л.с., 75 л.с. и 100 л.с.

Спрос на трехфазное питание растет намного быстрее, чем доступность трехфазного питания.Многие сельскохозяйственные, телекоммуникационные, промышленные и муниципальные системы лучше всего работают от трехфазного оборудования. Однако в наиболее удаленных районах суши доступно только однофазное обслуживание. Источник питания 1-to-3 ™ от BELLE ™ Motors решает эту проблему. Используя революционную технологию Written-Pole®, 1-to-3 ™ позволяет избежать высоких затрат на топливо и техническое обслуживание, а также загрязнения двигателей, работающих на ископаемом топливе. Он обеспечивает превосходное качество электроэнергии по сравнению с обычными фазовыми преобразователями и гораздо более рентабелен, чем расширение трехфазных сетей до однофазных потребителей, обеспечивая преимущества в широком спектре приложений.

• Двигатели Written-Pole® хорошо подходят для преобразования однофазной энергии в трехфазную. Однофазный двигатель Written-Pole® может приводить в действие обычный трехфазный генератор для получения чистого сбалансированного напряжения.

• Цепь преобразователя из однофазной в трехфазную может запускать несколько трехфазных двигателей меньшего размера. 1-to-3 Power Source ™ может запускать один двигатель примерно до 50% от его номинальной мощности и другие двигатели меньшего размера до своей выходной мощности.

• Из-за высокой способности синхронизировать нагрузку приводного двигателя Written-Pole® можно добавить большой маховик, чтобы значительно улучшить пусковые характеристики двигателя трехфазного генератора.

СТОИМОСТЬ

1-to-3 ™ устраняет необходимость в расширении трехфазного распределения. Там, где уже существует однофазное обслуживание, обновление линий до трехфазного обычно стоит от 30 до 100 тысяч долларов за милю. Используя 1-to-3 ™ для обеспечения питания трехфазных приложений от существующей однофазной сети, коммунальные предприятия и их заказчики могут значительно сэкономить на инвестициях в основные фонды.

ЭКОНОМИЯ

Многие коммунальные предприятия взимают ежемесячную плату за трехфазную доступность (для амортизации инвестиций) независимо от того, действительно ли покупатель использует электроэнергию.Использование 1-to-3 ™ позволяет сэкономить от 12 до 60 тысяч долларов в год для этих расходов. Кроме того, двигатель Written-Pole®, приводящий в движение 1-to-3 ™, очень эффективен, в результате чего КПД при полной нагрузке превышает 88%. Одно только это может снизить затраты на электроэнергию на тысячи долларов год за годом. А поскольку вход 1-to-3 ™ работает с единичным коэффициентом мощности, штраф за коэффициент мощности отсутствует. В некоторых областях это приводит к значительной дополнительной экономии.

НИЗКОЕ ОБСЛУЖИВАНИЕ

Двигатель 1-to-3 ™ может эффективно использоваться вместо дизельных или газовых двигателей, которые часто используются в качестве первичных двигателей для насосов или генераторных установок.Двигатель Written-Pole® требует минимального обслуживания по сравнению с двигателями. Также снижается загрязнение воздуха и шум. Самое главное, значительно повышается надежность.

КАЧЕСТВО ЭНЕРГИИ

1-to-3 ™ позволяет слабым однофазным линиям обеспечивать мощную трехфазную мощность с отличным регулированием напряжения и точной частотой 60 Гц. Выходное напряжение генератора обеспечивает хорошо сбалансированную трехфазную мощность, позволяющую запускать и запускать большие трехфазные двигатели или электронные элементы управления, чувствительные к качеству электроэнергии.Это оборудование изолирует приложение (и сеть) от гармоник, вредных для чувствительных нагрузок.

ЭФФЕКТИВНОСТЬ


Двигатели Written-Pole® запускаются с использованием только 1,7-кратного номинального рабочего тока. Это устраняет чрезмерное падение напряжения или «мерцание», которое может вызвать проблемы в распределительных линиях. Рейтинг КПД двигателя составляет 95,5%, а КПД генератора — 93,5%, что дает общий КПД 89% при 100% гальванической развязке. Благодаря источнику питания 1-to-3 ™ клиенты, обслуживаемые однофазными линиями, могут получать высококачественную электроэнергию для трехфазных приложений.В отличие от обычных фазовых преобразователей, преобразователь 1-to-3 ™ обеспечивает истинную сбалансированную трехфазную мощность, устраняет деструктивную гармоническую обратную связь, является нагрузкой с единичным коэффициентом мощности для электросети и, с добавленным маховиком, может легко преодолевать кратковременные перебои в подаче электроэнергии. .

Можно ли использовать частотно-регулируемый привод (ЧРП) на однофазном двигателе?

Не рекомендуется использовать один двигатель с частотно-регулируемым приводом. Хотя это технически возможно, недостатки намного перевешивают любые преимущества, которые вы могли бы ожидать.В большинстве случаев менее затратно перейти на трехфазный двигатель для использования с частотно-регулируемым приводом.

Блог по теме: частотно-регулируемый привод (ЧРП) Часто задаваемые вопросы

Как работает частотно-регулируемый привод ЧРП

позволяют контролировать производительность системы, контролировать скорость двигателей или насосов и регулировать ток по запросу. ЧРП принимает входной трехфазный переменный ток, а затем выдает требуемый переменный или постоянный ток.Это позволяет двигателям эффективно работать при изменении нагрузки.

Преимущества ЧРП для системы

Управление скоростью двигателя дает много преимуществ. Во-первых, частотно-регулируемый привод обеспечивает большую эффективность как с точки зрения использования мощности, так и с точки зрения передачи в насосе или двигателе. ЧРП определяет нагрузку на систему и выдает мощность для компенсации. Он также решает такие проблемы, как сбои в работе системы и перегрузки. Это автоматическое интеллектуальное управление может продлить срок службы двигателя, предотвратить отказ системы и повысить производительность.

Проблемы с использованием однофазного двигателя

Однофазные двигатели имеют иную намотку, чем трехфазные. Чтобы использовать однофазный двигатель с частотно-регулируемым приводом, двигатель должен быть инверторного класса, что означает оплату перемотки существующего двигателя или покупку нового двигателя. Даже если характеристики двигателя соблюдены, могут возникнуть проблемы с работой однофазного двигателя. Это чаще всего наблюдается на низких скоростях, когда двигатель вынужден работать на более низких оборотах.

Преимущества модернизации двигателя

Модификация однофазного двигателя для работы с частотно-регулируемым приводом не является рентабельной. Вместо того, чтобы тратить ресурсы на внесение необходимых изменений, обычно лучше перейти на трехфазный двигатель. Помимо того, что трехфазные двигатели дешевле, они часто меньше и легче. Модернизация означает более длительный срок службы системы, больший контроль производительности и предоставит дополнительные преимущества, такие как снижение рабочих температур.

Более 30 лет Mader Electric обеспечивает установку, обучение и техническое обслуживание насосных двигателей мощностью до 4000 лошадиных сил.Помимо того, что мы являемся ведущей компанией по производству насосов и двигателей в районе Сарасоты, у нас также есть современный учебный центр, чтобы помочь нашим клиентам быстро освоиться, как только будет завершена установка. Чтобы узнать больше о наших услугах по частотно-регулируемым приводам, свяжитесь с нами сегодня.

Однофазные двигатели на корабле

Двигатели малой мощности для электроинструментов, бытового оборудования, холодильников, пылесосов и т. Д. Обычно питаются от сети переменного тока 220 В. 50/60 Гц.

Общие типы:

Асинхронный двигатель, разделенный фазой

Конденсаторный пуск / запуск асинхронного двигателя

Асинхронный двигатель с экранированными полюсами

а.c. коллекторный двигатель

Двухфазный асинхронный двигатель на корабле

Однофазный асинхронный двигатель имеет ротор с сепаратором, аналогичный используемому в трехфазном двигателе. Одиночная обмотка статора создает пульсирующее магнитное поле при питании однофазным переменным током. Текущий.

Это поле не может оказывать вращающее усилие на ротор сепаратора.

Один из методов, используемых для создания силы вращения, заключается в использовании двух обмоток статора, установленных под углом 90 градусов друг к другу, при этом обе обмотки подключены к одному источнику питания.

Это двигатель с расщепленной фазой.

Чтобы получить эффект смещения магнитного поля (и, следовательно, вызвать вращающую силу в роторе), одна обмотка электрически сдвигается по фазе путем добавления емкости последовательно с одной из обмоток.

Конденсаторный пуск / запуск асинхронного двигателя на корабле

Когда двигатель начал работать, цепь дополнительной фазной обмотки может быть отключена, и на ротор будет продолжать пульсировать магнитный поток.

Это называется конденсаторным пусковым электродвигателем , который используется только для управления очень легкой нагрузкой.

Для запуска и работы в цепи используются два конденсатора, во время периода запуска два параллельно включенных конденсатора создают большой фазовый угол по отношению к току обмотки «S». Когда ротор набирает обороты, переключатель отключает один из конденсаторов. Выключатель может быть центробежного типа на валу ротора или реле с выдержкой времени с токовым управлением в клеммной коробке двигателя.

Этот тип двигателя обеспечивает хороший пусковой и рабочий крутящий момент при разумном коэффициенте мощности. Большинство двигателей с расщепленной фазой рассчитаны на 4-полюсную обмотку статора, поэтому при 50 Гц их синхронная (магнитная) скорость будет 25 об / с или 1500 об / мин.

Как и во всех асинхронных двигателях, ротор будет проскальзывать, в результате чего скорость вала будет около 24 об / с или 1440 об / мин на холостом ходу .

Под нагрузкой однофазный асинхронный двигатель будет работать с большим скольжением и работать с меньшей эффективностью, чем трехфазный вариант.

Асинхронный двигатель с экранированными полюсами на корабле

Это машина с низким крутящим моментом, используемая для приводов малой мощности, таких как небольшие охлаждающие вентиляторы в духовках и электронном оборудовании.

Лицевая сторона каждого выступающего полюса статора частично разделена на одну сторону, по которой проходит толстый медный провод, называемый затеняющим кольцом. Пульсирующий переменный ток. поток разделяется на каждую половину полюса, но задерживается во времени в части с затеняющим кольцом.

Это происходит из-за индуцированного тока в кольце, который препятствует изменению потока в заштрихованной части.

Для ротора эта задержка проявляется как сдвиг магнитного потока по всей поверхности полюса, который увлекает за собой ротор за счет нормального действия асинхронного двигателя.

Очевидно, что развиваемый крутящий момент невелик, и машина не очень эффективна, но это недорогой привод для приложений с очень малой мощностью. Как и во всех асинхронных двигателях, базовая скорость вала фиксируется частотой питающей сети, поэтому при 50 Гц максимальная скорость составляет 3000 об / мин, а нагрузка на вал вызывает проскальзывание ротора ниже этого значения.

перем. коллекторный двигатель на теплоходе

Это в основном постоянный ток. Конструкция серийного двигателя предназначена для очень эффективной работы от переменного тока. напряжение питания.

При 220 В перем. Тока частота вращения вала при небольшой нагрузке обычно составляет от 12 000 до 18 000 об / мин и легко регулируется дополнительным последовательным сопротивлением или электронным регулятором напряжения.

Скорость быстро падает с увеличением момента нагрузки.

Этот тип двигателя в основном используется с перерывами в оборудовании мощностью до нескольких сотен ватт.Типичные примеры включают дрели, шлифовальные машины, лобзики, миксеры для пищевых продуктов и пылесосы.

Коммутатор и щеточные контакты при нормальной работе вызывают искрение, которое может вызвать радио- / телевизионные помехи, поэтому на этот тип двигателя обычно устанавливается высокочастотный ограничитель напряжения.

Профессиональный инструмент для

Электротехника (ETO)

Рюкзак My Picks For The Best Ship Электрик (ETO)

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *