+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Напряжение и ток [Амперка / Вики]

Для того, чтобы электронный компонент совершал полезную работу: лампа — горела, двигатель — вращался,
через него должен протекать электрический ток.

Ток создаётся электрическим потенциалом. Если сравнивать течение тока и течение жидкости,
то электрический потенциал — это напор, а ток — это струя воды.
Наличие потенциала самого по себе не достаточно для создания тока.

Во-первых, необходим проводник по которому ток будет течь. Например: медный провод. Если проводника
нет, потенциал «утыкается» в воздух, а воздух очень хорошо препятствует течению электричества. Это
аналогично тому, что вода не будет течь пока закрыт кран: давление есть — течения нет. Материалы,
не позволяющие току течь называются диэлектриками. Позволяющие течь — проводниками. Позволяющие при
одних условиях и не позволяющие при других — полупроводниками.

Во-вторых, необходима разность потенциалов. Ведь если с двух концов водопроводной трубы будет одинаковый
напор, каким бы сильным он не был — течения внутри не будет. То же самое и с электричеством.
Разность потенциалов называют напряжением.

Потенциал и напряжение (обозначаются буквой U или V) мерятся в вольтах; сила тока (обозначается буквой I) или просто ток — в амперах.
В микроэлектронике обычно используются напряжения от долей вольт до десятков вольт
и силы тока от долей миллиампер (мА) до сотен миллиампер.

По договорённости считается, что ток течёт в направлении от плюса к минусу.
По аналогии как вода течёт из области высокого давления к пустому концу трубы.
На самом деле, какое направление положительное, а какое отрицательное — условность. Исторически
так сложилось, что открытие отрицательно заряженных электронов, которые и формируют ток,
было сделано уже после того, как все договорились, что считать положительным течением
тока. Поэтому в силу той ошибки на практике ситуация такова: говорят, что ток течёт из точки
А в точку Б, хотя на физическом уровне электроны мчатся от точки Б к точке А. Чтобы не путаться, нужно
запомнить: в схемотехнике никто не вспоминает куда перемещаются электроны, положительное течение тока —
это течение из точки с большим потенциалом в точку с меньшим; в направлении тока перемещаются
положительные заряды. Да, они виртуальные, их не бывает на самом деле, но так удобнее.

Точку цепи, предоставляющую неограниченную возможность возврата/слива отработавших зарядов называют
землёй (Ground, GND). Не нужно понимать «землю» в буквальном смысле. Ей может быть и отрицательный полюс
батарейки, и корпус автомобиля, и, действительно, планета Земля. Для удобства считают, что земля — это потенциал
в 0 В. Все остальные потенциалы считают относительно неё. Кроме того, в схемотехнике практически не пользуются
понятием электрического потенциала: говорят, что напряжение в определённой точке составляет 12 В,
на самом деле имеют в виду, что разность потенциалов между ней и землёй составляет 12 В.

Источники питания

Проходя по цепи, электрическая энергия расходуется: часть её идёт на совершение полезной работы, часть теряется, превращаясь в тепло. Чтобы устройство работало постоянно, требуется сила, которая бы удерживала напряжение в цепи. Её называют ЭДС (электродвижущая сила, electromotive force, EMF), а создают её источники питания. Примером компонента с ЭДС являются: обычные батарейки, солнечные батареи, трансформатор в блоке питания, моторчик вращаемый хомяком в колесе.

На схемах источник питания может указываться как в явном виде, собственным символом, так и в неявном: обозначается ноль контакт входного напряжения и земля без акцента на то, откуда энергия возьмётся. Таким образом, следующие схемы эквивалентны:

Мощность

Мощность — это количество переносимой энергии за единицу времени. Переносимая
электрическая энергия обычно трансформируется конечными устройствами в другие формы: тепло, свет, звук и т.д.
Единица измерения мощности — Ватт. Мощность P рассчитывается по формуле:

Различные компоненты расчитаны на разную мощность. Обычно в документации на компонент указывается при
каком напряжении он работает и какой ток при этом потребляет. Есть компоненты, которые «возьмут» только
то количество тока, которое им необходимо; есть те, которые будут гореть и плавиться, но заберут всё, что дают.

Предоставить нужное количество энергии в нужный момент в определённое место цепи — одна из главных задач разработчика схемы. Реализуется это с помощью соединения базовых компонентов (таких как, например, резисторы и транзисторы) в типовые, шаблонные схемы.

wiki.amperka.ru

Ток, напряжение, сопротивление

Электрический ток ( I ) — это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики — движение электронов. Безусловно. Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах.

Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то
носитель электрического тока так не поступает. Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира.

Условиями возникновения и существования электрического тока являются:

  • Наличие свободных носителей заряда
  • Наличие электрического поля, создающего и поддерживающего ток.

Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно.

Электрическое поле — это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы «одноименные заряды отталкиваются, а разноименные притягиваются» можно представить электрическое поле как нечто это воздействие передающее. Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика — напряженность электрического поля.

Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву:
E=Δφ.

Здесь:

  • E — напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
  • Δφ=φ1-φ2 — разность потенциалов (рисунок 1).

Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.

Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них — хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε.

Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.

Напряжение ( U ).

Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε.

Это не совсем корректно, но на практике вполне достаточно.

Сопротивление ( R ) — название говорит само за себя — физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривется на отдельной странице этого раздела.
Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике. Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять
R=ρ*L/S.

Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление.

Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:

Ток — Ампер (А)

Напряжение — Вольт (В)

Сопротивление — Ом (Ом).

Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru

Основы радиотехники — напряжение тока. сила тока. Simpleinfo – все сложное простыми словами!

14 Декабря 2016

2515


В предыдущей статье, мы рассмотрели электрический ток. В этой статье будем рассматривать единицы измерения. Как без них? Но что бы не усложнять, рассмотрим только самые нужные, да и в дальнейшем в принципе только они понадобятся.


Мы уже знаем, что электрический ток, это движение частиц. Что бы эти частицы двигались, необходима внешняя направленная сила (например электрическое поле). И эту силу, которая двигает частицы, необходимо поддерживать.


Источник питания (источник напряжения, источник тока) имеют две клеммы или два полюса. Которые имеют разность потенциалов. Разность потенциалов, если простыми словами дать объяснение – это запас частиц, которые стремятся друг к другу. То есть, при возможности частицы из клеммы (-) будут стремится к клемме с (+).

Рассмотрим на картинке.

наведите или кликните мышкой, для анимации


На картинке мы видим источник питания и проводник. Если наведем мышку на картинку, источник питания «крутиться», то есть там поддерживается какая то сила для переноса частиц. Проводник не соединен к источнику питания, то есть цепь не замкнутая. Для того, что бы возник электрический ток — необходимо замкнуть цепь.


Рассмотрим на примере.

наведите или кликните мышкой, для анимации


В проводнике возникает электрический ток, то есть упорядоченное движение частиц.
При перемещение заряженных частиц, что мы видим?

  • 1. Какое количество частиц передвигаются.
  • 2. Какая энергия тратится на перемещение частицы.

Сила тока


Сила тока — это величина, равная отношению количества заряда, проходящего через поперечное сечение проводника, к времени его прохождения. То есть это ответ на наш первый вопрос, сколько зарядов проходит через поперечное сечение проводника, за определенное время.


Единица измерения силы тока – это Ампер (А).


Условное обозначение: I

Ниже на картинке отобразим этот момент:


наведите или кликните мышкой, для анимации

Напряжение тока


Сила тока, это больше количественный показатель. Для того что бы частицы перемещались, необходима энергия (работа).

Напряжение тока (электрическое напряжение) – это энергия расходуемая при перемещение заряда. Простыми словами, это сила (давление) которое передвигает заряды по проводнику. Таким образом мы ответили на второй вопрос.


Единицы измерения напряжения тока – это Вольт (В).


Условное обозначение: U


наведите или кликните мышкой, для анимации


Мы теперь знаем что такое сила тока, напряжение тока и их условные обозначения. Еще хочу добавить, часто для объяснения этих процессов приводят пример с водой в трубе. Труба в данном случае это проводник, давление которое толкает воду это напряжение и количество воды (через поперечное сечение) это сила тока.

simple-info.ru

Что такое напряжение и ток | Начинающим


Что такое напряжение и ток


Напряжение и ток — это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.


Напряжение (условное обозначение: U, иногда Е). Напряжение между двумя точками — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э. д. с). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 кВ = 103 В), милливольтах (1 мВ = 10-3 В) или микровольтах (1 мкВ = 10-6 В). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно 6*1018 электронов.) Напряжение, измеряемое в нановольтах (1 нВ = 10-9 В) или в мегавольтах (1 МВ = 106 В) встречается редко.


Ток (условное обозначение: I). Ток — это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10-3 А), микроамперах (1 мкА = 10-6 А), наноамперах (1 нА = 10-9 А) и иногда в пикоамперах (1 пкА = 10-12 А). Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.


Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-либо элемент схемы.


Говорить «напряжение в резисторе» нельзя — это неграмотно. Однако часто говорят о напряжении в какойлибо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», то есть такой точкой схемы, потенциал которой всем известен. Скоро вы привыкнете к такому способу измерения напряжения.


Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток мы получаем, прикладывая напряжение между точками схемы.


Здесь, пожалуй, может возникнуть вопрос: а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени.


В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять поразному.


Запомните несколько простых правил, касающихся тока и напряжения:


  1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.


  2. При параллельном соединении элементов (рис. 1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.

  3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:

    P = UI


 


Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд)*(заряд/ед. времени). Если напряжение U измерено в вольтах, а ток I — в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт — это работа в 1 джоуль, совершенная за 1 с (1 Вт=1 Дж/с).


Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, нередатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).


В дальнейшем при изучении периодически изменяющихся токов и напряжений мы обобщим простое выражение Р=UI. В таком виде оно справедливо для определения мгновенного значения мощности. Кстати, запомните, что не нужно называть ток силой тока — это неграмотно.

www.radiomexanik.spb.ru

Что такое сила тока и напряжение

Что такое напряжение, и сила тока?

Сегодня речь пойдет о самых базовых понятиях силы тока, напряжения, без общего понимания которых невозможно построение любого электротехнического устройства.

Итак, что же такое напряжение?

Попросту говоря напряжение — разница потенциала между двумя точками электрической цепи, измеряется в Вольтах. Стоит заметить что, напряжение всегда измеряется между двумя точками! То есть, когда говорят что напряжение на ножке контроллера 3 Вольта, подразумевается что разница потенциалов между ножкой контроллера и землей те самые 3 Вольта.

Земля(Масса, Ноль) — это точка электрической схемы с потенциалом 0 Вольт. Однако стоит заметить, что напряжение не всегда измеряется относительно земли. Например, замерив напряжение между двумя выводами контроллера, мы получим разницу электрических потенциалов данных точек схемы. То есть если на одной ножке 3 Вольта(То есть данная точка обладает потенциалом 3 Вольта относительно земли), а на второй 5Вольт(Опять же потенциал относительно земли), мы получим значение напряжения равное 2 вольтам, что равняется разнице потенциалов между точками 5 и 3 Вольта.

Из понятия напряжение вытекает следующее понятие — электрический ток. Из курса общей физики мы помним, что электрический ток есть направленное движение заряженных частиц по проводнику, измеряется в Амперах. Заряженные частицы движутся благодаря разнице потенциалов между точками. Принято считать, что ток происходит из точки с большим зарядом, в точку, обладающую меньшим зарядом. То есть, именно напряжение (разность потенциалов) создает условия протекания тока. При отсутствии напряжения — невозможен ток, то есть между точками с равным потенциалом ток отсутствует.

На своем пути, ток встречает препятствие в виде сопротивления, что препятствует его протеканию. Сопротивление измеряется в Омах. Подробнее о нем мы поговорим в следующем уроке. Однако, между током, напряжением и сопротивлением уже давно выведена следующая зависимость:

Где I — Сила тока в Амперах,U — Напряжение в Вольтах,R — Сопротивление в Омах.

Данное соотношение называется законом Ома. Так же справедливы следующие выводы из закона Ома:

Если у Вас ещё остались вопросы, задавайте их в комментариях. Лишь благодаря Вашим вопросам Мы сможем улучшить материал представленный на данном сайте!

На этом всё, в следующем уроке поговорим о сопротивлении.

Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG.RU. Незаконное копирование, цитирование, воспроизведение преследуется по закону!

mkprog.ru

Определение электрического напряжения

То
есть электрическое поле должно было
«протащить» электроны через нагрузку,
и энергия, которая при этом израсходовалась,
характеризуется величиной, называемой
электрическим напряжением. Эта же
энергия потратилась на какое-то изменение
состояния вещества нагрузки. Энергия,
как мы знаем, не пропадает в никуда и не
появляется из ниоткуда. Об этом
гласит Закон
сохранения энергии
.
То есть, если ток потратил энергию на
прохождение через нагрузку, эту энергию
приобрела нагрузка и, например, нагрелась.

То
есть, приходим к определению: напряжение
электрического тока
 –
это величина, показывающая, какую работу
совершило поле при перемещении заряда
от одной точки до другой. Напряжение в
разных участках цепи будет различным.
Напряжение на участке пустого провода
будет совсем небольшим, а напряжение
на участке с какой-либо нагрузкой будет
гораздо большим, и зависеть величина
напряжения будет от величины работы,
произведенной током. Измеряют напряжение
в вольтах (1 В). Для определения напряжения
существует формула: 

U=A/q,

где
U — напряжение,
A – работа, совершенная
током по перемещению заряда q на некий
участок цепи.

Напряжение на полюсах источника тока

Что
касается напряжения на участке цепи –
все понятно. А что же тогда означает
напряжение на полюсах источника
тока
?
В данном случае это напряжение означает
потенциальную величину энергии, которую
может источник придать току. Это как
давление воды в трубах. Эта величина
энергии, которая будет израсходована,
если к источнику подключить некую
нагрузку. Поэтому, чем большее напряжение
у источника тока, тем большую работу
может совершить ток.

2) Диэлектрики в электрическом поле

В
отличие от проводников, в диэлектриках
нет свободных зарядов. Все заряды
являются

связанными
: электроны принадлежат своим атомам,
а ионы твёрдых диэлектриков колеблются

вблизи
узлов кристаллической решётки.

Соответственно,
при помещении диэлектрика в электрическое
поле не возникает направлен-ного движения
зарядов

1

.
Поэтому для диэлектриков не проходят
наши доказательства свойств

проводников
— ведь все эти рассуждения опирались
на возможность появления тока. И
дей-ствительно, ни одно из четырёх
свойств проводников, сформулированных
в предыдущей статье,

не
распростаняется на диэлектрики.

1.
Напряжённость электрического поля
внутри диэлектрика может быть не равна
нулю.

2.
Объёмная плотность заряда в диэлектрике
может быть отличной от нуля.

3.
Линии напряжённости могут быть не
перпендикулярны поверхности диэлектрика.

4.
Различные точки диэлектрика могут иметь
разный потенциал. Стало быть, говорить
о

«потенциале
диэлектрика» не приходится.

Поляризация
диэлектриков
 —
явление, связанное с ограниченным
смещением связанных зарядов в диэлектрике или
поворотом электрических диполей,
обычно под воздействием внешнего электрического
поля,
иногда под действием других внешних
сил или спонтанно.

Поляризацию
диэлектриков характеризует вектор
электрической поляризации
.
Физический смысл вектора электрической
поляризации — это дипольный
момент,
отнесенный к единице объема диэлектрика.
Иногда вектор поляризации коротко
называют просто поляризацией.

  • Вектор
    поляризации применим для описания
    макроскопического состояния поляризации
    не только обычных диэлектриков, но
    и сегнетоэлектриков,
    и, в принципе, любых сред, обладающих
    сходными свойствами. Он применим не
    только для описания индуцированной
    поляризации, но и спонтанной поляризации
    (у сегнетоэлектриков).

Поляризация —
состояние диэлектрика, которое
характеризуется наличием электрического
дипольного момента у любого (или почти
любого) элемента его объема.

Различают
поляризацию, наведенную в диэлектрике
под действием внешнего электрического
поля, и спонтанную (самопроизвольную)
поляризацию, которая возникает
в сегнетоэлектриках в
отсутствие внешнего поля. В некоторых
случаях поляризация диэлектрика
(сегнетоэлектрика) происходит под
действием механических напряжений, сил
трения или вследствие изменения
температуры.

Поляризация
не изменяет суммарного заряда в любом
макроскопическом объеме внутри
однородного диэлектрика. Однако она
сопровождается появлением на его
поверхности связанных электрических
зарядов с некоторой поверхностной
плотностью σ. Эти связанные заряды
создают в диэлектрике дополнительное
макроскопическое поле c напряжённостью ,
направленное против внешнего поля с
напряжённостью .
В результате напряжённость поля внутри
диэлектрика будет выражаться равенством:

В
зависимости от механизма поляризации,
поляризацию диэлектриков можно
подразделить на следующие типы:

  • Электронная —
    смещение электронных
    оболочек атомов
    под действием внешнего электрического
    поля. Самая быстрая поляризация (до
    10−15 с).
    Не связана с потерями.

  • Ионная —
    смещение узлов кристаллической структуры
    под действием внешнего электрического
    поля, причем смещение на величину,
    меньшую, чем величина постоянной
    решетки.
    Время протекания 10−13 с,
    без потерь.

  • Дипольная
    (Ориентационная) — протекает с
    потерями на преодоление сил связи и
    внутреннего трения. Связана с ориентацией
    диполей во внешнем электрическом поле.

  • Электронно-релаксационная —
    ориентация дефектных электронов во
    внешнем электрическом поле.

  • Ионно-релаксационная —
    смещение ионов, слабо закрепленных в
    узлах кристаллической структуры, либо
    находящихся в междуузлие.

  • Структурная —
    ориентация примесей и неоднородных
    макроскопических включений в диэлектрике.
    Самый медленный тип.

  • Самопроизвольная
    (спонтанная) — благодаря этому типу
    поляризации у диэлектриков, у которых
    он наблюдается, поляризация проявляет
    существенно нелинейные свойства даже
    при малых значениях внешнего поля,
    наблюдается явление гистерезиса.
    Такие диэлектрики (сегнетоэлектрики)
    отличаются очень высокими
    значениями диэлектрической
    проницаемости (от
    900 до 7500 у некоторых видов конденсаторной
    керамики). Введение спонтанной
    поляризации, как правило, увеличивает тангенс
    угла потерь материала
    (до 10−2)

  • Резонансная —
    ориентация частиц, собственные частоты
    которых совпадают с частотами внешнего
    электрического поля.

  • Миграционная
    поляризация обусловлена наличием в
    материале слоев с различной проводимостью,
    образованию объемных зарядов, особенно
    при высоких градиентах напряжения,
    имеет большие потери и является
    поляризацией замедленного действия.

Поляризация
диэлектриков (за исключением резонансной)
максимальна в статических электрических
полях. В переменных полях, в связи с
наличием инерции электронов, ионов и
электрических диполей, вектор электрической
поляризации зависит от частоты.

studfiles.net

1.01. Напряжение и ток

ОСНОВЫ ЭЛЕКТРОНИКИ

Напряжение, ток и сопротивление

Напряжение и ток — это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.

Напряжение (условное обозначение: U, иногда Е). Напряжение между двумя точками — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э. д. с). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 кВ = 103 В), милливольтах (1 мВ = 10-3 В) или микровольтах (1 мкВ = 10-6 В) (см. раздел «Приставки для образования кратных и дольных единиц измерения», мелким шрифтом). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно 6 — 1018 электронов.) Напряжение, измеряемое в нановольтах (1 нВ = 10-9 В) или в мегавольтах (1 МВ = 106 B) встречается редко; вы убедитесь в этом, прочитав всю книгу.

Ток (условное обозначение: I). Ток — это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10-3 А), микроамперах (1 мкА = 10-6 А), наноамперах (1 нА = 10-9 А) и иногда в пикоамперах (1 пкА = 10-12 А). Ток величиной 1 ампер создаётся перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-либо элемент схемы.

Говорить «напряжение в резисторе» нельзя — это неграмотно. Однако часто говорят о напряжении в какой-либо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землёй», то есть такой точкой схемы, потенциал которой всем известен. Скоро вы привыкнете к такому способу измерения напряжения.

Напряжение создаётся путём воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток мы получаем, прикладывая напряжение между точками схемы.

Здесь, пожалуй, может возникнуть вопрос: а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени. Мы будем прибегать к показаниям осциллографов, а также вольтметров для характеристики сигналов. Для начала советуем посмотреть приложение А, в котором идёт речь об осциллографе, и раздел «Универсальные измерительные приборы», мелким шрифтом.

В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо, и в своё время мы обсудим этот вопрос. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как её схематическое изображение, так как провода можно соединять по-разному.

Рис. 1.1 Закон Кирхгофа для напряжений

Запомните несколько простых правил, касающихся тока и напряжения:

1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из неё (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединённых этими концами один с другим) ток во всех точках одинаков.

2. При параллельном соединении элементов (рис. 1.1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.

3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом: P = U I. Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд) — (заряд/ед. времени). Если напряжение U измерено в вольтах, а ток I — в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт — это работа в 1 джоуль, совершенная за 1 с (1 Вт = 1 Дж/с).

Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, передатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения её тепловой нагрузки (возьмём, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).

В дальнейшем при изучении периодически изменяющихся токов и напряжений мы обобщим простое выражение P = UI. В таком виде оно справедливо для определения мгновенного значения мощности.

Кстати, запомните, что не нужно называть ток силой тока — это неграмотно. Нельзя также называть резистор сопротивлением. О резисторах речь пойдёт в следующем разделе.

Сигналы

skilldiagram.com

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о