+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Самодельная лазерная установка «Lightsaber» — как это было, часть 1 / Habr

Приветствую всех, в данной статье пойдет речь об одном из моих самых сложных проектов – самодельной установке с лазером на парах меди. Оговорюсь сразу, что проект выполнен успешно, доведен до полностью готового изделия и оправдывает то название, которое я ему дал. Я считаю нужным рассказать во всех подробностях, как он осуществлялся и с чем пришлось столкнуться на пути к его осуществлению. История создания установки довольно длинная, поэтому её придется разделить на несколько частей.

И ещё один небольшой дисклеймер: этот проект был осуществлен из-за моей большой любви к искусству получения лазерного излучения, во многом ради процесса его реализации, посему попрошу не задавать вопрос «зачем это надо» в комментариях. Представленная информация показана в ознакомительных целях, автор не несет ответственности за последствия попыток повторения описанного.

Картинка для привлечения внимания.

А продолжение — под катом.

Сначала придется сделать некоторое лирическое отступление. Все дело в том, что я, наверное, один из тех многих людей, которые когда-то мечтали о своем световом мече или лазерной пушке, по крайней мере в том виде, в котором это возможно при нынешних технологиях. И как оказалось, всё возможно, если над этим поработать. С начала студенческих времен я увлекся электротехникой, а именно – получением высоких напряжений и высоких частот. Так я для себя открыл такое интересное устройство как трансформатор Тесла в его многочисленных проявлениях с использованием самых разных топологий и самой различной элементной базы. Одновременно с этим я понял, что меня особенно притягивает эстетика дизельпанка, а именно хотелось, чтобы все мои изделия выглядели, будто попали ко мне прямиком из лабораторий Франкенштейна или самого Теслы. Именно поэтому я пускал в ход элементную базу, состоящую из старых масляных трансформаторов, мощных радиоламп, мотор-генераторов повышенной частоты (умформеров), измерительных щитовых приборов в карболитовом корпусе итп. Тем не менее, оказалось, что уже трудно кого-то удивить даже довольно длинным разрядом от трансформатора Тесла. Поэтому я решил изменить направление деятельности, заняв ту нишу, в которую рискнули пробраться очень немногие люди. А именно – посвятить свое хобби лазерной технике. Моей мечтой всегда было разобраться в том, какие бывают лазеры, раскрыть секреты их устройства и работы, наконец, построить свой собственный генератор когерентного излучения. Шло время, я изучал много литературы, общался с разными людьми, накапливался постепенно опыт по изучению, настройке и ремонту лазеров в лабораториях и добытый «хабар» в виде целых лазеров и их фрагментов, которые изучались мной самым подробным образом.

Среди всего многообразия лазеров, один из них заслуживает куда большего внимания чем остальные – лазер на парах меди. Когда удалось увидеть и пощупать такой лазер в работе в одной из лабораторий, он создал у меня самые мощные впечатления. А все дело вот в чем. Это самый эффективный лазер, работающий в видимом диапазоне спектра, способный иметь мощность излучения в десятки Ватт на длинах волн 510 нм (ярко-зелёный) и 578 нм (насыщенный жёлтый). Луч, содержащий обе линии излучения, имеет неповторимый зеленовато-лимонный цвет и способен прожигать различные горючие материалы не хуже луча инфракрасного СО2-лазера. Была поставлена цель обзавестись таким лазером.

Во время работы с подобным лазером в лаборатории, я понял, что рассчитывать на приобретение готовой установки не могу, не смотря на предпринятые попытки. Слишком она крупная, тяжелая и дорогостоящая. Как и любой лазер, она состоит из двух основных частей – излучателя и источника питания. Вот как выглядит одна из самых ранних моделей такого лазера – ЛГИ-101. Излучатель почти 2 метра длиной, а источник питания имеет размер «полновесного» домашнего холодильника. А весит как 4 холодильника. Заявленная мощность лазерного излучения суммарно по обеим линиям излучения составляет 5 Ватт при потребляемой в 2.5 кВт. Внешний вид излучателя и источника питания можно видеть на фотографиях:

Излучатель в свою очередь состоит из своего набора частей: самой главной – активного элемента, потом зеркал резонатора, системы охлаждения и корпуса в котором это все собрано воедино. Источник же питания состоит из ряда функциональных блоков, о которых ниже. Посему пришлось ограничиться поисками лишь незаменимой части — активного элемента (газоразрядной лазерной трубки), а потом мобилизовать весь свой опыт и хабар на то, чтобы построить всё то, чего не хватает. Через ещё некоторое время, с неоценимой помощью от моих знакомых, мне наконец-то пришел по почте заветный деревянный ящик, с совершенно новым активным элементом типа УЛ-102 «Квант», более свежей разработкой по сравнению с ЛГИ-101. По сравнению с ЛГИ-101, УЛ-102 почти вдвое меньшего размера, выдает точно такую же мощность излучения, а потребляемая мощность в 1.5 раза меньше, т.е. он гораздо экономичнее. «Голый» активный элемент (АЭ) УЛ-102 выглядит так.

Это массивное устройство из металла, керамики и стекла. Именно внутри него происходит преобразование электрической энергии в сильноточный газовый разряд, от тепла которого испаряется металлическая медь, и в котором атомы меди переходят в возбужденное состояние. При переходе из возбужденного состояния в основное атомы излучают фотоны, которые, сталкиваясь с другими возбужденными атомами, вызовут излучение новых фотонов, итак пока свет не усилится до максимально возможной величины, которая определяется степенью возбуждения активной среды. Для того чтобы свет беспрепятственно мог проходить через лазерную трубку и усиливаться в ней, на торцах находятся массивные оптические окна, а чтобы на нагрев меди до температуры её испарения затрачивать меньшую мощность требуется хорошая теплоизоляция внутренней керамической разрядной трубки, которая заключена в наружный корпус из розовой керамики. Электрическая энергия подводится к двум металлическим электродам снаружи, а внутри трубки находится неон под пониженным, относительно атмосферного, давлением. Именно разряд в неоне служит первичным источником тепла для испарения меди, расположенной в виде небольших кусочков внутри разрядного канала, в холодной трубке паров никаких нет, и разряд зажечь было бы невозможно, будь там полный вакуум. Вместе с лазерной трубкой мне достался и набор зеркал резонатора.

Таким образом, самые важные детали уже у меня появились.

У меня уже было представление о принципе работы этого лазера и что нужно для того, чтобы из набора запчастей получить мощное когерентное излучение. Нужно было придумать оптимальную систему термостабилизации активного элемента, собрать все воедино в виде лазерного излучателя, и самое главное – построить источник питания.

Из литературы известно, что лазер на парах меди может работать только в импульсном режиме. Частота следования импульсов для трубки УЛ-102 может меняться от 6 до 16 кГц. Каждый отдельный импульс питания должен иметь крутой фронт нарастания тока через разряд. Идеально, если крутизна фронта тока через разряд будет на уровне 50 наносекунд, что соизмеримо со временем жизни возбужденного состояния атомов меди, а величина тока в импульсе составит несколько сотен ампер при длительности импульса от 300 до 1000 нс. Вообще говоря, лазерная генерация получится и при меньшей крутизне фронта, на уровне 100 нс, и даже 300 нс, но эффективность её будет гораздо хуже. Надо ещё отметить, что напряжение на электродах трубки в предпробойный момент должно быть не менее 10 кВ, а лучше больше. Средняя мощность, вкладываемая в разряд отдельными импульсами, должна быть достаточной для разогрева и поддержания оптимальной температуры паров меди, и для УЛ-102 минимальное значение этой мощности равно 1600 Вт. Были и хорошие новости: у паров меди высочайший коэффициент усиления. Это значит что требования к точности юстировки резонатора очень либеральные (не нужны специальные высокоточные приспособления для крепления и регулировки положения зеркал). Кроме того коэффициент усиления тем выше, чем выше концентрация атомов меди в разряде, т.е. если разогреть достаточно сильно, то генерация может быть получена не с двумя, а одним зеркалом, а то и вовсе без них (однопроходное усиление спонтанного излучения или «сверхлюминесценция»). Это очень облегчало задачу постройки первичного макета, т.е. задача упрощалась до постройки только лишь источника питания, а постройку излучателя можно отложить на тот момент, когда будут отработаны тонкости с питанием. Теперь о питании. Если глянуть на схему питания трубки, то на первый взгляд все предельно просто. Буквально несколько деталей, при использовании простейшей топологии, которая в литературе называется «схема прямого возбуждения».

Все просто – 2 индуктивности, 2 конденсатора, коммутирующий тиратрон, трансформатор управления тиратроном. Все просто пока не присмотреться к номиналам деталей и предъявляемым к ним требованиям. Поскольку стоит задача получить хорошую крутизну фронта импульса тока через активный элемент, то тиратрон нужен быстродействующий, с водородным наполнением, высоким обратным напряжением и высоким коммутируемым током. Желательный минимум импульсного тока для тиратрона — 500 ампер. Лучше – 1000 или более. Обратное напряжение нужно хотя бы 20, лучше 25 кВ. Такие тиратроны обычно применялись в радарах и достать их не просто. Но мне повезло. Парочка завалялась в завалах хабара. Взгляд пал на красивый стеклянный ТГИ-700\25, размером с двухлитровую бутылку газировки. По номинальным параметрам подходит, смутило только сравнительно низкое (700 Гц) заявленное быстродействие, но решено пока попробовать воспользоваться им. Конденсаторы. От 1000 до 3300 пФ основной накопительный и 235-470 пФ дополнительный между электродов трубки. Тьфу, всего-то. Но! Рабочее напряжение нужно от 15 кВ. И крайне желательны малые потери на высокой частоте, паразитная индуктивность должна быть сведена к минимуму. Мне ведь нужно получить короткий фронт тока через трубку, иначе не видать когерентных фотонов как собственных ушей. Значит, годятся только керамические конденсаторы с высокой допустимой реактивной мощностью, которые применяются в ламповых радиопередатчиках и тех же радарах. Фффух, можно выдохнуть, такие у меня тоже есть, ведь накопились со времен, когда я занимался «теслами». Индуктивности. А вот с ними уже сложнее… До текущего момента мне не были нужны дроссели в моих поделках, по крайней мере такой величины, в 0.5 Гн, да ещё и без сердечника, с высокой электропрочностью. Такой дроссель нужен для т.н. «резонансного заряда» накопительных конденсаторов. В таком режиме процесс заряда происходит с максимальной эффективностью, а напряжение на конденсаторе можно удвоить относительно питающего. Пришлось наматывать такой дроссель из нескольких секций, благо опыт имеется. Соединяя нужное число секций можно было индуктивность регулировать ступенями, а изменяя расстояние между ними, индуктивность можно подстраивать плавно в некоторых пределах. Со вторым, блокирующим дросселем, который нужен для предотвращения протекания постоянного тока через активный элемент намного проще – там необходимая индуктивность составляет 100-300 мкГн, но электропрочность нужна тоже высокая. Поэтому я тоже намотал на каркасе, разделенном на секции. Вот так выглядел первый «суповой набор» для самой главной, как я её назвал, силовой части источника питания.

Но, этого всего мало. Для того чтобы тиратрон нормально работал – нужен источник напряжения для накала катода – появляется первый увесистый трансформатор. Для того чтобы поджигать разряд в лазерной трубке и коммутировать его – нужен источник высокого постоянного напряжения, при этом очень желательно иметь возможность регулировать его от 0 до 7-8 кВ. Наконец нужен генератор достаточно мощного управляющего сигнала для отпирания тиратрона. Появляется ещё один непростой блок для его генерации. С последним тоже было проще, так как остались блоки от неудачного проекта ламповой катушки Тесла с импульсным режимом работы, достаточно было перенастроить их для работы на нужной частоте.

Был собран вот такой макет подсистемы анодного напряжения силовой части, названный «ИВН» — источник высокого напряжения. Он состоял из двух силовых трансформаторов, дававших в последовательном включении до 8 кВ переменного напряжения, выпрямителя в виде диодного моста на столбах КЦ201Д, фильтрующего конденсатора к41-1а на 2 мкФ 10 кВ, ЛАТРа на 9А в первичной цепи силовых трансформаторов, кнопок включения и отключения по отдельности управляющего генератора и ИВН, приборов для контроля напряжения и тока.

Управляющий генератор (подмодулятор) состоит из двух основных блоков – задающего генератора и усилителя мощности. Оба блока выполнены на лампах – в задающем используется блокинг-генератор на лампе 6н6п с предварительным усилителем на тиратроне ТГИ1-10\1. Питание анодных цепей выпрямляется кенотроном.

Второй блок – усилитель мощности, на данном этапе был собран на лампе ГМИ-5, состоит из собственно усилителя и обвеса в виде источников смещения для первой и второй сетки, также на кенотронных выпрямителях. Анодное напряжение в 2 кВ получается с помощью удвоителя напряжения, также на кенотронах 6д22с. Оттого и так много в этом блоке ламп.

Наступил момент, когда нужно соединять все элементы в единую схему. Это выглядело вот так.

Схема же силовой части расположилась на столе рядом, и была собрана «на соплях», так как возможно придется что-то переделывать, подстраивать номиналы деталей.
Запуск последовал незамедлительно.

На первый взгляд все компоненты взаимодействуют правильно. Трансформаторы гудят, в лазерной трубке зажегся разряд, слышен характерный писк с частотой 10 кГц, коммутирующий тиратрон светится, но ещё предстоит увеличить напряжение питания до «проектных» 6 кВ. Строго говоря, напряжение не играет определяющую роль, важно достичь определенной средней мощности вкладываемой в разряд лазера, которая для данной трубки должна быть не менее 1600 Вт. Тут-то дело и застопорилось. На рубеже в 500 Вт тиратрон терял управляемость, попросту зависая в открытом положении приводя к КЗ у ИВН. Поигравшись с частотой следования импульсов (далее – ЧСИ), емкостью основного и дополнительного конденсатора, индуктивностью зарядного дросселя (из больших секций) удалось этот рубеж преодолеть и выйти на рубеж сначала в 1000, а потом и 1500 Вт. Оставалось только ждать постепенного нагрева и выхода трубки на рабочий температурный режим.

Однако, через небольшое время, порядка 10 минут снова тиратрон потерял управляемость, замкнув ИВН. Да и стало заметно, что с тиратроном что-то не так! Его анод раскалился докрасна!

За время, пока устройство работало стабильно, разрядный канал в лазерной трубке тоже успел нагреться докрасна, для него это в отличии от тиратрона более чем штатная работа. Но этой температуры для разрядного канала ещё совершенно недостаточно.

После нескольких попыток перезапуска стало ясно, что в тиратроне данного типа потери мощности слишком велики, нужен другой тиратрон, более подходящий. Пришлось извлекать из другого импульсного лазера тиратрон ТГИ1-1000\25, заодно я поменял топологию силовой части на более «продвинутую» схему, т.н. «генератор Блюмляйна».

Да и макет полностью преобразился – исчез длинный соединительный кабель между лазерной трубкой и силовой частью.

В такой топологии дела сразу пошли лучше. Схема работала вполне устойчиво и удалось достичь энерговклада в разряд на уровне 2000 Вт. Начался устойчивый разогрев разрядного канала.

Примерно через полчаса работы, стало заметно изменение цвета разряда. С оранжевого неонового он становился сначала розовым, потом светлел, пока не становился практически белым, после этого он приобретал грязный зеленовато-желтый оттенок. Появлялось спонтанное излучение меди, которая начинала испаряться. Наконец на фоне света от разряда стало проявляться сравнительно яркое зеленое пятно переливающееся «спеклами». Началась лазерная генерация в форме сверхлюминесценции, т.е. без зеркал резонатора. Яркость пятна лазерного света быстро увеличивалась, за несколько минут оно стало ослепительно-ярким.

Если с одной стороны трубки установить глухое зеркало резонатора и поймать правильное его положение то яркость увеличивается ещё примерно в 5 раз, а расходимость пучка сильно уменьшается

Хорошо виден лазерный луч!

А если на пути луча поставить линзу – то он уже способен выжигать на фанере. Что говорит о том, что световая мощность как минимум 0.5-1 Вт. И это только с одним зеркалом резонатора. Так что имеется ещё большой резерв выходную мощность увеличить путем установки второго зеркала. Для самодельной лазерной установки это уже большой успех! Особенно когда такие схемы питания осваиваются впервые.
Если отразить луч осколком CD-диска в стену, то видно что в луче есть 2 компонента – зелёный и желтый, желтая составляющая пока ещё выражена слабее зелёной.

Тем не менее, не смотря на полученные результаты, оставалась одна проблема, которая никак не позволяла перейти к окончательной сборке. А именно – неустойчивость работы тиратрона в режиме, когда лазер уже разогрет до рабочей температуры. Новой тщательной подгонкой режима работы удалось немного улучшить стабильность, а добавленная быстродействующая защита от КЗ позволяла просто перезапускать ИВН раз за разом. Но ЛАТР уже находился в аварийном состоянии, изоляция его обмотки была серьезно повреждена. Эксперименты пришлось на время прекратить. Решено было сосредоточить усилия на постройке излучателя. В первую очередь был изготовлен кожух с водяной рубашкой, внутрь которого помещалась лазерная трубка. Он нужен для того, чтобы термостабилизировать весь излучатель, чтобы от очень горячей боковой поверхности АЭ не нагревался корпус лазера. Также он выполняет функцию обратного проводника тока, расположенного коаксиально с АЭ. Это позволяет несколько уменьшить паразитную индуктивность АЭ. На его изготовление пригодился кусок трубы от фонарного столба, купленный в приемке металлолома и фрагменты обшивки старого холодильника. Труба была обточена до нужного размера, а из обшивки были вырезаны кольца и наружная часть. Кольца наделись на трубу, поверх обернут один слой листовой обшивки, и все это было пропаяно твердым припоем. Получилась металлическая труба с двойными стенками. Снизу был приварен крепежный фланец, которым эта часть стыкуется с алюминиевым диском. Помимо этого было сделано ещё 2 алюминиевых диска, на которых крепятся зеркала резонатора, и один текстолитовый, на котором размещено секторное крепление АЭ. Все эти диски стянуты между собой резьбовыми шпильками для получения цельной и жесткой конструкции. «Горячий» электрод АЭ во избежание пробоя отделен от кожуха самодельным текстолитовым изолятором. Текстолит был тоже самодельный – из стеклотканевой ленты моталась втулка, каждый слой промазывался эпоксидкой. Потом втулка сохла. После полного засыхания эпоксидки втулка была обточена на токарном станке до получения нужных размеров.

Каркас излучателя с водяной рубашкой.

С установленным активным элементом.

Так выглядит изолятор активного элемента.

Был изговтолен соединительный кабель с большим коаксиальным разъемом, рассчитанным на напряжение 50 кВ. Корпус разъема позаимствован от серийного лазера ЛГИ-21, сердцевина разъема самодельная. Кабель – антенный РК-50 из радара, с монолитной изоляцией центральной жилы. Роль дополнительного конденсатора 470 пФ теперь играет распределенная емкость этого соединительного кабеля совместно с паразитной емкостью монтажа.

В итоге была получена вот такая конструкция собранного излучателя. Оставалось сделать только наружный декоративный кожух, для которого уже была припасена канализационная труба диаметром 250мм. Но эту часть работы я пока откладывал. Нужно было убедиться, что излучатель работает нормально.

Продолжать работу с практически сгоревшим ЛАТРом было нельзя, поэтому решено было ЛАТР перемотать, превратив его в автотрансформатор с фиксированными отводами. Состояние обмотки «до»:

И «после»

Под эту обмотку и каркас бывшего ЛАТРа пришлось изготовить специальный многопозиционный переключатель. В ход пошли компоненты подвижной части ЛАТРа.

В сборе с обмоткой получилось вот так.

Переделанный автотрансформатор установлен на свое место.

Также была добавлена к быстрой защите от КЗ «медленная» в виде автомата в белом корпусе. Можно начинать новую серию экспериментов. Попытка запуска не задалась – по непонятным причинам обнаружена испортившейся лампа ГМИ-5 в усилителе мощности управляющего сигнала. Она натекла воздухом по спаям ножек со стеклом. Возможно от недостаточного охлаждения. В немедленном порядке лампа заменяется керамическим тиратроном ТГИ-270\12. Это потребовало некоторых переделок в схеме усилителя, в частности теперь цепи питания сеток стали не нужны.

Должен отметить, что на все потребовавшиеся переделки понадобилось примерно 2 месяца времени – на изготовление каркаса излучателя, переделку автотрансформатора и усилителя мощности. Все это время активный элемент лежал в коробке. После окончания всех переделок, он был оттуда извлечен, излучатель полностью собран и была предпринята попытка запуска. Снова неуспешная. Активный элемент обнаружен натекшим воздухом. Так выглядит разряд в нем, для фотографии АЭ был изъят из излучателя.

В тот момент проект пришлось останавливать на неопределенное время. Продолжение смотрите в следующей части

habr.com

пошаговое руководство, особенности, схема из двд привода своими руками

При упоминании лазера большинство людей сразу вспоминают эпизоды из фантастических фильмов. Однако такое изобретение уже давно и плотно вошло в нашу жизнь и не является чем-то фантастическим. Лазер нашёл своё применение во многих сферах, начиная от медицины и производства и заканчивая развлечениями. Поэтому многим становится интересно, можно ли и как сделать лазер самому.

Изготовление лазера в домашних условиях

В зависимости от специфики и выдвигаемых требований, лазеры бывают совершенно разные, как по размерам (начиная от карманных указок и кончая габаритами с футбольное поле), так и по мощностям, используемым рабочим средам и другим параметрам. Конечно, мощный производственный луч сделать самостоятельно в домашних условиях невозможно, так как это не только технически сложные аппараты, но и очень капризные в обслуживании вещи. А вот простой, но надёжный и мощный лазер своими руками можно изваять из обычного DVD-RW привода.

Принцип работы

Слово «лазер» пришло к нам из английского языка «laser», что является сокращением из первых букв куда более сложного названия: light amplification by stimulated emission of radiation и дословно переводится как «усиление света посредством вынужденного излучения». Ещё его могут называть оптическим квантовым генератором. Видов лазеров очень много, а сфера их применения крайне обширна.

Принцип его работы заключается в преобразовании одной энергии (световой, химической, электрической) в энергию различных потоков излучения, то есть, в её основе содержится явление вынужденного или индуцированного излучения.

Условно принцип работы отображает следующий чертёж:

Необходимые для работы материалы

При описании основ работы лазера всё выглядит сложно и непонятно. На деле же сделать лазер своими руками в домашних условиях крайне просто. Понадобятся некоторые комплектующие и инструменты:

  1. Самое основное, что нужно для создания лазера, это DVD-RW дисковод, т. е. пишущий привод от компьютера или проигрывателя. Чем выше скорость записи, тем мощнее будет и само изделие. Предпочтительнее брать приводы со скоростью 22X, так как его мощность наиболее высокая, порядка 300 мВт. При этом отличаются они и по цвету: красный, зелёный, фиолетовый. Что же касается непишущих ROM’ов, они слишком слабые. Ещё стоит обратить внимание на то, что после манипуляций с приводом он больше не будет работать, поэтому стоит брать или уже вышедший из строя, но с рабочим лазером, или такой, попрощаться с которым будет не жалко.
  2. Ещё понадобится токовый стабилизатор, хотя и появляется желание обойтись без него. Но стоит знать, что все диоды (и лазерный не является исключением) «предпочитают» не напряжение, а ток. Наиболее дешёвые и предпочтительные варианты — это импульсный преобразователь NCP1529 или микросхема LM317 (аналог КР142ЕН12).
  3. Выходной резистор подбирают в зависимости от тока питания лазерного диода. Рассчитывают его по формуле: R=I/1,25, где I — номинальный ток лазера.
  4. Два конденсатора: 0,1 мкФ и 100 мкФ.
  5. Коллиматор или лазерная указка.
  6. Элементы питания стандарта ААА.
  7. Провода.
  8. Инструмент: паяльник, отвёртки, пассатижи и т. п.

Извлечение лазерного диода из DVD — привода

Основная часть, которую необходимо извлечь — лазер от dvd привода. Сделать это несложно, но стоит знать некоторые нюансы, которые помогут избежать возможных недоразумений во время работы.

Первым делом DVD привод нужно разобрать, чтобы добраться до каретки, на которой и находятся лазерные диоды. Один из них читающий — он слишком маломощный. Второй пишущий — именно то что нужно, чтобы сделать лазер из dvd привода.

На каретке диод установлен на радиатор и надёжно закреплён. Если не рассчитывается использовать другой радиатор, то вполне подойдёт и уже имеющийся. Следовательно, нужно снять их вместе. В противном случае — аккуратно отрезать ножки в месте входа в радиатор.

Так как диоды крайне чувствительны к статике, нелишним будет их защитить. Для этого тонкой проволокой нужно смотать между собой ножки лазерного диода.

Остаётся лишь собрать все детали воедино, а сам РОМ уже больше не нужен.

Сборка лазерного устройства

К преобразователю необходимо подключить извлечённый из сидирома диод, соблюдая полярность, так как в противном случае лазерный диод сразу же выйдет из строя и станет непригоден для дальнейшего использования.

С обратной стороны диода устанавливается коллиматор, чтобы свет мог концентрироваться в один пучок. Хотя вместо него можно использовать и входящую в состав рома линзу, или линзу, которую уже содержит в себе лазерная указка. Но в этом случае придётся проводить юстировку, чтобы получить необходимый фокус.

С другой стороны преобразователя припаиваются провода, соединяющиеся с контактами корпуса, где будут установлены элементы питания.

Поможет доделать лазер из двд привода своими руками схема:

Когда подключение всех составляющих выполнено, можно проверить работоспособность получившегося устройства. Если всё работает, то остаётся всю конструкцию поместить в корпус и надёжно там закрепить.

Корпус самодельной конструкции

Подойти к изготовлению корпуса можно по-разному. Отлично для этих целей подойдёт, к примеру, корпус от китайского фонарика. Можно использовать и уже готовый корпус лазерной указки. Но оптимальным решением может оказаться самодельный, из алюминиевого профиля.

Сам по себе алюминий имеет малый вес и, при этом отлично поддаётся обработке. В нём удобно расположится вся конструкция. Закрепить её тоже будет удобно. При необходимости всегда можно легко выпилить необходимый кусок или согнуть в соответствии с необходимыми параметрами.

Техника безопасности и тестирование

Когда все работы закончены, наступает время протестировать полученный мощный лазер. В помещении делать этого не рекомендуется. Поэтому лучше выйти на улицу в безлюдное место. При этом стоит помнить, что сделанное устройство в несколько сотен раз мощнее обычной лазерной указки, а это обязывает пользоваться им с особой осторожностью. Не стоит направлять луч на людей или животных, внимательно следить за тем, чтобы луч не отразился и не попал в глаза. При использовании красного луча лазера рекомендуется одевать зелёные очки, это значительно снизит риск повреждения зрения в непредвиденных случаях. Ведь даже со стороны смотреть на лазерные лучи не рекомендуется.

Не стоит направлять лазерный луч на легковоспламеняющиеся или взрывоопасные предметы и вещества.

Созданный прибор при правильно настроенной линзе вполне может резать полиэтиленовые пакеты, выжигать на дереве, лопать воздушные шарики и даже обжечь — своего рода боевой лазер. Невероятно, что можно сделать из двд привода. Поэтому тестируя изготовленный прибор, всегда стоит помнить о технике безопасности.

pochini.guru

инструкция по изготовлению лазерной указки

Лазерная указка — полезный предмет, предназначение которого зависит от мощности. Если она не очень велика, то луч можно наводить на удаленные предметы. В этом случае указка может играть роль игрушки и использоваться для развлечения. Она же может нести и практическую пользу, помогая человеку показывать на тот объект, о котором он говорит. Используя подручные предметы, можно изготовить лазер своими руками.

Кратко об устройстве

Лазер был изобретен в результате проверки теоретических предположений ученых, занимающихся еще только начавшей тогда зарождаться квантовой физикой. Принцип, положенный в основу лазерной указки, был предсказан Эйнштейном еще вначале XX в. Недаром это приспособление так называется — «указка».

Более мощные лазеры используются для выжигания. Указка дает возможность реализовать творческий потенциал, например, с их помощью можно выгравировать на дереве или на оргстекле красивый качественный узор. Самые мощные лазеры могут разрезать металл, поэтому они применяются в строительных и ремонтных работах.

Принцип действия лазерной указки

По принципу действия лазер представляет собой генератор фотонов. Суть явления, которое лежит в его основе, состоит в том, что на атом оказывает воздействие энергия в виде фотона. В результате этот атом излучает следующий фотон, который движется в том же направлении, что и предыдущий. Эти фотоны имеют одну и ту же фазу и поляризацию. Разумеется, излучаемый свет в этом случае усиливается. Такое явление может произойти только в отсутствии термодинамического равновесия. Чтобы создать индуцированное излучение, применяют разные способы: химические, электрические, газовые и другие.

Само слово «лазер» возникло не на пустом месте. Оно образовалось в результате сокращения слов, описывающих суть процесса. На английском полное название этого процесса звучит так: «light amplification by stimulated emission of radiation», что на русский переводится как «усиление света посредством вынужденного излучения». Если говорить по-научному, то лазерная указка — это оптический квантовый генератор.

Подготовка к изготовлению

Как говорилось выше, можно сделать лазер своими руками в домашних условиях. Для этого следует подготовить следующие инструменты, а также простые предметы, которые практически всегда имеются в домашнем обиходе:

  • отвертку;
  • нож;
  • паяльник;
  • напильник;
  • вышедший из строя DVD-привод с исправным лазерным диодом;
  • маломощную лазерную указку;
  • 2 резистора на 1 Ом;
  • 3 аккумулятора типа AAA;
  • конденсаторы на 100 мкФ и на 0,1 мкФ.

Этих материалов хватит, чтобы выполнить все работы по изготовлению как простого, так и мощного лазера своими руками.

Самостоятельная сборка лазера

Потребуется найти дисковод. Главное, чтобы его лазерный диод был исправен. Конечно, дома такого предмета может и не быть. В этом случае его можно приобрести у тех, у кого он есть. Зачастую люди выбрасывают оптические приводы, даже если их лазерный диод еще работает или продают их.

Выбирая привод для изготовления лазерного устройства, нужно обращать внимание на фирму, в которой он был выпущен. Главное, чтобы этой фирмой не была Samsung: приводы от этого производителя оснащены диодами, которые не имеют защиту от наружного воздействия. Следовательно, такие диоды быстро загрязняются и подвергаются тепловым нагрузкам. Они могут быть повреждены даже в результате легкого прикосновения.

Лучше всего для изготовления лазера подходят приводы от компании LG: каждая их модель оснащается мощным кристаллом.

Важно, чтобы привод при использовании по прямому назначению мог не только считывать, но и записывать информацию на диск. В записывающих принтерах есть инфракрасный излучатель, необходимый для сборки лазерного устройства.

Работа заключена в следующих действиях:

  1. Разборка DVD-привода. Это нужно делать максимально осторожно, так как находящиеся внутри детали очень хрупкие.
  2. После разборки корпуса без труда можно заметить нужный компонент. Он представляет собой маленькое стеклышко, находящееся в передвижной каретке. В нем находятся пара диодов и линза. Луч способен навредить зрению, поэтому ни в коем случае нельзя направлять его в глаза, даже если он находится на расстоянии 100 м.
  3. Как только кристалл будет извлечен, нужно сразу же перевязать его концы проводами без изоляции. В результате образуются два выхода напряжения. К одному из них необходимо с помощью паяльника присоединить малый конденсатор, имеющий полярность «-«. К другому выходу также с помощью паяльника прикрепляется второй из заготовленных ранее конденсаторов. Его полярность «+».
  4. Питаться лазерная установка должна током напряжением 3 В и силой около 300 мА. Можно использовать три простых пальчиковых батарейки или аккумулятор мобильного телефона. Если скорость записи разобранного привода была небольшой, то и сила тока тоже может быть небольшой, например, всего 200 мА. Если же скорость была больше, то и силу тока следует увеличить.
  5. Коллиматор можно изготовить из оптической линзы. Ее можно взять из простейшей лазерной указки китайского производства.

Готовая лазерная указка, сделанная своими руками, может с легкостью разрезать целлофановые пакеты и моментально взрывать воздушные шары. Если же навести этот самодельный прибор на деревянную поверхность, то луч сию же минуту прожжет ее. При использовании необходимо соблюдать меры осторожности.

tokar.guru

Мощный лазер из диода старого DVD привода

Перед началом работы я хочу предостеречь вас, сказав о том, что это действительно очень мощная вещь, которая может повредить ваши глаза, поэтому будьте осторожны.

Шаг 1: Диод

Сначала сделаем главные вещи. Нам нужно снять со старого ДВД привода лазерный диод. Откройте привод, найдите движущуюся часть с линзой. Обычно там находится два диода — инфракрасный для CD и просто красный для DVD. Аккуратно отсоедините их, предварительно сняв статическое электричество.

Не выбрасывайте остальные части — линзы могут быть полезны в этом проекте, а мелкие неодимовые магниты могут пригодиться для других проектов. Сказать честно, у меня нет DVD повода вот уже 3 года, поэтому я просто купил новые диоды LPC836 на Ali — это самые мощные диоды, использующиеся для приводов.


Шаг 2: Оптика

Теперь поговорим об оптике для самодельного лазера. Как я уже говорил, вы можете использовать родные линзы с DVD, но нужно будет подумать как их закрепить. Я рекомендую купить корпус aixiz (Ali) — стоит недорого и убережёт вас от проблем с правильной фокусировкой луча. Поместим наш диод в корпус.

Шаг 3: Питание

Следующий шаг — ограничитель тока (драйвер). К сожалению, не получится просто соединить диод батарейкой — он сразу же сгорит. Поэтому нам нужно собрать простую схему. Если, прежде чем посмотреть моё видео, вы уже гуглили что-то о том как сделать лазер из дисковода, то, вероятно, видели одну простую схему. Я не рекомендую так делать, так как эта схема 100% убьёт ваш диод, это всего лишь вопрос времени.

Для сборки правильной схемы нам понадобится всего два компонента: Чип LM317 (Ali) и резистор 3.3Ohm 2W (Ali). Я также использовал небольшой радиатор, но чип остается всегда холодным — вам он не понадобится.

Припаяйте резистор к первым двум клеммам LM317. Также припаяйте по проводу к первой и последней клемме — первый пойдёт на плюс лазерного диода, а третий на плюс блока питания, минус идёт прямо от батарейки на лазер. Один важный момент: так как я использовал новый диод, я был 100% уверен, что он выдержит силу тока, если вы не уверены в этом, то последовательно соедините два резистора на 3.3 Ohm — это обезопасит диоды практически от любого DVD привода. Для защиты от замыкания используйте термоусадку. Всё готово!

Шаг 4: Финал

Для тех, у кого немного больше опыта, я предлагаю сделать своими руками другую схему, выложенную для ознакомления. Когда я определился с корпусом, я сделал радиатор из алюминиевой шайбы. Я планировал припаять все платы к корпусу лазера но не нашел хорошего флюса, поэтому просто вложил всё внутрь. Лучшее, что я смог придумать — это приклеить всё по местам горячим пистолетом, а затем вдавить поверх алюминиевый радиатор с источником лазера.

Шаг 5: P.S.

masterclub.online

Делаем лазер из DVD привода своими руками в домашних условиях

Сделать мощный прожигающий лазер своими руками – несложная задача, однако, кроме умения пользоваться паяльником, потребуется внимательность и аккуратность подхода. Сразу стоит отметить, что глубокие познания из области электротехники здесь не нужны, а смастерить устройство можно даже в домашних условиях. Главное при работе – это соблюдение мер предосторожности, так как воздействие лазерного луча губительно для глаз и кожи.

Лазер – опасная игрушка, которая может нанести вред здоровью при его неаккуратном использовании. Запрещается направлять лазер на людей и животных!

Что потребуется?

Любой лазер можно разбить на несколько составляющих:

  • излучатель светового потока;
  • оптика;
  • источник питания;
  • стабилизатор питания по току (драйвер).

Чтобы сделать мощный самодельный лазер, потребуется рассмотреть все эти составляющие по отдельности. Наиболее практичным и простым в сборке является лазер на основе лазерного диода, его и рассмотрим в данной статье.

Откуда взять диод для лазера?

Рабочий орган любого лазера – это лазерный диод. Его можно купить почти в любом магазине радиотехнике, либо достать из нерабочего привода для компакт-дисков. Дело в том, что неработоспособность привода редко связана с выходом из строя лазерного диода. Имея в наличии сломанный привод можно без лишних затрат достать нужный элемент. Но нужно учесть, что его тип и свойства зависят от модификации привода.

Самый слабый лазер, работающий в инфракрасном диапазоне, установлен в CD-ROM дисководах. Его мощности хватает только для считывания CD дисков, а луч почти невидим и не способен прожигать предметы. В CD-RW встроен более мощный лазерный диод, пригодный для прожига и рассчитанный на ту же длину волны. Он считается наиболее опасным, так как излучает луч в невидимой для глаза зоне спектра.

Дисковод DVD-ROM оснащён двумя слабыми лазерными диодами, энергии которых хватает только для чтения CD и DVD дисков. В пишущем приводе DVD-RW установлен красный лазер большой мощности. Его луч виден при любом освещении и может легко воспламенять некоторые предметы.

В BD-ROM стоит фиолетовый или синий лазер, который по параметрам схож с аналогом из DVD-ROMа. Из пишущих BD-RE можно достать наиболее мощный лазерный диод с красивым фиолетовым или синим лучом, способным к прожигу. Однако найти для разборки такой привод достаточно сложно, а рабочее устройство стоит дорого.

Самым подходящим является лазерный диод, взятый из пишущего привода DVD-RW дисков. Наиболее качественные лазерные диоды установлены в LG, Sony и Samsung приводах.

Чем выше скорость записи DVD привода, тем мощнее установлен в нем лазерный диод.

Разбор привода

Имея перед собой привод, первым делом снимают верхнюю крышку, открутив 4 винта. Затем извлекают подвижный механизм, который находится в центре и соединён с печатной платой гибким шлейфом. Следующая цель – лазерный диод, надёжно впрессованный в радиаторе из алюминиевого или дюралевого сплава. Перед его демонтажем рекомендуется обеспечить защиту от статического электричества. Для этого выводы лазерного диода спаивают или обматывают тонкой медной проволокой.

Далее возможны два варианта. Первый подразумевает эксплуатацию готового лазера в виде стационарной установки вместе со штатным радиатором. Второй вариант – это сборка устройства в корпусе переносного фонарика или лазерной указки. В этом случае придётся приложить силу, чтобы раскусить или распилить радиатор, не повредив излучающий элемент.

Драйвер

К питанию лазера необходимо отнестись ответственно. Как и для светодиодов, это должен быть источник стабилизированного тока. В интернете встречается множество схем с питанием от батарейки или аккумулятора через ограничительный резистор. Достаточность такого решения сомнительна, так как напряжение на аккумуляторе или батарейки меняется в зависимости от уровня заряда. Соответственно ток, протекающий через излучающий диод лазера, будет сильно отклоняться от номинального значения. В результате на малых токах устройство будет работать не эффективно, а на больших – приведёт к быстрому снижению интенсивности его излучения.

Оптимальным вариантом считается использование простейшего стабилизатора тока, построенного на базе LM317. Данная микросхема относится к разряду универсальных интегральных стабилизаторов с возможностью самостоятельного задания тока и напряжения на выходе. Работает микросхема в широком диапазоне входных напряжений: от 3 до 40 вольт.

Аналогом LM317 является отечественная микросхема КР142ЕН12.

Для первого лабораторного эксперимента подойдет схема, приведенная ниже. Расчет единственного в схеме резистора производят по формуле: R=I/1,25, где I – номинальный ток лазера (справочное значение).

Иногда на выходе стабилизатора параллельно диоду устанавливают полярный конденсатор на 2200 мкФх16 В и неполярный конденсатор на 0,1 мкФ. Их участие оправдано в случае подачи напряжения на вход от стационарного блока питания, который может пропустить незначительную переменную составляющую и импульсную помеху. Одна из таких схем, рассчитанная на питание от батарейки «Крона» или небольшого аккумулятора, представлена ниже.

На схеме указано примерное значение резистора R1. Для его точного расчета необходимо воспользоваться вышеприведенной формулой.

Собрав электрическую схему, можно сделать предварительное включение и как доказательство работоспособности схемы, наблюдать ярко-красный рассеянный свет излучающего диода. Измерив его реальный ток и температуру корпуса, стоит задуматься о необходимости установки радиатора. Если лазер будет использоваться в стационарной установке на больших токах длительное время, то нужно обязательно предусмотреть пассивное охлаждение. Теперь для достижения цели осталось совсем немного: произвести фокусировку и получить узконаправленный луч большой мощности.

Оптика

Выражаясь по-научному, пришло время соорудить простой коллиматор, устройство для получения пучков параллельных световых лучей. Идеальным вариантом для этой цели будет штатная линза, взятая из привода. С её помощью можно получить довольно тонкий луч лазера диаметром около 1 мм. Количества энергии такого луча достаточно, чтобы насквозь прожигать бумагу, ткань и картон в считаные секунды, плавить пластик и выжигать по дереву. Если сфокусировать более тонкий луч, то данным лазером можно резать фанеру и оргстекло. Но настроить и надежно закрепить линзу от привода достаточно сложно из-за ее малого фокусного расстояния.

Намного проще соорудить коллиматор на основе лазерной указки. К тому же в её корпусе можно поместить драйвер и небольшой аккумулятор. На выходе получится луч в диаметре около 1,5 мм меньшего прожигающего действия. В туманную погоду или при обильном снегопаде можно наблюдать неимоверные световые эффекты, направив световой поток в небо.

Через интернет-магазин можно приобрести готовый коллиматор, специально предназначенный для крепления и настройки лазера. Его корпус послужит радиатором. Зная размеры всех составных частей устройства, можно купить дешевый светодиодный фонарик и воспользоваться его корпусом.

В заключение хочется добавить несколько фраз об опасности лазерного излучения. Во-первых, никогда не направляйте луч лазера в глаза людей и животных. Это приводит к серьёзным нарушениям зрения. Во-вторых, во время экспериментов с красным лазером надевайте зелёные очки. Они препятствуют прохождению большей части красной составляющей спектра. Количество света, прошедшее сквозь очки, зависит от длины волны излучения. Смотреть со стороны на луч лазера без защитных средств допускается лишь кратковременно. В противном случае может появиться боль в глазах.

Читайте так же

ledjournal.info

принцип действия, компоненты, пошаговая инструкция

Многие технические изобретения человек почерпнул, наблюдая за природными явлениями, анализируя их и применяя полученные знания в окружающей реальности. Так человек получил способность разжигать огонь, создал колесо, научился генерировать электричество, получил контроль над ядерной реакцией.

В отличие от всех этих изобретений лазер не имеет аналогов в природе. Его возникновение было связано исключительно с теоретическими предположениями в рамках зарождающейся квантовой физики. Существование принципа, который лег в основу лазера, было предсказано в начале ХХ в величайшим ученым Альбертом Эйнштейном.

Принцип действия лазера

Слово «лазер» появилось в результате сокращения пяти слов, описывающих сущность физического процесса, до первых букв. В русском варианте этот процесс называется «усилением света с помощью индуцированного излучения».

По принципу своей работы лазер является квантовым генератором фотонов. Суть явления, лежащего в его основе, заключается в том, что под действием энергии в виде фотона атом излучает другой фотон, который идентичен первому по направлению движения, своей фазе и поляризации. В результате излученный свет усиливается.

Данное явление невозможно в условиях термодинамического равновесия. Для создания индуцированного излучения используют различные способы: электрические, химические, газовые и другие. Лазеры, используемые в бытовых условиях (лазерные дисковые приводы, лазерные принтеры) используют полупроводниковый способ стимуляции излучения под действием электрического тока.

Принцип работы паяльной станции с феном заключается в прохождении потока воздуха через нагреватель в трубку термофена и, достигнув установленных температур, попадании через специальные насадки на паяемую деталь.

При возникновении неисправностей сварочный инвертор можно починить своими руками. Советы по ремонту можно прочитать тут.

Кроме того, необходимым компонентом любого полноценного лазера является оптический резонатор, функция которого заключается в усилении пучка света путем его многократного отражения. С этой целью в лазерных установках используются зеркала.

Следует сказать, что создать настоящий мощный лазер своими руками в домашних условиях нереально. Для этого необходимо обладать специальными знаниями, проводить сложные расчеты, иметь хорошую материально-техническую базу.

Например, лазерные установки, которые могут резать металл, чрезвычайно нагреваются и требуют экстремальных мер охлаждения, включающих использование жидкого азота. Кроме того, устройства, работающие на основе квантового принципа, крайне капризны, требуют тончайшей настройки и не терпят даже малейших отклонений от нужных параметров.

Далее мы расскажем о том, как сделать лазер своими руками из ДВД.

Необходимые компоненты для сборки

Для сборки схемы лазера своими руками потребуется:

  • DVD-ROM с функцией перезаписи (RW). Имеет в своем составе красный лазерный диод мощностью 300 мВт. Можно использовать лазерные диоды из BLU-RAY-ROM-RW – они излучают фиолетовый свет мощностью 150 мВт. Для наших целей лучшие ROM’ы – это те, которые имеют большую скорость записи: они более мощные.
  • Импульсный преобразователь напряжения NCP1529. Преобразователь выдает ток силой 1А, стабилизирует напряжение в диапазоне 0,9-3,9 В. Эти показатели являются идеальными для нашего лазерного диода, который требует постоянного напряжения в 3 В.
  • Коллиматор для получения ровного пучка света. Сейчас в продаже представлены многочисленные лазерные модули от различных производителей, в том числе и коллиматоры.
  • Выходная линза из ROM.
  • Корпус, например, от лазерной указки или фонарика.
  • Провода.
  • Батарейки 3,6 В.

Для соединения деталей потребуется паяльник. Кроме того, потребуются отвертка и пинцет.

Как сделать лазер из дисковода?

Порядок сборки простейшего лазера состоит из следующих этапов.

  1. Для начала разбираем ROM и извлекаем подвижную каретку, на которой расположены лазерные диоды. Делаем это аккуратно, чтобы не повредить их.
  2. Обратите внимание, на каретке расположены два лазерных диода: один — читающий, другой – пишущий. Нас интересует второй. Он очень крепко впаян в радиатор.
  3. В нашей конструкции радиатор также будет необходим. Поэтому можно использовать имеющийся: в этом случае диод нужно отсоединить вместе с радиатором. Если мы планируем использовать новый радиатор, то отрезаем контакты диода в месте их входа в радиатор.
  4. Диоды – «нежные» устройства, выходят из строя от статического электричества. Мы советуем спаять или обмотать проволокой ножки диода перед всеми манипуляциями с ним.
  5. Припаиваем извлеченный диод к преобразователю напряжения NCP1529. Диоды имеют полярность. Несоблюдение полярности приводит к выходу диодов из строя.
  6. С противоположной стороны диода монтируем коллиматор. Это нужно для концентрации света в один пучок.
  7. Преобразователь с другой стороны соединяем проводами с контактами корпуса, в который будут вставлены питающие батарейки.
  8. Далее со стороны корпуса, из которого будет выходить луч лазера, монтируем линзу из привода. Это самая кропотливая часть работы. Здесь важно соблюсти правильное фокусное расстояние, чтобы луч был тонким и неразмазанным. Придется поэкспериментировать. Линза из привода дает оптимальный луч.
  9. Помещаем все детали в корпус, вставляем батарейку, проверяем работоспособность. Возможно, потребуется более точная юстировка линзы.
Таким образом можно собрать наиболее простой лазер. Что может делать такой кустарно изготовленный «усилитель света»:
  • Зажигать спичку на расстоянии.
  • Плавить полиэтиленовые пакеты и тонкую бумагу.
  • Испускать луч на расстояние более 100 метров.
Такой лазер представляет опасность: он не прожжет кожу или одежду, но может повредить глаза.
Поэтому пользоваться таким устройством нужно осторожно: не светить им в отражающие поверхности (зеркала, стекла, светоотражатели) и в целом быть предельно аккуратным – луч может причинить вред, попав в глаз даже с расстояния в сто метров.

Лазер своими руками на видео

elektrik24.net

Как сделать мощный лазер своими руками, видео

Автор Фома Бахтин На чтение 3 мин. Просмотров 1k. Опубликовано

Многие радиолюбители хотя бы раз в жизни хотели сделать лазер своими руками. Когда-то считалось, что собрать его возможно лишь в научных лабораториях. Да, это так, если говорить об огромных лазерных установках. Однако можно собрать лазер попроще, который при этом также будет достаточно мощным. Идея кажется очень сложной, однако на самом деле все совсем не трудно. В нашей статье с видео мы расскажем о том, как можно собрать свой собственный лазер дома.

Мощный лазер своими руками

Схема лазера своими руками

Очень важно соблюдать элементарные правила техники безопасности. Во-первых, при проверке работы прибора или когда он уже будет собран полностью, ни в коем случае не стоит направлять его в глаза, на других людей или животных. Ваш лазер получится настолько мощным, что сможет зажечь спичку или даже лист бумаги. Во-вторых, следуйте нашей схеме и тогда ваш прибор будет работать долго и качественно. В-третьих, не давайте играть с ним детям. И, наконец, храните собранное устройство в безопасном месте.

Чтобы собрать лазер в домашних условиях, вам нужно будет не слишком много времени и комплектующих. Итак, для начала вам потребуется DVD-RW привод. Он может быть как рабочим, так и нерабочим. Это не принципиально. Но очень важно, чтобы это было именно записывающее устройство, а не обычный привод для проигрывания дисков. Скорость записи привода должна быть 16х. Можно и выше. Далее потребуется найти модуль с линзой, благодаря которому лазер сможет фокусироваться в одной точке. Для этого вполне может подойти старая китайская указка. В качестве корпуса будущего лазера лучше всего использовать ненужный стальной фонарь. «Начинкой» для него будут служить провода, батарейки, резисторы и конденсаторы. Также не забудьте приготовить паяльник – без него сборка будет невозможна. Теперь давайте посмотрим, как следует собрать лазер из описанных выше составляющих.

Схема лазера своими руками

Первое, что необходимо сделать, – это разобрать DVD привод. Из привода нужно извлечь оптическую часть, отсоединив шлейфу. Затем вы увидите лазерный диод – его следует аккуратно достать из корпуса. Помните, что лазерный диод чрезвычайно чувствителен к перепаду температур, особенно к холоду. Пока вы не установите диод в будущий лазер, лучше всего выводы диода перемотать тонкой проволокой.

 

Чаще всего у лазерных диодов три вывода. Тот, что посередине, дает минус. А один из крайних – плюс. Вам следует взять две пальчиковые батарейки и подключить к извлеченному из корпуса диоду с помощью резистора в 5 Ом. Чтобы лазер засветился, нужно подключить минус батарейки к среднему выводу диода, а плюс – к одному из крайних. Теперь можно собрать схему лазерного излучателя. Кстати, питать лазер можно не только от батареек, но и от аккумулятора. Это уже дело каждого.

Чтобы ваш прибор при включении собирался в точку, можно использовать старую китайскую указку, заменив лазер из указки на собранный вами. Всю конструкцию можно аккуратно упаковать в корпус. Так она будет и выглядеть красивее, и храниться дольше. Корпусом может послужить ненужный стальной фонарь. Но также это может быть практически любая емкость. Мы выбираем фонарь не только потому, что он прочнее, но и потому, что в нем ваш лазер будет смотреться значительно презентабельнее.

Таким образом, вы сами убедились, что для сборки достаточно мощного лазера в домашних условиях не требуется ни глубоких познаний в науке, ни запредельно дорогого оборудования. Теперь вы можете собрать лазер сами и использовать его по назначению.

САМЫЙ МОЩНЫЙ ЛАЗЕР НА ЮТУБЕ 10000 mW ! МЕЧ ДЖЕДАЯ !


КАК СДЕЛАТЬ РЕЖУЩИЙ ЛАЗЕР ИЗ DVD ПРИВОДА


remont220.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о