+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

AC/DC: что такое полярность тока

Вы знаете, что означают надписи AC (переменный ток) и DC (постоянный ток) на сварочных аппаратах и электродах? По сути эти термины описывают полярность электрического тока, который вырабатывается источником питания и направляется к рабочему изделию через электрод. Выбор правильной полярности для той или иной марки электродов оказывает существенное влияние на прочность и качество соединений – поэтому не забывайте проверить надпись на упаковке! Чтобы лишний раз убедиться, Вы можете сделать две пробные попытки с разной полярностью на краю рабочего изделия.

В обиходе используются термины «прямая» и «обратная» полярность или «электрод-отрицательная» и «электрод-положительная» полярность. Последнее звучит более наглядно и поэтому здесь мы будем использовать именно эти обозначения.

Полярность обусловлена тем, что электрический контур имеет отрицательный и положительный полюсы. Постоянный ток (DC) все время движется в одном направлении, из-за чего его полярность всегда одинакова. Переменный ток (AC) половину времени движется в одном направлении и половину – в другом. Таким образом, при частоте 60 Герц полярность тока меняется 120 раз в секунду.

Сварщик должен хорошо понимать, что такое полярность и какое влияние она оказывает на процесс сварки. С некоторыми исключениями электрод-положительная (обратная) полярность обеспечивает более глубокое проплавление. Электрод-отрицательная (прямая) полярность имеет более высокую производительность расплавления электрода и, как следствие, производительность наплавки. На это могут влиять химические вещества в покрытии. Электроды из углеродистой стали с покрытием целлюлозного типа, например, Fleetweld 5P или Fleetweld 5P+, обычно рекомендуют использовать с положительной полярностью. Некоторые типы электродов для сварки в среде защитных газов пригодны для сварки с обоими типами полярности.

Применение сварочных аппаратов трансформаторного типа породило необходимость в электродах, пригодных для сварки с любой полярностью из-за постоянных смен направления переменного тока. Хотя переменный ток сам по себе не имеет полярности, если электроды для сварки на переменном токе использовать с постоянным, они покажут более низкие результаты. Поэтому производители электродов обычно указывают наиболее подходящую полярность на покрытии и упаковке электродов.

Чтобы обеспечить необходимое проплавление, однородную форму шва и высокие сварочные характеристики, обязательно нужно использовать подходящую полярность. Неправильная полярность вызовет недостаточное проплавление, непостоянную форму шва, избыточное разбрызгивание, сложности с контролем дуги, перегрев и быстрое сгорание электрода.

На большинстве аппаратов четко обозначены контакты или подробно описано, как их настроить на определенную полярность. Например, некоторые аппараты имеют переключатель полярности, а на других для этого нужно сменить кабельные разъемы. Если Вы не уверены, какая в данный момент используется полярность, есть два несложных способа это выяснить. Первый – это сварка угольным электродом для постоянного тока, который будет нормально работать только при прямой полярности. Второй – сварка электродом Fleetweld 5P, который показывает намного лучшие результаты с обратной полярностью.

 

Проверка полярности:

А: Определение полярности с помощью угольного электрода

1. Проведите очистку основного металла и расположите его горизонтально.
2. Заострите кончики двух угольных электродов на шлифовальном диске, чтобы они имели одинаковую форму в плавным скосом, начинающимся в 5–7.5 см от кончика электрода.
3. Вставьте один электрод в электрододержатель возле начала скоса.
4. Настройте силу сварочного тока 135–150А.
5. Выберите интересующую Вас полярность.
6. Подожгите дугу (не забывайте о маске) и некоторое время подождите. Увеличьте длину дуги, чтобы было удобнее наблюдать действие дуги.

7. Понаблюдайте за дугой. При электрод-отрицательной (прямой) полярности дуга имеет коническую форму и отличается высокой стабильностью, легкой управляемостью и однородностью.
При электрод-положительной (обратной) полярности дугой достаточно сложно управлять. Она будет оставлять черные отложения углерода на основном металле.
8. Смените полярность. Подожгите дугу вторым электродом и подождите такое же время. Понаблюдайте за дугой.
9. Сравните кончики двух электродов. При прямой полярностью электрод сгорает равномерно, сохраняя свою форму. При обратной полярности электрод быстро сгорает и принимает плоскую форму.


Б. Определение полярности с помощью металлического электрода (E6010)

1. Проведите очистку основного металла и расположите его горизонтально.
2. Настройте силу сварочного тока 130–145 А (для электродов диаметром 4 мм).
3. Выберите одну из полярностей.
4. Подожгите дугу. Начните сварку, соблюдая стандартную длину дуги и угол наклона электрода.
5. Прислушайтесь к звуку дуги. При подходящей полярности, нормальной длине дуги и силе тока, дуга будет издавать равномерный «треск».
Неправильная полярность при нормальной длине дуги и силе тока вызовет нерегулярный «хруст» и «хлопки» и нестабильность дуги. См. выше, как ведет себя дуга и как выглядит шов при использовании металлического электрода с правильной и неправильной полярностью.
7. Смените полярность и создайте второй шов.

8. Проведите чистку швов и внимательно их осмотрите. При неправильной, прямой полярности шов будет иметь отрицательные характеристики, перечисленные в Уроке 1.6.
9. Повторите несколько раз, пока Вы не научитесь быстро определять текущую полярность.

www.lincolnelectric.com

Разница между переменным и постоянным током

Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.

Что такое AC? (Условное обозначение на электроприборах) Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.

Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.

Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:

АС: Электростанции и генераторы переменного тока производят переменный ток.

DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.

Применение переменного и постоянного тока:

АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин, и практически всего промышленного оборудования.

DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.

Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину  напряжения до (110 или 230 В) для передачи его в наши дома.

Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что  контакт с высоким напряжением переменного тока является более опасным, чем с низким напряжением постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может  привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.
 

ae-project.com

Различие постоянного (dc-ток) и переменного (ac) тока

Если в инструкции на электрический двигатель, светодиодный прибор или другое устройство указан dc ток, значит, для подключения нужен соответствующий источник питания постоянного напряжения. Автономность обеспечивают с помощью аккумулятора достаточной емкости. Для функционирования стационарных установок применяют выпрямители. Асинхронный силовой агрегат или классическую лампу накаливания подключают непосредственно к стандартной сети переменного тока либо через устройство для регулировки напряжения.

Для подключения светодиода применяют электрическую схему преобразования

Что такое dc ток

Специфическое название создано из английского словосочетания «Direct Current» (dc – аббревиатура). Это обозначение в буквальном переводе подтверждает главную особенность такого тока – постоянное направление.

Виды токов

Для практического применения подходит постоянное питание либо синусоидальный сигнал. В этих ситуациях несложно стабилизировать параметры источника и рассчитать корректно электрическую схему, силовой агрегат или другое подключаемое оборудование. Периодически повторяющиеся помехи (пульсации) устраняют фильтрацией. Гораздо сложнее обеспечить длительный рабочий процесс, когда ток и напряжение изменяются произвольным образом.

Определение постоянного тока

Созданием разницы потенциалов на концах металлического проводника обеспечивают перемещение свободных электронов. Аналогичные процессы с иными носителями зарядов (ионами, дырками) происходят в газах, электролитах и полупроводниках. Необходимая для процесса энергия вырабатывается химическим способом в аккумуляторах и гальванических элементах. Ее создают преобразованием механической силы в электромагнитное поле с применением генератора. Вне зависимости от природы источника, ток в цепи будет стабильным, если поддерживать определенное dc напряжение.

Причины непостоянства

Экономичный переносной аппарат для измерения артериального давления выполняет свои функции на протяжении нескольких лет без установки новых батареек. Мощность потребления светодиодного освещения зала значительно больше. Такие устройства подключают к стандартной сети 220V через адаптер, который выравнивает напряжение и уменьшает амплитуду до необходимого уровня. Однако даже качественные преобразователи выполняют свои функции с допустимыми погрешностями. Постепенно уменьшается энергетический потенциал электрохимического источника. Отмеченные факторы объясняют действительное непостоянство измеряемых параметров в контрольной цепи.

Преобразование переменного напряжения с помощью диодов

По классическому определению, DC подразумевает неизменное направление движения заряженных частиц. Это значит, что показанный результат трансформации (б) с полуволнами одной полярности также соответствует заданному условию.

Важно! Постоянный ток – это частный случай однонаправленного тока, когда дополнительно обеспечивается стабилизация параметра с определенной точностью.

Основные характеристики тока

Принято обозначать рассматриваемый параметр через силу. Однако следует понимать, что в действительности речь идет об интенсивности перемещения заряженных частиц в определенном проводящем материале. Величина тока выражается в амперах. Для расчетов применяют формулы, которые могут означать взаимные связи основных электрических параметров и сопротивления цепи.

Формулы для практических расчетов с источником питания постоянного тока

Направление постоянного тока и обозначения на электроприборах и схемах

Чтобы упростить расчеты и создание электрических схем, принимают направленность этого параметра по направлению к точке с меньшим потенциалом (от плюса к минусу). В действительности частицы перемещаются именно таким образом только при положительном заряде. В металле направление потока электронов обратное, однако для исключения путаницы применяют обозначенный базовый принцип.

Изоляция положительных выводов (щупов, кабелей) обозначается красным цветом, отрицательных – черным или синим. Если в сопроводительном тексте указано dc напряжение, это значит, что и ток в соответствующей цепи будет постоянный. На чертежах и корпусах изделий применяют условные обозначения в виде параллельных линий (сплошной и прерывистой).

Для измерения постоянного тока переключатель мультиметра нужно перевести в соответствующее положение

К сведению. Анод (катод) – это выводы электронной лампы или другой детали, которые подключают к положительному (отрицательному) электроду аккумуляторной батареи.

Также можно встретить обозначение a c что это такое, подробно описано в заключительном разделе статьи. Прямая расшифровка сокращения от «alternating current» не всегда корректна. Однако в узком смысле подразумевают синусоиду с переменной полярностью, которая обозначается латинскими буквами «AC», характерным одиночным волнистым символом либо стандартным математическим знаком примерного равенства «≈».

Величина постоянного тока

Определение «сила» не является корректным. Тем не менее, его применяют с учетом общепринятых норм. Вернувшись к сути явления, можно определить силу тока (I) по количеству перемещенных за определенный временной интервал (t) зарядов:

I = Q/t.

По международным стандартам СИ подразумеваются единичные величины: ампер, кулон и секунда. Для работы с большими токами удобнее пользоваться производной (ампер-часом) с повышающим множителем 3 600.

К сведению. Измерения выполняются с помощью универсального мультиметра или специализированного амперметра. Прибор включают непосредственно в цепь либо используют вспомогательный шунт.

Плотность тока

Количество зарядов удобно оценивать с учетом размеров проводника и концентрации энергии в контролируемой области. Для этого пользуются производным параметром, плотностью тока (j). Его значение вычисляют по формуле:

j = I/S, где S – поперечное сечение в мм кв.

По j определяют безопасный диаметр жилы либо соответствующие размеры плавкого предохранителя. В зависимости от целевого назначения предотвращают разрушение материала при нагреве либо используют плановый разрыв токопроводящей цепи при чрезмерных нагрузках.

Постоянная dc-тока

Эту составляющую вычисляют по среднему за определенный временной период значению сигнала. В сложных условиях, при изменении частоты, образуется кривая линия. Если соблюдается периодичность (синусоида, равномерные импульсы), постоянная на графике изображается прямой линией.

Изменяющаяся компонента

Переменная составляющая определяет искажения формы сигнала, при особых условиях – энергетические потери. При значительном уровне такая компонента оказывает влияние на подключенную нагрузку с реактивными характеристиками. Переменный ток ac выполняет полезные функции только при подсоединении потребителей, совместимых с таким источником питания. Однако и в этом случае возникают проблемы, если не ограничить помехи при включении контактора или пусковой скачек напряжения на обмотке электродвигателя.

Различия в постоянном и переменном токе

При сохранении определенной разницы потенциалов поток зараженных частиц перемещается равномерно в одном и том же направлении. Если применить ток ас, отмеченная стабильность нарушается. В этой ситуации придется учитывать изменение рабочих параметров с частотой сигнала. Кроме наличия переходных процессов, усложняются правила вычислений.

Однако только переменное напряжение ac обеспечивает функциональность колебательного контура – базового компонента радиотехнической схемы. Электромагнитные волны распространяются на большое расстояние, что необходимо для передачи/приема информации. Отражение сигналов используется для радиолокации, дистанционных методов измерения и контроля. Переменный ток ac применяют для генерации энергии и вращения роторов двигателей.

В некоторых ситуациях определяющее значение приобретают особенности воспроизведения технологического процесса. Уместный пример – серия современных сварочных аппаратов:

  • если номинальный ток постоянный, проще выполнять рабочие операции, однако придется тщательно контролировать безопасный уровень напряжения в режиме холостого хода;
  • с переменным током сложнее сделать качественный шов, но именно такой вариант специалисты рекомендуют для соединения сваркой деталей из цветных металлов.

Какой выбрать вариант источника питания для создания эффективного функционального устройства? Для правильного ответа проект изучают в комплексе. Кроме схемотехники, оценивают энергетические затраты и целевое назначение.

Видео   

amperof.ru

ACϟDС. Понимание сварочного тока и полярности – ООО «ЦСК»

Сварка – это ручной труд, но сварщики должны обладать достаточным количеством технических знаний, даже если в школе физика для них была чем-то сверхъестественным. 

Одним из обязательных понятий, которые необходимо знать, является «сварочный ток». Сварщик должен хорошо понимать, что такое полярность и какое влияние она оказывает на процесс сварки.

На сварочных аппаратах и электродах можно заметить обозначения AC или DC, которые описывают полярность тока. Почему электрические токи и полярность возникают во время сварки? Давайте рассмотрим эти понятия внимательно.

 

Что такое переменный (AC) и постоянный (DC) ток?

AC от англ. «alternating current» обозначает переменный ток, а DC «direct current»постоянный ток.

АС чередует направление тока, а DС течет только в одном направлении.

Сварочные машины и электроды с маркировкой DC имеют постоянную полярность, тогда как маркированные AC изменяют полярность 120 раз в секунду с частотой тока 60 герц.

 

Чем переменный и постоянный ток различаются при сварке?

Сварка при постоянном токе (DC) создает более плавные и более устойчивые дуги, образуется меньше брызг. Легче производится сварка в вертикальном и верхнем положениях.

Тем не менее, переменный ток (AC) может быть предпочтительным выбором начинающих сварщиков, поскольку часто используется в недорогих сварочных аппаратах начального уровня. AC также распространен в судостроительной сварке или в любых условиях, где дуга может плавать из стороны в сторону.

 

Что такое полярность?

Электрическая цепь, возникающая при включении сварочного аппарата, имеет отрицательный и положительный полюс – это свойство называется полярностью. Полярность имеет большое значение при сварке, потому что выбор правильной полярности влияет на прочность и качество сварного шва. Использование неправильной полярности может привести к большому количеству брызг, плохому проплавлению и потере контроля сварочной дуги.

 

При сварке переменным током соблюдать полярность не требуется!

В свою очередь, сварка с использованием постоянного тока бывает двух типов:

 

— сварка током прямой полярности

— сварка током обратной полярности

Что такое прямая и обратная полярность постоянного тока (DC)?

Полярность
прямая обратная
отрицательная положительная
(–) (+)

 

Процесс сварки будет различаться в зависимости от направления, полярности тока: положительной (+) или отрицательной (–).

Положительная полярность постоянного тока (DC+) обеспечивает высокий уровень проплавления, в то время как отрицательная полярность постоянного тока (DC–) даст меньшее проплавление, но более высокую скорость осаждения (например, на тонком листовом металле). Различные защитные газы могут дополнительно влиять на процесс сварки.

Сварка током прямой полярности

Под сваркой прямой полярности принято понимать сварку, при проведении которой на свариваемую деталь (изделие) подаётся положительный заряд от сварочного аппарата, т.е. сварочный кабель соединяет свариваемое изделие с клеммой (+) сварочного аппарата. На электрод же подаётся отрицательный заряд через электрододержатель, соединённый кабелем с клеммой (–).

При сварке током прямой полярности основная температурная нагрузка ложится на металлическую свариваемую деталь. То есть, она разогревается сильнее, что позволяет углубить корень сварочного шва.

Ток прямой полярности рекомендуется применять при необходимости резки металлоконструкций и сварке толстостенных деталей, а также в иных случаях, когда требуется добиться большого выделения тепла, что как раз и является характерной особенностью такого типа подключения.

 

Сварка током обратной полярности

Под сваркой обратной полярности принято понимать сварку, при проведении которой на свариваемую деталь (изделие) подаётся отрицательный заряд от сварочного аппарата, т.е. сварочный кабель соединяет свариваемое изделие с клеммой (–) сварочного аппарата. На электрод же подаётся положительный заряд через электрододержатель, соединённый кабелем с клеммой (+).

При сварке током обратной полярности больше тепла выделяется на электроде, а нагрев детали сравнительно уменьшается. Это позволяет производить более «деликатную» сварку и уменьшает вероятность прожига детали.

Сварку током обратной полярности рекомендуется применять при необходимости сваривания тонких листов металла, нержавеющей, легированной стали, иных сталей и сплавов, чувствительных к перегреву.

 

Так как переменный ток (AC) наполовину положительный и наполовину отрицательный, его сварочные свойства находятся прямо в середине положительной и отрицательной полярности постоянного тока (DC). Некоторые сварщики выбирают переменный ток (AC), если они хотят избежать глубокого проплавления. Например, при ремонтных работах на ржавых металлах.

Хотя переменный ток сам по себе не имеет полярности, если электроды для сварки на переменном токе использовать с постоянным, они покажут более низкие результаты. Поэтому производители электродов обычно указывают наиболее подходящую полярность на покрытии и упаковке электродов.

Понимание направления и полярности сварочного тока важно для правильного выполнения сварочных работ. Знание того, как эти факторы влияют на ваш сварной шов, облегчит вашу работу.

Источник: www.weldingschool.com

 

Сварочные материалы и оборудование Вы можете приобрести на нашем сайте — сварочные электроды и сварочное оборудование.

Звоните нам по телефону: +7 (343) 266-44-33 или отправляйте заявку на e-mail: [email protected].

www.elektrodi.info

принцип работы, схемотехника, встроенное ПО / Habr

Импульсные преобразователи и силовая электроника в целом, всегда оставались чем-то сакральным для большинства любителей и профессионалов в области разработки электроники. В статье освещается пожалуй самая интересная тема в среде DIY-щиков и фанатов альтернативной энергетики — формирование синусоидального напряжения/тока из постоянного.

Думаю многие из вас наверняка видели рекламу, либо читали статьи, где была фраза «чистый синус». Вот именно о нем и пойдет речь, но не о маркетинговой составляющей, а о исключительно технической реализации. Я постараюсь максимально понятно рассказать о самих принципах работы, о стандартных (и не очень) схемотехнических решениях и самое главное — напишем и разберем ПО для микроконтроллера STM32, которое и сформирует нам необходимые сигналы.

Почему STM32? Да потому, что сейчас это самый популярный МК в СНГ: по ним много обучающей русскоязычной информации, есть куча примеров, а главное эти МК и средства отладки для них — очень дешевые. Скажу прямо — в коммерческом проекте я бы поставил только TMS320F28035 или подобный DSP из серии Piccolo от TI, но это уже совсем другая история.

Важно одно — STM32 позволяет стабильно управлять простыми «бытовыми» силовыми преобразователями от которых не зависит судьба мира работа какой-нибудь АЭС или ЦОДа.

Вот такую картину управляющих сигналов необходимо получить, чтобы превратить ток постоянный в переменный. И да — тут именно синус! Как в том фильме: «Видишь суслика? — Нет. — А он есть…»

Интересно узнать каким образом формируется синус? Хочется узнать как все-таки качают нефть киловатты энергии? Тогда добро пожаловать под кат!

1. Топологии для формирования синусоидального сигнала


Если спросить у толпы электронщиков: «Как можно сформировать синусоидальный сигнал?», то посыпятся предложения с десятком различных методов, но какой нужен нам? Давайте оттолкнемся от изначальной задачи — нам нужно превратить, например, 380В 10А в переменное напряжение 230В. В общем это «классический» случай, его мы можете увидеть в любом хорошем on-line UPS или инверторе. Получается нам надо преобразовать мощность около 4 кВт да еще и с хорошим КПД, не слабо, да? Я думаю подобное условие поубавит количество вариантов «рисования» синуса. Так что же нам остается?

В силовых преобразователях до 6-10 кВт применяется две основные топологии: полный мост и «полумост» со сквозной нейтралью. Выглядят они следующим образом:

1) Топология со сквозной нейтралью

Данная топология очень чаще всего встречается в бюджетных ИБП с синусом на выходе, хотя и такие авторитеты как APC и GE не брезгуют применять ее даже на достаточно больших мощностях. Что же их побуждает к этому? Давайте рассмотрим достоинства и недостатки данной топологии.

Плюсы:

  • Минимально возможное количество силовых транзисторов, а значит потери в 2 раза меньши и стоимость устройства тоже ниже
  • Сквозной ноль. Это упрощает процесс сертификации, особенно CE и ATEX. Связано это с тем, что сквозной ноль позволяет системам защиты по входу (например, УЗО) срабатывать так же при возникновение аварии в выходных цепях после преобразователя
  • Простая топология, что позволяем максимально уменьшить стоимость изделия при мелко-
    и средне серийном производстве

Минусы:

  • Необходимость двухполярного источника питания. Как видите на схему инвертора надо подавать ±380В и еще ноль
  • Удвоенное количество высоковольтных конденсаторов. Высоковольтные конденсаторы большой емкости и с малым ESR на мощностях от 3-4 кВт начинают составлять от 20 до 40%
    стоимости компонентов
  • Применение электролитических конденсаторов в «делителе». Они сохнут, подобрать конденсаторы с одинаковыми параметрами практически нереально, а если учесть, что параметры электролитов меняются в процессе эксплуатации, то и бессмысленно. Заменить на пленку можно, но дорого

Основные плюсы и минусы определены, так когда необходима это топология? Мое субъективное мнение: на мощностях до 500-1000 Вт, когда основополагающим требованием является стоимость, а не надежность. Явный представитель такого ширпотреба — это стабилизаторы от «А-электроника»: дешево, кое-как работает да и ладно. Для 60% потребителей в нашей стране этого достаточно и доступно по цене. Делаем выводы.

2) Мостовая топология

Мостовая топология… наверное самая понятная и самая распространенная топология в силовых преобразователях, а главное доступная разработчикам даже с небольшим опытом. После 10 кВт вы не встретите ничего другого кроме моста одно- или трехфазного. За что же его так любят?

Плюсы:

  • Очень высокая надежность. Она в основном обусловлена качеством системы управления силовыми транзисторами и не зависит от деградации компонентов
  • Входная емкость требуется в разы, а то и на порядок меньше. Необходимо лишь обеспечить расчетное значение ESR. Это позволяет использовать пленочные конденсаторы при сохранение себестоимости. Пленочные конденсаторы — не сохнут, лучше ведут в суровых температурах, рабочий ресурс на порядок выше, чем у электролитов
  • Минимальные пульсации напряжения на транзисторах, а значит можно применить транзисторы на меньшее напряжение
  • Простота и понятность алгоритмов работы. Это приводит к значительному уменьшению времени на разработку изделия, а также на его пуско-наладочные работы

Минусы:

  • Увеличенное количество силовых транзисторов, а значит необходимо более серьезное охлаждение. Увеличение цены на транзисторах, но за счет меньшего количества конденсаторов это скорее даже плюс
  • Повышенная сложность драйвера, особенно при требованиях к наличию гальванической развязки

Как видите из реальных минусов мостовой топологии лишь повышенное требование к охлаждению транзисторов. Многие подумают: «Тепла выделяетсябольше — значит КПД ниже!». Не совсем так… За счет уменьшенных выбросов ЭДС и более «жесткой» системы управления КПД у двух приведенных топологий примерно равный.

В 70% случаев мне приходится применять мостовую схему не только в DC/AC инверторах, но и в других преобразователях. Это связано с тем, что проектирую в основном промышленные решения и все чаще для европейских заказчиков, а там принято на дорогие промышленные устройства давать гарантию 5-15 лет. Классическое требование: «Хотим железку, чтобы можно было давать гарантию 10 лет», тут уже выбирать не приходится. Конечно, когда люди хотят устройство с минимальной ценой, то тут необходимо уже отталкиваться от конкретной задачи при выборе топологии.

Небольшой итог: в данной статье будет приведено ПО для работы мостового преобразователя (Н-мост или Full Bridge), но сам принцип формирования синуса одинаковый для всех топологий. Код можно будет также адаптировать и под 1-ю топологию, но это вы уже сами.

2. Формирование переменного тока с помощью мостового преобразователя


Для начала давайте разберем как вообще работает мостовой преобразователь. Смотрим на схемку и видим транзисторы VT1-VT4. Они позволяют нам подавать на нашу абстрактную нагрузку (резистор, например) тот или иной потенциал. Если мы откроем транзисторы VT1 и VT4, то получится следующее: VT4 один конец нагрузки подключит к минусу (GND), а транзистор VT1 подключит к +380В, на нагрузке появится разность потенциалов «380В — 0В», которая не равна нулю, а значит через нагрузку начнет протекать ток. Я думаю все помнят, что ученые договорились — ток протекает «от плюса к минусу». Получаем такую картину:

Что мы получили открыв VT1 и VT4? Мы подключили нашу нагрузку к сети! Если резистор заменить на лампочку, то он она бы просто загорелась. И еще мы не просто включили нагрузку, а определили направление тока, протекающего через нее. Это очень важно! А что было в это время с VT2 и VT3? Они были закрыты… совсем… намертво… Что будет если все таки VT2 или VT3 были так же открыты? Смотрим:

Предположим, что открылись транзисторы VT1, VT4 и VT2. Вспоминаем закон Ома, смотрим сопротивление канала у высоковольтных транзисторов, например, IPP60R099P7XKSA1 и видим 0.1 Ом, у нас их 2 последовательно — значит сопротивление цепи VT1 и VT2 у нас около 0.2 Ом. Теперь посчитаем ток, которые пойдет через эту цепь: 380В / 0.2 Ом = 1900А. Думаю всем понятно, что это КЗ? Так же думаю всем понятно почему VT2 и VT3 должны быть закрыты?

Данный «феномен» называется — сквозной ток. И именно с ним идет большая война в силовой электронике. Как его избежать? Создать систему управления, алгоритм которой будет жестко запрещать одновременной открытие лишнего транзистора.

Зачем же нужны тогда транзисторы VT2 и VT3? Помните я писал, что очень важно направление тока? Давайте вспомнит что такое переменные ток. Собственно это ток, который имеет что-то переменное, в данном случае направление тока. У нас в розетке протекает ток, который меняет свое направление 100 раз в секунду. Давайте теперь закроем VT1 и VT4, а затем откроем транзисторы VT2 и VT3 и получим такую картину:

Как видите направление тока (обозначено стрелками) изменилось на противоположное. Использование моста позволило нам менять направление тока, о чем это говорит? Да, мы получили переменный ток!

Прошу обратить внимание, что у моста есть как бы 2 диагонали: первая диагональ образована VT1+VT4, а вторая диагональ образована с помощью VT2+VT3. Данные диагонали работают по очереди, коммутирую ток сначала в одну сторону, а потом в другую.

Вот мы получили переменный ток, скажите вы, но не все так просто… У нас есть стандарт — сетевое напряжение. Оно нормируется двумя основными параметрами: напряжение и частота. Давайте пока разберемся с частотой, ибо вопрос напряжения простой и чисто схемотехнический.

И так частота… что о ней известно — она 50 Гц (бывает 60Гц в Штатах). Период сигнала равен 20 мс. Синусоида штука симметричная в данном случае, а значит наши 2 полуволны (положительная и отрицательная) имеют одинаковую длительность, то есть 10 мс + 10 мс. Надеюсь тут все понятно.

Что это значит в физическом смысле? Да то, что нам нужно менять направление тока в нагрузке каждые 10 мс. Получаем, что сначала у нас открыта 10 мс диагональ VT1+VT4, а затем она закрывается и на следующие 10 мс открывается диагональ VT2+VT3.

Что значит открыть транзистор и какой сигнал на него подаватьДавайте отвлечемся немного на принцип управления транзисторами. Я использую полевые N-канальные транзисторы с изолированным затвором (Mosfet).

«Открытый транзистор» — это транзистор, на затвор (G) которого подали положительный потенциал (+10..18В) относительно истока (S) и транзистор изменил сопротивление канала (S-D) с бесконечно большого (2-100 МОм) на малое (обычно 0.1 — 1 Ом). То есть транзистор начал проводить ток.

«Закрытый транзистор» — это транзистор, затвор (G) которого подтянули к истоку (S) и его сопротивление изменилось с маленького до бесконечно большого. То есть транзистор перестал проводить ток.

Для лучше ознакомления с принципом работы полевого транзистора или IGBT — советую вам прочитать пару глав в книге Семенова «Основы силовой электроники» или другой источник, можно и википедию для начала.

Для управления мы подаем сигнал с Широтно-Импульсной Модуляцией или более привычная аббревиатура — ШИМ. Особенность данного сигнала в том, что у него есть 2 состояния: нижнее напряжение (GND) и верхнее напряжение (VCC), то есть подавая его на затвор транзистора мы или открываем его или закрываем — иного не дано. Про ШИМ тоже советую почитать дополнительно, ибо я вам описал для ленивых поверхностно.


И так, для того, чтобы у нас мост менял направление тока каждые 10 мс нам нужно подать на него ШИМ сигнал, период которого равен 20 мс, а скважность 50%. Это значит, что у нас из 20 мс плечо половину времени (10 мс) открыто и проводит ток, а другую половину закрыто. Подавать такой ШИМ нам надо на все ключи, но с одним условием — на диагональ VT1+VT4 мы подаем прямой ШИМ, а на диагональ VT2+VT3 уже инверсный. Если говорить более по-умному, то сигнал, подаваемый на диагонали должен иметь сдвиг 1800. Я думаю в этот момент у вас голова закипела в попытках понять текст, поэтому смотрим на его визуальное представление:

Теперь все понятно? Нет? Тогда подробнее… Как видите я отметил специально моменты открытия и закрытия транзисторов: открываются на «плюсе» и закрываются на «минусе». Также сигналы противоположны, то есть инверсные: когда синий сигнал «плюс», то зеленый сигнал «минус». Синий сигнал мы подаем на один на одну диагональ, а зеленый сигнал на другую — как видно на осциллограмме, наши диагонали никогда не открываются одновременно. Переменный ток готов!

Смотри на период. Специально показал осциллограмму с выходов контроллера, чтобы мои слова не были абстракцией. Период сигнала составляет 20 мс, одна диагональ открыта 10 мс и создает положительную полуволну, другая диагональ так же открывается на 10 мс и создает уже отрицательную полуволну. Теперь надеюсь всем понятно, а кто и сейчас не понял — пишите в ЛС, проведу для вас индивидуальное занятие на пальцах. В подтверждение моих слов осциллограмма показывает наши заветные 50 Гц! Только расслабляться рано…

Мы получили переменный ток с частотой 50 Гц, но в розетке у нас синусода, а тут меандр — не дело. Формально можно подавать меандр на выход и питать им большинство нагрузок, например, импульсному блоку питанию все равно: синус или меандр. То есть для включения ноутбуков, телефонов, телевизоров, телефонов и прочего вам уже хватит, но если вы подключите двигатель переменного тока, то все будет очень плохо — он начнет греться и КПД его ощутимо меньше, а в итоге скорее всего сгорит. Вы думаете у вас нет двигателей дома? А компрессор холодильника? А циркулярный насос отопления? Последние вообще горят как будто из дерева сделаны. Такая же ситуация с глубинными насосами для скважин, да и вообще много с чем. Получается, что синусоидальный сигнал на выходе инвертора, стабилизатора или ИБП все таки бывает важен. Что же — надо его создать! Сейчас начнется совсем взрыв мозга…

3. Формирование синусоидальной формы сигнала с помощью ШИМ


Если говорить откровенно, то я не знаю как данный раздел преподнести на доступном языке. Вдруг кто не поймет, то прошу вас или погуглить дополнительно, или написать в комментарии или ЛС — попытаюсь персонально вам объяснить. Глаза боятся, а руки делают…

Давайте посмотрим как выглядит обычный график синуса:

Видим 2 оси: одна ось с периодом пи, пи/2 и далее, вторая с амплитудой от -1 до +1. В нашей задаче период измеряется в секундах и составляет 20 мс или 10 мс на каждую полуволну. Тут все просто и понятно, а вот с амплитудой веселее — просто примите как аксиому, что амплитуда у нас от 0 до 1000. Это значение скважности, которую устанавливает микроконтроллер, то есть 100 — это 10%, 500 — 50%, 900 — 90%. Логика думаю понятна. В следующей главе вы поймете почему от 0 до 1000, а пока перестроим наш график под наши значения:

Вот так выглядит график синуса курильщика, который соответствует нашей задачи. Как видите отрицательный полупериод я не обозначил, т.к. у нас он реализуется не с помощью синусоидального сигнала, а с помощью изменения направления тока переключением диагоналей моста.

По оси Х у нас время, а по оси Y скважность нашего ШИМ-сигнала. Нам нужно нарисовать синус с помощью ШИМа. Вспоминаем геометрию в школе, как мы строили графики? Правильно, по точкам! А сколько точек? Давайте построим синус по нескольким точкам О1(0,0) + О2(5,1000) + О3(10,0) + О4(15, -1000) + О5(20, 0) и получаем такой синус:

Построили и видим, что в принципе данный сигнал больше похож на синус чем обычный меандр, но это все равно не синус пока что. Давайте увеличим количество точек. Это кстати называется «дискретность сигнала» или в данном случае «дискретность ШИМа». А как узнать координаты этих точек? С крайними то просто было…

Расчет значений для формирования синуса

Как выше я говорил — синус у нас вполне себе симметричный. Если мы построим 1/4 периода, то есть от 0 до 5 мс, то дублируя этот кусок дальше — мы можем строить синус бесконечно долго. И так формула:

И так по порядку:
  • n — значение скважности в данной дискретной точке
  • A — амплитуда сигнала, то есть максимальное значение скважности. У нас это 1000
  • pi/2 — 1/4 периода синуса попадает в pi/2, если считаем 1/2 периода, то pi
  • x — номер шага
  • N — количество точек

Давайте для примера сделаем удобно условие, что у нас 5 точек. Получается у нас 1 шаг = 1 мс, это позволит легко график построить. Шаг дискретизации считается просто: период в котором строим график (5 мс) делим на количество точек. Давайте приведем формулу к человеческому виду:


Получаем шаг дискретизации 1 мс. Формулу для вычисления скважности оформим, например, в excel и получим следующую таблицу:

Теперь вернется к нашему графику синуса и построим его снова, но уже для большего количества точек и посмотрим как он изменится:

Как видим сигнал куда больше похож на синус, даже с учетом моего мастерства в рисовании, а точнее в уровне лени)) Я думаю результат не требует объяснений? По результатам построения выведем аксиому:

Чем больше точек, чем выше дискретизация сигнала, тем идеальнее форма синусоидального сигнала

И так, сколько же точек будем использовать… Понятно, что чем больше, тем лучше. Как посчитать:
  1. Использую для статьи старенький микроконтроллер STM32F100RBT6 (отладка STM32VL-Discovery), его частота 24 МГц.
  2. Считаем сколько тактов будет длиться период 20 мс: 24 000 000 Гц / 50 Гц = 480 000 тиков
  3. Значит половина периода длится 240 000 тиков, что соответствует частоте 24 кГц. Хотите повысить несущую частоту — берите камень шустрее. 24 кГц наши уши все таки услышат, но для тестов или железки, стоящей в подвале пойдет. Чуть позже я планирую перенести на F103C8T6, а там уже 72 МГц.
  4. 240 000 тиков… Тут логично напрашивается 240 точек на половину периода. Таймер будет обновлять значение скважности каждые 1000 тиков или каждые 41,6 мкс

С дискретностью ШИМа определились, 240 точек на пол периода с запасом хватит, чтобы получить форму сигнала как минимум не хуже, чем в сети. Теперь считаем таблицу, так же в excel как самый простой вариант. Получаем такой график:

Исходник таблицы и значений можно взять по ссылке — тут.

4. Управление мостовым преобразователем для формирования синуса


Мы получили таблицу синуса и что с ней делать? Нужно передавать эти значения с определенным шагом дискретизации, который у нас известен. Все начинается с того, что таймер инициализировался — время 0, скважность ноль. Далее мы отсчитываем шаг дискретизации 41,66 мкс и записываем в таймер значение ШИМа из таблицы 13 (0,13%), отсчитываем еще 41,66 мкс и записываем 26 (0,26%) и так далее все 240 значений. Почему 240? У нас 120 шагов на 1/4 периода, а нам надо нарисовать 1/2 периода. Значения скважности те же, только после того как они достигли 1000 мы записываем ее в обратной последовательность и получаем спад синуса. На выходе мы будем иметь вот такую осциллограмму:

Как видите мы получили кучу значений ШИМа в четко заданном периоде и его длительность составляет: 240 шагов х 41,66(!) мкс = 9998,4 мкс = 9,9984 мс ~ 10 мс. Мы получили половину периода для частоты сети 50 Гц. Сигнала как видите опять два и они в противофазе, как раз то, что нужно для управления диагоналями моста. Но позвольте, где же синус спросите вы? Настал момент истины! Давайте теперь сигнал с выхода микроконтроллера подадим на ФНЧ, я сделал простой ФНЧ на RC-цепочки с номиналами 1,5 кОм и 0,33 мкФ (под рукой просто были) и получил такой результат:

Вуаля! Вот он наш долгожданный синус! Красный луч осциллографа — это сигнал до ФНЧ, а желтый луч — сигнал уже после фильтрации. ФНЧ обрезал все частоты выше 321 Гц. У нас остался основной сигнал 50 Гц, ну и конечно его гармоники с небольшой амплитудой. Если хотите идеально очистить сигнал, то сделайте ФНЧ с частотой среза около 55-60 Гц, но пока это не важно, нам надо было лишь проверить получился ли у нас синус или нет. Кстати… у меня синхронизация осциллографа включена по желтому лучу (стрелка справа экрана) и мы видим внизу экрана его частоту — идеальные 50 Гц. Что еще можно пожелать? Пожалуй все, осталось определиться какой сигнал и куда подавать. Давайте рассмотрим такую картинку:

Если вы обратите на саааамую первую осциллограмму в статье, то увидите, что сигнал в желтом и синем лучше имеют одинаковую фазу, то есть они в одно время становятся положительными и открывают транзисторы. Эти 2 сигнала открывают диагональ VT1+VT4. Соответственно 2 других сигнала так же имеют одинаковую фазу и открывают другую диагональ. Теперь мы не просто меняем направление тока, но и задаем амплитуду с помощью ШИМ таким образом, чтобы она изменялась по синусоидальному закону. Теперь рассмотрим эту же схемку, но уже с токами:

Как видим ток через нагрузку протекает в противоположную сторону, меняя направление с частотой 50 Гц, а модулированный ШИМ, подаваемый на транзисторы VT1 и VT2 позволяет нарисовать синусоидальную форму сигнала на полуволнах.

ФНЧ (фильтр низкой частоты) выполнен на индуктивности L1 и конденсаторе C2. Частоту среза для данного фильтра советую считать менее 100 Гц, это позволит минимизировать пульсации напряжения по выходу.

На десерт покажу часть схемы реального устройства с подобной топологией и фильтром, она большая, поэтому скачиваем PDF-ку тут.

5. Борьба со сквозными токами


Я думаю не для кого не секрет, что нет ничего идеального? Тоже самое и с Mosfet-ами, у них есть ряд недостатков и мы рассмотрим один из них — большая емкость затвора. То есть, чтобы нам открыть транзистор надо не просто подать напряжение, но и этим самым напряжением зарядить конденсатор, поэтому фронт и спад сигнала затягивается. Это приводит к тому, что на границе сигналов может возникать момент времени, когда один транзистор еще полностью не закрылся, а другой уже начал открываться.

Подробнее о данном явление советую почитать, например, в этой статье. Я лишь расскажу как с ним бороться. Чтобы транзисторы успели нормально закрыться до открытия следующего плеча между управляющими сигналами вводят dead-time или проще говоря — временн

habr.com

Постоянный ток. Определение и параметры

Постоянный ток (DC — Direct Current) — электрический ток, не меняющий своей величины и направления с течением времени.

В реальности постоянный ток не может сохранять величину постоянной. Например, на выходе выпрямителей всегда присутствует переменная составляющая пульсаций. При использовании гальванических элементов, батареек или аккумуляторов, величина тока будет уменьшаться по мере расхода энергии, что актуально при больших нагрузках.

Постоянный ток существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины.

Постоянная составляющая тока и напряжения. DC

Если рассмотреть форму тока в нагрузке на выходе выпрямителей или преобразователей, можно увидеть пульсации — изменения величины тока, существующие, как результат ограниченных возможностей фильтрующих элементов выпрямителя.
В некоторых случаях величина пульсаций может достигать достаточно больших значений, которые нельзя не учитывать в расчётах, например, в выпрямителях без применения конденсаторов.
Такой ток обычно называют пульсирующим или импульсным. В этих случаях следует рассматривать постоянную DC и переменную AC составляющие.

Постоянная составляющая DC — величина, равная среднему значению тока за период.

AVG — аббревиатура Avguste — Среднее.

Переменная составляющая AC — периодическое изменение величины тока, уменьшение и увеличение относительно среднего значения .

Следует учитывать при расчётах, что величина пульсирующего тока будет равна не среднему значению, а квадратному корню из суммы квадратов двух величин — постоянной составляющей (DC) и среднеквадратичного значения переменной составляющей (AC), которая присутствует в этом токе, обладает определённой мощностью и суммируется с мощностью постоянной составляющей.

Вышеописанные определения, а так же термины AC и DC могут быть использованы в равной степени как для тока, так и для напряжения .

Отличие постоянного тока от переменного

По ассоциативным предпочтениям в технической литературе импульсный ток часто называют постоянным, так как он имеет одно постоянное направление. В таком случае необходимо уточнять, что имеется в виду постоянный ток с переменной составляющей.
А иногда его называют переменным, по той причине, что периодически меняет величину. Переменный ток с постоянной составляющей.
Обычно берут за основу составляющую, которая больше по величине или которая наиболее значима в контексте.

Следует помнить, что постоянный ток или напряжение характеризует, кроме направления, главный критерий — постоянная его величина, которая служит основой физических законов и является определяющей в расчётных формулах электрических цепей.
Постоянная составляющая DC, как среднее значение, является лишь одним из параметров переменного тока.

Для переменного тока (напряжения) в большинстве случаев бывает важен критерий — отсутствие постоянной составляющей, когда среднее значение равно нулю.
Это ток, который протекает в конденсаторах, силовых трансформаторах, линиях электропередач. Это напряжение на обмотках трансформаторов и в бытовой электрической сети.
В таких случаях постоянная составляющая может существовать только в виде потерь, вызванных нелинейным характером нагрузок.

Параметры постоянного тока и напряжения

Сразу следует отметить, что устаревший термин «сила тока» в современной отечественной технической литературе используется уже нечасто и признан некорректным. Электрический ток характеризует не сила, а скорость и интенсивность перемещения заряженных частиц. А именно, количество заряда, прошедшее за единицу времени через поперечное сечение проводника.
Основным параметром для постоянного тока является величина тока.

Единица измерения тока — Ампер.
Величина тока 1 Ампер — перемещение заряда 1 Кулон за 1 секунду.

Единица измерения напряжения — Вольт.
Величина напряжения 1 Вольт — разность потенциалов между двумя точками электрического поля, необходимая для совершения работы 1 Джоуль при прохождения заряда 1 Кулон.

Для выпрямителей и преобразователей часто бывает важными следующие параметры для постоянного напряжения или тока:

Размах пульсаций напряжения (тока) — величина, равная разности между максимальным и минимальным значениями.
Коэффициент пульсаций — величина, равная отношению действующего значения переменной составляющей AC напряжения или тока к его постоянной составляющей DC.

Похожие статьи: Параметры переменного тока.


Замечания и предложения принимаются и приветствуются!

tel-spb.ru

назначение, схема и принцип работы

Оценка статьи (5 / 1)

Инвертор DC/AC преобразует постоянный ток в переменный. При этом может изменяться величина электрического напряжения. Устройство представляет собой отдельный прибор или является частью системы источников бесперебойного питания для различной аппаратуры. Может иметь контроллер заряда.

Для чего нужен инвертор DC/AC

Преобразователи AC/DC используются постольку, поскольку маломощные генераторы постоянного тока не могут эффективно питать современные приборы.

Развитие технологий требует применения усовершенствованных способов защиты данных и аппаратуры при внезапном отключении электричества.

К примеру, если ПК сталкивается с отключением сети, инвертор DC/AC и резервный аккумулятор образуют источник бесперебойного питания. Это позволяет безопасным образом закончить работу устройства.

DC – это постоянный ток, AC – переменный. Инвертор также служит промежуточным элементом в цепи преобразователей энергии. В этом случае прибор работает на высокой частоте в десятки и сотни килогерц.

Как работает инвертор DC AC

Переменное напряжение в инверторе образуется за счет частых подключений источника постоянного напряжения к противоположным клеммам нагрузки. Направление движения тока в результате чередуется.

Принцип работы станет понятнее, если представить, что к резистору попеременно то минусом, то плюсом подключается батарейка. Чередование должно осуществляться с высокой скоростью.

Существуют импульсные преобразователи следующих типов:

  • Механические. Преобразование постоянного тока в переменный происходит за счет частого переключения контактов.
  • Полупроводниковые. Отличаются более высокой эффективностью.
  • Цифровые. Используются на телекоммуникационной аппаратуре.

Инвертор генерирует осциллирующие (колебательные) импульсы. Форма выходного напряжения устройства DC/AC бывает:

Используется в высокоточных и сложных приборах, восприимчивых к качеству напряжения. Синусоида получается благодаря широтно-импульсной модуляции. Инверторы с такой формой напряжения являются очень дорогими.

  • Квазисинусоидной, или ступенчатой.

Это более дешевый вид импульсного преобразователя напряжения. Подходит для установки на нагревательные и осветительные приборы бытового назначения.

  • Импульсной, или прямоугольной.

Из-за особенностей такой синусоиды, смена полярностей происходит резко. Для обычного пользователя это означает, что использование дешевого преобразователя напряжения может привести к нежелательной поломке таких чувствительных устройств как холодильник или стиральная машина. Опасности также подвержена дорогостоящая видеоаппаратура, аудиотехника.

Что стоит учитывать, определяя эффективность преобразователя питания:

  • КПД;
  • допустимый Power Factor (PF), или коэффициент мощности;
  • качество напряжения на выходе;
  • допустимый пик-коэффициент, или Crest Factor;
  • перегрузочную способность устройства.

В каких режимах может работать инвертор DC/AC:

  • Перегрузка. В этом случае преобразователь способен до 30 минут отдавать такую мощность, которая до полутора раз превышает номинальную.
  • Длительная работа. Функционирование осуществляется при номинальной мощности инвертора.
  • Режим пусковой. Устройство отдает повышенную мощность на несколько миллисекунд. Это запускает электродвигатели.

Инвертор DC/AC не рассчитан на постоянное функционирование в режиме пиковой мощности на протяжении длительного промежутка времени.

Инвертирующая схема

Классификация DC/AC по исполнению схемы:

  • Трансформаторные инверторы.

Предназначены для питания устройств мощностью до 500 Вольт-Ампер (В·А). Имеют относительно простую схему. Нулевой вывод трансформатора дает 2 напряжения с противоположной фазой и одинаковым значением.

  • Мостовые инверторы напряжения.

Схемы без трансформатора используются в устройствах, работающих с мощностью выше 500 ВА, или на высоковольтных установках.

  • Комбинированные.

Включают в себя мостовую схему с трансформаторами. Эта особенность комбинированных инверторов позволяет выпускать преобразователи, обладающие обширным диапазоном мощностей. Они могут колебаться от единиц и до десятков кВА.

Приведем схемы указанных преобразователей напряжения:

Инвертор DC AC — разновидности

Какие существуют классы AC/DC преобразователей в зависимости от принципа их действия:

Называются также «ведомыми». Преобразуют электроэнергию, отдавая ее в сеть переменного тока. Этот принцип действия представляет собой полную противоположность выпрямителя (так зовется прибор, преобразующий переменный ток AC в DC).

Занимаются преобразованием электротока с регулируемой или неизменной частотой. Работают на нагрузку, не имеющую связи с сетью переменного тока.

Какими бывают автономные преобразователи напряжения AC/DC:

Форма выходного напряжения таких инверторов зависит от порядка коммутации силовых ключей. На входе имеет конденсатор с большой емкостью. Форма тока на выходе задается характером нагрузки. В большинстве источников бесперебойного питания AC/DC используются инверторы АИН.

В этом случае характером нагрузки определяется именно форма выходного электрического напряжения, а не тока. На советских аэродромах использовался стационарный преобразователь АПЧС-63У1.

Резонансные инверторы чаще всего применяются для получения высокочастотного напряжения (от 0,5 до 10 кГц). Обычно работают на нагрузке в 1 фазу. Часто эксплуатируются в области электротермии, на установках индукционного нагрева.

В зависимости от конструкции:

  • Однофазный инвертор DC/AC. Может иметь на выходе так называемый «чистый синус» или сигнал упрощенной формы.
  • Двухфазный. Часто используются на сварочных аппаратах.
  • Трехфазные инверторы чаще всего нужны для подачи соответствующего тока на электродвигатели. Высокомощные устройства этого типа устанавливаются в тяговых преобразователях.
  • Многофазные.

Чем отличается инвертор DC AC от конвертора

Инвертор напряжения преобразует переменный ток (AC) в постоянный (DC), и наоборот. Устанавливается на промышленной технике, активно используется при работе с бытовыми приборами. Предназначен для подачи на устройства бесперебойного изолированного питания.

Инвертор DC AC используется также в сварочных аппаратах. Применение преобразователя позволяет уменьшить размеры и вес подобных приборов. Это способствует облегчению транспортировки и повышает удобство при эксплуатации данных устройств.

Существуют также приборы другого класса, предназначенные для понижения или повышения электрического напряжения переменного тока. Они называются «конвертеры» AC/AC.

Существуют и конвертеры DC/DC. Они преобразуют постоянное напряжение. Виды тока при этом не меняются. Будучи частью одной системы, они делают это таким образом, чтобы каждый отдельный аккумулятор получал именно то напряжение, которое ему нужно.

Где приобрести

Купить инвертор DC AC и оптроны можно в интернет-магазине «ТМ Электроникс». В каталоге представлен широкий выбор преобразователей.

Можно запросить звонок на сайте. Вам перезвонит менеджер и поможет сориентироваться в выборе продукции. Чтобы оформить заказ на сайте компании самостоятельно, добавьте товар в корзину и заполните форму.

Преимущества сотрудничества с «ТМ Электроникс»:

  • Быстрая доставка.

Товар распространяется по всей России. Доставим заказанный инвертор и любые сопутствующие электронные компоненты к терминалу транспортной компании или по указанному при оформлении покупки адресу. Курьер обязательно сообщит о своем приезде, если вы укажете свои контактные данные.

  • Богатый выбор продукции.

В наличии полупроводники, оптоэлектроника, трансформаторы, переключатели, кабели, компьютерные аксессуары и другие электронные комплектующие.

  • Гарантии качества.

Вся продукция сертифицирована. Полное соответствие существующим в сфере радиоэлектроники ГОСТам.

  • Качественный и надежный сервис, соответствующий европейским стандартам обслуживания.
  • Мы заказываем устройства и электронные компоненты к ним напрямую у производителя.

Это позволяет не завышать стоимость продукции и продавать технику по максимально выгодной для покупателя цене.

  • Техническая поддержка на русском языке.

Это обеспечивает покупателю удобство использования нашего сервиса на всех этапах сотрудничества.

  • Обширный опыт.

Поиск электронных компонентов под индивидуальные нужды каждого клиента. Осуществляется инженерная поддержка. Занимаемся подбором элементной базы.

  • Удобная оплата без комиссии. Купить инвертор можно онлайн, через электронный кошелек или по банковской карте.

Многолетний опыт позволяет нам предлагать покупателю только самый качественный товар. В TME продаются электронные компоненты от лучших зарубежных поставщиков.

Для посылок стандартных размеров предоставляем услугу бесплатной доставки. Условия пересылки крупногабаритных грузов рассчитываются отдельно. Возможен самовывоз из пунктов выдачи.

Читайте больше полезных и интересных статей в интернет-журнале PClegko.

PClegko

Специалист по компьютерным технологиям. Профессор и главный редактор журнала PClegko.

Latest posts by PClegko (see all)

pclegko.ru

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *