+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Напряженность магнитного поля | Формулы и расчеты онлайн

Напряженность магнитного поля можно определить с помощью силы, которая действует на помещенный в поле пробный магнит. Так как магнитные полюсы не существуют по отдельности, на северный и южный полюсы пробного магнита действуют противоположно направленные силы, и возникает момент пары сил. Этот момент характеризует величину напряженности поля в данном месте.

В магнитном поле цилиндрической катушки он прямо пропорционален числу витков и силе тока и обратно пропорционален длине катушки. Направление вектора напряженности магнитного поля в каждой точке совпадает с направлением силовых линий. Внутри катушки (магнита) он направлен от южного полюса к северному, вне катушки — от северного к южному.

Единица СИ напряженности магнитного поля

Единица СИ напряженности магнитного поля:

\[ [H] = \frac{Ампер}{Метр} \]

Эрстед — Единица напряженности магнитного поля

Единица напряженности магнитного поля Эрстед не принадлежит к системе СИ.

\[ 1 Эрстед = \frac{1000}{4π} \frac{Ампер}{метр} \]

\[ 1 \frac{Ампер}{метр} = \frac{4π}{1000} Эрстед \]

Напряженность магнитного поля в цилиндрической катушке

Напряженность магнитного поля в цилиндрической катушке

Напряженность магнитного поля в цилиндрической катушке

Если

Hнапряженность магнитного поля внутри цилиндрической катушки,Ампер/метр
Iсила тока в катушке,Ампер
nчисло витков,Ампер
lдлина катушки (т. е. силовых линий в области однородного поля),метр

то напряженность магнитного поля определяется формулой

\[ H = \frac{I·n}{l} \]

Напряженность магнитного поля вокруг прямолинейного проводника

Напряженность Н магнитного поля прямолинейного проводника постоянна вдоль круговой силовой линии.

Если

Hнапряженность магнитного поля прямолинейного проводника,Ампер/метр
Iсила тока в проводнике,Ампер
rрасстояние от проводника в плоскости, перпендикулярной проводнику,метр

то напряженность магнитного поля определяется формулой

\[ H = \frac{I}{2πr} \]

Напряженность магнитного поля в центре витка с током

Напряженность магнитного поля в центре витка с током

Напряженность магнитного поля в центре витка с током

Если

Hнапряженность магнитного поля в центре витка с током,Ампер/метр
Iсила тока в витке,Ампер
rрадиус витка,метр

то напряженность магнитного поля определяется формулой

\[ H = \frac{I}{2r} \]

В помощь студенту

Напряженность магнитного поля
стр. 643

www.fxyz.ru

22) Напряженность магнитного поля

Она необходима для определения магнитной индукции поля, создаваемого токами различной конфигурации в различных средах.Напряженность магнитного поляхарактеризует магнитное поле в вакууме.

Напряженность магнитного поля (формула) векторная физическая величина, равная:

Где u0- магнитная постоянная.Гн/мН/А².

Напряженность магнитного поляв СИ — ампер на метр (А/м).

Векторы индукции (В) и напряженности магнитного поля (Н) совпадают по направлению. Если знать Напряженность магнитного поля в данной точке, то можно определить индукцию поля в этой точке.

Напряженность магнитного полязависит только от силы тока, протекающего по проводнику, и его геометрии.

С помощью следующей формулы, мы можем сформулировать теорему о циркуляции вектора H:циркуляция вектора напряженности магнитного поля по некоторому контуру равна алгебраической сумме макроскопических токов, охватываемых этим контуром.

Напряженность магнитного поля является аналогом электрического смещения.

23)Условия для h и b на границе раздела двух изотропных магнетиков :

Рассмотрим поведение линий векторов магнитной индукции и напряжённости магнитного поля при переходе через границу раздела двух магнетиков.

Представим себе две однородные, изотропные полубесконечные среды с магнитными проницаемостями и, имеющие плоскую горизонтальную границу раздела. Пусть оба магнетика находятся в однородном внешнем магнитном поле. Чтобы понять, как происходит преломление линий векторов магнитной индукциии напряжённости магнитного полячерез эту границу, рассмотрим проекции этих векторов на саму границу и на направление, перпендикулярное границе и назовём их касательными и нормальными составляющими, соответственно.

Пусть и─ нормальные составляющие векторов магнитной индукции и напряжённости магнитного поля, аи─ касательные составляющие тех же векторов в верхней среде, имеющей магнитную проницаемость. Аналогичные величины в нижней среде, имеющей магнитную проницаемость, обозначим

.

Представим себе, что линии вектора преломляются при переходе через границу раздела так, как показано на рис. 1. Рассмотрим при этом преломление пока только одной силовой линии.

Поместим на границе раздела воображаемую цилиндрическую поверхность с высотой h значительно меньшей радиусов оснований S1 и S2, лежащих по обе стороны от границы раздела и параллельных ей. На рисунке также показана нормаль

к границе раздела и к обоим основаниям.

Запишем теорему Гаусса для магнитной индукции:

или ,

где S ─ замкнутая поверхность, состоящая из боковой поверхности и оснований цилиндра.

Этот круговой интеграл можно разбить на 3 интеграла, каждый из которых равен потоку через верхнее и нижнее основания и боковую поверхность

.

Здесь и─ нормальные составляющие векторов магнитной индукции в верхнем и нижнем магнетиках, соответственно,─ среднее значение проекции вектора магнитной индукции на нормаль к боковой поверхности.

Поскольку оба магнетика помещены в однородное внешнее магнитное поле, то все интегралы можно заменить соответствующими произведениями:

.

Как и в предыдущей формуле, здесь первая составляющая магнитного потока

положительна, так как силовые линии выходят из поверхности, а вторая составляющая─ отрицательна, так как силовые линии входят в поверхность(вектораиспроектированы на одну и ту же нормаль). Третьей составляющей ─можно пренебречь, так как высота цилиндра выбрана очень малой по сравнению с радиусами оснований, т. е., если
, то.

Учитывая, что , получим:

. (1)

Используя связь магнитной индукции и напряжённости магнитного поля

, (2)

и, применяя её для первого и второго магнетиков в формуле (1), получим:

.

Отсюда следует

. (3)

studfile.net

Формула напряжённости магнитного поля

ОПРЕДЕЛЕНИЕ

Напряжённость магнитного поля равна разности вектора магнитной индукции и вектора намагниченности.

   

Здесь – напряжённость магнитного поля, – магнитная индукция, – магнитная постоянная, — намагниченность.

Единица измерения напряжённости магнитного поля – А/м (ампер на метр).

Напряжённость – векторная величина, характеризующая интенсивность воздействия магнитного поля на намагниченную заряжённую частицу (пробный магнит) в конкретной точке. В векторной форме уравнение выглядит так:

   

Примеры решения задач по теме «Напряжённость магнитного поля»

ПРИМЕР 1
Задание Найти напряжённость магнитного поля в точке, в которой магнитная индукция равна 9 Тл, а намагниченность 7 мА/м.
Решение Переведём кА в А : мА = А. Подставим значения в формулу:
Ответ Напряжённость магнитного поля равна ампер на метр.
ПРИМЕР 2
Задание Катушка создаёт внутри себя однородное магнитное поле напряжённостью H. Вектор отличается от на угол в плоскости и в плоскости . Вектор отличается от на углы и соответственно. Найти значения Hв проекции на указанные плоскости. В данной системе координат вектор Hсовпадает с осью .
Решение В векторном виде формула напряжённости поля выглядит так:

   

Если рассмотреть плоскость , то вектор Hбудет катетом прямоугольного треугольника, а вектор – гипотенузой. Угол вежду ними известен: . В плоскости тоже будет катетом, а – гипотенузой. Значит в обоих случаях:

   

Аналогичные рассуждения верны и для . Значит:

   

   

Ответ
Читайте также:

Все формулы по физике

Формула напряжённости электрического поля

Формула удельного веса

Формула количества теплоты

Формула пути

Формула силы натяжения нити

ru.solverbook.com

Напряжённость магнитного поля — это… Что такое Напряжённость магнитного поля?

Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В СИ: где  — магнитная постоянная.

В СГС:

  • В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ0μ H в системе СИ (см. Магнитная проницаемость, также см. Магнитная восприимчивость).

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ0 в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальное B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.

См. также

Примечания

  1. Действительно, для иллюстрации рассмотрим выражение для так называемой плотности энергии поля в среде для сравнительно простого случая линейной связи намагниченности напряженности магнитного поля Тогда (используем здесь СИ) раскрывается как
    где первый член — энергия магнитного поля в чистом виде, поскольку второй — совершенно очевидно энергия взаимодействия поля со средой — например с магнитными диполями парамагнетика.

dic.academic.ru

Электромагнетизм

1. Вращающий момент, действующий на рамку с током со стороны магнитного поля. Магнитный момент рамки с током. Вращающий момент. Определение индукции магнитного поля. Единицы индукции и вращающего момента.

Поместив рамку в однородное магнитное поле, на нее действует пара сил, которая создает вращающий момент.

2. Напряженность магнитного поля и ее связь с индукцией. Единица напряженности.

Вектор магнитной индукции является общей характеристикой точек магнитного поля независимо от того, как создается магнитное поле: намагниченным телом или проводником с током находящимся в данной среде.

Однако можно ввести некоторую характеристику магнитного поля не зависящую от среды, а определяющуюся токами и конфигурацией проводников — вектор напряженности магнитного поля. Эти две характеристики (одна общая, а другая частная) связаны между собой: где — абсолютная магнитная проницаемость вакуума,μ — относительная магнитная проницаемость среды, для вакуума μ = 1.

Напряженностью магнитного поля – отношение механической силы, действующей на положительный полюс пробного магнита, к величине его магнитной массы или механическая сила, действующая на положительный полюс пробного магнита единичной массы в данной точке поля.

Единица напряженности магнитного поля — ампер на метр (А/м): 1 А/м — напряженность такого поля, магнитная индукция которого в вакууме равна 4π*Тл.

3. Изображение магнитных полей с помощью силовых линий индукции (напряженности). Вид линий магнитной индукции прямого и кругового токов, соленоида. Правила, но которым определяют направление линий магнитной индукции.

4. Магнитные поля проводников с токами. Закон Био-Савара-Лапласа.

Магнитное поле – это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.

Закон Био-Савара-Лапласа:

В векторной форме:

В скалярной форме:

5. Применение закона Био-Савара-Лапласа для определения напряженности поля, создаваемого:

а) прямым проводником конечной длины (вывод формулы)

б) бесконечно длинным прямым проводником (вывод формулы)

в) круговым проводником в центре (вывод формулы)

г) соленоидом и тороидом

д) круговым проводником на оси (без вывода)

6. Сила Ампера. Правило для определения направления силы Ампера.

На проводник с током, находящийся в магнитном поле, действует сила, равная F = I·L·B·sina

I — сила тока в проводнике; B — модуль вектора индукции магнитного поля; L — длина проводника, находящегося в магнитном поле; a — угол между вектором магнитного поля инаправлением тока в проводнике.

Сила Ампера – Сила, действующую на проводник с током в магнитном поле.

Максимальная сила Ампера равна: F = I·L·B. Ей соответствует a = 90.

Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

studfile.net

Магнитное напряжение определение. Магнитное напряжение формула.

Магнитное напряжение

Что такое магнитное напряжение?

Магнитное напряжение определение

Определение магнитного напряжения:

Магнитное напряжение на прямолинейном участке контура есть произведение длины участка и проекции вектора магнитной напряженности на этот прямолинейный участок.

Всё это относится к однородному магнитному полю. Если поле не однородно или участок контура не прямой, то выбирают малую часть контура, которую можно считать прямолинейной, а магнитное поле в месте расположения этого участка однородным.

Магнитное напряжение формула

На картинке выше показано однородное магнитное поле с вектором напряженности H и криволинейный контур L. Контур криволинейный, поэтому определить магнитное напряжение сразу на всём контуре невозможно. Выделим на контуре отрезок ΔL (показан жирной линией), который можно считать прямолинейным, и будем находить магнитное напряжение только на этом участке. Проекция вектора напряженности магнитного поля H на направление отрезка ΔL равна:

HL = H * cos α

где α – угол между вектором H и отрезком ΔL.

Магнитное напряжение на отрезке ΔL (формула магнитного напряжения):

Um = (H * cos α) * ΔL = HL * ΔL

Выделив прямолинейные участки на остальных частях контура L, найдём магнитные напряжения на них. Тогда полное магнитное напряжение на всём контуре L будет равно сумме магнитных напряжений участков:

UL = Σ HL * ΔL

Измеряется магнитное напряжение в амперах: А.

Магнитное напряжение вдоль контура L зависит от формы этого контура.

Задача про магнитное напряжение

Теперь решим простую задачу: как будут соотноситься магнитные напряжения на отрезках ΔL, ΔL1 , ΔL2 (см. рисунок), т.е. где они больше, а где меньше? Длины всех участков одинаковы, магнитное поле всюду однородно.

Решение. При этих условиях магнитные напряжения на означенных отрезках будут отличаться только величинами проекций вектора напряженности магнитного поля на направления этих отрезков. Отрезок ΔL1 расположен под меньшим углом к направлению вектора Η по сравнению с отрезками ΔL и ΔL2, значит cos α ближе к единице и магнитное напряжение там будет больше. Отрезок ΔL2 расположен под прямым углом к направлению вектора напряженности, значит проекция вектора напряженности Η на направление отрезка ΔL2 будет равна нулю.

А теперь внимание, правильный ответ: наибольшее магнитное напряжение получим на отрезке ΔL1, а наименьшее — на отрезке ΔL2.

www.sbp-program.ru

Магнитное поле в веществе. Часть 1

Всем доброго времени суток. В прошлой статье я рассказывал о основной характеристике магнитного поля – магнитной индукции, однако приведённые расчётные формулы соответствуют магнитному полю в вакууме. Что в практической деятельности встречается довольно редко. Когда проводники с током находятся в какой–либо среде, даже в воздухе, магнитное поле, которое они создают, претерпевает некоторые, а иногда и существенные изменения. Какие изменения происходят с магнитным полем, и от чего это зависит, я расскажу в данной статье.

Как связана индукция и напряженность магнитного поля?

Магнетиком называется вещество, которое под действием магнитного поля способно намагничиваться (или как говорят физики приобретать магнитный момент). Магнетиками являются практически все вещества. Намагничивание веществ объясняется тем, что в веществах присутствуют свои собственные микроскопические магнитные поля, которые создаются вращением электронов по своим орбитам. Когда внешнее магнитное поле отсутствует, то микроскопические поля расположены произвольным образом, а под воздействием внешнего магнитного поля соответствующим образом ориентируются.

Для характеристики намагничивания различных веществ используют так называемый вектор намагничивания J.

Таким образом, под действием внешнего магнитного поля с магнитной индукцией В0, магнетик намагничивается и создает свое магнитное поле с магнитной индукцией В’. В итоге общая индукция В будет состоять из двух слагаемых

Тут возникает проблема вычисления магнитной индукции намагниченного вещества В’, для решения которой необходимо считать электронные микротоки всего вещества, что практически нереально.

Альтернативой данного решения есть ввод вспомогательных параметров, а именно напряженность магнитного поля Н и магнитная восприимчивость χ. Напряженность связывает магнитную индукцию В и намагничивание вещества J следующим выражением

где В – магнитная индукция,

μ0 – магнитная постоянная, μ0 = 4π*10-7 Гн/м.

В то же время вектор намагничивания J связан с напряженность магнитного поля В параметром, характеризующим магнитные свойства вещества и называемым магнитной восприимчивостью χ

где J – вектор намагничивания вещества,

μr – относительная магнитная проницаемость вещества.

Однако наиболее часто для характеристики магнитных свойств веществ используют относительную магнитную проницаемость μr.

Таким образом, связь между напряженностью и магнитной индукцией будет иметь следующий вид

где μ0 – магнитная постоянная, μ0 = 4π*10-7 Гн/м,

μr – относительная магнитная проницаемость вещества.

Так как намагничивание вакуума равна нулю (J = 0), то напряженность магнитного поля в вакууме будет равна

Отсюда можно вывести выражения напряженности для магнитного поля, создаваемого прямым проводом с током:

где I – ток протекающий по проводнику,

b – расстояние от центра провода до точки, в которой считается напряженность магнитного поля.

Как видно из данного выражения единицей измерения напряженности является ампер на метр (А/м) или эрстед (Э)

Таким образом, магнитная индукция В и напряженность Н являются основными характеристиками магнитного поля, а магнитная проницаемость μr – магнитной характеристикой вещества.

Намагничивание ферромагнетиков

В зависимости от магнитных свойств, то есть способности намагничиваться под действием внешнего магнитного поля, все вещества делятся на несколько классов. Которые характеризуются разной величиной относительной магнитной проницаемости μr и магнитной восприимчивости χ. Большинство веществ являются диамагнетиками (χ = -10-8 … -10-7 и μr < 1) и парамагнетиками (χ = 10-7 … 10-6 и   μr > 1), несколько реже встречаются ферромагнетики (χ = 103 … 105 и   μr >> 1). Кроме данных классов магнетиков существует ещё несколько классов магнетиков: антиферромагнетики, ферримагнетики и другие, однако их свойства проявляются только при определённых условиях.

Особый интерес в радиоэлектронике ферромагнитные вещества. Основным отличием данного класса веществ является нелинейная зависимость намагничивания, в отличие от пара- и диамагнетиков, имеющих линейную зависимость намагничивания J от напряженности Н магнитного поля.


Зависимость намагничивания J ферромагнетика от напряженности Н магнитного поля.

На данном графике показана основная кривая намагничивания ферромагнетика. Изначально намагниченность  J, в отсутствие магнитного поля (Н = 0), равна нулю. По мере возрастания напряженности намагничивание ферромагнетика проходит довольно интенсивно, вследствие того что его магнитная восприимчивость и проницаемость очень велика. Однако по достижении напряженности магнитного поля порядка H ≈ 100 А/м увеличение намагниченности прекращается, так как достигается точка насыщения JНАС. Данное явление называется магнитным насыщением. В данном режиме магнитная проницаемость ферромагнетиков сильно падает и при дальнейшем увеличении напряженности магнитного поля стремится к единице.

Гистерезис ферромагнетиков

Еще одной особенностью ферромагнетиков является наличие петли гистерезиса, которая является основополагающим свойством ферромагнетиков.


Петля гистерезиса ферромагнетика.

Для понимания процесса намагничивания ферромагнетика изобразим зависимость индукции В от напряженности Н магнитного поля, где красным цветом выделим основную кривую намагничивания. Данная зависимость довольно неопределенна, так как зависит от предыдущего намагничивания ферромагнетика.

Возьмём образец ферромагнитного вещества, которое не подвергалось намагничиванию (точка 0) и поместим его в магнитное поле, напряженность Н которого начнем увеличивать, то есть зависимость будет соответствовать кривой 0 – 1, пока не будет достигнуто магнитное насыщение (точка 1). Дальнейшее увеличение напряженности не имеет смысла, потому как намагниченность J практически не увеличивается, а магнитная индукция увеличивается пропорционально напряженности Н. Если же начинать уменьшать напряженность, то зависимость В(Н) будет соответствовать кривой 1 – 2 – 3, при этом когда напряженность магнитного поля упадёт до нуля (точка 2), то магнитная индукция не упадёт до нуля, а будет равна некоторому значению Br, которое называется остаточной индукцией, а намагничивание будет иметь значение Jr, называемое остаточным намагничиванием.

Для того чтобы снять остаточное намагничивание и уменьшить остаточную индукцию Br до нуля, необходимо создать магнитное поле, противоположное полю, вызвавшему намагничивание, причем напряженность размагничивающего поля должна составлять Нс, называемая коэрцитивной силой. При дальнейшем росте напряженности магнитного поля, которое противоположно первоначальному полю, происходит насыщение ферромагнетика (точка 4).

Таким образом, при действии на ферромагнетик переменного магнитного поля зависимость индукции от напряженности будет соответствовать кривой 1 – 2 – 3 – 4 – 5 – 6 – 1, которая называется петлёй гистерезиса. Таких петель для ферромагнетика может быть множество (пунктирные кривые), называемые частными циклами. Однако, если при максимальных значениях напряженности магнитного поля происходит насыщение, то получается максимальная петля гистерезиса (сплошная кривая).

Так как магнитная проницаемость μr ферромагнетиков имеет довольно сложную зависимость от напряженности магнитного поля, поэтому нормируются два параметра магнитной проницаемости:

μн – начальная магнитная проницаемость соответствует напряженности Н = 0;

μmax – максимальная магнитная проницаемость достигается в магнитном поле при приближении магнитного насыщения.

Таким образом, у ферромагнетиков величины Br, Нс и μнmax) являются основными характеристиками, влияющими на выбор вещества в конкретном случае.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о