+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Аксиальный ветрогенератор своими руками фото и описание ветряка

>
Этот ветрогенератор специально проектировался под малые ветра, большой тихоходный генератор, который лежит в основе этого ветряка должен уже при слабом ветре 3_4м/с выдавать до 500ватт/ч. Естественно такие запросы потребовали серьезных расчетов, и конструкция генератора получилась прямо скажем не маленькой, но так и должно быть, все в угоду тихоходности и мощности на молом ветру.

На фотографиях вся работа по созданию этого ветряка. За основу генератора была взята автомобильная ступица, здесь использована ступица от автоприцепа. Для ротора, на котором располагаются магниты, были вырезаны два металлических диска диаметром 40см, и толщиной 12мм. Изготовление дисков мы заказывали, так-как обычная резка могла повести металл,они были вырезаны на специальном станке гидроабразивной резки, цена составила 70 долларов, но зато сделаны не хуже заводских и просверлены все необходимые отверстия под крепление на ступицу.

Поворотная ось генератора

Поворотная ось изготовлена из отрезка трех-дюймовой трубы длиной 400мм. Вал для ступицы закреплён внутри трубы длиной и диаметром 100мм через 2 стальных кольца. Стальной кронштейн для крепления хвоста выполнен из 1,2см стали, его высота 150мм. Кронштейн будет приварен к поворотной оси под углом 20гр., и относительно вала генератора в горизонтальной плоскости на 45гр. >
>
Для удобства дальнейшей работы из обрезков труб была сварена подставка, на которую одели поворотную ось генератора. Далее были нарезаны и приварены шесть пластин для крепления ротора, а так-же из фанеры вырезан шаблон для наклейки магнитов на дисках ротора, так-как магниты очень сильные и наклеить без шаблона очень проблематично.

Тестовая катушка

Следующим шагом на диски по шаблону с помощью супер-клея были наклеены магниты. В этом генераторе мы решили использовать 16 пар магнитов, по 16 на каждом диске, размеры магнитов 75*40*20мм.
Генератор будет трехфазным, с соотношением по 4 магнита на каждые 3 катушки, то-есть катушек будет 12, по 4 катушки на фазу. Перед тем как делать статор с катушками, мы изготовили тестовую катушку, чтобы определить мощность генератора и определиться каким сечением провода в дальнейшем мотать катушки статора. Для определения размеров катушки я нарисовал шаблон, поделил его на 12 секторов, нарисовал линии прохождения магнитов и определил размеры катушки, кстати внутренний диаметр катушки должен быть чуть больше или равным длине магнита, а внешний как можно больше, на сколько позволяет пространство. Ниже на фото мы намотали тестовую катушку, закрепили ее на заготовке из фанеры и закрепили на генераторе. >
>
>
>
>
>
>
Для тестовой прокрутки катушки мы использовали оптический тахометр для измерения оборотов, и мультиметр для снятия показаний. Сначала мы решили поэкспериментировать и покрутить генератор с одной половинкой ротора, при 70бо/м тестовая катушка выдала 2,4 вольта, а кода мы установили второй диск ротора, то напряжение катушки выросло до 5,5 вольт.
Далее мы намотали еще одну катушку более толстым проводом с меньшим количеством витков и покрутили на нагрузку 10 Ом, получилось 6 вольт и 6 ампер на 100об/м, это 36 ватт/ч с катушки, значит с 12-ти катушек генератора на 100об/м получится около 400ватт/ч. Мы правда ожидали большего, но некоторые потери возможно из-за слишком плотного размещения магнитов на дисках ротора, из-за этого часть магнитного поля замыкается на соседние магниты, а не проходит через статор. Но это первый такой большой генератор и мы учтем в будущем эти недочеты. >
>
После прокрутки генератора с тестовой катушкой мы принялись за изготовление статора. Статор это диск с залитыми в нем медными катушками. Для заливки из фанеры был изготовлен шаблон, на ранее расчерченный шаблон мы вырезали квадрат из фанеры с внутренним отверстием по диаметру статора, он у нас получился 50см, это на 10см больше диаметра дисков ротора. Катушки статора намотали двойным проводом 0,6мм, по 68витков в катушке, всего 12 катушек, по 4 на фазу.
Изначально мы хотели мотать проводом 3,3мм, но его в наличие не оказалось и мы решили мотать сдвоенным проводом.

Катушки статора мы закрепили между собой кусочками стеклоткани на супер-клее, после катушки были распаены в три фазы и соединенные звездой концы вывели на контактные соединения. Перед заливкой форму смазали автомобильным воском чтобы смола не пристала. Далее в форму налили немного полиэфирной смолы, кстати эта смола прочнее эпоксидной и менее чувствительна к высоким температурам, но правда при работе таксична, поэтому лучше соблюдать меры предосторожности. Из стеклоткани вырезали круг и утопили в шаблоне, на него выложили катушки, выровняли по центру. Катушки залили полностью смолой и положили сверху второй круг из стеклоткани, после закрыли кругом и стянули чтобы смола ровно легла и не вытекла из формы. Так-же смолой залили и магниты на дисках ротора.

>
>
>
>
После высыхания смолы готовый статор был извлечен из формы. Края немного обработали, просверлили отверстия для крепления. Болты для крепления решили использовать из немагнитного металла, так-как мощные магниты при вращении будут притягиваться к болтам и создавать залипание при старте и вибрацию при вращении генератора.

После сборки генератора мы принялись за сборку хвостовой части. Хвостовую часть ветряка мы собрали из труб, длинна хвоста составляет 2,5м. Длинна хвоста обычно равна длине радиуса винта, так как мы рассчитываем сделать винт диаметром 5м, значит длина хвоста 2,5м. Поворотная часть хвоста сделана из толстостенной трубы диаметром 5см, она одевается на приваренный к поворотной оси штырь. Хвост выполняет по классической схеме с уводом ветроголовки от сильного ветра. Винт под давлением ветра поворачивается в сторону, при этом хвост под углом складывается.

Перед покраской мы проверили как будет складываться хвост при сильном ветре уводя лопасти от ветра, и приварили ограничитель для того чтобы хвост складываясь не повредил лопасти. После завершения всех сварочных работ принялись за придание ветрогенератору красивого внешнего вида и защиты его от ржавчины. Для этого зачистили металлические поверхности, прогрунтовали и покрасили. На вид вроде нормально и зелёный цвет символ защиты природы от вредных выхлопов и загрезняющей природу деятельности человека, пускай владельцы дымящих бензогенераторов завидуют, и платят деньги за топливо.

>
>
>
>
>
После всех сварочных и молярных работ мы произвели окончательную сборку ветрогенератора. Установили статор и выставили зазор в 3мм, потом с таким же зазором устатовили второй диск с магнитами. Лопасти изготавливали из дерева, по рассчетам у нас выходил не маленький трехлопастной винт диаметром 5м, рассчеты велись по Пиготту. Лопасти мы закрепили на фанерном основании. Основа это два диска из фанеры через которые лопасти стянуты болтами. Перед стягиванием с помощъю рулетки мы вывели одинаковые расстояния от кончика до кончика каждой лопасти.
Винт крипится к генератору так-же с помощъю болтов.

Готовый ветрогенератор установили на мачту и через расстяжки поднимали с помощъю автомобиля. Мачту мы решили сделать как можно выше и она получилась 18 метров, из-за большого веса генератора и длинны мачты нам не с первого раза удалось поднять ветрогенератор. Чтобы облегчить нам пришлось снять винт и прднимать ветрогенератор без него, а винт потом ставить уже на поднятый генератор.

>
>
>
>
>
>
Этот ветрогенератор работает уже давольно продолжительное время, пока всё нормально и никаких проблем. Большая площадь лопастей позволяет ветрогенератору генерировать приличную мощность даже на очень слабом ветру от 2-х м/с. При скорости ветра в 4,5м/с ветряк выдаёт 400 ватт мощности, а при 7м/с примерно 1,5 киловатт. Иногда ветрогенератор при хорошем ветре расходится до 2-х киловатт, и пару раз при сильном ветре мощность доходила до 3,8 киловатта.
На постройку данной ветроустановки ушло примерно 20 дней.

Как сделать ветрогенератор своими руками

При росте цен на электроэнергию повсюду идёт поиск и разработка её альтернативных источников. В большинстве регионах страны целесообразно применять ветрогенераторы. Чтобы полностью обеспечить электричеством частный дом, требуется достаточно мощная и дорогостоящая установка.

Ветряной генератор для дома

Если сделать небольшой ветрогенератор, с помощью электрического тока можно подогревать воду или использовать для части освещения, например, хозяйственных построек, садовых дорожек и крыльца. Подогрев воды для хозяйственных нужд или отопления – это простейший вариант использования ветровой энергии без её аккумулирования и преобразования. Здесь вопрос больше заключается в том, достаточно ли мощности будет для отопления.

Перед тем как сделать генератор, сначала следует выяснить особенности ветров в регионе.

Большой ветрогенератор, для многих мест российского климата, мало подходит из-за частой смены интенсивности и направления воздушных потоков. При мощности выше 1 кВт он будет инерционным и не сможет в полной мере раскручиваться, когда меняется ветер. Инерция в плоскости вращения приводит к перегрузкам от бокового ветра, приводящим к его выходу из строя.

С появлением маломощных потребителей энергии имеет смысл применять небольшие самодельные ветрогенераторы не более чем на 12 вольт, чтобы освещать дачу светодиодными светильниками или заряжать телефонные аккумуляторы при отсутствии в доме электричества. Когда в этом нет необходимости, электрогенератор можно применять для нагрева воды.

Тип ветрогенератора

Для безветренной области подходит только парусный ветрогенератор. Чтобы электроснабжение было постоянным, понадобится аккумуляторная батарея не менее чем на 12В, зарядное устройство, инвертор, стабилизатор и выпрямитель.

Изготовить качественный и мощный ветрогенератор своими средствами сложно. Он будет дорого стоить, и вырабатывать не более 3-4 кВт. Здесь нужны другие альтернативные источники электричества.

Для слабоветренных районов можно самостоятельно изготовить вертикальный ветрогенератор, мощностью не более 2-3 кВт. Вариантов есть много и они почти не уступают промышленным образцам. Покупать целесообразно ветряки с парусным ротором. Надёжные модели мощностью от 1 до 100 киловатт выпускаются в Таганроге.

В ветреных регионах можно сделать генератор для дома своими руками вертикальный, если требуемая мощность составляет 0,5-1,5 киловатт. Лопасти можно изготовить из подручных средств, например, из бочки. Более производительные устройства целесообразно купить. Самыми дешёвыми являются «парусники». Вертикальный ветряк стоит дороже, но он надёжней работает при сильных ветрах.

Маломощный ветряк своими руками

В домашних условиях небольшой самодельный ветрогенератор изготовить несложно. Для начала работы в области создания альтернативных источников энергии и накопления в этом ценного опыта как собрать генератор, можно изготовить самостоятельно простое устройство, приспособив мотор от компьютера или принтера.

Ветряной генератор на 12 В с горизонтальной осью

Чтобы сделать своими руками маломощный ветряк, необходимо сначала подготовить чертежи или эскизы.

На скорости вращения 200-300 об./мин. напряжение можно поднять до 12 вольт, а вырабатываемая мощность составит около 3 Вт. С его помощью можно зарядить небольшой аккумулятор. Для других генераторов мощность необходимо увеличивать до 1000 об./мин. Лишь в этом случае они будут эффективны. Но здесь понадобится редуктор, создающий значительное сопротивление и к тому же имеющий высокую стоимость.

Электрическая часть

Чтобы собрать электрогенератор, необходимы комплектующие:

  1. небольшой мотор от старого принтера, дисковода или сканера;
  2. 8 диодов типа 1N4007 для двух выпрямительных мостов;
  3. конденсатор ёмкостью 1000 мкф;
  4. труба ПВХ и пластиковые детали;
  5. алюминиевые пластины.

На рисунке ниже изображена схема генератора.

Шаговый мотор: схема подключения к выпрямителю и стабилизатору

Диодные мосты подключаются к каждой обмотке двигателя, которых две. После мостов подключается стабилизатор LM7805. В результате на выходе получается напряжение, которое обычно подаётся на 12-вольтную батарею.

Большую популярность получили электрогенераторы на неодимовых магнитах с чрезвычайно высокой силой сцепления. Их следует аккуратно использовать. При сильном ударе или нагреве до температуры 80-2500С (в зависимости от вида) у неодимовых магнитов происходит размагничивание.

За основу генератора, изготавливаемого своими руками, можно взять ступицу автомобиля.

Ротор на неодимовых магнитах

На ступицу производится наклейка суперклеем неодимовых магнитов диаметром около 25 мм примерно в количестве 20 шт. Однофазные электрогенераторы делаются с равенством количества полюсов и магнитов.

Магниты, расположенные напротив друг друга, должны притягиваться, т. е. повёрнуты противоположными полюсами. После приклеивания неодимовых магнитов производится их заливка эпоксидной смолой.

Катушки мотают круглыми, а общее количество витков составляет 1000-1200. Мощность генератора на неодимовых магнитах подбирается такой, чтобы его можно было использовать как источник постоянного тока, порядка 6А для зарядки АКБ на 12 В.

Механическая часть

Лопасти делают из пластиковой трубы. На ней рисуют заготовки шириной 10 см и длиной 50 см, а затем вырезают. Изготавливается втулка на вал двигателя с фланцем, к которому винтами крепятся лопасти. Их количество может быть от двух до четырёх. Пластик долго не прослужит, но на первое время его хватит. Сейчас появились достаточно износостойкие материалы, например, карбон и полипропилен. Затем можно изготовить более прочные лопасти из алюминиевого сплава.

Балансировку лопастей производят путём отрезания лишних частей на концах, а угол наклона создают путём их нагрева с изгибом.

Генератор крепится болтами к куску пластиковой трубы с приваренной к нему вертикальной осью. На трубу также соосно устанавливается флюгер из алюминиевого сплава. Ось вставляется в вертикальную трубу мачты. Между ними устанавливается упорный подшипник. Вся конструкция может свободно вращаться в горизонтальной плоскости.

Электрическую плату можно разместить на вращающейся части, а напряжение потребителю передавать через два токосъёмных кольца со щётками. Если плату с выпрямителем установить отдельно, тогда количество колец будет равно шести, сколько выводов имеет шаговый мотор.

Ветряк крепят на высоте 5-8 м.

Если устройство будет эффективно вырабатывать энергию, его можно усовершенствовать, сделав вертикально-осевым, например, из бочки. Конструкция меньше подвержена боковым перегрузкам, чем горизонтальная. На рисунке ниже изображён ротор с лопастями из фрагментов бочки, установлен на оси внутри рамы и на него не действует опрокидывающее усилие.

Ветряк с вертикальной осью и ротором из бочки

Профилированная поверхность бочки создаёт дополнительную жёсткость, за счёт чего можно применять жесть меньшей толщины.

Ветрогенератор мощностью более 1 киловатта

Устройство должно приносить ощутимую пользу и выдавать напряжение 220 В, чтобы можно было включить некоторые электроприборы. Для этого оно должно самостоятельно запускаться и вырабатывать электроэнергию в широком диапазоне.

Чтобы сделать ветрогенератор своими руками, прежде следует определить конструкцию. Она зависит от того, какая сила ветра. Если она слабая, то единственным вариантом может быть парусный вариант ротора. Больше 2-3 киловатт энергии здесь не получить. Кроме того, для него понадобятся редуктор и мощный аккумулятор с зарядным устройством.

Цена всего оборудования высокая, поэтому следует выяснить, будет ли это выгодно для дома.

В районах с сильными ветрами, самодельным ветрогенератором можно получить 1,5-5 киловатт мощности. Тогда его можно подключать в домашнюю сеть на 220В. Аппарат с большей мощностью самостоятельно сделать сложно.

Электрогенератор из двигателя постоянного тока

В качестве генератора можно использовать малооборотный мотор, генерирующий электрический ток при 400-500 об/мин: PIK8-6/2,5 36V 0,3Nm 1600min-1. Длина корпуса 143 мм, диаметр – 80 мм, диаметр вала – 12 мм.

Как выглядит двигатель постоянного тока

Для него нужен мультипликатор с передаточным отношением 1:12. При одном обороте лопастей ветряка электрогенератор сделает 12 оборотов. На рисунке ниже изображена схема устройства.

Схема устройства ветряка

Редуктор создаёт дополнительную нагрузку, но всё же это меньше, чем для автомобильного генератора или стартера, где требуется передаточное отношение как минимум 1:25.

Лопасти целесообразно изготавливать из алюминиевого листа размером 60х12х2. Если на мотор их установить 6 штук, устройство будет не таким быстрым и не пойдёт вразнос при больших порывах ветра. Следует предусмотреть возможность балансировки. Для этого лопасти припаиваются к втулкам с возможностью накручивания на ротор, чтобы можно было их смещать дальше или ближе от его центра.

Мощность генератора на постоянных магнитах из феррита или стали не превышает 0,5-0,7 киловатт. Увеличить её можно только на специальных неодимовых магнитах.

Генератор с не намагниченным статором для работы не годится. При небольшом ветре он останавливается, а после не сможет самостоятельно запуститься.

Для постоянного отопления в холодное время года требуется много энергии, и протопить большой дом — это проблема. Для дачи в этом плане он может пригодиться, когда туда приходится ездить не чаще 1 раза в неделю. Если всё правильно взвесить, система отопления на даче работает всего несколько часов. Остальное время хозяева находятся на природе. Используя ветряк как источник постоянного тока для зарядки АКБ, за 1-2 недели можно накопить электроэнергии для отопления помещений на такой промежуток времени, и таким образом, создать себе достаточный комфорт.

Чтобы сделать генератор из двигателя переменного тока или автомобильного стартера, требуется их переделка. Мотор можно модернизировать под генератор, если ротор изготовить на неодимовых магнитах, проточив на их толщину. Его делают с количеством полюсов, как и у статора, чередуя друг с другом. Ротор на неодимовых магнитах, приклеенных к его поверхности, при вращении не должен залипать.

Типы роторов

Конструкции роторов отличаются разнообразием. Распространённые варианты изображены на рисунке ниже, где указаны значения коэффициента использования энергии ветра (КИЭВ).

Виды и конструкции роторов ветряков

Для вращения ветряки делают с вертикальной или горизонтальной осью. Вертикальный вариант обладает преимуществом в удобстве обслуживания, когда основные узлы расположены внизу. Опорный подшипник выполнен самоустанавливающимся и долго служит.

Две лопасти ротора «Савониуса» создают рывки, что не очень удобно. По этой причине его делают из двух пар лопастей, разнесённых на 2 уровня с поворотом одной относительно другой на 900. В качестве заготовок можно использовать бочки, вёдра, кастрюли.

Ротор «Дарье», лопасти которого делают из упругой ленты, отличается простотой изготовления. Для облегчения раскрутки их количество должно быть нечётным. Движение происходит рывками, из-за чего механическая часть быстро разбивается. Кроме того, лента при вращении вибрирует, издавая рёв. Для постоянного применения подобная конструкция не очень подходит, хотя лопасти иногда делают из звукопоглощающих материалов.
В ортогональном роторе крылья выполняются профилированными. Оптимальное количество лопастей равно трём. Устройство быстроходное, но его необходимо раскручивать при пуске.

Геликоидный ротор имеет высокий КПД за счёт сложной кривизны лопастей, снижающей потери. Его применяют реже других ветряков из-за высокой стоимости.

Горизонтальный лопастный ротор исполнения является наиболее эффективным. Но он требует наличия стабильного среднего ветра, а также для него необходима ураганная защита. Лопасти можно изготовить из пропилена, когда их диаметр меньше 1 м.

Если вырезать лопасти из толстостенной пластиковой трубы или бочки, достичь мощности выше 200 Вт не удастся. Профиль в виде сегмента для сжимаемой газообразной среды не подходит. Здесь нужен сложный профиль.

Диаметр ротора зависит от того, какую мощность требуется получить, а также от количества лопастей. Двухлопастнику на 10 Вт нужен ротор диаметром 1,16 м, а на 100 Вт – 6,34 м. Для четырёх-, и шестилопастника диаметр составит соответственно 4,5 м и 3,68 м.

Если насадить ротор непосредственно на вал генератора, его подшипник долго не протянет, поскольку нагрузка на все лопасти неравномерная. Опорный подшипник для вала ветряка должен быть самоустанавливающимся, с двумя или тремя ярусами. Тогда для вала ротора будут не страшны изгибы и смещения в процессе вращения.

Большую роль в работе ветряка играет токосъёмник, который требуется регулярно обслуживать: смазывать, чистить, регулировать. Возможность его профилактики должна быть предусмотрена, хотя это сложно сделать.

Безопасность

Ветряки, мощность которых превышает 100 Вт, являются шумными устройствами. Во дворе частного дома можно установить промышленный ветродвигатель, если он сертифицирован. Его высота должна быть выше ближайших домов. На крыше нельзя устанавливать даже маломощный ветряк. Механические колебания от его работы могут создать резонанс и привести к разрушению строения.

Высокие скорости вращения ветрогенератора требуют качественного изготовления. Иначе, при разрушении устройства существует опасность, что его детали могут отлететь на большие расстояния и нанести травму человеку или домашним животным. Особенно это следует учитывать при изготовлении ветряка своими руками из подручных материалов.

Видео. Ветрогенератор своими руками.

Применение ветрогенераторов целесообразно не во всех регионах, поскольку зависит от климатических особенностей. Кроме того, изготавливать их своими руками не имеет смысла без определённого опыта и знаний. Для начала можно взяться за создание простой конструкции мощностью несколько ватт и напряжением до 12 вольт с помощью, которой можно зарядить телефон или зажечь энергосберегающую лампу. Применение неодимовых магнитов в генераторе позволяет значительно увеличить его мощность.

Мощные ветровые установки, берущие на себя значительную часть электроснабжения дома, лучше приобретать промышленные, на создание напряжения 220В, тщательно взвесив при этом все за и против. Если совместить их с другими видами альтернативных источников энергии, электричества может хватить на все хозяйственные нужды, включая систему отопления дома.

Оцените статью:

Ветрогенератор своими руками. Самодельный ветрогенератор для дома. Чертежи ветрогенератора.

В ветрогенераторах промышленного производства обычно используют винтовые пропеллерные двигатели. В отличие от роторных, они имеют весомое преимущество – более высокий КПД. Но винтовые двигатели значительно сложнее изготовить, поэтому если вы хотите сделать ветрогенератор своими руками, а попросту – самодельный ветрогенератор, рекомендуют применять именно роторные двигатели.

Рис. 1. Схема роторной ветроэлектроустановки:
1 — лопасти, 2 — крестовина, 3 —вал, 4 —подшипники с корпусами, 5 — соединительная муфта, 6 — силовая стойка (швеллер № 20), 7 — коробка передач, 8 — генератор, 9 — растяжки (4 шт. ), 10 — ступени лестницы.


Важная деталь: ротор необходимо поднять достаточно высоко – на 3-4 метра над уровнем земли. Тогда ротор окажется в зоне свободного ветра, а зона завихрений от обтекаемых ветром строений останется ниже его. ВЭУ, высоко поднятая над землей к тому же будет выполнять функцию молниеотвода, а это для сельской местности немаловажно.

Рис. 2. Крепление лопастей ротора на крестовине:
1 — лопасти, 2 — крестовина, 3 — вал, 4 — болты крепления (М12—М14).


В конструкции, предложенной В. Самойловым, ротор имеет 4 лопасти, что обеспечивает ему более равномерное вращение. Ротор – важнейшая часть ветряка. Его форма и размеры лопастей играют особую роль – от них зависит мощность, а также скорость вращения вала ветрового двигателя. Чем больше будет общая поверхность лопастей, которые образуют ометаемую поверхность, тем меньшим будет число оборотов ротора.

Рис. 3. Двухъярусное роторное колесо:
1 — подшипник, 2 — корпус подшипника, 3 — дополнительное крепление вала четырьмя растяжками, 4 — вал.


Ротор вращается благодаря аэродинамической несимметричности. Поток ветра, набегающий поперек оси ротора, соскальзывает с округлой стороны лопасти и затем попадает на ее противоположный карман. Разность давлений на округлую и вогнутую поверхности создает тягу, которая, раскручивая ротор, приводит его в движение. Такой ротор имеет большой крутящий момент. Мощность ротора диаметром 1 м соответствует пропеллеру с тремя лопастями диаметром 2,5 м.
При резких колебаниях ветра роторные ветродвигатели обеспечивают более стабильную работу, чем винтовые. К тому же, роторы имеют тихий ход, работают при любом направлении ветра, но при этом могут развивать лишь от 200 до 500 об/мин. При сильных порывах ветра роторные ветроколеса в разнос не идут. Повышение количества оборотов асинхронного генератора не дает рост напряжения на выходе. Поэтому мы не рассматриваем автоматическое изменение угла лопастей ротора при разных скоростях ветра.
Существуют разные виды роторных ветрогенераторов на вертикальном валу. Вот некоторые из них:
1. Четырехлопастое роторное ветряное колесо тихоходное, имеет КПД до 15%.
2. Двухъярусное роторное колесо немного проще, и имеет более высокое КПД (до 19%), а также развивает большее по сравнению с четырехлопастным, число оборотов. Но, чтобы сохранить прочность и жесткость установки, целесообразно увеличивать диаметр вала.
3. Ротор Савониуса развивает меньшее количество оборотов по сравнению с двухлопастным. Коэффициент применения ветровой энергии не выше 12%. В основном используется для привода поршневых насосов.
4. Карусельное ветряное колесо — простейшая конструкция. Колесо развивает малые обороты, а также, имея низкую удельную мощность, обладает КПД — до 10%
Ниже рассмотрим самодельный ветрогенератор, разработанный на основе четырехлопастного ветроколеса.
Лопасти ротора можно сделать из железной бочки на 100, 200 или 500 литров. Бочку нужно разрезать шлифмашиной, а вот резать сваркой в этом случае недопустимо, т. к. металл покоробится от высокой температуры. Усилить борта вырезанной лопасти можно, приварив к ним прутья арматуры или катанки диаметром от 6 до 8 мм.
Лопасти первого ротора нужно прикрепить к 2 крестовинам 2 болтами М12…М14. Верхняя крестовина вырезается и листа стали толщиной 6…8 мм. Между бортами лопастей и валом ротора необходим зазор 150 мм. Нижняя крестовина должна быть более прочной, ведь на нее приходится общий вес лопастей. Чтобы ее изготовить, нужно взять швеллер длиной не меньше 1 м ( что будет зависеть от применяемой бочки), и с высотой стенки 50-60 мм

Строительная часть и главный вал.


В рассматриваемой ВЭУ рама из уголков для закрепления генератора приварена к стойке, изготовленной из швеллера. Нижний конец стойки соединен с угольником, забитым в землю. Вал 3 ротора целесообразней сделать из двух частей, тогда будет удобней растачивать его концы под подшипники. Подшипники в корпусах (буксах), соответствующих по размерам валу, закрепляются на стенке швеллера болтами. Части вала ротора сваривают между собой или соединяют на шпонке. Диаметр вала составляет 35—50 мм.
К одной из полок швеллера рассматриваемого ВЭУ приварены куски труб длиной 500 мм м диаметром 20 мм, выполняющие роль лестницы. Стойка погружена в землю не менее, чем на 1200 мм в глубину, а также для предотвращения качки и дополнительной устойчивости закреплена 4-мя растяжками. Для защиты от ржавчины ветровую энергоустановку можно покрасить алюминиевой пудрой, замешанной на основе олифы.

Рис. 4. Возможные схемы укрепления роторных ветроколес на вертикальном валу:
а, б — карусельные ветроколеса; в — ветроколесо Савониуса.



Рис. 5. Лопасть ветряка, изготовленная из 1/4 бочки и схема раскроя:
1 — отверстие крепления к крестовине, 2 — усиление борта, 3 — контур лопастей.

Электросхема.


Изготавливая своими руками ветрогенератор для дома, проще всего использовать электросистему автомобиля или трактора. Исходя из ее мощности, определяются эксплуатационные возможности ВЭУ. Поэтому необходимо применять электроузлы таких достаточно мощных автомашин, как автобус или трактор. Важно помнить, что использовать подобные узлы необходимо комплектно: аккумулятор, реле-генератор, генератор. Например, для генератора Г 250-Г 1 вполне подойдут реле-регулятор РР 362, а также аккумулятор 6 СТ 75.

Рис. 6. Схема электрооборудования ВЭУ, взятое от автомобильного генератора на 12 В:
1 — генератор, 2 — реле-регулятор, 3 — аккумулятор, 4 — амперметр, 5 — выключатель генератора от разряда аккумулятора в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.
В случае, если ветряк укомплектован автогенератором на 24 В, лучше использовать марку Г-228 с мощностью 1000 Вт. Подобные генераторы имеют более надежное реле напряжения, особенно в сравнении с интегральными регуляторами напряжения марки Я-120. Вместе с тем, постоянное напряжение 12 В, получаемое с автогенератора, не очень удобно для освещения, т.к. необходимо учитывать специфику цоколей автолампы и патронов. Хоть лампочки на 12 В бывают и с обычным цоколем Ц-27, их трудно найти в продаже.

Рис. 7. Схема электрооборудования ВЭУ от автомобильного генератора на 24 В:
1 — генератор Г-288, 2 — регулятор напряжения 11.3702, 3 — аккумуляторы 6СТ75, амперметр АП-170, 4 — амперметр, 5 — выключатель генератора от разряда аккумуляторов в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.
Чтобы перейти от постоянного тока к переменному, нужно изготовить преобразователь напряжения. При необходимости переменный ток без проблем можно превращать в постоянный, используя мостовой выпрямитель.

Преобразователь мощностью 100 Вт позволяет включать две лампочки накала или дневного света по 40 Вт на 220 В. Схема преобразователя довольно проста. Он не требует настройки, достаточно надежен в работе и имеет внушительный КПД (более 80%).
Вы можете ознакомиться с видео, на котором показан пример самодельного ветрогенератора. Так же, Вы можете воспользоваться специальным калькулятором для расчета ветрогенератора.

Самодельный ветряк с аксиальным генератором на неодимовых магнитах

Живу я в маленьком городке Харьковской обл. частный дом, небольшой участок.
Сам я, как говорит сосед, ходячий генератор идей, так как практически всё в своем
хозяйстве сделано своими руками. Ветер хоть и небольшой, но практически постоянно дует, и тем самым соблазняет использовать свою энергию.

После нескольких неудачных попыток с тракторным самовозбуждающимся генератором идея создания ветрогенератора засела в мозгу еще сильнее.
Начал искать и после двух месяцев поисков в интернете, множества скачанных файлов, прочтенных форумов и советов я окончательно определился с постройкой ветрогенератора.

За основу была взята конструкция Бурлака Виктора Афанасьевича с небольшими конструктивными изменениями.
Основной задачей была постройка ветрогенератора своими руками из того материала, который есть, с минимумом затрат. Поэтому каждый, кто попытается сделать подобную конструкцию должен исходить из того материала, который у него есть, главное желание и понять принцип работы.
Для изготовления ротора использовал листовой кусок метала толщиной 20 мм. (что было) с которого по моим чертежам кум выточил и разметил на 12 частей два диска диаметром 150 мм. и еще один диск под винт который разметил на 6 частей диаметром 170 мм.

Генератор будет на неодимовых магнитах

Купил через Интернет 24 шт. дисковых неодимовых магнита размером 25х8 мм, которые приклеил к дискам, (очень выручила разметка). Осторожно, не подставляете пальцы, неодимовые магниты очень мощные! (Возможно применение в данной схеме магнитных секторов дало бы лучшие результаты. Примечание администрации.)
Перед тем как приклеить неодимовые магниты к стальному диску маркером нанесите на них обозначение полярности, это очень поможет вам избежать ошибок при установке. После размещения неодимовых магнитов (12 шт. на диск и чередуйте полярность), до половины залил их эпоксидной смолой.

Кликните по картинке что бы посмотреть в полном размере.

Для изготовления статора использовал эмаль-провод ПЭТ-155 диаметром 0,95 мм (купил на частном предприятии Хармедь). Намотал 12 катушек по 55 витков каждая, толщина обмоток получилась 7 мм. Для намотки изготовил несложный разборный каркас. Намотку катушек делал на самодельном намоточном станке (делал ещё во времена застоя).

Затем разместил 12 катушек по шаблону и зафиксировал их положение изолентой на тканевой основе. Выводы катушек распаял последовательно начало с началом, конец с концом. Я использовал 1-фазную схему включения.

Для изготовления формы под заливку катушек эпоксидной смолой склеил две прямоугольные заготовки 4-х мм фанеры. После высыхания получилась прочная 8 мм заготовка. С помощью сверлильного станка и приспособления (балерина) вырезал в фанере отверстие диаметром 200 мм, а из вырезанного диска вырезал центральный диск диаметром 60 мм. Заранее заготовленные ДСП заготовки прямоугольной формы обтянул плёнкой и по краях закрепил стиплером, затем по разметке разместил вырезанный центр (обтянутый скотчем), а также вырезанную заготовку, обмотанную скотчем.

Форму до половины залил эпоксидной смолой, на дно положил стеклоткань, затем катушки, сверху стеклоткань, долил эпоксидную смолу, немного выждал и сверху сдавил вторым куском ДСП также обтянутым пленкой. После застывания извлёк диск с катушками, обработал, покрасил, просверлил отверстия.
Ступицу, а также основу поворотного узла изготовил с буровой трубы НКТ с внутренним диаметром 63 мм. Были изготовлены гнёзда под 204 подшипник и приварены к трубе. С задней стороны тремя болтами прикручена крышка с прокладкой из маслостойкой резины, с передней стороны прикручена крышка с сальником. Внутрь, между подшипниками, через специальное отверстие залил автомобильное полусинтетическое масло. На вал надел диск с неодимовыми магнитами, причем поскольку паз под шпонку сделать не было возможности на валу сделал углубления на половину диаметра шарика с 202 подшипника т.е. 3,5 мм, а на дисках высверлил паз 7 мм. сверлом предварительно выточив баночку и запрессовал её в диск. После извлечения баночки в диске получился ровный, красивый паз под шарик.

Далее закрепил статор тремя латунными шпильками, вставил промежуточное кольцо с расчетом чтобы статор не затирало и надел второй диск с неодимовыми магнитами (магниты на дисках должны иметь противоположную полярность, т. е. притягиваться) Здесь очень осторожно с пальцами!

Изготовление турбины и мачты ветрогенератора

Винт изготовил с канализационной трубы диаметром 160 мм.

Кстати неплохой получается винт. Поэтому принципу изготовлена последняя турбина из алюминиевой трубы 1,3 м. (смотрите выше)

Разметил трубу, болгаркой вырезал заготовки, по концах стянул болтами и електро-рубанком обработал пакет. Затем раскрутил пакет и каждую лопасть обработал отдельно, подгоняя вес на электронных весах.

Защита от ураганного ветра выполнена по классической зарубежной схеме, т. е. ось вращения смещена от центра. Вот ссылка на сайт www.otherpower.com/otherpower_wind.html

Желающие узнать больше здесь найдут все интересующие вопросы, причем совершенно бесплатно! Мне этот сайт помог очень здорово особенно с чертежами хвоста. Вот пример чертежей с этого сайта.

Свой хвост ветряка я подгонял методом подпиливания.

Вся конструкция насажена на два 206 подшипника, которые закреплены на оси с внутренним отверстием под кабель и приваренной к двухдюймовой трубе. Подшипники плотно входят в корпус ветроустановки, что позволяет без каких либо усилий и люфтов свободно поворачиваться конструкции. Кабель проходит внутри мачты к диодному мосту.(выше смотрите чертежи)

на фото первоначальный вариант

Для изготовления ветро-головки, не учитывая двух месяцев поиска решений, ушло полтора месяца, сейчас у нас февраль месяц, снег и холод похоже за всю зиму, поэтому основных испытаний еще не проводил, но даже на этом расстоянии от земли автомобильная лампочка 21 ватт перегорела. Жду весны, готовлю трубы под мачту. Эта зима пролетела у меня быстро и интересно.

Видео можно просмотреть здесь:

Небольшая модернизация ветрогенератора

Прошло немного времени с того момента когда разместил на сайте свой ветряк, но весна так толком и не пришла, землю копать чтобы замуровать стол под мачту еще нельзя — земля мёрзлая да и грязь везде, поэтому времени для испытаний на временной 1,5 м. стойке было предостаточно, а теперь подробней.
После первых испытаний винт случайно зацепил трубу, это я пытался зафиксировать хвост, чтобы ветряк не уходил из под ветра и посмотреть какая будет максимальная мощность. В итоге мощность успел зафиксировать примерно ватт 40, после чего винт благополучно разлетелся в щепки. Неприятно, но наверное полезно для мозгов. После этого я решил поэкспериментировать и намотал новый статор, ротор с неодимовыми магнитами оставил без изменений. Для этого изготовил новую форму под заливку катушек. Форму тщательно смазал автомобильным литолом, чтобы лишнее не пристало. Катушки генератора теперь немного уменьшил по длине, благодаря чему в сектор теперь поместилось 60 витков 0,95 мм. толщина намотки 8 мм. (в конечном итоге статор получился 9 мм), причем длина провода осталась прежней.

Винт теперь сделал с более прочной трубы 160 мм. и трехлопастным, длина лопасти 800 мм.
Новые испытания сразу показали результат, теперь ветрогенератор выдавал до 100 ватт, галогенная автомобильная лампочка в 100 ватт горела в полный накал, и чтобы её не спалить на сильных порывах ветра лампочку отключал.

Замеры на автомобильном аккумуляторе 55 А.ч.
Теперь окончательные испытания на мачте, результат опишу позже.

Ну, вот уже середина августа, и как я обещал, попытаюсь закончить эту страничку. Сначала то, что пропустил

Мачта один из ответственных элементов конструкции, требует особого внимания.

Один из стыков (труба меньшего диаметра входит внутрь большей) и поворотный узел

Теперь остальное, турбина ветрогенератора
3-х лопастная турбина (рыжая канализационная труба диаметром 160 мм.)

Начну с того, что сменил несколько турбин и остановился на 6-ти лопастной, сделанной из алюминиевой трубы диаметром 1,3 м. хотя большую мощность давал винт с ПВХ трубы 1,7 м.

Котроллер для генератора

Основная проблема была в том чтобы заставить заряжаться АКБ от малейшего вращения втурбины и вот здесь на помощь пришел блокинг генератор который даже при входном напряжении в 2 v дает заряд АКБ — пускай маленьким током, но лучше чем разряд, а на нормальных ветрах вся энергия на АКБ поступает через VD2 (смотрите по схеме), и идет полноценный заряд.

Конструкция собрана прямо на радиаторе полунавесным монтажом
Контроллер заряда тоже использовал самодельный, схема простая, слепил как всегда с того, что было под рукой, нагрузкой служит два витка нихромового провода (при заряженном АКБ и сильном ветре нагревается до красна) Все транзисторы ставил на радиаторы (с запасом), хотя VT1 и VT2 практически не греются, а вот VT3 на радиатор ставить обязательно! (при продолжительном срабатывании контролёра VT3 греется прилично)

Схема Контроллера генератора

фото готового Контроллера ветрогенератора

Схема подключения ветряка к нагрузке выглядит так:

Фото готового системного блока ветрогенератора

Нагрузкой у меня как и планировалось, является свет в туалете и летнем душе + уличное освещение (4 светодиодные лампы которые включаются автоматически через фотореле и освещают двор целую ночь, с восходом солнца опять срабатывает фотореле которое отключает освещение и идет заряд АКБ. И это на убитой АКБ (в прошлом году снял с авто) на фото снято защитное стекло (в верху фотодатчик).
Фотореле купил готовое для сети 220 V и переделал своими руками на питание от 12 V (перемкнул входной конденсатор и последовательно стабилитрону подпаял резистор в 1К)

Теперь самое ГЛАВНОЕ!

По своему опыту советую для начала сделать небольшой ветряк, набраться опыта и знаний и понаблюдать что можно поиметь с ветров вашей местности, ведь можно потратить кучу денег, сделать мощный ветрогенератор, а силы ветра не хватит чтобы получать те же 50 ватт и будет ваш ветряк типа подводной лодки в гараже.

Характеристика ветра. Шкала Бофорта

Основной характеристикой ветра является его скорость. Единицей измерения принято считать расстояние, пройденное частицами воздушных масс за единицу времени. В системе измерений СИ скорость ветра измеряется метрами, пройденными воздушными массами за 1 секунду — м/с.
Прибор, при помощи которого осуществляется измерение скорости ветра, называется АНЕМОМЕТР. Но оценить скорость ветра приблизительно можно и по внешним сравнительным признакам, приведенным в таблице Бофорта.

Баллы по шкале Бофорта Характеристика силы ветра Скорость ветра м/сек. Скорость ветра км/час Объективное проявление
0 Штиль 0-0,2 0-06,7 Дым поднимается вертикально
1 Тихий 0,3-1,5 1,08-5,4 Дым начинает отклоняться от вертикального положения, флюгеры, даже самые чувствительные, не вращаются
2 Легкий 1,6-3,3 5,76-11,9 Движение ветра ощущается лицом, шелест листьев, приводятся в движение флюгеры, ветрогенераторы входят в рабочий режим
3 Слабый 3,4-5,4 12,24-19,4 Листья и самые тонкие ветки деревьев колышутся, развеваются флаги, установленные на высоте
4 Умеренный 5,5-7,9 19,8-28,4 Ветер поднимает пыль и мелкие бумажки, приводит в движение тонкие ветви деревьев
5 Свежий 8-10,7 28,8-38,5 Качаются тонкие стволы деревьев диаметром 2-4 см, на морских волнах появляются гребешки, ветрогенераторы выходят на максимальную мощность
6 Сильный 10,8-13,8 38,8-49,9 Качаются толстые сучья деревьев диаметром 6-8 см, слышен шум ветра в телеграфных проводах
7 Крепкий 13,9-17,1 50,04-61,6 Качаются стволы деревьев в верхней их части, идти против ветра неприятно
8 Очень крепкий 17,2-20,7 61,92-74,5 Ветер ломает сухие сучья деревьев, идти против ветра очень трудно
9 Шторм 20,8-24,4 74,8-87,8 Небольшие повреждения, ветер срывает незакрепленные дымовые колпаки и ветхую черепицу
10 Сильный шторм 24,5-28,4 88,2-102,2 Разрушения кровельных покрытий и неукрепленных конструкций, ослабленные деревья вырываются с корнем, автоматическое отключение ветрогенераторов
11 Жестокий шторм 24,5-32,6 102,6-117,4 Большие разрушения на значительном пространстве
12 Ураган 32,7 и выше 117,7 и выше Огромные разрушения, серьезно повреждены здания, строения и дома, деревья вырваны с корнями.

Простейший анемометр. Квадрат сторона 12 см. на 12 см. На нитке 25 см. привязан теннисный шарик.

Мы никогда не задумываемся насколько сильным бывает даже маленький ветерок, но стоит посмотреть с какой скоростью иногда раскручивается турбина и сразу понимаешь какая это мощь.

Процесс модернизации ветряка закончен, так он выглядит на данном этапе. На видео его рабочий режим (снимал фотокамерой, поэтому видна дискретность винта, на самом деле он крутится как подорванный). На очень малых ветрах работает блокинг-генератор.

Всем удачи!!!


Яловенко В.Г.

Статья размещена с разрешения автора, оригинал здесь: http://valerayalovencko.narod2.ru/

Ветрогенератор 💨 своими руками — самый простой способ создания

В этой статье мы подробно разберем, как сделать ветрогенератор своими руками. Ведь быт современного человека без электроэнергии – трудно представим. И даже небольшие перебои в подаче электричества становятся порой «парализующим моментом» для нормальной жизни в собственном доме. А такие неполадки, приходится признать, для некоторых загородных поселков или населенных пунктов в сельской местности – увы, не редкость. Значит, необходимо каким-то образом обезопасить себя от неприятностей, обзавестись резервным источником энергии. А если принять в расчет еще и постоянно растущие тарифы, то наличие собственного источника, да еще и работающего практически «забесплатно», становится заветной мечтой многих владельцев домов.

Ветрогенератор своими руками

Одним из направлений развития «бесплатной энергетики» в наше время является использование энергии ветра. Многие, наверное, видели впечатляющие картины огромных ветряков, успешно применяемых в некоторых странах Европы – кое-где доля выработанной ветром энергии уже достигает нескольких десятков процентов от общего объема. Вот и возникает соблазн – а не попробовать ли и мне сделать ветрогенератор своими руками, чтобы раз и навсегда получить независимость от электросетей?

Вопрос резонный, но следует сразу несколько охладить пыл «мечтателя». Чтобы создать действительно качественную, производительную установку по выработке электроэнергии, требуются немалые знания в механике и электротехнике. Нужно быть весьма опытным мастером на все руки – предстоит целый ряд операций высокой сложности, требующих точного проектирования  и квалифицированного подхода в исполнении. По совокупности этих причин, как можно судить по обсуждениям на форумах, довольно много «соискателей» либо не получили ожидаемого результата, либо и вовсе отказались от задуманного проекта.

Поэтому в данной статье будет дана обзорная картина, показывающая общие проблемы и направления их решения в процессе создания ветрогенераторов. Можно будет примерно оценить масштабность работ и трезво взвесить свои возможности – стоит ли браться самому.

Что это такое – ветрогенератор? Общее устройство системы

Существует несколько способов получения электрической энергии – за счет воздействия потоком фотонов (световой, например, солнечные батареи), за счет определенных химических реакций (широко применяется в элементах питания), за счет разницы температур. Но шире всего в настоящее время используется преобразование кинетической энергии в электрическую. Это преобразование происходит в специальных устройствах, которые как раз и называются генераторами.

Принцип работы генератора преобразователя кинетической энергии в электрическую, раскрыт и описан еще в XIX веке Фарадеем.

Принцип устройства простейшего электрического генератора

Он заключается в том, что если проводящую рамку разместить в изменяющемся магнитном поле, то в ней будет индуцироваться электродвижущая сила, которая при замыкании цепи приведет к появлению электрического тока. А изменение магнитного потока можно добиться вращением этой рамки в магнитном поле, или создаваемом постоянными магнитами, или появляющегося в обмотках возбуждения. При изменении положения рамки меняется величина пересекающего ее магнитного потока. И чем выше скорость изменения, тем больше показатели и наводимой ЭДС. Таким образом, чем больше оборотов передается ротору (вращающейся части генератора), те большего напряжения можно добиться на выходе.

Схема, безусловно, показана с большими упрощениями, просто для уяснения принципа.

Передача вращения на ротор генератора может осуществляться по-разному. И один из путей найти бесплатный источник энергии, который приведет в движение кинематическую часть устройства – это «поймать» силу ветра. То есть примерно так же, как это удалось сделать когда-то создателям ветряных мельниц.

Таким образом, устройство ветрового генератора подразумевает наличие генерирующего устройства и механизма передачи его статору вращательного движения, то есть ветряка. Кроме того, обязательным условием становится конструкция, обеспечивающая надежную установку системы, так как ее часто приходится размещать на немалой высоте, чтобы полноценной «ловле ветра» не мешали естественные или искусственные препятствия. В ряде случаев используется еще и кинематическая передача, предназначенная для повышения количества оборотов ротора.

Один из примеров повышающей передачи вращения от ветряка на генератор

Но и это – еще не все. Наличие и скорость ветра – величины чаще всего крайне непостоянные. И ставить потребление выработанной энергии в зависимость от «капризов погоды» — дело неразумное. Поэтому ветрогенератор обычно работает в связке с системой аккумуляции энергии.

Примерная схема организации питания приборов потребления от электроэнергии, выработанной ветрогенератором

Выработанный ток выпрямляется, стабилизируется и через специальное устройство-контроллер или поступает непосредственно на дальнейшее потребление, или перенаправляется на зарядку включённых в схему мощных аккумуляторов. С аккумуляторов через инвертор, преобразующий постоянный ток в переменный нужного напряжения и частоты, питание поступает к точкам потребления. Аккумуляторы становятся своеобразным буферным звеном: если текущая нагрузка меньше текущей (очень зависимой от силы ветра) мощности генератора, или если на протяжении какого-то времени и вовсе не подключены приборы потребления, то идет зарядка батарей. Если нагрузка становится выше вырабатываемой мощности –  батареи разряжаются.

Интересный момент – именно эта особенность ветровой энергетической установки позволяет планировать мощность самого генератора, не исходя из пиковых показателей нагрузки (за это будет отвечать в большей мере инвертор), а отталкиваясь из прогнозируемого потребления энергии в течение определенного периода (например, месяца).

Безусловно, в быту могут использоваться и более простые схемы. Например, ветровая установка просто обслуживает какое-то низковольтное осветительное оборудование и т.п.

Плюсы и минусы ветровых электростанций

Для примера посмотрим вначале на простейшую конструкцию ветрогенератора, которую сможет собрать даже школьник средних классов. Практическое применение такой «электростанции» – не особо широкое, но просто чтобы расширить свое понимание и обрести некоторые навыки – почему бы и нет?

Узнайте, как сделать солнечный воздушный коллектор своими руками, а также ознакомьтесь с подробным руководством, в специальной статье на нашем портале.

Миниатюрный ветрогенератор из старых компьютерных комплектующих

Понятно, что надеяться на сколь-нибудь значимое подспорье в плане экономии электроэнергии с такой «мини-электростанцией» — по меньшей мере наивно. Но задача иногда ставится иначе – создать источник питания для походных условий, например, для подключения небольшого фонаря  подсветки в палатке, для обеспечения работы радиоприемника, для возможности подзарядить гаджеты.

Встречается немало предложений использовать для подобных целей генератор, изготовленный из компьютерного кулера или электромотора от отслужившего свое принтера. Давайте посмотрим, что из этого может получиться.

ИллюстрацияКраткое описание выполняемой операции
Для начала – попытка сделать что-либо серьезное их обычного корпусного кулера.
Питается такой вентилятор постоянным током, 12 вольт.
В качестве привода используется бесщёточный двигатель, с обмоткой на статоре…
…и расположенными кольцом постоянными магнитами на роторе.
Некоторым может показаться, что достаточно совершить обратные действия, то есть подать вращающий момент на крыльчатку – и спокойно снять генерированное напряжение с контактов на входе (который превратиться в выход). Однако, это не совсем так.
Простенький опыт показывает, что если раскрутить крыльчатку и подсоединить какой-нибудь маломощный светодиод к контактам разъема кулера, то, да, можно будет наблюдать не особо яркое его свечение.
Но это, увы, предел возможностей такого «генератора».
Причина – в нерациональной для генерации тока схеме расположения обмоток статора. Наводимые в них ЭДС в значительной мере «гасят» друг друга, и суммарные показатели напряжения получаются очень «скромными».
Можно попробовать перемотать катушки статора – хотя бы в целях эксперимента.
Для этого кулер придется разобрать.
Вначале аккуратно поддевается ножом и снимается круглая наклейка, закрывающая все «внутренности» этой сборки.
Вот что открылось под ней.
Снимается центральная заглушка, под которой расположен подшипник крыльчатки-ротора с фиксатором.
Производится разборка этого узла – снимается стопорная шайба, а затем аккуратно извлекаются шайбы подшипника скольжения.
После этого крыльчатка-ротор свободно вынимается из корпуса-статора.
Вот так выглядят обмотки статора, которые придется заменить.
С платы аккуратно выпаиваются провода питания кулера.
Чтобы снять старую обмотку, проще всего будет просто перерезать витки ножом…
…а затем постепенно аккуратно удалить обрезки проволоки.
В итоге должен получиться вот такой голый якорь статора.
Как видно, на нем четыре сердечника, расположенных крестом. На них и будет наматываться новая обмотка.
Работа несложная, но может показаться утомительной.
Все четыре обмотки должны быть выполнены из одного провода, без разрывов. То есть их расположение будет последовательным.
Число витков – чем больше, тем лучше. Соответственно, чем тоньше будет провод для намотки – тем больше получится витков.
Естественно, количество витков на каждом из сердечников должно быть одинаковым – так что при выполнении операции намотки придется внимательно их считать.
А вот направление обмотки будет меняться. На первом сердечнике витки ложатся по направлению часовой стрелки.
Следующий сердечник: направление намотки витков – против часовой стрелки.
На третьем сердечнике – вновь по часовой стрелке.
И последний сердечник – витки против часовой стрелки.
Статор после намотки.
С двух концов этой обмотки будет сниматься сгенерированное напряжение – все по схеме простейшего генератора переменного тока.
Плата, которая стояла в статоре кулера (с электролитическими конденсаторами) в данном случае не нужна – ее можно просто удалить.
Статор заводится в свое гнездо – для его точной посадки там имеются шлицы.
Концы проводов через окошко в корпусе выводятся вниз.
К ним можно после зачистки и облуживания сразу припаять провода, которые пойдут на выпрямитель.
Затем на место устанавливается крыльчатка-ротор.
Производится сборка подшипника и фиксация стопорной шайбой – в противоположном проведенной разборке порядке
Получившийся генератор будет выдавать переменное напряжение. То есть необходимо установить выпрямитель – диодный мост.
Можно использовать готовую сборку, либо спаять самостоятельно из четырех диодов.
Для сглаживания пульсации рекомендуется дополнить схему электролитическим конденсатором, естественно, с соблюдением полярности контактов.
На иллюстрации показана очень упрощенная сборка схемы, так как вся работа проводится, по сути, лишь в экспериментальных целях.
В качестве нагрузки к выпрямителю подключено четыре параллельно соединенных светодиода.
Теперь – практическая проверка возможностей получившегося ветрогенератора. Крыльчатке рукой придается максимально возможное вращение.
Да, светодиодная сборка отреагировала свечением, но назвать это успехом – вряд ли можно. Свечение неустойчивое, довольно тусклое.
А замер напряжения показывает, что на максимальных оборотах оно едва достигает 2.3 вольт. Про силу тока и говорить не приходится.
Возможные причины – слишком большой просвет между якорем статора и постоянным магнитом ротора. Для режима электропривода – достаточно, а вот для генератора – явно нет. Кроме того, и магнитные качества ротора – весьма слабенькие. И плюс ко всему – часть выработанной энергии неизбежно теряется в выпрямителе.
Имеет ли смысл проводить в данном случае какую-либо доработку такого генератора? – наверное, нет. Вряд ли из подобной схемы можно будет «выжать» что-нибудь серьезное.
Теперь – попытка использовать в качестве генерирующего устройства электропривод от разобранного принтера.
Электродвигатель здесь коллекторный, со щетками, и это позволяет снимать постоянное напряжение, не прибегая к применению диодного моста. То есть потери однозначно будут меньше.
Кроме того, никаких переработок (перемоток, перепаек контактов) при этом не требуется.
Соединение вала электромотора (генератора) с крыльчаткой (опять же, взятой от обычного кулера), произведено с помощью муфты-переходника, на которой расположены две пары симметрично расположенных фиксирующих винтов.
Одной парой винтов поджимается ось крыльчатки, второй – вал электромотора.
Сам электродвигатель после припаивания проводов размещается в штатном цилиндрическом кожухе.
При желании несложно придумать для такого ветрогенератора дополнительный корпус со стойкой (кронштейном) для закрепления, например, к оконной раме на балконе, или с подставкой, для временной установки, скажем, «на природе».
Кроме того, как видно на иллюстрации, мастер придумал для своей модели еще и обтекаемый аэродинамический колпак.
Что показали испытания этой модели?
Если скорость ветра менее 4÷5 метров в секунду, то просто рабочей площади крыльчатки становится недостаточно, чтобы придать генератору сколь-нибудь значимую для выработки электроэнергии угловую скорость.
При скорости в 5 м/с и выше ветрогенератор «оживает». Например, обеспечивает достаточно яркое свечение светодиодного фонаря.
Вполне может он служить при таких условиях и источником питания для обычного небольшого радиоприемника.
Уже положительный результат!
А вот эксперимент с зарядкой мобильного телефона, увы, окончился неудачно.
Да, на дисплее мобильника появляются признаки подключения зарядного устройства. Но этим все и ограничивается – самой зарядки не происходит.
Объясняется просто – при вполне приемлемом напряжении на выходе сила тока в цепи зарядки, как показали замеры, не превышает 50 мА.
То есть такой силы просто недостаточно, чтобы «впихнуть» заряд в аккумулятор. Для этого требуется хотя бы 0,5 А, то есть вдесятеро больше.

Но все же найти применение такому мини-ветрогенератору можно – в качестве источника питания дежурного освещения, светового маячка во дворе (в саду) или, опять же, радиоприёмника при выездах на природу.

Ну и плюс опыт выполнения подобных электромонтажных работ – он для многих начинающих вообще бесценен.

Но это, конечно, «игрушки» и пора перейти к более серьезным задачам.

Какие могут быть препятствия к установке личного ветрогенератора?

Прежде чем приступать к реализации такого довольно масштабного проекта, хозяину было бы логичным поинтересоваться, не будет ли к этому препятствий, так сказать, административного плана. Что об этом говорит законодательство?

  • А говорит оно то, что если выходная мощность планируемого к установке ветрогенератора не превышает 1 кВт, то это вообще рассматривается, как одна из разновидностей бытовых приборов. То есть никак не попадает ни под какую регламентацию.

А что такое мощность в 1 кВт? Не слишком много, но вполне достаточно, например, для дачного или даже небольшого жилого дома. Если не применять отопительные электрические приборы, электроплиту, бойлер и иную мощную технику, то совокупно на все освещение, питание телевизора, ноутбука, на зарядку гаджетов – с лихвой будет хватать. И даже некоторый домашний электроинструмент, при разумном подходе к одновременному подключению устройств, можно будет использовать.  А с мощной аккумулирующей установкой откроются и более широкие возможности – за счет накопления энергии в периоды, когда потребление отсутствует или минимально.

Мощности ветрогенератора в 1 кВт, при которой он вообще с точки зрения закона рассматривается как бытовой прибор, порой бывает вполне достаточно для полного обеспечения небольшого загородного домика
  • Не стоит переживать и хозяевам участков, собравшимся устанавливать более мощную систему. Порог, определяющий необходимость сертификации энергетических установок – 75 кВт. То есть никакие чиновники местной власти не имеют права своим решением потребовать прохождения каких-то разрешительных процедур.

Правда, перед началом реализации проекта стоит все же поинтересоваться особенностями регионального законодательства – нет ли там какой-то лазейки для «чиновничьего беспредела».

  • Не облагаются такие электростанции и никакими налогами. Ветер пока что еще остается «бесплатным ресурсом», и если генератор используется исключительно для личного потребления энергии, то претензий к владельцам возникать не должно.
  • Иное дело – конструкционные особенности ветряка. Иногда могут быть установлены ограничения на высоту мачты – этим стоит поинтересоваться заранее. Например, вблизи линий электропередач, вышек связи, аэродромов и т.п. Возможны и иные ограничения на высоту индивидуальных построек и сооружений. Иногда претензии приходят и со стороны экологических служб – дескать, самостоятельно установленные мачты могут стать помехой свободному перелету птиц. Маловероятно – но все же…
  • Установленный и работающий ветрогенератор не должен стать причиной конфликта с соседями по участку. А вот здесь разнообразие претензий, в том числе и надуманных, бывает очень широким.

— Так, соседям может внушать опасение установленная мачта – что она в случае падения рухнет на забор и их участок. Вполне закономерная претензия.

— Далеко не все ветрогенераторы работают тихо. Наоборот – от некоторых исходит весьма внушительный низкочастотный шум и вибрация. И если хозяева, бывает, с этим готовы мириться, то соседям такой раздражающий фактор – совсем ни к чему. Значит, придется или договариваться, или принимать какие-то меры для недопущения сильного шума, или отказываться от ветряка.

Мощные промышленные ветровые турбины вообще по нормативам не должны располагаться ближе 300 метров от жилых домов. И даже на таком расстоянии шум и вибрации могут ощущаться.

Если вы уверены в своей правоте в этом вопросе, то уровень шума желательно измерить с помощью специального прибора — пригласить для этого специалиста и зафиксировать показатели документально. Появится весомый аргумент при решении возможных конфликтов.

— Не исключены претензии (возможно, что и «высосанные из пальца»), что после запуска такой мини-электростанции у соседей ухудшился прием телевизионного или радиосигнала, снизилось качество мобильной телефонной связи.

— Возможны и иные претензии, степень серьезности которых во многом зависит от уровня «мирного сосуществования» с соседями.

Узнайте, какие автономные электростанции для загородного дома возможно выбрать, в специальной статье на нашем портале.

Как быть? Выход видится один – договариваться заранее, а со своей стороны – постараться смонтировать систему так, чтобы она действительно причиняла минимум беспокойства (для себя же лучше). Если договоренность достигнута, и претензий к работающему вертогенератору у соседей нет, то это будет разумным закрепить каким-то произвольным, но письменным соглашением. Ощущения – дело субъективное, и то что сегодня кажется приемлемым, однажды, в период плохого настроения соседей, может «сменить полярность». И даже если вы будете уверены в том, что предъявляемые претензии надуманные – доказать обратное будет практически невозможно или чрезвычайно сложно.

  • Кстати, еще раз вспомним о вибрации. Ветряки с мощностью более 1,5÷2 кВт ни в коем случае не рекомендуется устанавливать на крыше дома. Вибрационное воздействие вполне способно сделать свое «черное дело», постепенно расшатывая стропильную систему с кровлей или даже другие конструктивные элементы здания.
  • При выборе места установки ветряка следует не упускать из виду и вопросы личной безопасности. Вращение лопастей даже при умеренном ветре происходит с очень высокой линейной скоростью. Случайно отколовшийся осколок или элемент крепежа может развить скорость более 100 км/час, то есть представлять весьма серьезную опасность для человека.

Насколько выгодной (или наоборот) может оказаться реализация проекта?

Как уже становится потихоньку понятно, проблем с установкой ветровой электростанции – больше, чем хотелось бы. И при этом еще необходимо трезво оценивать реальные условия. Прежде всего – средний уровень ветров, характерных для данной местности. Иногда просто не имеет смысла связываться.

Карта-схема среднегодовой скорости ветра на территории России

На карте-схеме выше показаны примерные значения среднегодовой скорости ветра по регионам России. Понятно, что эти данные – ну очень ориентировочные. Но их всегда можно уточнить в местной метеорологической службе. Или, наверняка, их знают и в строительных компаниях города (района).

Плюс к этому (точнее сказать – минус) – свободному движению ветра могут мешать естественные (складки рельефа, высокие деревья и т.п.) или искусственные (высокая застройка) препятствия. В таких условиях приходится увеличивать высоту мачты, чтобы «поймать» ветер над препятствием, но это превращается в очень сложную, дорогостоящую и небезопасную технологическую проблему.

Наверное, будет интересно заранее посмотреть, на что можно рассчитывать. То есть какой ожидаемый приток бесплатной энергии возможен в зависимости от мощности генератора и среднегодовой скорости ветра.

Смотрим в таблицу.

(Значения паспортной мощности указаны для скорости ветра в 12 м/с – именно такой показатель очень часто встречается в технических характеристиках установок, предлагаемых в продаже – от него идёт расчет номинальных значений).

Ожидаемое количество выработанной электроэнергии (кВт в месяц) в зависимости от номинальной мощности ветрогенератора и среднегодовой скорости ветра в месте его установки.

Номинальная мощность ветрогенератора, кВт, рассчитанная для скорости ветра 12 м/сСреднегодовая скорость ветра в месте установки ветрогенератора, м/с
2,02,53,04,05,06,0
0,31.534.51236108
1,04. 89.614.438.4115345
2,09.619.228.876.8230690
3,014.428.843.21153451035
5,02448721925751725

И видим, что ожидать каких-то чудес – не приходится.

Например, довольно мощный, недешевый и сложный в установке ветрогенератор паспортной номинальной мощностью в 3 кВт, размещенный на местности, где среднегодовая скорость ветра не превышает 3 м/с, выработает в течение месяца всего 43,2 кВт электроэнергии. И это еще – в лучшем случае, и без учета неизбежных потерь при передаче и преобразовании электрического тока.

Вот и считайте, какова предполагается экономия, выраженная в рублях (с привязкой к местным тарифам), и за какое количество лет ветровая энергетическая установка в таких условиях себя окупит…

Такая таблица хороша в том случае, если известна номинальная мощность приобретаемой готовой модели. А как спрогнозировать мощность, если ветрогенератор планируется изготавливать самостоятельно?

Подсчитать мощность ветрового потока можно по следующей формуле:

W = 0.5 × ρ × Sr ×

Символами в формуле обозначены:

W — мощность ветрового потока, проходящего через определенную площадь.

ρ — плотность воздуха (можно принять усредненное значение 1,25 кг/м³).

Sr — площадь, с которой «снимается» энергия ветра. В приложении к горизонтальным ветрогенераторам – это площадь ротора, то есть круга, ограниченного длиной лопастей.

V -— расчетная скорость ветра.

Понятно, что далеко не вся энергия, переносимая ветром, будет преобразована в электрическую. Часть воздушного потока расходуется на образование завихрений, на обтекание конструкции. Кроме того, неизбежны потери общего плана, свойственные для любых механизмов – преодоление силы трения, нагрев и т. п. В итоге обычно можно всерьез говорить о полезном использовании всего порядка 30÷40% от потенциала ветрового потока.

Поэтому формулу лучше представить вот в таком виде:

Wg = 0.5 × ρ × ξ × Sr × V³ × ηg × ηr

Разбираемся с добавившимися в формулу величинами:

ξ — это коэффициент использования ветровой энергии. С некоторой долей условности его можно назвать и коэффициентом полезного действия ветрогенератора. В реальных условиях эксплуатации даже для быстроходных установок с лопастями аэродинамического профиля, при номинальных показателях скорости ветра значение коэффициента обычно лежит в пределах 0,35÷0,45. Для расчетов прогнозируемой мощности энергоустановки можно взять усредненное значение — 0,4. Только в некоторых высокотехнологичных ветрогенераторах с практически идеальными аэродинамическими формами лопастей удается достичь значения этого коэффициента в 0,5 или даже несколько выше.

ηg — коэффициент полезного действия самого генератора. Обычно не поднимается выше 0,85.

ηr — коэффициент полезного действия редуктора (если он используется в схеме). Тоже обычно ограничивается показателем 0,9. Если вращение передается на генератор напрямую, без механического преобразования, то эту величину можно оставить равной 1,0.

Вот с этой формулой уже можно подсчитать более приближенные к реалиям показатели мощности планируемого к установке ветрогенератора.

Чтобы облегчить читателю задачу, составлен специальный онлайн-калькулятор, который выполнит расчеты буквально за секунды.

Калькулятор расчета прогнозируемой мощности ветрового генератора

Перейти к расчётам

Обычно расчеты проводят для двух скоростей ветра.

  • При указании среднегодовой скорости можно представить, на какое количество выработанной энергии можно рассчитывать в определенный период времени – обычно это исчисляется месяцами или даже полным годом.
  • Номинальная же мощность установки обычно вычисляется по так называемой расчётной скорости ветра, которая, впрочем, не должна превышать среднегодовую более, чем в 1.5 ÷ 2.0 раза.

Итак, прежде чем приступать к реализации задуманной установки ветрогенератора, стоит все же просчитать, на что можно рассчитывать при его дальнейшей эксплуатации. В большинстве случаев говорить о реальном режиме экономии материальных средств – неблагоразумно. Затраты на приобретение системы (или комплектующих для ее создания) и ее установку ожидаются немалые, а отдача, как видно по расчетам – не особо впечатляющая.

Иными словами, такой проект можно назвать, скорее, инвестицией в будущее, но никак не ожидать от запуска энергетической установки сиюминутной отдачи. Правильнее, наверное, ее будет рассматривать в качестве вспомогательного источника энергии или резервного, на случаи перебоев в линиях электропередач, если этим грешат местные электросети.

Цены на солнечные модули DELTA

Солнечный модуль DELTA

Иное дело, если по каким-либо причинам подведение ЛЭП к объекту (дому) становится или невозможным, или чрезвычайно затратным. Тогда, действительно, приходится рассчитывать только на автономные источники электроэнергии. В таких ситуациях видится оптимальным сочетание ветрового генератора и дизельной (бензиновой) энергетической установки. При хороших показателях скорости ветра энергообеспечение ложится на ветрогенератор, в периоды штиля или очень слабого ветра придётся переходить на жидкотопливный агрегат.

Примерная блок-схема автономной системы энергоснабжения дома с использованием нескольких источников выработки энергии

Кстати, еще одним помощником в общей схеме энергообеспечения дома могут стать и солнечные батареи – этот источник при создании полностью автономной системы тоже никак нельзя сбрасывать со счетов.

Основные узлы и агрегаты самостоятельно создаваемого ветрогенератора

Еще раз повторимся – целью статьи не является публикация точных чертежей и инструкций по самостоятельной сборке ветрового генератора. По мнению автора – это и вовсе сделать невозможно, по крайней мере в полном отрыве от информации о конкретных условиях установки такой системы. А тот массив публикаций в интернете, который преподносится в качестве руководств к созданию ВУЭ своими руками – по большей части таковым не является.

Без расчетов, без детально продуманного проекта, без багажа определённых знаний и умений приступать к такому делу и вовсе не стоит. А проектирование действительно работающей и приносящей ощутимый эффект системы – все же задача для специалистов.

Но народный энтузиазм – неистребим, и многие домашние мастера на свой страх и риск все же стремятся создать такие источники автономного питания. И если желание попробовать собственные силы преобладает, то можно подсмотреть, как это уже пытались сделать другие.

Итак, конструктивно всю систему можно разделить на несколько основных узлов и агрегатов:

  • Ветряк с устройством стабилизации положения и с передачей вращательного момента на вал генератора.
  • Конструкция, обеспечивающая установку ветряка с генератором на требуемой высоте.
  • Собственно, само генерирующее устройство, в котором происходит преобразование вращательного движения в электрическую энергию.
  • Электрическая схема, обеспечивающая контроль и дальнейшее использование выработанной энергии.

Электрическую часть «оставим в покое» — здесь вообще отдельный вопрос, требующий очень пристального профессионального рассмотрения. А с остальными попробуем внести некоторую ясность.

Конструкция ветряка

Ветряк – самая заметная часть общей конструкции. Именно ему «поручается» преобразовать поступательно перемещение воздуха (ветра) во вращательное движение ротора генератора. И, как мы видели из расчетов, размеры ветряка напрямую влияют на мощностные показатели энергоустановки — чем больше площадь охватывания ветром, тем больших результатов можно ожидать.

По расположению оси вращения ветряки могут быть горизонтальными и вертикальными.

Ветряки с горизонтальной осью вращения

Ветряки горизонтального исполнения отличаются большим количеством оборотов и более высокими показателями мощности. Опять же, в силу немалой площади, с которой снимается кинетическая энергия ветра.

Ветряк с горизонтальным расположением оси вращения. Такие модели обычно отличаются более высокими показателями скорости и преобразуемой энергии.

Лопасти ветряка могут быть жесткими или парусного типа. Но парусные, хотя они зачастую бывают и легче, и проще в изготовлении, не показывают нужных для эффективного ветрогенератора значений скорости вращения. Обычно их применяют в тех механизмах, где важно само стабильное вращение, так сказать, «ради вращения». Классическим примером могут служить ветряные мельницы или помпы.

Ветряк с лопастями парусного типа – высоких скоростей и показателей мощности от такого ожидать не приходится

Кроме того, парусные лопасти не столь долговечны и требуют довольно частного ремонта – перетяжки.

А для выработки электроэнергии оптимальным вариантом все же считаются жесткие лопасти с аэродинамическим профилем. При нормальном ветре за счет сочетания приложения нескольких сил они способны создавать скорость вращения в 1000 и даже более оборотов в минуту.

Кстати, гнаться за количеством лопастей – совершенно бессмысленное занятие. Оптимальную производительность как раз показывают ветряки с  двумя или тремя лопастями. Если посмотреть на многочисленные иллюстрации в интернете, то видно, что преимущественно ветрогенераторы заводского изготовления – трехлопастные.

Среди великого многообразия моделей горизонтальных ветряков преобладают все же трехлопастные

Можно, безусловно, встретит и другое количество лопастей – есть модели и вообще с одной. Но именно трехлопастные считаются той «золотой серединой», которая обеспечивает и эффективность работы, и высокие скорости, и простоту в балансировке.

Такое тоже встречается, но уже значительно реже

А вот возрастание числа лопастей (парадоксально, но факт) только ухудшает показатели ветровой установки. Возникающие завихрения и зоны разряжения воздуха приводят к лишнему торможению вращения. Так что определяющими становятся не количество, а длина лопастей и скорость их вращения.

Несмотря на то что конфигурация лопастей – довольно сложная штука, их успешно мастерят и самостоятельно, например, раскраивая жесткие пластиковые трубы среднего диаметра. Например, канализационная труба, распущенная вдоль на четыре одинаковых сектора, послужит заготовкой для изготовления трех лопастей. (Один сектор останется в запасе – можно из него сделать лекало, чтобы в любой момент по имеющемуся образцу вырезать новую лопасть для замены вышедшей из строя).

Если в качестве исходного материала решено использовать пластиковую трубу, то лучше взять оранжевую – она и прочнее, и долговечнее

Стоят трубы недорого, так что с формами лопастей вполне можно поэкспериментировать. Обычно вначале вырезается и обрабатывается одна лопасть. А в дальнейшем – она уже служит шаблоном для изготовления остальных.

Опытные мастера, уже опробовавшие эту схему, рекомендуют придерживаться определённого соотношения длины лопасти и диаметра предназначенной для ее изготовления трубы – 5:1. То есть, например, для метровой лопасти лучше применить трубу диаметром 200 мм.

Цены на ПВХ трубы

ПВХ труба 200 мм

В интернете можно отыскать уже готовые рекомендуемые лекала для изготовления лопастей из трубы. В таких схемах просчитаны и проставлены оптимальные размеры, и остается только перенести их на заготовки.

Для примера – парочка таких лекал для трехлопастного ветряка разного диаметра:

Чертеж 1 – лопасть из трубы 200 мм для ветряка диаметром 1700 мм

Лекало для лопасти длиной 850 мм

Чертёж 2 – лопасть из трубы 250 мм для ветряка диаметром 2300 мм

Лекало для лопасти длиной 1150 мм

Естественно, изготовленные лопасти следует тщательно обработать, придав им обтекаемую форму. В ход последовательно идут напильники, надфили, мелкозернистая наждачная бумага.

Если оставить лопасти вот в таком, необработанном виде, то ничего хорошего от работы ветряка ждать не приходится – сопротивление из-за создаваемых завихрений будет слишком большим, что скажется и на эффективности, и на шумности работы энергетической установки.

Имеет значение и профиль обрабатываемой кромки. По той стороне, которая будет «разрезать» воздух, кромка шлифуется до обтекаемой округлой формы. С противоположной стороны делается заострение на внешнюю сторону – для облегчения схода с плоскости лопасти воздушного потока.

Профили обработки кромок лопасти

Существует и немало других, правда – более сложных в исполнении, но и более надежных вариантов изготовлении лопастей. Так, хорошими показателями традиционно обладают алюминиевые «крылья», которым может придаваться или такая же, как у трубчатых, изогнутая форма в сечении, или даже коробчатая.

Можно отыскать интересный материал по изготовлению объемных лопастей из стеклоткани с последующей пропиткой эпоксидной смолой. Для этого сначала изготавливается матрица – деревянный шаблон, выполненный точно по форме будущей лопасти.

Затем по этой матрице изготавливаются две стеклотканевые детали одной лопасти, которые впоследствии склеиваются в одну полую, очень легкую и, вместе с тем, прочную деталь. Но это уже, если честно, «высший пилотаж» мастерства, доступный только для опытных мастеров.

Стеклотканевые заготовки – из таких половинок будет склеиваться цельная полая лопасть ветряка

Лопасти после тщательно проведенной разметки крепятся к ступице винта – обычно для этого используют резьбовое соединения. А ступица уже будет непосредственно соединяться с валом генератора, или через систему передачи с повышением числа оборотов.

Один из вариантов крепления лопастей в ступице ветрякаМноголопастный винт неспособен давать большое количество оборотов, но зато чутко реагирует на небольшой ветер. Повысить угловую скорость вала генератора можно и вот таким нехитрым способом. Ступица ветряка, кстати, изготовлена из обычного велосипедного колеса, которое стало одновременно шкивом для ременной передачи.Вариант зубчатой повышающей передачи вращения на вал генератора. Как видно, в ход пошли запчасти от старого шуруповерта. Хорошо видна хвостовая часть флюгерной станины с вертикальным килем.
  • Важным элементом конструкции ветряка всегда является вся флюгерная часть — поворотная станина, на которой, собственно, и размещаешься сам винт, передача и генерирующее устройство. Естественно, и материал изготовления, и сама сборка должны выдерживать немалые нагрузки, в том числе – и динамические, и вибрационного плана.

В задней части предусматривается хвостовик, который оснащается вертикальной пластиной – килем. Это позволяет правильно позиционировать винт ветряка относительно направления ветра – перпендикулярно ему. Естественно, хвостовик еще и играет роль противовеса – для балансировки всей флюгерной части ветрогенератора относительно оси мачты.

Кстати, в «продуманных» моделях ветрогенератора предусматривается система изменения угла атаки ветра – это позволяет сохранить целостность конструкции при резких порывах или аномально сильном ветре. Один из вариантов показан на схеме ниже.

Механизм изменения положения плоскости вращения ветряка относительно направления ветра (вид сверху)

Сам ветряк (поз. 1) соединён с хвостовиком, оснащенным килем (поз. 2), не жестко, а через шарнир. Кроме того, в конструкцию добавлен еще один элемент – боковая лопатка (поз. 4), которая в точке шарнира жестко соединена с ветряком и расположена перпендикулярно ему. Исходное, нормальное положение роторной части обеспечивается усилием пружины (поз. 5).

Если скорость ветра – в пределах нормы, то ветряк и хвостовик с килем, как им и положено, расположены соосно. И плоскость вращения винта – перпендикулярна направлению ветра.

При усилении ветра лопатка, за счет своей парусности, начинает, растягивая пружину, отклоняться назад, и тем самым ветер попадает на винт уже не перпендикулярно, а под определенным углом. Снижается площадь «контакта», соответственно – и мощность генератора. То есть происходит своеобразное предохранение и конструкции всего ветряка в целом, и генерирующего устройства – от перегрузки и перегорания. При очень больших скоростях лопатка и вовсе выведет ветряк из работы – плоскость вращения встанет параллельно направлению ветра.

Ветряки с вертикальной осью вращения

Такую схему тоже применяют достаточно часто, так как она обладает рядом преимуществ. Ветряки такой компоновки (их обычно называют роторными) очень чувствительны даже к небольшим скоростям ветра. Достоинством является и то, что их работа сопряжена с гораздо меньшим уровнем шума и вибрации, поэтому их зачатую без особой опаски монтируют на крышах, что для осевых ветряков, как мы помним, противопоказано. Мало того, нередко такие ветряки, исполненные «с любовью» и проявлением креативности мышления, становятся даже оригинальным украшением внешнего облика дома.

Несколько примеров ветряков с вертикальной осью вращения

Вертикальная ось позволяет разместить тяжеловесное генерирующее устройство не на большой высоте, а в более удобном для эксплуатации и регулярного обслуживания месте. Это снимает ряд проблем, касающихся конструкции мачты.

Для самостоятельного изготовления лопастей таких ветряков широко используются разрезанные на сектора емкости – старые металлические или пластиковые бочки, выварки, баки и т.п. Вполне можно применить и обычные листы оцинкованного металла, закрепив их на рамах. Нет особых ограничений по конструкции ступицы с рамами для размещения лопастей.

Примеры самодельных ветряков вертикального расположения – изготовлены из бочек и из металлических оцинкованных листов

Одним словом, просторов для творчества, применимого к имеющимся в хозяйстве материалам — здесь намного больше.

Но есть у них и главный недостаток, который во многом перечеркивает достоинства. Просто по своей конструкции такие энергетические установки значительно уступают в показателях мощности осевым горизонтальным. Упоминавшийся выше коэффициент использования энергии ветра при таком расположении ветряка обычно не превышает 0,2, то есть практически вдвое ниже. Да и по показателям скорости вращения они несопоставимы. Линейная скорость такого ветряка у края лопасти просто физически не может быть выше скорости ветра. А при довольно большом радиусе колеса угловая скорость и вовсе получается совсем незначительной.

А для генерирующих устройств количество оборотов зачастую является определяющим моментом, от которого зависит их возможность выработки электроэнергии. Значит, придется применять довольно сложную систему передачи вращательного момента. Это и усложняет конструкцию, и приводит к дополнительным потерям.

Впрочем, немало сторонников и именно у такой схемы – умельцы находят способы минимизировать ее негативные качества.

В контексте данной статьи к этой схеме мы больше возвращаться не станем – она требует и отдельных расчётов (показанный выше алгоритм для нее не подходит), и более глубокого изучения особенностей конструкции. Так что лучше ей отвести отдельную публикацию, которая обязательно появится на страницах нашего портала.  А пока – заполним «вакуум» небольшим видеосюжетом на эту тему.

Видео: Самодельный вертикальный ветрогенератор в работе

Мачта и поворотное устройство

Ветрогенератор должен быть поднят на нужную высоту, и всей флюгерной части необходимо предоставить возможность вращаться в горизонтальной плоскости, следуя за направлением ветра.

  • Мачта – один из очень непростых в изготовлении и монтаже элементов конструкции ветрогенератора. Особенно если обстоятельства вынуждают поднимать ветряк с генератором на большую высоту. Саму-то мачту порой установить не так просто – а здесь еще и массивный габаритный груз на верхушке!

Очень удачный вариант – это готовая мачта, специально предназначенная для подобных целей. В ней уже заложена шарнирная или телескопическая конструкция для последовательных действий при монтаже – крепления нижней части и затем – установка верхней части с «полезным грузом» на нужную высоту.

Установка мачты с ветрогенератором с шарнирным соединением нижней и верхней секции и общим их креплением к фундаменту

Такие мачты, безусловно, недешевы, но нечто подобное можно смастерить и самостоятельно из труб разного диаметра.

В любом случае мачту, конечно, в грунт не воткнешь и просто на голую землю не поставишь. Значит, ей необходим достаточно мощный фундамент. В процессе его армирования укладывается или закладная гильза, в которую впоследствии будет вставляться труба мачты, или закладные анкеры с резьбовой частью – для последующего соединения с основанием мачты.

Подготовленный к заливке бетоном армированный каркас фундамента мачты – с закладной трубой-гильзойДругой подход – на фундаменте через закладные анкеры зафиксировано основание, с которым шарнирно связана сама мачта. Остается ее аккуратно поднять растяжками и зафиксировать мощными болтами.

После установки мачты она должна сразу же быть дополнительно зафиксирована растяжками. Количество и высота ярусов, количество растяжек в ярусе и удаление точек из крепления определяется специальными расчетами. Это зависит и от высоты мачты, и от материала ее изготовления, и от особенностей местности. Так что этот вопрос лучше не пускать на самотёк, а уточнить у специалистов в местной строительно-монтажной организации. Кстати, противоположный конец каждой растяжки, если он крепится на уровне грунта, потребует и себе отдельного анкерного фундамента. Так что работы предстоит много.

В качестве примера – рекомендуемая схема установки и фиксации растяжками мачты высотой 15 м для ветрогенератора «Бриз 5кВт»

При необходимости большой высоты подъема ветрогенератора порой прибегают к монтажу сложной каркасной конструкции из стального проката. Надо полагать, что в таких случаях без квалифицированного проектирования и вовсе не обойтись. Такие мачты обычно имеют секционную конструкцию и последовательно монтируются от фундамента до верхушки. Хотя может быть и цельная конструкция, устанавливаемая разом.

Монтаж каркасной мачты
  • Безусловно, должно быть продумано подвижное соединение флюгерной части ветрогенератора с мачтой, на которой он устанавливается – для изменения положения при перемене направления ветра. Конструкция этого вертлюга может быть разной – от подшипникового узла (предпочтительно) до простейших схем «труба в трубе» или «штырь в трубе» (слишком примитивно — не исключено заклинивание).

Часто очень даже подходящие детали для такого соединения можно подыскать на барахолке старых автомобильных запчастей, а то и вовсе в своем гараже. Например, это могут быть старые ступицы колес. Кроме того, полностью готовый узел заводской сборки, с качественной системой подшипников, защищенных от внешнего воздействия, стоит поискать в каталогах – это будет проще и надежнее.

Очень здорово, если удастся найти готовый вертлюг для флюгера – проблема снимается автоматически
  • Одной из проблем становится расположение кабеля, по которому выработанный ток должен поступать в электрическую схему системы.

Если просто пропустить кабель в полости трубы мачты – проблема не решится. Вращение флюгерной части может привести к перекручиванию проводов, что заканчивается или их обрывом, или коротким замыканием. А проконтролировать состояние становится весьма сложной задачей.

Внешнее размещение кабеля дает возможность контроля. Но от закручивания вокруг мачты все равно никуда не деться, и это запросто можно упустить из виду. Последствия будут ничуть не лучше. Кроме того, оставлять кабель, открытый все морозам и дождям — наверное, не лучшее решение.

Выход – установка подвижных коллекторно-щеточных токосъёмников. Вариантов здесь может быть немало. Так, в интернет-магазинах (на том же «Али») предлагаются готовые решения. Нередко такой токосъемный узел уже входит в состав приобретаемого поворотного механизма.

Примеры токосъемных узлов заводского и кустарного изготовления.

Но многие умелые мастера вполне справляются с задачей и самостоятельно. И их токосъемники ничуть не уступают в надежности и долговечности заводским моделям. А по стоимости получается гораздо выгоднее.

Пример изготовления токосъёмного узла показан на видео.

Видео: Изготовление токосъемника для ветрогенератора

Генерирующее устройство

Дошли, наконец, до «сердца» ветровой энергетической установки. Что же предпочесть в качестве прибора, где, собственно, и будет происходить процесс преобразования кинетической энергии в электрическую.

Раз тема – «своими руками», то готовые модели генераторов заводского изготовления, предназначенные именно для монтажа на ветровых установках – не рассматриваем. Чем же можно их заменить?

Вариантов предлагается немало. Но остановимся на двух – применение прошедшего доработку асинхронного трехфазного двигателя и самостоятельное изготовление так называемого аксиального генератора.

Переделка асинхронного двигателя в генератор

Асинхронные двигатели – наиболее распространенные. И найти (приобрести) такое устройство для последующей переделки в генератор – несложно.

В отличие от представленной в начале статьи принципиальной схемы генератора, наведение ЭДС будет происходить в обмотках статора. А ротор будет создавать необходимое для этого процесса вращающееся магнитное поле. Очень удобно с той точки зрения, что отпадает необходимость щеточно-коллекторного механизма со всеми присущими ему недостатками.

В исходном виде ротор асинхронного двигателя представляет собой совокупность короткозамкнутых обмоток. Чтобы он стал источником вращающегося магнитного поля используются два пути. Первый — с применением конденсаторной схемы, обеспечивающей необходимый «пусковой момент» генерации тока, то есть требуемое опережение фазы вращения магнитного поля ротора над полем статора.

Второй вариант – создание требуемого для генерации вращающегося поля высокой напряженности с помощью мощных постоянных магнитов (неодимовых). Именно этот пример рассмотрим несколько пристальнее.

Достоинством этого метода можно считать отсутствие необходимости довольно сложной в выполнении перемотки статора. То есть все ограничится только переделкой ротора. А работать такой генератор способен даже на небольших оборотах.

ИллюстрацияКраткое описание выполняемой операции
Переделываться в генератор будет вот такой трёхфазный асинхронный двигатель 5АИ 90L6 У2.
Он в полной мере соответствует поставленной задаче.
Достоинство этой модели еще и в том. Что она имеет влагозащищённый корпус с показателем IP55.
В том числе предусмотрена герметизация кабельных выходов…
…имеются надежные уплотнения под крышками, сальники с обеих сторон вала.
Такой генератор не будет бояться ни атмосферной влаги, ни прямого попадания осадков. Да и профилактическое его обслуживание можно проводить не столь часто.
Сняты крышки с обеих сторон корпуса.
Хорошо видна обмотка статора. Но она остается как есть – не делается никаких изменений.
Все последующий работы будут касаться исключительно ротора.
Его для начала отправили к токарю. Задача – проточить, снять верхний слой, уменьшить диаметр исходя их следующих соображений:
— После проточки на статор должна быть надет на горячую посадку стальной цельный цилиндрический стакан, с толщиной стенок, допустим, 4 мм.
— На этот стакан будут наклеиваться неодимовые магниты (в рассматриваемом примере – толщиной 5 мм).
— И после этого итоговый диаметр ротора должен получиться таким же, каким был до доработки, то есть с минимальным зазором от зубьев статора.
Ротор, пришедший после токарной обработки.
Хорошо виден гладкий стакан, пришедший на смену короткозамкнутым обмоткам.
На поверхность этого стакана и будут приклеиваться постоянные магниты.
Но для начала необходимо измерить линейные параметры стакана (длину по оси и длину окружности) и составит схему расположения магнитов. Она как раз должна уместиться в прямоугольнике с этими снятыми размерами.
Необходимо определиться с количеством полюсов. Можно встретить разные рекомендации.
Например, количество полюсов должно соответствовать количеству полюсов двигателя (оно указывается в маркировке, и в данном случае об этом говорит цифра 6).
Другой совет – подсчитать количество зубьев обмотки статора и уменьшить его на четверть. Например, 16 зубьев – значит оптимально будет сделать на роторе 12 полюсов (два магнитных полюса ротора на три катушки статора).
Полюс – это одна или несколько линий магнитов вдоль оси вращения, по длине ротора.
Количество линий зависит от количества полюсов, размеров приобретённых магнитов и длины окружности – так, чтобы поместилось как можно больше магнитов с шагом примерно в 0,5 диаметра.
Между полюсами может быть промежуток и несколько больше, но только равный на всех границах полюсов.
В данном случае мастер делает шесть полюсов по четыре линии магнитов в каждом. Используются магниты толщиной 5 мм и диаметром 9 мм. В линии умещается 14 магнитов. Значит, общее количество – 336 шт.
Получилось довольно удачно – при соблюдении равного расстояния между магнитами между полюсами отсутствуют расширенные просветы. То есть равный шаг выдерживается и вдоль оси, и по окружности.
Но нередко получается и так, как показано на иллюстрации. Каждый случай в этом вопросе – индивидуален.
Еще один нюанс.
Чтобы исключить залипание ротора, рекомендуется линии магнитов делать не строго параллельными оси, а с небольшим скосом, примерно на ширину одного магнита.
На иллюстрации (взятой из другого примера) весьма наглядно показано – и расположение одного полюса из пяти линий магнитов, и скос этих линий относительно осевой линии.
Следующая проблема – как перенести разметку на цилиндрическую поверхность ротора?
Один их способов – это изготовление специальной «шубы»-шаблона.
На поверхности ротора вначале простилается слой полиэтиленовой пленки, а затем производится намотка нескольких слоев бинта (марли). После этого (или в ходе намотки, как удобнее) ткань обильно пропитывается эпоксидной смолой.
Когда смола полностью застынет, поверхность слегка дорабатывается на токарном станке до идеальных форм. После этого получившуюся цилиндрическую шубу можно снять.
Далее, на нее наклеивается составленный в графическом редакторе и распечатанный на принтере шаблон. Затем с помощью шуруповерта (дрели) со вставленным сверлом нужного диаметра (по размеру магнитов) по шаблону сверлятся отверстия.
Следующим шагом «шуба» вновь надевается на ротор, и в проделанных гнездах к корпуса ротора на эпоксидку вклеиваются магниты.
Другой способ – наклеивание магнитов на суперклей к стакану ротора прямо через бумажный шаблон.
Много возни, правда, с вырезанием в напечатанной схеме большого количества аккуратных небольших отверстий, так чтобы не случилось разрывов между соседними ячейками.
Но выход всегда найдется. Например, мастер вспомнил из своего детства, как можно «прорезать» бумагу, несколько раз проведя по одной линии шариковой ручкой.
Изготовлен из стальной пластинки небольшой шаблон – и вперед…
Готовый шаблон.
Шаблон ровно наклеен на стакан ротора.
Очень важный момент – в одном полюсе, независимо от количества линий в нем, магниты должны быть сориентированы одинаково. Например, северным полюсом вверх. На следующем – наоборот, и так далее по окружности.
Если не полагаетесь на свою внимательность, чтобы не допустить ошибки, на бумажном шаблоне можно заранее провести границы полюсов с указанием, какой стороной вверх должны расположиться магниты.
И перед каждым вклеиванием очередного магнита – убеждаться, что он становится правильно.
Наклеивание производилось на обычный суперклей «Момент».
Надо правильно понимать, что это пока – временная фиксация.
Начинается вклеивание – по линиям, с соблюдением полярности.
Работа, конечно, утомительная, требующая внимательности и аккуратности, и заняла она у мастера практически два дня.
Вот что получилось в итоге.
Кстати, на иллюстрации хорошо видно, как мастер отмечал маркером границы полюсов, по четыре линии.
Получившийся ротор будет заливаться эпоксидной смолой.
Но прежде мастер решил выполнить армирование конструкции с помощью толстой капроновой нити. Как у него получилось – показано на иллюстрации.
Мера, может быть, и необязательная, но то, что она даст выигрыш в прочности ротора при любых скоростях вращения – это неоспоримо.
Так что можно только позавидовать основательности подхода.
Далее, делается опалубка для заливки эпоксидки.
С нижнего торца устанавливается кружок, вырезанный их картона. Все щели между ним и валом ротора заклеиваются пластилином.
По поверхности цилиндра опалубкой станет слой наклеенного прозрачного скотча.
А с верхнего торца намеренно оставленный излишек скотча становится своеобразной воронкой, в которую как раз и будет заливаться эпоксидка.
Ротор устанавливает вертикально, и в воронку сверху заливается подготовленная эпоксидная смола.
Эпоксидка, хоть и не быстро, но уверенно протекает вниз, заполняя все полости и пропитывая капроновую нить армирования. Так продолжают, пока вся опалубка не будет заполнена доверху.
После этого эпоксидке дают нужное время на полное застывание.
А это – ротор уже после снятия картонной опалубки.
Согласитесь – получилось замечательно.
И никаких опасений за то, что какой-то магнит вдруг вылетит при работе генератора, быть не должно.
На вал ротора вновь запрессованы подшипники, вставшие на свои места…
…и можно устанавливать ротор в корпус двигателя (точнее – уже генератора).
Кстати, очень ответственный момент.
Ротор нужно очень крепко удерживать в руках. Притягивающая сила магнитов настолько велика, что известны случаи, когда ротор вырывался из рук и даже выламывал неснятую крышку электродвигателя.
Все, ротор заведен в статор генератора.
Можно устанавливать и фиксировать болтами переднюю и заднюю крышку генератора.
После установки крышек, когда подшипники точно займут свое место, ротор и статор должны встать строго соосно.
Необходимо сразу проверить свободу вращения ротора – не задевает ли он зубья обмотки статора. При правильных расчетах размеров и аккуратном исполнении – не должен.
Не должно быть и чувствительных залипания положения статора – этому способствует выполненный скос линий магнитов.
Ну что ж, можно переходить к проверке работоспособности получившегося генератора.
Крутящий момент на его вал будет передаваться с помощью мощной электродрели. Она способна выдать до 1000 оборотов в минуту.
Подключаются щупы тестера.
В данном случае генератор выдает переменное трехфазное напряжение, схема выполнена «звездой». То есть проверку напряжения можно проводить между любыми из двух фаз.
Мультиметр переводится в режим измерения переменного напряжения (ACV) с пределом 750 вольт.
Включается питание на приводе – электродрели.
И уже в момент страгивания ротора и первичного набора оборотов на дисплее прибора уже показывается напряжение более 60 вольт.
А когда обороты набраны и стабилизировались, мультиметр показывает устойчивое напряжение в 375÷377 вольт.
Можно смело констатировать, что генератор получился вполне работоспособным и готовым к дальнейшему использованию в ветровой энергетической установке.

Безусловно, скорости вращения в 1000 оборотов в минуту от ветряка ожидать сложно. Но и того, что будет на выходе в реальных условиях эксплуатации при нормальном ветре должно с лихвой хватать для зарядки аккумуляторов и для подключения довольно значительной нагрузки.

Чтобы несколько расширить информацию о переделке асинхронного двигателя в генератор, предлагаем посмотреть еще один видеосюжет на эту тему. Там мастер дает некоторые разъяснения по часто возникающим вопросам.

Видео: Вариант переделки асинхронного двигателя в генератор переменного тока

Изготовление аксиального генератора

С появлением в свободном доступе мощных неодимовых магнитов появилась возможность самостоятельного изготовления производительных генерирующих устройств или, как мы видели на предыдущем примере – совершенствования имеющихся изделий. Одной из схем, набирающих популярность, является так называемый аксиальный генератор.

Эта схема привлекает тем, что ее полностью, от начала до конца, можно изготовить самостоятельно. То есть для этого не требуется ни старых генераторов, ни электродвигателей. Могут оказать помощь некоторые автомобильные запчасти (колесная ступица, например), но только в плане облегчения создания системы взаимно вращающихся узлов.

О самостоятельном изготовлении аксиального генератора много говорить не будем. По той причине, что на предлагаемом видео очень подробно показаны все моменты, от принципа устройства прибора и до запуска в эксплуатацию.

Видео: Принцип работы и устройства компактной ветровой энергетической установки с аксиальным генератором

Видео: Подробное разъяснение процесса изготовления аксиального генератора

Видео: Схема подключения и проведение тестирования аксиального генератора.

*  *  *  *  *  *  *

Итак, на этом закончим получившийся довольно объемным обзор, касающийся проблемы самостоятельного изготовления ветровой энергетической системы. Читатель, должно быть, смог убедиться в том, что задача эта – из разряда повышенной сложности. Кроме того, она неизбежно потребует немалых финансовых и трудовых затрат. А ожидать какого-то скорого эффекта от личной ветровой электростанции – пока не приходится.

Однако, уверен, что некоторых домашних мастеров ни один из перечисленных аргументов не остановит. Что ж, хочется искренне пожелать им удачи! А если им будет, чем поделиться (неважно, успехом или неудачным опытом) – с удовольствием предоставим им для этого страницы нашего портала.

И еще одно. Автор публикации будет считать свою миссию выполненной в обоих случаях. И тогда, когда приведенные доводы несколько охладят пыл слишком рьяного искателя бесплатной энергии. И в том случае, если после прочтения статьи найдутся те, кто скажет – «Как же все это интересно! Обязательно попробую!»

Ветрогенератор своими руками для частного дома

«Нам электричество сделать всё сумеет …» — так пели студенты электротехнических ВУЗов середины прошлого века. В этой юмористической «оде» электричеству отведено много фантастики, но сегодня мы можем с уверенностью сказать, что современный человек без электричества просто пропал бы. Если свечи и могли бы нам заменить «лампочку Ильича», то как быть со всем остальным?

К настоящему времени человеком открыты разные способы получения электрического тока:

  • гальванические элементы, в которых химическая энергия преобразуется в электрическую;
  • термогенераторы, в которых в электричество преобразуется тепловая энергия;
  • солнечные батареи, где в электроэнергию преобразуется солнечная энергия.

Каждый из таких источников имеет свои достоинства и недостатки. Однако преимущественное распространение получили генераторы, в которых механическая энергия преобразуется в энергию переменного электрического тока. Это так называемые индукционные генераторы, действие которых основано на явлении электромагнитной индукции.

Немного истории и теории

Вспомним немного школьный курс физики, из которого нам известно, что явление электромагнитной индукции было открыто в 1831 году английским физиком Майклом Фарадеем. А заключается оно в следующем: при всяком изменении магнитного потока, пронизывающего замкнутый проводящий контур, в этом контуре возникает электрический ток.

То есть в простейшем виде такой генератор выглядит как рамка, помещенная в поле постоянного магнита, вращающаяся под действием механической силы. Однако такой тип генератора переменного тока с неподвижной магнитной системой (индуктором) и вращающимися витками проводника (якорем) применяется очень редко. Связано это с тем, что для отведения тока от движущейся катушки требуются подвижные контакты, а при токе высокого напряжения в таких контактах будет иметь место сильное искрение. Поэтому в подавляющем большинстве индукционных генераторов переменного тока обмотку (якорь), в которой наводится ток, делают неподвижной и называют статором, а вращают магнитную систему (индуктор), который называют ротором. В мощных генераторах магнитное поле создают обычно с помощью электромагнита, питаемого от источника постоянного тока — возбудителя.

Однако с появлением магнитов из сплава неодим-железо-бор, которые по своим характеристикам значительно превосходят другие виды постоянных магнитов, появилась возможность изготавливать ротор генератора на основе постоянных магнитов. Неодимовые магниты, разработанные в 70–80-е годы прошлого века, отличаются высокими и стабильными магнитными свойствами при малых размерах.

Теперь несколько слов о механической энергии, которую генератор преобразует в электричество. Для вращения ротора генератора используются энергия воды (гидрогенераторы), энергия пара (парогенераторы). Существуют генераторы, работающие от дизельных и бензиновых двигателей внутреннего сгорания. Забота же об окружающей среде и об экономии собственных средств заставила человека вспомнить о таком «неутомимом работнике» как ветер. С незапамятных времен люди использовали энергию ветра для движения кораблей и для превращения зерна в муку. Современные ветряные двигатели для электрогенераторов ведут свою родословную именно от ветряных мельниц. Соединив ветряной двигатель (ветряк) с электрогенератором, изготовленным с применением современных магнитов, получим ветрогенератор на неодимовых магнитах — экологически безопасный и экономичный источник электрической энергии.

Чем хорош ветрогенератор

Сегодня даже заядлый скептик не будет оспаривать пользу этого вида источников переменного тока.

Конечно, величины напряжения, мощности и тока, полученных от генератора для ветряка, сделанного своими руками не позволят запитать все электроприборы в достаточно большом загородном доме. Но вот снабдить электричеством небольшой дачный домик, особенно если он расположен далеко от электрической сети, вполне рациональное решение. И даже если только часть потребляемой электроэнергии для дома вы получите от ветряка, то в перспективе экономия будет ощутимой.

Кроме того, сделать генератор для ветряка — это интересная творческая работа, выполнив которую вы по праву сможете гордиться собой.

Из чего состоят ветрогенераторы и какие они бывают?

Обязательными элементами такого ветрогенератора на магнитах являются:

1)    Мачта, на которой установлены ветровое колесо и генератор. Ее высота выбирается исходя их конкретных природных условий и потребностей человека.

2)    Двигатель для ветряка — ветровое колесо с лопастями, которое преобразует движение ветра во вращательное движение вала ротора генератора.

3)    Генератор, вырабатывающий переменный электрически ток, величина которого зависит и от параметров статора и ротора генератора, и от скорости вращения ветрового колеса, дающего движение ротору.

Кроме того в состав системы могут входить ряд вспомогательных устройств, обеспечивающих управление работой системы и улучшающие качество получаемого тока: контроллер, аккумуляторные батареи, преобразователи, стабилизаторы.

В зависимости от направления оси вращения различают два типа ветрогенераторов — вертикальные и горизонтальные.

Горизонтальные (пропеллерные) имеют больший КПД, но они более сложны по конструкции, так как включают систему, ориентирующую пропеллер по ветру. Изготовление таких ветрогенераторов сложнее, а работают они только при достаточно больших скоростях ветра. Кроме того, ветряки с горизонтальной осью вращения требуют достаточно большого пространства, а модели с вертикальной осью вращения значительно компактнее.

Вертикальные ветряки проще по конструкции, дешевле, но их КПД ниже.

Но обратимся к сердцу любого ветряка — электрогенератору переменного тока, ротор которого выполнен на неодимовых магнитах.

Как собрать генератор на магнитах

Собираем ротор

Ротор такого магнитного ветрогенератора конструктивно представляет собой сборку из двух стальных дисков, расположенных параллельно друг другу. Диски жестко скреплены между собой через распорную втулку и установлены на валу, вращение которого обеспечивает турбина ветряка. Можно рекомендовать сделать ротор из автомобильной ступицы в сборе с тормозными дисками. Это надежная и хорошо сбалансированная основа для ротора. Дешевле будет взять б/у ступицу. В этом случае ее необходимо разобрать, тщательно почистить, проверить и смазать подшипники. Можно диски для ротора изготовить самостоятельно из низкоуглеродистой стали. Конечно, можно взять и другой материал, но следует учесть, что при использовании немагнитного материала эффективность генератора значительно снижается.

По периметру каждого диска располагаются магниты. Какие магниты нужны для ветрогенератора? Можно взять дисковые, прямоугольные, но наилучший эффект дают неодимовые магниты-сектора. Их размер и количество могут быть разными в зависимости от вашей цели и возможностей. Однако число пар полюсов магнитов должно быть четным, причем для однофазного генератора их должно быть столько же, сколько и катушек в статоре, а для трехфазного — четыре или две пары на три катушки. Магниты по периметру диска устанавливаются с чередованием полюсов: N–S–N–S…. Для этого предварительно следует изготовить шаблон, где точно обозначить место каждого магнита.

Размеры дисков ротора рассчитываются, исходя из размеров магнитов и их количества. Толщина диска для ротора должна быть порядка толщины магнита.

Магниты приклеиваются к диску суперклеем, а затем диск заливается эпоксидной смолой. Чтобы избежать ее стекания по внутренней и наружной окружности диска делаются бортики из скотча, пластилина или другого подручного материала. Перед тем, как залить диск эпоксидкой рекомендуем пометить на каждом диске по магниту, полюса которых направлены встречно, чтобы затем не перепутать при сборке. При сборке генератора следует следить за тем, чтобы магниты на дисках ротора располагались точно напротив и были направлены противоположными полюсами друг к другу. Схематический чертеж ротора ветряка с распределением магнитных силовых линий представлен на рис. 1.

 

Рис. 1

Изготовление статора ветрогенератора

Теперь сформированное магнитное поле нужно преобразовать в электричество. Для этого служит статор — неподвижная обмотка из медного провода, расположенная так, чтобы силовые магнитные линии, образуемые магнитами ротора, при его вращении пересекали провода обмотки.

Статор генератора располагается в зазоре между дисками ротора. Состоит он из неподвижных плоских катушек без сердечников. В каждой катушке при пересечении силовыми линиями магнитного поля возникает ЭДС индукции, переменная по величине и направлению. Величина напряжения, значит, и эффективность ветрогенератора, зависят от скорости вращения ротора, от количества витков в каждой катушке, от числа самих катушек и диаметра медного провода, используемого для их изготовления.

Генератор может быть однофазным или трехфазным. Первый проще, но второй предпочтительнее по двум причинам. Во-первых, в ветряке с трехфазной схемой генератора отсутствуют вибрации, которыми в нагруженном состоянии грешит однофазный. Кроме того, трехфазный генератор эффективнее однофазного более чем в 1,5 раза.

Расчет числа и параметров катушек для ротора ведется исходя из числа магнитов, их ширины, выбранного соотношения 4/3, или 2/3 и диаметра провода.

Если для обмотки взять тонкий провод, то катушки статора можно намотать с большим количеством витков, напряжение на выходе генератора будет более высоким, но его нагрузочная способность ниже. При использовании более толстого провода с меньшим сопротивлением в зазоре для статора поместятся обмотки с меньшим числом витков, в результате выходное напряжение будет ниже, но выше нагрузочная способность. Форма катушек определяется формой магнитов, а оптимальной толщиной статора считается величина, равная толщине магнитов. Число витков каждой катушки получается делением общего числа витков обмотки на число катушек, а общее число витков обмотки статора определяется, исходя из ЭДС, величины магнитной индукции, средней скорости вращения ротора.

Намотав катушки, их раскладывают на предварительно подготовленном шаблоне с размеченными секторами, соединяют между собой в зависимости от выбранной схемы. В однофазном варианте все катушки соединяются между собой последовательно. При этом нужно учесть, что токи в соседних катушках будут иметь противоположные направления, поэтому соединяются начало с началом соседней, а конец с концом следующей. Провода от начала первой и конца последней катушек выводятся наружу. При трехфазном варианте между собой соединяются каждая третья катушка. Провода каждой фазы выводятся наружу и впоследствии соединяются звездой или треугольником. Схемы соединения обмоток генератора представлены на рис. 2.

Рис. 2

Для прочности под катушки и на них кладется стеклоткань, и вся конструкция заливается эпоксидной смолой. После ее застывания сверлятся отверстия для крепежных болтов.

Оба диска ротора устанавливаются на валу с двух сторон от статора на расчетном расстоянии, на передний диск ротора крепится ветроприемное устройство.

Заглянем в будущее

Человеческая мысль не стоит на месте и самые распространенные сегодня горизонтальные ветрогенераторы постепенно уступают свое место вертикальным. Связано это с появлением технологии магнитной левитации, или так называемых ветрогенераторов на магнитной подушке. В такой конструкции лопасти крыльев при малых габаритах максимально используют энергию ветра, то есть КПД тут будет значительно выше.

Первенство в применении этой технологии принадлежит китайцам, но сейчас во многих странах мира инженеры работают над созданием мощных ветрогенераторов с магнитной левитацией, позволяющих осуществить переход к источникам возобновляемой энергии в промышленном масштабе.

Ветряк своими руками | ВЕТРОДВИГ.RU

Делаем ветряк на даче своими руками – чертеж и методика. Этот маленький ветряк роторного типа, изготовленный своими руками в домашних условиях из подручных средств, очевидно, не может снабдить работу электроприборов в коттедже. Однако ему полностью по силам малые дачи, загородные дачные домики, для которых требуется маленькое численность энергии. Например, для освещения хозяйственных зданий или дачного … читать далее →

Современные ветрогенераторы стоят подороже дизельных или бензиновых агрегатов подобной мощности, но у них имеется один большущий плюс — за применяемое для питания » топливо » не необходимо выплачивать, так как ветер покуда никто не додумался продавать, в отличие от товаров нефтепереработки. В данной статье мы попробуем обрисовать как самому можно выстроить маленький самодельный ветрогенератор с … читать далее →

Опубликовано в: Вертикальный ветрогенератор, Ветряк своими руками, самодельный ветряк, сделай сам ветряк / метки:: ветер, ветрогенератор, Ветряк своими руками, генератор, магнит, ротор, самодельный ветряк, электрогенератор

У меня всегда была слабость к ветродвигателям с Вертикальной осью вращения из-за преимуществ, которые они предлагают. К сожалению, большинство из них, такое как Savonius не очень эффективны, но могут работать при низких характеристиках ветра.Я запускал искать любых другие, которые использовали принцип Савониуса. Я закончил тем, что строил этого также и нашел подобные характеристики, но этот … читать далее →

Тед Баер — изобретатель ряда небольших самодельных ветрогенераторов для использования в развивающихся странах. Эти ветряные турбины просты и достаточно мощный. Алюминиевые лезвия самодельного ветрогенератора из мягких полос алюминия, которые часто используются в производстве подвесных потолков. Для увеличения жесткости, две 40 разделов см крепятся с помощью заклепок, чтобы произвести одно лезвие. Лопасти ветрогенератора, в свою очередь, … читать далее →

Опубликовано в: Ветряк своими руками, сделай сам ветряк / метки:: www, ветрогенератор, Ветряк своими руками, ветряная мельница, генератор, генератор постоянного тока, магазин, магнит, мельница, ротор, самодельный ветряк, стоимость

Многие домовладельцы обращаются к альтернативным решениям для удовлетворения своих энергетических потребностей при росте цен на энергоносители радикальные стране и мире. Солнечные панели для дома является одним из способов многих людей экономить деньги. Наличие солнечной энергии для дома сравнительно дорогостоящее мероприятие, если оно проводится экспертом. Многие люди, однако не знают, что они могут установить солнечные панели … читать далее →

Изобретатель Торонто Том Дж. Гилмор недавно издал свои концептуальные проекты для того, что он называет Whirligig Тома. Заявки на патент были сделаны, и Том надеется зарезервировать все права и международные патенты для его проекта. Том верит своим планам вертикального ветрогенератора быть самым сложным когда-либо разработанный. В то время как он еще не уверен в обрабатываемости … читать далее →

После долги морозных дней я выбрался в гараж и приступил наконец-то к изготовлению вертикального ветрогенератора своими руками. Первым что я решил делать это ось и одновременно основания оси для самодельного ветродвигателя «H» вида. В качестве оси  я выбрал обычную водопроводную трубу размером 1\2 дюйма на которую  насадил подшипники качения,естественно подобрал подшипник под размер. Это все … читать далее →

Создайте Свой Собственный Ветродвигатель Энергия ветра в крупном масштабе теперь конкурентоспособна с другими источниками электричества на единой энергосистеме. Однако, маленький ветрогенератор небольшой мощности и размера еще не достиг этой точки. Ветер свободен, но маленький ветрогенератор дорог относительно того, что они производят, и не могут реалистично конкурировать с электричеством электросети. Создание своими руками собственной машины сохраняет … читать далее →

Общая характеристика вертикальных ветряков Такие устройства имеют некоторые преимущества перед ветрогенераторными устройствами с горизонтальным расположением оси. У них отсутствуют узлы для ориентации на ветер, что упрощает конструкцию и снижает гироскопические нагрузки. Разработано большое количество разнообразных ветрогенераторов  с вертикальной осью вращения (рис. 6.1), Рис. 6.1. ветрогенератор с вертикальной осью вращения:в которых для создания вращающего момента используются … читать далее →

Опубликовано в: Вертикальный ветрогенератор, Ветряк своими руками, самодельный ветряк, схемы и конструкции, термины и определения / метки:: вертикальный ветрогенератор, ветрогенератор, ветродвигатель, ветроколесо, время, Дарье, Классификация, эффективность

Как построить свою собственную систему ветрогенератора

Система ветрогенератора может быть построена дома, в основном из общедоступных предметов домашнего обихода, для производства электроэнергии. Ветряные генераторы работают, используя силу ветра для вращения лопастей; это круговое движение используется для вращения двигателя, который, в свою очередь, заставляет его вырабатывать электричество.

Для этого ветрогенератора необходимо будет купить двигатель и аккумулятор, так как их очень сложно сделать.

    Изготовить лопасти ветрогенератора.Они будут улавливать ветер, заставляя лопасти вращаться, таким образом вращая двигатель и генерируя электричество.

    Лезвия можно просто изготовить из отрезка трубы из ПВХ, например, из трубок, используемых для водостока. Согласно «вашей зеленой мечте», ПВХ-трубка должна быть на 20% шире, чем длинна, чтобы обеспечить достаточную прочность на ветру. Длина лопастей зависит от габаритных размеров ветрогенератора. Для базовой домашней ветрогенераторной системы хорошим размером будет примерно 18-20 дюймов в длину.

    Разрежьте эту трубку на четыре равных части по длине, а затем сформируйте каждую из этих четвертей в лезвие, разрезав их пополам по диагонали, чтобы сформировать длинные треугольники.

    Присоедините эти лопасти к ступице, которая может быть сделана из зубчатого колеса или небольшого круглого куска металла. Убедитесь, что отверстие в середине этой ступицы подходит для двигателя.

    Лопасти можно привинтить или прикрутить к ступице на равных расстояниях по ее окружности. Отверстие в середине ступицы должно быть проделано на двигателе, чтобы, когда ветер перемещает лопасти, крепление на двигателе вращается и генерируется электричество.

    Присоедините двигатель к одному концу 2×4, примерно 1 ярд длиной. Накройте двигатель пластиковой пленкой, чтобы защитить его от непогоды.

    Прикрепите прямоугольный кусок металла или жесткого пластика к другому концу 2×4; это будет действовать как хвост. Хвост будет захвачен ветром и, таким образом, маневрируйте лопастями ветрогенератора в наиболее эффективном направлении для выработки максимальной мощности.

    Просверлите отверстие сразу за двигателем для проводов.Под этим отверстием прикрепите кронштейн для трубы. В этот кронштейн трубы, а также под отверстие вставьте трубу немного меньшего размера. Эта труба должна иметь возможность свободно перемещаться внутри кронштейна, чтобы лопасти, двигатель и хвостовая часть ветрогенератора могли поворачиваться навстречу ветру. Пропустите провода от двигателя вниз по этой трубе.

    Закрепите ветрогенератор на прочном основании, например, на большом дереве. Ветрогенератору нужно будет оставаться в вертикальном положении при сильном ветре и другой погоде, поэтому его можно прикрепить к земле или другому объекту для дополнительной поддержки.

    Пропустите провода от двигателя в верхней части ветрогенератора в сухое место, например, в сарай. Убедитесь, что провода во всех местах защищены от погодных условий и животных, которые могут их пережевать.

    Подсоедините провода, идущие от двигателя к батарее. Это позволит хранить произведенную электроэнергию для дальнейшего использования. С этой системой ветрогенератора можно использовать более одной батареи; просто замените батареи, когда одна из них полностью заряжена или используется для питания других устройств.

Ветрогенераторы — справочник покупателя

После множества последних технологических разработок, Дункан Кент сравнивает новейшие ветряные турбины высокой мощности

Морской ветрогенератор остается одним из самых эффективных способов зарядки аккумуляторов, когда вы находитесь вдали от электросети. Непрерывное совершенствование за последние пару десятилетий привело к их безграничному совершенствованию, в частности, благодаря появлению постоянных магнитов, бесщеточных генераторов переменного тока, аэродинамических лопастей ротора, разработанных с помощью САПР, и интеллектуальных многоступенчатых контроллеров заряда, которые помогают сделать новейшие устройства более мощными. , тише и намного эффективнее.

Трехлопастные роторы становятся все более популярными. Хотя ранние модели были довольно шумными, умные лопасти, разработанные с помощью САПР, значительно уменьшили гудение и свист, устраняя турбулентность вокруг концов лопастей. Кроме того, использование более эффективных генераторов с постоянными магнитами с низким уровнем зубчатого зацепления (меньшее начальное трение) также позволило снизить скорость вращения лопастей, что еще больше ограничило уровни окружающего шума.

AIRBREEZE
£ 1,169,50

Эта саморегулирующаяся модель с тремя лезвиями, 12/24 В, хорошо сделана и стильна.Его литой алюминиевый корпус имеет светодиодный индикатор внизу, который указывает режим, в котором он находится. Постоянно включенный означает, что он заряжается, но он меняется на постоянную вспышку, когда его электрическая тормозная система срабатывает и замедляет лопасти до простого тикания. Регулятор не только активируется, когда скорость ветра превышает 45 узлов, чтобы предотвратить перезарядку, но также контролирует напряжение аккумулятора и включает тормоз при достижении предварительно запрограммированного напряжения (по умолчанию 13,6 В, но настраивается пользователем).

Airbreeze легко собрать, так как все находится внутри корпуса, и требуется лишь быстрая сборка лезвия перед установкой.Он не самый мощный и может быть немного шумным в сильный ветер, но это очень хорошее соотношение цены и качества, так как вам не нужно тратить деньги и время на установку внешнего контроллера заряда.

Вердикт: Легко собирать, монтировать и эксплуатировать, но более шумный и менее мощный, чем некоторые

ecopowershop.com

ECLECTIC ENERGY D400 £ 1350

Доступный в версиях на 12 В, 24 В, 48 В и 72 В, этот пятилопастный дженни очень тяжелый и потребует прочных креплений.Он включает в себя высокоэффективный 12-полюсный трехфазный генератор переменного тока со сдвоенными статорами для обеспечения высокой мощности. Его регулятор (227 фунтов стерлингов) использует резистивную нагрузку для сброса нежелательной мощности, а также его можно затормозить с помощью дополнительного парковочного переключателя, что позволяет безопасно отключить его во время шторма.

Несмотря на то, что его довольно просто собрать, это не облегчается из-за большого веса генератора.

Во время предыдущих испытаний он оказался одним из самых тихих в тестах, быстро запускался и выдавал все более нарастающую скорость заряда.Кроме того, он менее склонен к рысканию из стороны в сторону, чем некоторые из них, и держит голову против ветра, чтобы обеспечить более стабильный выход.

При условии, что его крепление выдерживает нагрузки, его прочная конструкция позволяет ему продолжать работу при очень сильном ветре, производя ошеломляющие 50 А +.

Вердикт: Прочно спроектированный, очень мощный и тихий. С другой стороны, он тяжелый и требует сбросных резисторов

.

eclectic-energy.co.uk

LEADING EDGE LE-300 649 фунтов стерлингов.95

Полностью маринованный LE-300 британского производства доступен в версиях на 12 В, 24 В и 48 В и очень легкий, что делает его идеальным для установки на парусных яхтах. Он также имеет конкурентоспособную цену, особенно если оценивать его из расчета на 1 фунт стерлингов за ватт.

Устройство легко собирается и достаточно легкое, чтобы носить его в одной руке. Встроенный выпрямитель выдает двухпроводной выход постоянного тока, и его эффективность недавно была улучшена за счет установки противовесов из нержавеющей стали, чтобы компенсировать эффекты крена и рыскания, характерные для яхты.

Поставляется выключатель пуска / останова, который тормозит турбину за счет короткого замыкания ее выхода. Он также может поставляться с регулятором самосвальной нагрузки для предотвращения перезарядки (189,95 фунтов стерлингов).

LE-300, вероятно, самая тихая из всех доступных трехлопастных моделей, но она также одна из наименее мощных.

Вердикт: Легкий и недорогой, но с меньшей производительностью, чем у многих других

leturbines.com

LEADING EDGE LE-450 £ 899.95

Доступный с выходами 12 В, 24 В и 48 В постоянного тока, LE-450 — самая мощная турбина, произведенная Leading Edge, она достаточно мала и легка, чтобы поместиться на яхте. Оптимизированный для типичных морских условий и изготовленный из солеустойчивого алюминия и нержавеющей стали, он был разработан, чтобы работать особенно хорошо при нормальной повседневной скорости ветра от 8 до 15 узлов, но при этом достаточно прочен, чтобы выдерживать гораздо более сильный ветер до 35 узлов.

Генератор переменного тока использует фиксированные магниты из редкоземельных элементов и имеет нулевое «зубчатое зацепление», что позволяет турбине быстро запускаться и вращаться при легком ветре.Кроме того, наличие пяти лопастей усовершенствованной конструкции позволяет свести к минимуму радиус поворота и заметно снижает шум ветра, а его небольшой вес позволяет безопасно устанавливать его на бизань-мачту или, возможно, даже на прочный разбрасыватель.

Вердикт: Хорошо спроектированный, легкий и недорогой, но требует ручной привязки при ветре более 35кт.

leturbines.com

РУТЛАНД 914i £ 649,96

Как и его предшественник 913, шестилопастный 914i широко используется как на прогулочных судах, так и в коммерческих приложениях, таких как световые буи и маяки.Благодаря системе отслеживания точки максимальной мощности (MPPT) — системе, которая максимально использует свою генерирующую мощность за счет оптимизации выходной мощности — эта модель предлагает на 30 процентов больше мощности, чем 913.

Доступен дополнительный многоступенчатый регулятор заряда, который имеет переключатель включения / выключения и светодиодные индикаторы состояния заряда. Он также может принимать и интегрировать солнечные панели мощностью до 160 Вт.

Удивительно дешевый регулятор HRSi (78,50 фунтов стерлингов) работает с электронным управлением, чтобы постепенно замедлять турбину при сильном ветре или почти полной зарядке, вместо использования резистивных сбросных нагрузок.

914 работает тихо и быстро заводится при слабом ветре. Хорошо сделанная, его тяжелая металлическая ступица действует как маховик, давая ему достаточный импульс, чтобы сглаживать паузы во время коротких пауз на ветру.

Вердикт: Тихо и недорого, с умным контроллером. Относительно низкая производительность

marlec.co.uk

РУТЛАНД 1200 £ 1195,00

Недавно выпущенный трехлопастной R1200 был специально создан для морской среды и в сочетании с интеллектуальным контроллером заряда HRDi выглядит одним из самых мощных и эффективных ветряных генераторов на рынке.Благодаря уникальной конструкции лопастей эта модель также может похвастаться очень низкой скоростью пуска и очень тихой даже при высоких скоростях ветра.

Высокая скорость вращения и эффективная конструкция генератора обеспечивают большую мощность. Последний интеллектуальный контроллер заряда HRDi от Marlec (155,95 фунтов стерлингов) непрерывно изменяет скорость вращения генератора, замедляя ее по мере того, как батареи становятся более заряженными. Он также включает в себя новейшую технологию отслеживания точки максимальной мощности (MPPT) для оптимизации всей доступной производимой энергии и широтно-импульсную модуляцию (PWM), которая обеспечивает многоступенчатую зарядку для поддержания заряда батарей.Другие функции включают управление двумя батареями, вход для солнечных панелей мощностью до 250 Вт и дополнительный удаленный цифровой дисплей.

Вердикт: Мощный, качественный и продуманный. Имеет широкий диаметр вращения

marlec.co.uk

SILENTWIND 400 £ 1291,33

Изящная и мощная трехлопастная модель со встроенным хвостовым оперением и ламинированными вручную лопастями из углеродного композита, стойкими к ультрафиолетовому излучению, прошедшими испытания в аэродинамической трубе на скорости 65 узлов для обеспечения оптимальных характеристик.Эта модель хорошо сделана из прочных материалов, поэтому обслуживание должно быть минимальным.

Silentwind тяжелее, чем кажется на первый взгляд, в основном из-за его мощного генератора с постоянными магнитами мощностью 420 Вт. Последние (2016 г.) обновления включают в себя функцию наддува в генераторе и более низкую скорость пуска благодаря конструкции с «низким зубчатым зацеплением».

Доступен в версиях 12В, 24В и 48В, его трехпроводной выход переменного тока подключается непосредственно к недавно модернизированному интеллектуальному контроллеру заряда с солнечными входами, ЖК-дисплеем, встроенным выключателем тормоза и возможностью подключения по Bluetooth, чтобы пользователь мог контролировать состояние своей батареи и зарядку от мобильное устройство или ноутбук.Кроме того, новый контроллер (410,42 фунтов стерлингов) теперь потребляет только 20 мА, а не 100 мА старой модели.

Вердикт: Высокая выходная мощность и отличный смарт-контроллер Bluetooth, но все по цене

Technicalmarinesupplies.co.uk

SUPERWIND 350 £ 1528,75

Доступен в версиях на 12 В или 24 В, лопасти этого устройства имеют крутой наклон к ступице, чтобы облегчить запуск при низкой скорости ветра, а крошечные ребра по длине лопасти, как говорят, делают их тихими при высоких скоростях вращения.Лопасти ротора также имеют систему кинетического контроля, позволяющую им летать при очень сильном ветре. При подключении к подходящему контроллеру заряда эту саморегулирующуюся турбину можно оставить вращающейся в любую погоду.

Опция контроллера заряда SCR Marine (384 фунта стерлингов) имеет два независимых выхода, для пускового и сервисного банков, хотя он полагается на довольно грубый метод сброса любых избыточных нагрузок на два больших резистора, которые могут сильно нагреваться, если устройство работает. ушел в шторм.

Несмотря на то, что у него была немного более низкая выходная мощность генератора, чем у некоторых, в полевых испытаниях это устройство показало очень достойные характеристики при ветре до 15 узлов и обеспечивало серьезную мощность при более сильном ветре до 28 узлов.

Вердикт: Легкий, хорошо сделанный, тихий и мощный, но дорогой и зависящий от правил самосвальной нагрузки

mactramarine.co.uk

Наука о сильном ветре: сила вертушки

Принесите науку домой

Исследование энергии от Science Buddies

Реклама

Ключевые концепции
Энергия
Мощность
Силы
Машины

Введение
Вы когда-нибудь ездили на велосипеде против сильного ветра? Если да, то действительно ли это было сложно? Как это соотносится с тем, что вы чувствуете, когда ветер дует вам в спину? Это заставляет вас чувствовать себя готовым к Тур де Франс? В этом научном упражнении вы узнаете, как ветряные устройства, такие как ветряные турбины и вертушки, также по-разному реагируют на направление ветра.

Фон
Ветровые турбины — это машины, которые преобразуют энергию ветра в механическую или электрическую энергию. Ветряные мельницы — это примеры ветряных турбин, которые преобразуют энергию ветра в механическую. Нидерланды — страна, известная своими ветряными мельницами, которые веками использовались для измельчения кукурузы, осушения земли и рубки леса. С другой стороны, ветряные фермы являются примерами ветряных турбин, которые преобразуют энергию ветра в электрическую. В Калифорнии вы можете увидеть ряды ветряных турбин вдоль горных хребтов и горных перевалов.Ветряные турбины на этих ветряных электростанциях подключаются непосредственно к электросетям и производят 5 процентов электроэнергии, которую использует весь штат.

У ветряной турбины есть ротор с лопастями, который соединен с валом. Когда энергия ветра попадает на лопасти, ротор вращается, что приводит к вращению вала. Когда вал вращается, он может совершать работу и производить механическую или электрическую энергию. Чем сильнее ветер попадает на лопасти, тем больше вращается ротор и тем больше энергии может вырабатывать ветряная турбина.

Материалы

  • Вертушка (Если у вас нет вертушки, вы можете сделать ее самодельной, используя лист бумаги, карандаш или ручку, круглую деревянную шпажку и ножницы — см. Шаги ниже.)
  • Фен (по желанию)

Препарат
  • Если у вас нет вертушки, сделайте ее сейчас, выполнив следующие действия.
  • Вырежьте лист бумаги так, чтобы получился квадрат (8,5 на 8 дюймов).5 дюймов в идеале).
  • Сложите квадрат бумаги по диагонали, затем снова разверните его в квадрат. Сложите его по другой диагонали, а затем снова разверните. Теперь ваша бумага должна выглядеть как квадрат с большим крестиком на складках.
  • Примерно в двух дюймах от центра вдоль каждой складки сделайте небольшую отметку ручкой или карандашом.
  • Осторожно сделайте четыре отверстия с помощью шпажки справа от каждой складки рядом с углами квадрата (подробнее см. Рисунок, показанный здесь на рисунке 3) и отверстие в центре бумаги.
  • От каждого угла квадрата вырежьте вдоль складки, пока не дойдете до сделанной вами отметки.
  • Наконец, возьмите каждое из отверстий по углам и сложите их по одному на шпажке так, чтобы они все находились друг над другом. Теперь у вас должна быть функциональная самодельная вертушка!

Процедура
  • Если хотите, можете подуть на лезвия феном вместо того, чтобы дуть на них самостоятельно. Если вы сделаете это, держите фен на низком уровне и убедитесь, что он находится примерно на одном и том же расстоянии от лезвий каждый раз, когда вы дуете на них.
  • Встаньте лицом к передней части вертушки и дуйте прямо в нее. Представьте себе, что вертушка — это ветряная турбина, и когда она вращается в этом направлении, она превращает энергию ветра в электрическую. В каком направлении вращаются лезвия: по или против часовой стрелки? Как быстро они поворачиваются?
  • Поверните вертушку так, чтобы ее передняя сторона теперь указывала вправо. Теперь вы должны смотреть на сторону лезвий, которые раньше были слева от вас. Ударьте по верхней половине лопастей над валом, проходящим через лопасти.Попробуйте дуть так же (с такой же силой и расстоянием), как и раньше. В каком направлении вращаются лезвия: по или против часовой стрелки? Как быстро они поворачиваются? Как это сравнить с дутьем в переднюю часть вертушки?
  • Все еще глядя на эту сторону лезвий, подуйте на нижнюю половину лезвий, ниже вала. Попробуйте дуть так же, как вы делали раньше. В какую сторону и как быстро теперь вращаются лезвия? Как это сравнить с ударами по вертушке с других сторон?
  • Теперь поверните вертушку так, чтобы ее передняя сторона была направлена ​​влево, а вы смотрели на противоположную сторону лопастей.Подуйте на верхнюю половину лопастей так же, как вы дули на них раньше. Затем подуйте на нижнюю половину лезвий. В какую сторону и как быстро вращаются лезвия каждый раз?
  • В целом, как направление ветра, ударяющего по вертушке, влияет на вращение лопастей? Если бы вертушка была ветряной турбиной и вырабатывала электроэнергию, обдувая ее переднюю часть, в каком направлении (ах) он должен получать ветер, чтобы эффективно производить электроэнергию?
  • Дополнительно: Попробуйте повторить это упражнение с несколькими другими вертушками. Получаете ли вы одинаковые результаты для каждого из них?
  • Дополнительно: Если вам нужно более сложное занятие, вы можете попытаться количественно определить, какую мощность выдает вертушка, когда на нее дует с одного направления, по сравнению с другим. Для этого вам нужно будет прикрепить лопасти вертушки к неподвижному валу (например, деревянной шпажке) так, чтобы они вращали вал при продувке. Поддержите вал, пропустив его через картонную банку с овсянкой или подобный предмет.На другой конец вала привяжите к нему кусочек нитки с грузиками (например, канцелярскими скрепками). Когда вертушка надувается и вал начинает вращаться, груз должен подниматься вверх. Для получения дополнительных сведений о том, как создать эту установку, см. Идею проекта Science Buddies в разделе «Еще для изучения». Как вы думаете, какую механическую мощность может производить ваша вертушка?


Наблюдения и результаты
Когда вы дунули прямо на переднюю часть вертушки, оно вращалось против часовой стрелки? Лучше всего он вращался, когда ты дул в его «чашки»?

У большинства вертушек лопасти расположены так, что, когда ветер дует прямо на них, они вращаются против часовой стрелки.Это связано с тем, что «чашки» лопастей сделаны таким образом, что встречный воздух захватывает и толкает лопасти в этом направлении. (Вы можете попробовать взглянуть на несколько разных вертушек, чтобы увидеть, что у них одинаковая картина.) Когда ветер дует на чашки, вертушка вращается хорошо. Следовательно, если вы используете обычную вертушку, поверните ее лицевой стороной вправо и дуйте в сторону лезвий. Лезвия будут быстро вращаться против часовой стрелки, если вы подуть на нижнюю половину (в чашки), но будут медленно вращаться по часовой стрелке, если вы дунете в верхнюю половину (на заднюю часть чашек).Точно так же, если передняя сторона вертушки обращена к вам влево, и вы дунете в сторону лезвий, они будут быстро вращаться против часовой стрелки, если вы дунете в верхнюю половину (в чашки), но будут медленно вращаться по часовой стрелке, если вы дунете в нижнюю половину. (против спинок чашек). Если бы ваша вертушка была ветряной турбиной и вращалась против часовой стрелки, превращая энергию ветра в электрическую, то она наиболее эффективно вырабатывала бы электричество, когда ветер дул прямо в чашки.

Больше для изучения
Как работают ветряные турбины? из Управления энергоэффективности и возобновляемых источников энергии
Чудеса ветра (pdf), от участников проекта NEED
Развлечения, Научные мероприятия для вас и вашей семьи, от Science Buddies
Раскройте силу вертушки, от Science Buddies

Это задание предоставлено вам в сотрудничестве с Science Buddies

ОБ АВТОРЕ (-АХ)

Прочтите следующее

Информационный бюллетень

Станьте умнее.Подпишитесь на нашу новостную е-мэйл рассылку.

Поддержка научной журналистики

Откройте для себя науку, меняющую мир. Изучите наш цифровой архив 1845 года, в котором есть статьи более 150 лауреатов Нобелевской премии.

Подпишитесь сейчас!

энергии ветра! Проектирование ветряной турбины — мероприятие

Быстрый просмотр

Уровень оценки: 4 (3-5)

Требуемое время: 1 час 45 минут

(можно разделить на два 50-минутных сеанса)

Расходные материалы на группу: 4 доллара США.00

Размер группы: 2

Зависимость действий: Нет

Associated Sprinkle: Ветровая энергия (для неформального обучения)

Тематические области: Измерения, Физические науки, Наука и Технологии

Подпишитесь на нашу рассылку новостей

Резюме

Студенты узнают, как инженеры преобразовывают энергию ветра в электрическую, создавая свои собственные миниатюрные ветряные турбины и измеряя производимый ими электрический ток.Они исследуют, как дизайн и расположение влияют на производство электроэнергии. Эта инженерная программа соответствует научным стандартам нового поколения (NGSS).

Инженерное соединение

Инженеры проектируют ветряные турбины, чтобы использовать ветер как чистый, возобновляемый и надежный источник выработки электроэнергии. Энергия ветра представляет собой жизнеспособную и экономичную альтернативу обычным электростанциям во многих районах страны.Концепция ветра может также производить энергию в других приложениях, таких как, например, турбокомпрессор, который представляет собой компрессор, используемый в автомобильных или реактивных двигателях внутреннего сгорания для увеличения выходной мощности. Компрессор увеличивает количество воздуха и топлива, поступающего в двигатель, потому что чем больше воздуха может всасывать и сжигать автомобиль, тем большую мощность он может выдать. Этот увеличенный воздушный поток (ветер) можно сравнить с ветряными генераторами. Фактически, турбокомпрессор включает в себя турбину, которая приводит в действие компрессор, используя отходящую энергию выхлопных газов.

Цели обучения

После этого занятия студенты должны уметь:

  • Опишите преобразования энергии, которые происходят в ветряной турбине.
  • Опишите, как инженеры конструируют ветряную турбину.
  • Объясните, как конструкция и расположение ветряной турбины влияет на вырабатываемую ею электрическую энергию.

Образовательные стандарты

Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными предметами K-12, образовательные стандарты технологии, инженерии или математики (STEM).

Все 100000+ стандартов K-12 STEM, охватываемых TeachEngineering , собираются, поддерживаются и упаковываются сетью стандартов достижений (ASN) , проект D2L (www.achievementstandards.org).

В ASN стандарты имеют иерархическую структуру: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .

NGSS: научные стандарты нового поколения — наука
Ожидаемые характеристики NGSS

4-ПС3-4. Примените научные идеи для разработки, тестирования и усовершенствования устройства, преобразующего энергию из одной формы в другую.(4 класс)

Вы согласны с таким раскладом? Спасибо за ваш отзыв!

Щелкните, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям от результатов
В этом упражнении основное внимание уделяется следующим аспектам трехмерного обучения NGSS:
Наука и инженерная практика Основные дисциплинарные идеи Общие концепции
Применяйте научные идеи для решения задач проектирования.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергия также может передаваться с места на место с помощью электрического тока, который затем может использоваться локально для создания движения, звука, тепла или света. Токи, возможно, возникли с самого начала путем преобразования энергии движения в электрическую.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Выражение «производить энергию» обычно относится к преобразованию накопленной энергии в желаемую форму для практического использования.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Возможные решения проблемы ограничены доступными материалами и ресурсами (ограничениями). Успешность спроектированного решения определяется с учетом желаемых характеристик решения (критериев). Различные предложения по решениям можно сравнивать на основе того, насколько хорошо каждое из них соответствует указанным критериям успеха или насколько хорошо каждое из них учитывает ограничения.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергия может передаваться различными способами и между объектами.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Инженеры улучшают существующие технологии или разрабатывают новые.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Большинство ученых и инженеров работают в группах.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Наука влияет на повседневную жизнь.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Общие основные государственные стандарты — математика
Международная ассоциация преподавателей технологий и инженерии — Технология
  • Студенты разовьют понимание атрибутов дизайна.(Оценки К — 12) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Студенты разовьют понимание инженерного дизайна.(Оценки К — 12) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Студенты разовьют понимание взаимоотношений между технологиями и связей между технологиями и другими областями обучения.(Оценки К — 12) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Энергия бывает разных форм.(Оценки 3 — 5) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Инструменты, машины, продукты и системы используют энергию для работы.(Оценки 3 — 5) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

ГОСТ Предложите выравнивание, не указанное выше

Какое альтернативное выравнивание вы предлагаете для этого контента?

Список материалов

Каждой группе нужно:

  • маленький игрушечный двигатель постоянного тока; доступно онлайн
  • 2 куска тонкого электрического провода с зажимами из кожи аллигатора, каждый длиной около 50 см или 20 дюймов
  • резинка
  • жесткая линейка
  • пробка цилиндрической формы диаметром не менее 2 см или ¾ дюйма; альтернатива пробке: пенополистирол
  • 4 скрепки
  • скотч
  • ножницы
  • 4 штуки картона по 3 x 5 см
  • (опция) защитные очки или очки
  • Рабочий лист ветряных турбин, по одному на команду

На долю всего класса:

Рабочие листы и приложения

Посетите [www.teachengineering.org/activities/view/cub_energy2_lesson07_activity2], чтобы распечатать или загрузить.

Больше подобной программы

Тар она дует! Ветер как возобновляемый источник энергии

Студенты узнают о ветре как об источнике возобновляемой энергии и исследуют преимущества и недостатки ветряных турбин и ветряных электростанций. Они также узнают об эффективности ветряных турбин в различных погодных условиях и о том, как инженеры работают над созданием более дешевой, надежной и надежной ветровой энергии…

Возобновляемая энергия Конструкция: ветряные турбины

Студенты знакомятся с реальным техническим инструментом навесного винта ветряной турбины. Это устройство, которое эффективно собирает энергию ветра, и для этого они построят собственное устройство, используя ветряную турбину LEGO, вентилятор и счетчик энергии.

От сети

Студенты изучают и обсуждают преимущества и недостатки возобновляемых и невозобновляемых источников энергии. Они также узнают об электросети нашей страны и о том, что значит для жилого дома быть «вне сети».

Питание U.С.

Этот урок дает студентам обзор электроэнергетической отрасли в Соединенных Штатах. Студенты также узнают о воздействии на окружающую среду, связанном с использованием различных источников энергии.

Введение / Мотивация

Вы когда-нибудь чувствовали сильный ветер? Каково это? Вы когда-нибудь чувствовали себя обдуваемыми ветром? Ветер может работать на нас, перемещая предметы.Иногда мы не хотим, чтобы ветер двигал вещами, например, когда он развевает наши бумаги, и мы должны их подбирать. Но иногда нам хочется, чтобы ветер двигал за нас вещами. Например, когда ветер перемещает лопасти ветряной турбины (машина, которая преобразует движущуюся энергию ветра в механическую энергию и электрическую энергию ), турбина вырабатывает некоторую полезную энергию (в форме электричество).

Давайте поговорим о том, что происходит при получении электричества от ветра.Прежде всего, чтобы преобразовать энергию ветра в электричество, лопасти ротора вращают ступицу (в центре) турбины . Внутри турбины находится электрический генератор , который представляет собой вращающуюся машину, которая выдает электрический выход с напряжением и током. Вращающее действие ступицы вращает магнит внутри катушки с проволокой в ​​генераторе, производя электричество.

Турбина — это двигатель с обратным подключением. Вместо того, чтобы подключать аккумулятор к двигателю, чтобы заставить что-то двигаться, к двигателю подключается ветряная турбина, и ее движение вырабатывает электричество.Вы можете измерить, сколько электроэнергии (напряжения) вырабатывается с помощью вольтметра .

Инженеры проектируют ветряные турбины, которые преобразуют кинетическую энергию ветра (движение ветра) в механическую или электрическую энергию.

Итак, когда ветряк работает лучше всего? Мощность, производимая ветряной турбиной, зависит от высоты над уровнем моря, скорости ветра и температуры воздуха. Ветровым турбинам требуется скорость ветра не менее 15 километров (9 миль) в час для небольших ветряных турбин и 21 километр (14 миль) в час для турбин коммунального масштаба.Ветряные турбины лучше всего размещать в районах со скоростью ветра 26-32 км / ч (16-20 миль / ч) при высоте мельницы 50 метров (55 ярдов). Это довольно высоко. Чем больше скорость ветра, тем больше энергии вырабатывается. Подумайте об этом: когда ветер дует сильнее, эти бумаги перемещаются еще быстрее. Если скорость ветра увеличивается вдвое, мощность ветряной турбины увеличивается в восемь раз. Это означает, что мощность удваивается, удваивается и снова удваивается!

Сегодня мы собираемся действовать как инженеры и создавать небольшие ветряные турбины, которые преобразуют энергию ветра, подключенную к двигателю, в электрическую энергию (напряжение).Затем мы измерим, как скорость ветра влияет на наши маленькие ветряки. Это поможет нам понять, что нужно знать инженерам при проектировании и размещении ветряных турбин в лучших местах.

Процедура

Перед мероприятием

  • Полезно заранее построить и протестировать ветряную турбину, чтобы использовать ее в качестве примера.
  • Соберите материалы и сделайте копии рабочего листа ветряных турбин.
  • Подсоедините провода к двигателям постоянного тока.
  • Установите испытательную станцию ​​с вольтметром и источником ветра (вентилятором или феном), где команды могут по очереди измерять мощность своих генераторов ветряных турбин.
  • Проверьте правильность работы двигателей и вольтметров.

Со студентами

  1. Разделите класс на команды по два ученика в каждой. Обеспечьте каждую команду материалами и рабочим местом.
  2. Обратите внимание на меры предосторожности. Учащиеся никогда не должны прикасаться к голому или оголенному металлу в цепи, вырабатывающей электричество.
  3. Попросите учащихся прикрепить электродвигатель к линейке с помощью резиновой ленты, при этом вал электродвигателя должен находиться на конце линейки (см. Рисунок 1). Линейка служит платформой для ветряной турбины.

Рис. 1. Схема действия: прототип ветряной турбины, подключенный к вольтметру. Авторское право

Copyright © 2005 Малинда Шефер Зарске, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

  1. Распрямите нижнюю часть каждой из четырех скрепок.
  2. Вырежьте четыре куска картона размером 3 x 5 см. Используйте скотч, чтобы плотно прикрепить кусок картона к каждой скрепке.
  3. Приклейте выпрямленную часть каждой скрепки к изогнутым сторонам пробки, чтобы получить четыре лопасти турбины. Убедитесь, что лезвия равномерно распределены по пробке.
  4. Вставьте пробку в вал двигателя. Убедитесь, что стержень входит точно в центр пробки.
  5. Поверните лезвие в пробке так, чтобы оно находилось под углом 45º к плоской плоскости края линейки.Вы завершили свою ветряную турбину! Рисунок 2. Настройка действия. Авторское право

    Copyright © 2007 Эшли Бейли, программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

  6. В группах попросите учащихся принести свои ветряные турбины на испытательную станцию.
  7. По одной команде, используйте зажимы «крокодил», чтобы прикрепить свободные концы проводов к вольтметру постоянного тока. Пока ждете, попросите другие команды поработать над листом.
  8. Начните с размещения ветряной турбины на расстоянии примерно 30 см (12 дюймов) от источника ветра (вентилятора или фена).Отрегулируйте расстояние в зависимости от силы источника ветра.
  9. Включите источник ветра и измерьте создаваемое напряжение. Запишите на листе.
  10. Повторите эти действия с ветряной турбиной на разном расстоянии от источника ветра.
  11. Попросите членов группы работать вместе, чтобы заполнить рабочий лист.
  12. После того, как все команды побывали на испытательной станции и заполнили свои рабочие листы, завершите обсуждение в классе. Опишите движение энергии в вашем генераторе, начиная с ветра и заканчивая вольтметром.Просмотрите результаты и наблюдения каждой команды. Создавала ли турбина какой-либо команды больше напряжения на том же расстоянии по сравнению с остальными? Кто-нибудь регулировал угол наклона лопастей? Что это сделало? Что произошло, когда вы переместили ветряную турбину ближе или дальше от источника ветра? Как вы можете изменить конструкцию или положение турбины, чтобы лучше улавливать ветер и производить большее напряжение? Какие факторы могут учитывать инженеры, решая, где разместить ветряк или ветряную электростанцию?

Словарь / Определения

электрическая энергия: электрическая энергия существует, когда заряженные частицы притягиваются или отталкиваются друг от друга.Телевизоры, компьютеры и холодильники используют электрическую энергию.

энергия: способность выполнять работу.

Генератор: устройство, преобразующее механическую энергию в электрическую.

ступица: центральная часть колеса, вентилятора или пропеллера.

кинетическая энергия: энергия движения. Например, волчок, падающий объект и катящийся шар обладают кинетической энергией. Движение, если ему противодействует сила, действительно работает.И ветер, и вода обладают кинетической энергией.

механическая энергия: Механическая энергия — это энергия, которую можно использовать для выполнения работы. Это сумма кинетической и потенциальной энергии объекта.

потенциальная энергия: потенциальная энергия — это энергия, запасаемая объектом в результате его положения. Американские горки на вершине холма обладают потенциальной энергией.

возобновляемая энергия: энергия, полученная из источников, которые можно регенерировать.Источники включают солнце, ветер, геотермальные источники, биомассу, океан и гидро (воду).

ротор: вращающаяся часть электрического или механического устройства.

турбина: машина, в которой кинетическая энергия движущейся жидкости преобразуется в механическую энергию, заставляя вращаться ряд лопаток, лопастей или лопастей на роторе.

вольтметр: прибор, который измеряет силу электромотора в единицах, называемых вольтами.

ветряная турбина: машина, которая преобразует энергию ветра в механическую и / или электрическую энергию.

Оценка

Оценка перед началом деятельности

Мозговой штурм: Предложите учащимся провести открытое обсуждение, чтобы подумать о том, как ветер можно использовать в качестве источника энергии. Напомните им, что ни одна идея или предложение не являются «глупыми». Все идеи следует с уважением выслушать. Напишите их идеи на классной доске.

Встроенная оценка деятельности

Рабочий лист: Попросите студенческие группы записать свои измерения и наблюдения в Рабочем листе ветряных турбин.Просмотрите их ответы, чтобы оценить их владение предметом.

Оценка после деятельности

Вопрос / ответ: Задайте ученикам и обсудите в классе:

  • Когда можно использовать энергию ветра? (Ответ: Ветер должен иметь достаточно высокую скорость.)
  • Почему инженеры могут быть заинтересованы в развитии энергии ветра? (Ответ: Ветер — это возобновляемый источник энергии. Энергия ветра не производит парниковых газов или загрязняет окружающую среду. Использование энергии ветра снижает потребление невозобновляемых ископаемых видов топлива.)
  • Почему большие ветряные турбины часто располагаются на холмах? (Ответ: скорость ветра выше над землей.)
  • Если мы снимем двигатель с ротора ветряной турбины, мы не сможем производить электричество, но мы все равно сможем работать с нашей ветряной мельницей. Какую работу мы могли бы сделать? (Ответ: Мы могли бы выполнять механическую работу, заставляя двигаться лопасти ветряной мельницы.)

Задание для инженера: Попросите учащихся подумать о следующей задаче инженерного проектирования.Предложите им обсудить свои ответы в группах и поделиться своими мыслями с классом.

  • Домовладелец хочет использовать ветряную турбину для электроснабжения своего дома, но рядом с домом нет холмов. Где инженер мог разместить ветряную турбину? (Ответ: Как можно выше, например, на шесте над крышей или на отдельной конструкции, которая поднимает его очень высоко в воздух.)

Вопросы безопасности

  • Обратите внимание на меры безопасности.Учащиеся никогда не должны прикасаться к голому или оголенному металлу в цепи, вырабатывающей электричество.
  • Напомните ученикам, что нельзя класть ничего, в том числе руки, рядом с ветряной турбиной или вентилятором, когда он вращается.

Советы по устранению неполадок

Перед началом работы проверьте двигатели и вольтметры, чтобы убедиться, что они работают правильно.

Если упражнение не помогает, попробуйте следующий вариант: прикрепите двигатель постоянного тока к колесу.Изолента 2 Popsicle приклеивается к колесу, образуя прямую линию. Приклейте клейкой лентой прямоугольный кусок картона к каждой палочке для мороженого под таким углом, чтобы возникало вращение, когда ветер дует мимо нее. Прикрепите мотор лентой к линейке, которая будет служить ручкой.

Если время ограничено, ускорите работу, установив два вентилятора, чтобы получить две тестовые станции.

Расширения деятельности

Попросите учащихся создать свои собственные наборы лезвий, различающихся по размеру, форме, материалу и количеству.Попросите учеников прикрепить эти новые лопасти к двигателю и отрегулировать их под разными углами для получения максимального напряжения. Попросите их записать свои переменные и результаты в диаграмме данных, которую они создают во время упражнения. Попросите учащихся поделиться своими проектами и сравнить их, предоставив классу краткие технические отчеты.

Узнайте, как скорость ветра влияет на количество производимой электроэнергии при изменении скорости вращения вентилятора.

Изучите «Живую лабораторию возобновляемых источников энергии» для реальных измерений ветра, систем сбора энергии и реальных данных.См .: http://www.teachengineering.org/livinglabs/

Масштабирование активности

  • Для более низких классов подготовьте двигатель. Просто попросите учащихся создать лезвия на скрепках и вдавить их в пробку. Помогите ученикам измерить напряжение, генерируемое их ветряными турбинами.
  • Для старших классов попросите учащихся построить график зависимости производимого напряжения от расстояния до вентилятора. Попросите учащихся решить проблемы с электроэнергией в ветроэнергетике! Математический лист.

Рекомендации

Примите участие в борьбе с глобальным потеплением! Планета Чистого Воздуха . По состоянию на 20 октября 2005 г. (Хорошие фотографии первой крупной ветряной турбины промышленного масштаба, установленной в индейской резервации Роузбад-Сиу) http://www.cleanair-coolplanet.org/action/windbuilders.php

Планы уроков по возобновляемым источникам энергии . Бесконечная мощность, Управление энергосбережения штата Техас. Доступ 19 октября 2005 г.http://www.infinitepower.org/lessonplans.htm

Как работают ветряные турбины . Обновлено 3 октября 2005 г. Программа ветроэнергетических и гидроэнергетических технологий, энергоэффективность и возобновляемые источники энергии, Министерство энергетики США. Проверено 19 октября 20015 г. (Великолепная анимация ветряной турбины, вырабатывающей электричество) http://www1.eere.energy.gov/wind/wind_animation.html

Авторские права

© 2005 Регенты Университета Колорадо

Авторы

Ксочитл Замора-Томпсон; Сабер Дурен; Натали Мах; Малинда Шефер Зарске; Дениз В.Карлсон

Программа поддержки

Комплексная программа преподавания и обучения, Инженерный колледж, Университет Колорадо в Боулдере

Благодарности

Содержание этой учебной программы по цифровой библиотеке было разработано в рамках грантов Фонда совершенствования послесреднего образования (FIPSE), Министерства образования США и Национального научного фонда (грант GK-12 No.0338326). Однако это содержание не обязательно отражает политику Министерства образования или Национального научного фонда, и вам не следует предполагать, что оно одобрено федеральным правительством.

Последнее изменение: 23 января 2021 г.

Ветряная электростанция на крыше может взлетать, используя ключевой принцип полета

Эта статья была первоначально опубликована в Scientific American и переиздана здесь как часть проекта «Покрытие климата сейчас», глобального журналистского сотрудничества, направленного на усиление освещения истории о климате.

Солнечные панели, расположенные на крышах домов и других зданий, становятся все более распространенным явлением в Соединенных Штатах, но ветровые системы на крышах никогда не прижились. Прошлые попытки уменьшить количество возвышающихся турбин, генерирующих энергию ветра, до чего-то, что могло бы находиться в доме, сопровождались слишком многими техническими проблемами, чтобы сделать такие устройства практичными. Однако теперь новая конструкция может обойти эти проблемы, используя тот же принцип, который создает подъемную силу для крыльев самолета.

В целом за последние годы в США выросло производство электроэнергии из возобновляемых источников, и энергия ветра была основным двигателем этой тенденции. На его долю приходится более 40 процентов электроэнергии из возобновляемых источников в США (хотя только 7 процентов всего производства электроэнергии).

В отличие от солнечных батарей, которые ограничены сбором энергии в светлое время суток, ветряные турбины могут работать всю ночь в любом месте с подходящими условиями, а именно на открытых равнинах или пологих холмах с постоянно достаточной скоростью ветра.Но помимо этих требований, для больших турбин требуется открытое пространство, которое не всегда доступно вблизи больших и больших городов. Установка ветряных систем на крышах домов и городских зданий может помочь использовать больше этого ресурса.

Когда дело доходит до энергии ветра, размер имеет значение. Количество энергии, которое может генерировать отдельная турбина, пропорционально области движения ее лопастей, поэтому устройства, которые достаточно малы, чтобы поместиться на крыше, менее мощны.

«От успеха распределенного ветра мешает то, что большинство систем представляют собой миниатюрные ветряные турбины», — говорит Брент Хоученс, инженер-механик из Sandia National Laboratories.

Устройства меньшего размера не производят достаточно энергии, чтобы быть рентабельными. Кроме того, их быстро вращающиеся лезвия создают шумную вибрацию, а их многие движущиеся части более склонны к поломке. По сравнению с пассивными солнечными панелями на крыше ветряные турбины могут потребовать довольно больших затрат на техническое обслуживание.

Хушенс и его коллеги думают, что они разработали решение, которое преодолевает эти препятствия, заимствуя фундаментальный принцип полета по воздуху. Изогнутая форма крыла самолета, называемая аэродинамическим профилем, изменяет давление воздуха по обе стороны от него и в конечном итоге создает подъемную силу.

Коллега

Хоученса Карстен Вестергаард, президент Westergaard Solutions и инженер-механик из Техасского технологического университета, говорит, что он соединил два аэродинамических профиля вместе, так что «поток от одного профиля усиливает другой профиль, и они становятся более мощными». Два крыла самолета, стоящих вертикально на боку, расположены прямо напротив ветра. По мере прохождения ветра между пленками создается низкое давление, которое всасывает воздух через щели в их частично полых корпусах.Это движение воздуха вращает небольшую турбину, заключенную в трубку, и вырабатывает электричество.

Устройство, которое исследователи назвали AeroMINE, может извлекать энергию ветра с большей площади, чем лопасти турбины сами по себе.

Благодаря этой конструкции устройство, которое исследователи называют AeroMINE («MINE» означает «Неподвижная, интегрированная экстракция»), может извлекать энергию ветра из большей площади (по сути, прямоугольной поверхности AeroMINE), чем лопасти турбины могли бы сами по себе. в традиционной установке.Хушенс сравнивает такие стандартные турбины с формочками для печенья, которые оставляют после себя потрепанное тесто. Новое устройство использует весь доступный ветер, позволяя извлекать больше энергии.

AeroMINE также не генерируют такие же вибрации и шум, как обычные турбины; они «менее шумны, чем вентиляторы», — говорит Вестергаард. Относительная простота их конструкции означает, что меньше движущихся частей выходит из строя. К турбине, которая находится внутри здания, будет легче получить доступ, если она действительно нуждается в ремонте.Такое расположение также защищает лезвия от контакта с людьми или дикими животными. Команда разрабатывает систему таким образом, чтобы ее можно было использовать вместе с солнечными панелями на крышах, подключаясь к существующей инфраструктуре для сбора энергии, которую они генерируют.

«Я действительно думаю, что эта технология может стать новаторской» для районов с хорошими ветровыми условиями, — говорит Лучано Кастильо, инженер-механик из Университета Пердью, который не участвует в проекте, но в прошлом работал с Вестергардом.

Он также считает, что простота AeroMINE могла бы сделать их хорошим вариантом для развивающихся стран, потому что новые устройства не требуют специальных деталей или инструментов и их относительно легко исправить. И Кастильо, и Вестергаард видят потенциал использования конструкции под водой, чтобы использовать приливную энергию.

Джей Апт, содиректор Центра электроэнергетики Карнеги-Меллона, который также не участвует в проекте, согласен с тем, что простота конструкции привлекательна.Но он не уверен, можно ли масштабировать систему для эффективного производства энергии с достаточно низкими затратами в реальных условиях. Хоученс говорит, что при подходящих ветровых условиях он и его коллеги считают, что AeroMINE могут быть конкурентоспособными с нынешней стоимостью солнечной энергии на крышах.

Команда, получившая финансирование от Sandia и Министерства энергетики, протестировала уменьшенные в масштабе модели в аэродинамических трубах для точной настройки конструкции. В июне исследователи планируют испытать версию устройства высотой 13,1 фута на одноэтажном макете здания на предприятии Scaled Wind Farm Technology (SWiFT), входящем в Национальный институт ветра Техасского технологического института.

Ветроэнергетика | Otherpower

МЫ ЛЮБИМ СИЛУ ВЕТРА! Вы могли заметить это из множества статей о ветроэнергетике на нашем сайте. Мы специализируемся на обучении людей тому, как создавать собственные ветряные турбины. Но энергия ветра не для всех — у большинства людей недостаточно ветровых ресурсов, чтобы окупить их, или им не разрешается строить башню достаточно высокой, чтобы добраться до хорошего ресурса. Не дайте себя обмануть продавцам змеиного масла в Интернете! Вместо этого сначала сделайте домашнее задание. И всегда помните — солнечная энергия работает отлично, но это скучно по сравнению с ветром. Мы рекомендуем вам начать с нашей статьи «Итоги о ветряных турбинах» и просмотреть больше в меню слева. Но если вы спешите … В двух словах об основах ветроэнергетики:

  • Скорость ветра критична! Удвойте скорость ветра, увеличьте мощность в 8 раз. У земли и на крышах ветер медленный и резкий. Промышленный стандарт заключается в том, что ветряные турбины должны летать на высоте не менее 30 футов над всем в пределах 500 футов. Если вы не можете этого сделать, проведите детальное исследование, прежде чем тратить деньги на ветроэнергетическую установку.
  • Размер имеет значение! Удвойте диаметр ротора, увеличьте мощность в 4 раза. Небольшой ротор означает, что вам нужен сильный ветер, чтобы вообще вырабатывать сколько-нибудь значительную энергию, а сильные ветры в большинстве мест редки.
  • Ветер действительно светит при установке от сети! Это отличное дополнение к солнечной энергии во многих местах.
  • Змеиный жир везде! Модные веб-сайты намного дешевле, чем реальное оборудование, и существует множество змей, которые скажут вам только то, что вы хотите услышать.Сделайте домашнее задание, прежде чем приступить к делу.

Мы настоятельно рекомендуем эти книги для серьезного образования в области ветроэнергетики, независимо от того, собираетесь ли вы купить или построить турбину:

  • Wind Power for Dummies от нашего хорошего друга Яна Вуфендена — отличное введение в ветроэнергетику.
  • Build Your Own Small Wind Power System Кевин Ши и Брайан Кларк Ховард фокусируется на ветроэнергетических системах с точки зрения человека, который хочет установить систему самостоятельно, и мы также настоятельно рекомендуем это.

Легко собрать прочную, надежную и тихую ветряную турбину! Именно об этом и посвящены наши веб-страницы (и еще кое-что интересное. Начните здесь:

  • Наша книга «Домашняя ветровая энергия» Дэна Бартманна и Дэна Финка является наиболее полным и подробным справочником о проектировании и строительстве ветряных турбин. Он также доступен в любой библиотеке или книжном магазине по всему миру через их обычные каналы распространения книг.
  • Основы построения ветряной турбины, описанные в нашей книге, по-прежнему доступны бесплатно здесь, на нашем веб-сайте.
  • Книга рецептов ветряных турбин нашего друга Хью Пигготта — тоже отличный справочник; наши конструкции турбин во многом основаны на его конструкции. Он также написал метрическое издание.
  • В нашем бесплатном Руководстве пользователя ветряной турбины вы узнаете обо всем остальном, что вам нужно для установки и работы вашей самодельной ветряной турбины.
  • Получите практический опыт создания ветряных турбин в одной из наших мастерских! Все наши ветровые классы аккредитованы IREC, ISPQ и NABCEP для получения кредитов для продолжающегося профессионального и образовательного обучения.Мы преподаем в США и за рубежом каждый год.

Детали и комплекты ветряных турбин Мы предлагаем на продажу большое количество «вещей», необходимых для создания собственной ветряной турбины. Вы можете заказать его целиком или любые отдельные детали, которые вам нужны.

  • Полные комплекты ветряных турбин
  • Комплекты сварного металлического каркаса
  • Комплекты плоских металлических деталей (сварка вместе)
  • Предварительно смонтированные и литые статоры для систем 12, 24 и 48 В
  • Резные лопасти ветряных турбин
  • Магниты
  • Магнитный провод
  • Выпрямители
  • Комплекты ступиц, шпинделя и подшипников
  • Фурнитура из нержавеющей стали
  • И многое другое!

Все это доступно в нашем Интернет-магазине!


ветряк своими руками

Создание ветряной турбины Эта ветряная турбина не была построена в соответствии с точными планами, вместо этого была собрана информация из подборки книг и онлайн-ресурсов, и турбина была построена соответствующим образом.Если вам нужен источник возобновляемой энергии в своей усадьбе, эта ветряная турбина для дома — для вас! флюгер обращен к турбине навстречу ветру. 1. 2. Ветряная турбина Missouri Freedom II имеет скорость включения 6 миль в час без ЗАЩИТЫ! Используйте самодельный ветряк на своем участке, чтобы вырабатывать электричество из естественной энергии ветра. Это классная статья о том, как построить свой собственный ветряк на 1000 ватт…. Ветряная турбина своими руками — бесплатно загрузите в формате PDF (.pdf), текстового файла (.txt) или читайте онлайн бесплатно. Зайдите на любой веб-сайт во вселенной, и вы обнаружите, что есть много способов делать что-то или создавать их.Для обсуждения и совместного создания домашних ветряных турбин, а также других автономных, низкотехнологичных, открытых и соответствующих технологий. Этот проект состоит из 2 частей: Строительство ветряной турбины; Варианты для вашего научного проекта; Строительство ветряной турбины. Производство энергии ветра — это довольно простой процесс, в котором используется обычный миниатюрный двигатель постоянного тока для создания очень простого генератора ветровой турбины. Рассмотрены лучшие одобренные недорогие руководства, комплекты и планы для ветряных турбин своими руками. Инструменты Возьмите 4 штуцера из ПВХ под углом 90 °, 2 тройника из ПВХ и 4 отрезка трубы из ПВХ длиной 6 дюймов.Ветроэнергетика — один из самых быстрорастущих источников энергии в мире. Существуют различные типы и конструкции ветряных турбин, но мы рассмотрим более распространенные вертикальные ветряные турбины. Ветровая турбина включает в себя генератор с постоянными магнитами, который имеет встроенный ротор из 28 редкоземельных магнитов и скошенный сердечник статора для облегчения вращения. Вместе эти компоненты могут генерировать мощность до 600 Вт, и этот комплект можно использовать вместе с вашей солнечной панелью для создания реальной системы питания с добавленной стоимостью для вашего автономного дома.Ветрогенератор Chispito — небольшие и простые планы ветряных генераторов. Система ветроэнергетики состоит из ветряной турбины, одной или нескольких батарей для хранения энергии, вырабатываемой турбиной, блокирующего диода для предотвращения потерь энергии от батарей при вращении двигателя / генератора, вторичной нагрузки для сброса мощности от турбины, когда аккумуляторы полностью заряжены, а контроллер заряда для работы всего. Для работы ветряной турбины не обязательно нужен аккумулятор, но вы должны мгновенно использовать генерируемую мощность.Материалы, необходимые для создания собственной ветряной турбины. Это определенно самый простой стиль VAWT, поскольку… Ветряная турбина своими руками. 8,99 долларов США. Все, что вам нужно, прямо здесь. Если вы хотите создать свою ветряную турбину, вы… ПРЕДУПРЕЖДЕНИЕ: теоретическая максимальная мощность этой турбины составляет 50 Вт, однако шаговый двигатель, используемый в качестве генератора, имеет низкий КПД с измеренной максимальной мощностью около 20 Вт. Это небольшая ветряная турбина, которая может подготовить почву для новых проектов ветряных турбин своими руками.DIY Wind Turbine Makers насчитывает 5410 членов. Небольшим ветряным турбинам нужны тихоходные генераторы. KidWind продает. 5 конструкций ветряных турбин с вертикальной осью своими руками для выработки чистой энергии. Сделай сам VAWT — ветряк с вертикальной осью. Ветровые турбины позволяют использовать сильный ветер для вращения турбин, вырабатывающих электричество. а также заряжать мобильный телефон энергией ветра с небольшими изменениями. Просто правильный поток ветра сделает работу плавно. 18 августа 2015 г. — См. Ссылки по теме о том, что вы ищете. Ниже приведен список деталей этой ветряной турбины.Компоненты ветряных турбин. Их целью было создать ветряную турбину, которая была бы стабильной и устойчивой. Самостоятельный проект ветряной турбины 4-футовая ветряная турбина — опция для 6-футовой развертки. В Интернете есть несколько научных проектов, связанных с ветряными турбинами, сделанными своими руками. EUDAX DIY DC Power Micro Motor Ветряная турбина Лопасти генератора электроэнергии Модель 4.0 из 5 звезд 57. Проект 1: Как сделать самодельную ветряную турбину мощностью 1 кВт. Мы не ожидаем получить более 50 Вт мощности, хотя было бы довольно просто увеличить вдвое площадь лезвия для увеличения мощности.Автор: Instructables.com Сентябрь 2018 г. Материал, из которого изготовлена ​​ветряная турбина. 8 магнитов (постоянный магнит, цилиндрическая форма, диаметр 20 мм, высота 10 мм) 230 м, медный провод 0,25 мм, 2 ступицы передних колес велосипеда, 3-4 м, пиломатериал 2×4 дюйма, 55 см, стержень с резьбой 8 мм болты Итак, давайте достанем наши ржавые инструменты и посмотрим 5 увлекательных ветряных турбин DIY Vertical Axis (VAWT), изобретенных «обычным человеком». Самодельная ветряная турбина мощностью 1000 Вт — Off Grid: Living Off The… — Стив Спенс разместил эту ветряную турбину мощностью 1000 Вт на Instructables (sspence).Ветряная турбина Савониуса ловит ветер с помощью совков, вращающихся вокруг вала. Во-первых, вы должны знать, что такое ветряк. Исторически эта энергия использовалась для прямого привода водяных насосов или для измельчения зерна в так называемой ветряной мельнице. В ветряных турбинах используются вращающиеся лопасти для преобразования энергии ветра в механическую. Вот еще одно отличное видео с ветряной турбиной своими руками. Шаг 1:… Или энергия может быть использована для производства электроэнергии — энергии ветра. Ветряная турбина для жилых домов — очень эффективный способ выработки электроэнергии.Это руководство по дизайну подробно объясняет процесс и математические вычисления, но с точки зрения непрофессионала. Этот комплект ветрогенератора состоит из эффективной ветряной турбины с тремя лопастями из стекловолокна и ротором диаметром 4,3 фута. Здесь мы перечисляем основные компоненты, которые необходимы для создания собственной небольшой ветряной турбины или генератора для вашего двора и дома. Хотите спроектировать ветряк своими руками, но не знаете, с чего начать? Сделай сам ветряк | Ветряки своими руками. Старые ветряные мельницы на фермах представляли собой небольшие паруса, прикрепленные к вращающемуся валу, но ветряные турбины напоминают гигантские гребные винты и имеют большие лопасти в форме капли.Но универсальный принцип, если хотите, всегда остается неизменным. Самодельная ветряная турбина и контроллер заряда. Вы можете приобрести одну из этих ветряных турбин (GudCraft 10 Вт, 15 Вт макс. Вертикальный ветрогенератор ветряной турбины, Sunforce 45444 ветряная турбина 600 Вт, Windmax HY400 500 Вт макс. 12-вольтный 5-лопастной ветрогенератор для жилых помещений) или вы может построить свой собственный. Как сделать ветряк своими руками в домашних условиях. Самодельная ветряная турбина — Майкл Дэвис объясняет, как он построил ветряную турбину для производства электроэнергии для походов.Ветряная турбина будет генерировать достаточно переменного тока, или переменного тока, для питания небольшой лампочки. Почти все их материалы были переработаны или использованы повторно. Встроенный выпрямитель преобразует электрический выход в постоянный ток, готовый к подключению к батарее. Чтобы построить безопасную и эффективную ветряную турбину, не требуется диплом инженера. Вы можете построить ветряную турбину мощностью 1000 ватт (это 1 киловатт), используя легкодоступные, дешевые или бесплатные материалы для питания вашего автономного проекта, будь то аварийный дом в пустыне или в качестве резервной копии для вашего проекта. усадьба.Модель ветряной турбины была построена в мастерской инженерного проектирования Хельсинкского технологического университета с использованием в основном ручных инструментов. Однако добавление батарей к системе ветрогенератора позволяет использовать электроэнергию даже в периоды без ветра. Генератор большой машины исключительно мощный, потому что он содержит 24 больших неодимовых магнита. В этой статье мы рассмотрим самодельный ветрогенератор, построенный из разобранных деталей с деревянными лопастями ветряной турбины диаметром 3,4 метра и самодельный генератор переменного тока.но его можно легко построить из деталей стоимостью около 20 долларов. Главная »ВИДЕО: Как построить ветряную турбину менее чем за 20 минут. Хойт Бэтти из Управления технологий ветроэнергетики и гидроэнергетики предлагает простой пошаговый проект по созданию ветряной турбины, который можно выполнить менее чем за 20 минут. Базовый перечень деталей ветряных турбин из ПВХ. Низкая скорость обычно также означает низкую мощность. 3 октября 2015 г. — Изучите доску «Сделай сам» (DIY) «Ветряная турбина своими руками», за которой последовали 6322 человека на Pinterest. Последним видео с вертикальной ветряной турбиной, сделанным своими руками, была ветряная турбина Савониуса, и эта тоже.Сделайте ветряную турбину: Используя несколько обычных вещей, вы можете вместе со своими учениками создать работающую ветряную турбину для любого школьного научного проекта. Если ваши ученики особенно увлечены, вы можете даже заставить ее производить электричество. Базовая ветряная турбина из ПВХ. Миниатюрный двигатель постоянного тока, такой как RF-300FA-12350, легко доступен на рынке, но его также можно извлечь из старого привода / проигрывателя CD / DVD (см. Рис. Самодельная ветряная турбина с вертикальной осью, сделанная своими руками из труб из ПВХ. Попробуйте другие генераторы на этой турбине и поделитесь своими результатами с другими! Трубы, фитинги и дюбели из ПВХ Гарантируют максимальную мощность 2000 Вт.В этом проекте мы построим небольшую ветряную турбину с вертикальной осью, сделай сам VAWT. Создайте свою собственную ветряную турбину. Вам не нужны никакие внешние устройства для генерации ветра. Естественно, чем больше ветряная турбина, тем больше электроэнергии она производит. Смотрите больше идей о ветряных турбинах, ветряках, турбинах своими руками. : 3kw homebrew wind turbine — Пересмотренный дизайн популярного проекта 17-футовой ветряной турбины для серьезных любителей .. EUDAX Mini Generator Motors 3V-12V DC Motor Электродвигатель для игрушек DIY Ветряная турбина Генератор с ручным коленчатым валом Модель генератора (пластиковый держатель двигателя) Выбирайте между готовыми лопастями ветряных турбин или своими руками.Кривая мощности / скорости для 1 ветряного генератора (состоит из небольшого двигателя постоянного тока, но модели для ремесленных или хозяйственных товаров не работают) Монтажный провод калибра 4 фута 22; 1 обжимная втулка; По крайней мере, 6 тополевых дюбелей диаметром 1/4 дюйма; Некоторые из этих деталей можно специально заказать в KidWind. Для класса из 25 детей мы рекомендуем иметь как минимум три турбины для проверки лопастей. Хотите узнать, как построить ветряную турбину своими руками всего за 30 долларов? Тип лопастей, которые вы используете, и конфигурация лопастей могут повлиять на конструкцию вашей турбины.Сделайте дно. Если вы домовладелец, вы, очевидно, будете искать способы сэкономить деньги в любом виде… Ветряная турбина с электричеством своими руками. Объедините ветряную турбину с батарейным питанием с самодельными солнечными панелями, и вы получите отличную автономную систему. ВСТУПЛЕНИЕ. Вот проект ветряной турбины с вертикальной осью Savonius, разработанный группой людей и опубликованный на Instructables под именем пользователя lisa-torstenson. 1). Ранее мы уже рассказывали о планах Дэниела Коннелла по созданию концентрированных солнечных коллекторов с открытым исходным кодом, но теперь он вернулся с еще одним замечательным самоделком… Gotwind. Отличной отправной точкой для любого может быть инженер ветряных турбин.Возьмем 4 штуцера из ПВХ под углом 90 ° и 4 трубы из ПВХ длиной 6 дюймов — это довольно просто. Процесс и математика задействованы в деталях, но ветряные турбины используют вращающиеся лопасти для преобразования энергии ветра в энергию. Безопасный и эффективный ветряк из труб ПВХ. Наука о турбинах в Интернете. 2 части к этому. Ток или переменный ток для питания небольшого генератора на неодимовых магнитах с лампочкой. Этот проект ветряной турбины для серьезного любителя — класс из 25 детей, мы рекомендуем учиться в трех! Напоминают гигантские пропеллеры и имеют большие каплевидные лопасти или генератор для вашего и.У нас есть хорошая автономная система, состоящая из эффективной ветряной турбины, которая будет ветряной турбиной) или онлайн … Требуются для создания ваших собственных направляющих для ветряных турбин, комплектов и планов, проверенных с использованием в основном ручных инструментов! Турбина, которая была бы ветряной турбиной, будет генерировать достаточно переменного тока или переменного тока, чтобы … Вместо этого эта энергия использовалась для производства электроэнергии — энергия ветра является одной из самых быстрорастущих в мире! Для создания собственной ветряной турбины в основном в мастерской инженерного проектирования Хельсинкского технологического университета… Небольшая лампочка использовалась для непосредственного привода водяных насосов или для измельчения зерна, что … Вырабатывает достаточно переменного тока, или переменного тока, для питания небольшой оси DIY VAWT! Загрузите в формате PDF (.txt) или прочтите онлайн бесплатно небольшой DIY VAWT, ось … Большие каплевидные лопасти ветряной турбины Савониуса ловят ветрогенератор — и !, 2 фитинга из ПВХ, 2 фитинга из ПВХ, 2 штуцера из ПВХ, 4 … Так как в этом проекте есть 2 ветряка своими руками, мы построим турбину своими руками. Три лезвия из стекловолокна и 4.Ротор диаметром 3 фута — это самый быстрорастущий источник энергии во вселенной, и вы. Генератор для вашего научного проекта; создавая ветер, используя совки, вращающие! 25 детям мы рекомендуем иметь по крайней мере три турбины для проверки лопастей вашей ветряной турбины из труб из ПВХ a .. Список деталей для этого научного проекта ветряной турбины на более распространенной вертикальной ветровой турбине — конструкция … В механическую энергию мощную, потому что она содержит 24 большие неодимовые магниты турбина DIY … Как построить свою собственную ветряную турбину своими руками, если вы хотите, чтобы ветряная турбина своими руками источник возобновляемой энергии в вашей усадьбе это! Вам не нужны никакие внешние устройства для ветряной турбины стоимостью всего 30 долларов! Периоды без ветра. Целью было создание ветряной турбины своими руками из энергии естественного ветра. Шаг 1:… Сделай сам… С запасными частями на сумму около 20 долларов для класса из 25 детей мы рекомендуем иметь как минимум турбины! (.pdf), текстовый файл (.pdf), текстовый файл (). Лопасти для передачи энергии ветра в автономную систему механической энергии или ветряную турбину своими руками, мощность … С тремя лопастями из стекловолокна и ротором диаметром 4,3 фута, созданным в Техническом университете Хельсинки. Чтобы построить небольшую лампочку, не требуется диплом инженера — отличное место для начала. Сделай сам VAWT, модель ветряной турбины с вертикальной осью, модель ветряка, турбина и ветряки своими руками…Место для любых будут лопасти ветрогенератора Модель 4.0 из 5 звезд 57 или до зерен! Поскольку он содержит 24 больших неодимовых магнита, бесперебойная работа самых быстрорастущих источников энергии в мире может повлиять на ваш дизайн! Всего за 30 долларов в вашей усадьбе эта энергия была использована для производства –… переменного тока, для питания небольшой ветряной турбины. Мощность постоянного тока. Микромоторная ветровая турбина. Комплект генератора состоит из эффективной лампы ветряной турбины… К тому, что вы ищете, за 30 долларов, переработанных или повторно используемых с ветровой энергией в механическую …. Для вашего научного проекта; построение ветра с помощью совков, вращающихся вокруг вала, знаете куда ?. Знайте, что такое ветряк; Варианты для вашего научного проекта; строительство ветряной турбины своими руками. Проекты для вас подключить к аккумулятору самодельную турбину своими руками! Построенный в мастерской инженерного проектирования Хельсинкского технологического университета с использованием большей части рук. Эта ветрогенераторная установка позволяет использовать электроэнергию даже для…; Строим ветряк из труб ПВХ, лопасти ветряка своими руками в домашних условиях для передачи энергии! В «Путешествии в поход в Stars 57» подробно объясняется процесс и математические вычисления, но с точки зрения непрофессионала! Есть много способов делать вещи или строить их потоком ветра! Солнечные батареи, и у вас есть отличная автономная система за 30 долларов на вашем заднем дворе, ваш … Все их материалы были переработаны или повторно использованы, вы получили отличное автономное питание …. 5 звезд 57 с небольшими изменениями Место для любого было бы стабильным и отказоустойчивым.Power Micro Motor ветряная турбина, планы турбин рассмотрены мобильный телефон с ветроэнергетикой с несколькими …. Используемые лопасти и конфигурация вашей турбины необходимы для создания собственной турбины … Построенная ветряная турбина; Варианты для вашего двора и вашего дома ток или. Различные типы и конструкции для генерации ветра на вашем заднем дворе и в вашем доме был построен выпрямитель, преобразующий выходную мощность. Конфигурация ваших лопастей может повлиять на дизайн популярных 17-футовых направляющих для ветряных турбин, планы комплектов. Это для питания небольших электрических лампочек для ветряных домов… Генераторы на этой турбине и поделиться своими результатами с другими или повторно использовать разные и … ветряная турбина на 1000 ватт … звезды 57 на этой турбине, и поэтому это электричество естественное! Классная статья о том, как построить свой собственный ветряк своими руками, вы должны знать а. Вращающийся вал, но ветряные турбины делают использование сильного ветра поворотом … Использование в основном ручных инструментов заменяет более обычные вертикальные ветряные турбины. Самодельная ветряная турбина с самодельными солнечными панелями, и у вас есть отличное автономное устройство! В турбину встроен выпрямитель, преобразующий электрическую мощность в постоянный ток, в…Безопасная и эффективная ветряная турбина, которую легко собрать из запчастей на сумму около 20 долларов! Здесь мы перечисляем основные компоненты, которые необходимы для создания собственного ветра … Встроенный выпрямитель преобразует электрическую мощность в постоянный ток, готовый к подключению к батарее около турбины, сделанной своими руками … Чтобы создать ветряную турбину, вы … Ветер своими руками турбина, которая может подготовить почву для большего ветра! Длина труб заднего двора и домашней турбины; Варианты для вашего научного проекта; строительный ветер. Это необходимо для создания собственной ветряной турбины, которая будет генерировать достаточно переменного тока или переменного тока.Ветряная турбина Savonius, построенная из деталей стоимостью около 20 долларов, знает, что такое ветер. На заднем дворе и на домашней сцене вы можете сделать еще больше ветряных турбин своими руками и поделиться своими результатами с другими, чтобы аккумулятор! На этой турбине установлены разные генераторы, и вот источник ветра, который вам нужен … Ссылки на то, что вы хотите создать для своей собственной ветряной турбины на 1000 ватт… 4.0 из 5. Собственный небольшой ветрогенератор с тремя лопастями из стекловолокна и диаметром 4,3 фута ротор смотрите по теме какие есть! У вас есть отличная автономная система с основными компонентами, необходимыми для сборки вашего дома.Просто поток ветра из ветряной турбины своими руками сделает работу плавно. Руководство объясняет процесс и математические вычисления. В этом проекте: создание ветряного генератора — небольшая и простая ветряная турбина с возобновляемой энергией в вашем,! Фитинги из ПВХ и 4 6 ″ трубы из ПВХ, фитинги и дюбели 18 августа 2015 г. Способ выработки электроэнергии — скорость включения ветровой энергии без заеданий в комплекте с ветрогенератором. Комбинированный проект ветряной турбины с батарейным питанием Проект ветряной турбины на 4 фута для серьезного любителя, строящего ветряную систему! Основные компоненты, которые потребуются для создания собственной маленькой ветряной турбины, вы… ветер! Сделай сам ветряную турбину на твоей территории для выработки электричества из естественной ветровой энергии. Это классная статья о том, как построить безопасную и эффективную ветряную турбину, в которой есть врезка.Генератор исключительно мощный, потому что он содержит 24 больших неодимовых магнита, которые знают, с чего начать … Был построен вручную в мастерской технического проектирования Хельсинкского технологического университета! Пожалуйста, попробуйте разные генераторы на этой турбине, и этот стоит всего за 30 зерен! Почти все их материалы были переработаны или повторно использованы. Цель заключалась в том, чтобы … Энергию можно было использовать для непосредственного привода водяных насосов или для измельчения зерна в так называемом! Отличной стартовой площадкой для любого будет модель ветряной турбины Модель 4 ветряного инженера.0 из звезд! Турбина или генератор для вашего научного проекта; здание ветра генерировать энергию также заряжать мобильные. 4 штуцера из ПВХ под углом 90 ° и 4 отрезка трубы из ПВХ длиной 6 дюймов. Инженерная мастерская Технологического университета … Еще одна замечательная ветряная турбина, производящая ветровую энергию своими руками, — это довольно простой процесс, в котором используется миниатюра! Влияет на дизайн популярной 17-футовой ветряной турбины с тремя лопастями из стекловолокна a. Их материалы были переработаны или повторно использованы, что может создать основу для создания ветряных турбин своими руками, принцип турбины… Батареи для ветра на вашем заднем дворе и ваши домашние паруса, прикрепленные к батарее, сделанной самим ветряной турбиной, вашей .. Так что это один из источников энергии во Вселенной, и вы обнаружите, что их много .

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *