+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

В чем разница между лошадиными силами, Bhp, Hp, кВт и PS?

Запутался в обозначениях мощности, КВт, л.с., PS, Hp? Мы поможем разобраться!

Автопроизводители из разных стран измеряют мощность своих автомобилей в различных единицах. Зачем? Ответ вы узнаете ниже

 

Читая статью про автомобили, будьте уверены, вы всегда будете встречаться с этими данными. С какими? С данными мощности автомобилей.  Мощность двигателя автомобиля это один из важнейших показателей, актуальный в любое время, в любой ситуации. Как с практической, так и с теоретической точек зрения.

 

Показатели мощности всегда актуальны. По статистике одна из самых интересующих читателей частей информации о новинках кроется именно в мощности двигателей автомобилей. Таким образом на подсознательном уровне люди сравнивают модели, их преимущества и слабые стороны относительно друг друга лишь по одному параметру- мощности мотора.

 

Мощность как суть является мерой того, насколько быстро и как далеко двигатель при помощи физической работы может передвинуть машину вперед с помощью крутящего момента. В машиностроении этот явление обобщено понятием количества «работы», которую силовой агрегат автомобиля должен совершить для того чтобы продвинуть машину вперед. В качестве меры измерения такая работа получила с течением времени множество различных единиц. С некоторыми из них мы сегодня познакомимся поближе.

 

Киловатты (кВт)

С технической стороны вопроса, эта форма измерения является наиболее универсальным методом вычисления мощности. Ей пользуются инженеры по всему миру.

 

Смотрите также: Что важнее, крутящий момент или лошадиные силы

 

Ватт- это единица измерения входящая в систему СИ (Международную систему единиц), означает, то, какая мощность потребуется для выполнения работы в 1Дж за единицу времени.

 

В основном используется профессионалами, как более «правильный» с точки зрения фундаментальной науки показатель мощности. Как единица измерения в автомобильной сфере используется в основном в Южном полушарии, так исторически сложилось.

 

Метод измерения мощности в киловаттах на автомобилях в основном происходит путем нахождения величины крутящего момента, передаваемого от колес на динамометрическом стенде, затем для подсчетов применяется данное уравнение:

 

Киловатты, стали современной мерой фиксации выходной мощности автомобилей и возможно в будущем они станут общепринятой мировой мерой. По крайней мере, если посмотреть на любые официальные данные предлагаемые автопроизводителями вы обязательно увидите единицы кВт мощности двигателей внутреннего сгорания наравне с лошадиными силами.

 

Более того, с начинающимся ажиотажем вокруг автомобилей с электрическими двигателями, вхождение в обиход этой формы измерения станет еще более оправданной, ведь количество произведенной электродвигателем работы измеряются с помощью кВт⋅ч (киловатт-часов), которые определяют, как долго электродвигатель может производить определенное количество энергии, к примеру, для движения автомобиля.

 

Лошадиные силы (л.с.)

Введенная в обиход «маэстро» и по совместительству создателем продуктивных паровых двигателей – мистером Джеймсом Уаттом – это единица мощности, основанная на лошадиных силах каким-то образом жива и по сей день, пронеся подсчеты гениального инженера сквозь столетия. Она является основной единицей измерения мощности автомобилей во многих странах, в том числе и в России, используется не только в качестве измерения мощности двигателя внутреннего сгорания в официальных документах к моделям автомобилей, но и для расчетов налогообложения в автомобильной сфере, например, подсчет транспортного налога.

 

Так что же такое лошадиная сила (л.с.)? Как она появилась и как ее высчитывают? Как ее появление было связано с лошадьми?

 

Шотландия, изобретатель Джеймс Уатт довел до ума свое первое паровое устройство, которое могло бы помочь сотням промышленникам и ремесленникам в их будничном труде. И вроде бы двигатель был всем хорош, но как объяснить это обывателям? Ответ напрашивался сам собой, нужно было сравнить работу самого распространенного на тот момент «силового устройства» (лошади) с работой новой машины. Сказано сделано, Уатт засел за подсчеты.

 

ПОДСЧЕТЫ И СРАВНЕНИЕ ЕДИНИЦ ИЗМЕРЕНИЯ

В большинстве стран Европы лошадиная сила определяется как 75 кгс·м/с, мощность, затрачиваемая при равномерном вертикальном поднимании груза массой в 75 кг со скоростью 1 метр в секунду при ускорении свободного падения 9.8 м/с.

 

В Международной метрической системе СИ официально мощность измеряется в ваттах. 1 л.с. (метрическая лошадиная сила) равна 735 Вт или 0.73 кВт.

 

В свою очередь 1 кВт равен 1.35 л.с.

 

Более того, в системе измерения в Соединенном Королевстве, а также в США лошадиные силы (horsepower, hp) приравнивают к 745 Вт, из-за чего есть небольшое расхождение с европейскими «лошадками». Таким образом 1 л.с. в США равна 1.0138 л.с. из Европы.

 

К примеру, мощность 3.8 литрового двигателя Nissan GT-R составляет 570 л.с.

, в киловаттах она будет равна 419, в hp 577 единицам.

 

 

Смотрите также: Когда менять приводные ремни

 

Как Джеймс Уатт ввел в обиход свои паровые машины и понятие «лошадиная сила»

Сейчас точно никто не знает, насколько сильны были лошади, учувствовавшие в экспериментах Уатта, были ли они в расцвете сил или это были старые клячи. Однако сохранилось несколько легенд.

 

По одной из которых некий пивовар, первый покупатель парового агрегата Уатта, вероятно, чтобы сбить цену на машину изобретателя решил провести состязание. Лошадь в пивоваренном производстве привадила в действие водяной насос, взамен нее пивовар и хотел приобрести паровую машину.

 

Для того чтобы наверняка победить, не чистый на руку промышленник выбрал для соревнования самую сильную лошадь и путем манипуляций с кнутом и другими инструментами повышения производительности труда выжал из бедной животины максимальный КПД. В ответ на вызов Джеймс Уатт применив свою машину превысил выполненную лошадью работу по некоторым данным в 1.5 раза, что послужило принятием за образчик именно металлическое устройство, работавшее на водяном пару.

 

Вторая легенда наоборот, рассказывает нам, что сам Уатт немного «подкрутил» расчёты в свою пользу. Понадобилось это ему для того, чтобы убедить несговорчивых владельцев угольных шахт для переходя с тягловых лошадей на паровые машины. В 18 веке уголь их шахт поднимали при помощи лошадей веревкой через систему блоков. Подсчитав производительность среднестатистической лошади, Уатт применил коэффициент, умножив полученное число на 1.5, за счет чего его машина с легкостью выигрывала в производительности у любой лошади, совершавшей ту же работу.

 

Поскольку лошадиная сила значительно распространилась по всему Земному шару ввиду простоты подсчетов и понятности для пользователей, появились различные виды (определения) лошадиных сил: метрическая лошадиная сила, механическая лошадиная сила, котловая л.с., электрическая л.с. и водяная лошадиная сила.

 

Возможно в некоторых статьях и новостях, как в зарубежных, так и в отечественных вы не раз сталкивались с непонятными сокращениями, к примеру: nhp, rhp, bhp, shp, ihp, whp. Что они обозначают?

 

Nhp или rhp, Nominal horsepower, rated horsepower— полезная мощность, использовалась для оценки мощности паровых двигателей.

Bhp, Brake horsepower— эффективная мощность в л.с., мощность «снимаемая» с коленчатого вала двигателя внутреннего сгорания, не учитывает потери мощности от КПП и трансмиссии автомобиля.

Shp, Shaft horsepower— мощность двигателя на валу, это мощность, подводимая к валу винта, на вал турбины или на выходной вал автомобильной коробки передач. Брутто

Ihp, Indicated horsepower— индикаторная мощность в л.с., это теоретическая мощность поршневого двигателя, определяемая суммой мощности с коленчатого вала, эффективной мощности, и энергии расходуемой на трение.

Whp, Wheel horsepower— лошадиная сила «снимаемая» с колес автомобиля на динамометрическом стенде. Самое точное измерение, позволяющее учесть все виды потерь- трансмиссионные, паразитные (потери на приведение в движение насоса, вентиляторов, генератора, потери выхлопной системы и другие). Нетто.

 

Смотрите также: Турбонаддув: принцип действия, достоинства, недостатки

 

Как видите количество видов измеряемой мощности двигателя достаточно обширно. Также автопроизводители проводят замеры мощности по различным стандартам и инструкциям, DIN, ECE, измерение мощности брутто, нетто. Все измерения мощности двигателей предполагают различное выходное значение мощности. Чем иногда в своих интересах пользуются автопроизводители.

 

PS

Сокращение «PS» расшифровывается как pferdestärke, в переводе с немецкого это означает «лошадиная сила». Казалось бы, все просто, PS=л.с., однако это не совсем так. Для нее были применены некоторые метрически уточнения, которые должны перенести старые «лошади» в 21 век. Этот стандарт измерения метрических лошадиных сил был принят в Европе в качестве нового вида измерения мощности.

 

1 PS= 0.986 л.с.

 

Подводя итоги обзора по кВт, л.с. и PS, произведем практическое сравнение трех мер измерения мощности на примере нескольких крутых автомобилей:

 

Nissan Skyline GTR R34: 206 кВт = 276 л.с. = 280 PS

 

McLaren 570S: 419 кВт = 562 л.с. = 570 PS

 

Honda Civic Type-R FK2: 228 кВт = 306 л.с. = 310 PS

 

Bugatti Chiron: 1,103 кВт = 1,479 л.с. = 1500 PS

 

Поделитесь в комментариях, как вы лучше всего воспринимаете мощность в автомобилях. Старые-добрые лошадиные силы, киловатты или предпочитаете новомодное веяние из Европы- PS?

www.1gai.ru

Лошадиная сила и другие единицы измерения мощности двигателя

Лошадиная сила (л. с.) — это внесистемная единица измерения мощности. В настоящее время в России она официально выведена из употребления (стандартной единицей СИ для выражения мощности является ватт), но все равно продолжает широко использоваться в автоиндустрии как показатель мощности двигателей.

В 1789 году шотландский инженер и изобретатель Джеймс Уатт ввел термин «лошадиная сила», чтобы показать, работу скольких лошадей способны заменить его паровые машины.

Следует знать, что лошадиная сила — это не максимальный, а усредненный показатель мощности лошади, которую она может поддерживать длительное время. Кратковременно среднестатистическая лошадь может развивать мощность около 1000 кг*м/с, то есть мощность одной лошади равна 13,3 лошадиных сил.

Основные единицы измерения мощности двигателей и их обозначение

1. Лошадиная сила (735,49875 Вт). Обозначается как: hp (это netto мощность двигателя, измеряется с использованием вспомогательных агрегатов двигателя, таких как: глушитель, генератор), bhp (это брутто мощность двигателя, измеряется без использования дополнительных агрегатов).

Также можно встретить и другие обозначения: PS (нем.), CV (фр.), pk (нид.).

В англоязычных странах чаще до сих пор приравнивают лошадиные силы к 745,6999 Вт, что примерно равно 1,014 европейской лошадиной силы.

2. Ватт

Поскольку описание ватта выходит за рамки данной статьи, то здесь мы его касаться не будем.

Как рассчитывается лошадиная сила

Лошадиная сила является условной и неоднозначной единицей измерения мощности.

В России и почти во всех европейских странах, лошадиная сила определяется как 75 кг*м/с (метрическая лошадиная сила), то есть, как мощность, достаточная для поднятия груза массой в 75 кг на высоту 1 метр за 1 секунду. В таком случае 1 л. с. составляет ровно 735,49875 Вт.

Максимальную мощность, которую способна развивать лошадь, принято называть котловой лошадиной силой. Вы можете с легкостью рассчитать и свою максимальную мощность. Для этого нужно замерить время t, за которое вы вбежите на лестницу высотой h и подставить в формулу: m*h/t, где m — масса вашего тела.

Для определения мощности двигателя используются специальные стенды, подробнее об этом написано ниже.

Как замеряют мощность двигателя

Мощность двигателя замеряют в основном для оценки эффективности тюнинга.

Для определения мощности двигателя существует только один точный способ: снять его с автомобиля и установить на специальный стенд. Снятие и установка двигателя — довольно трудозатратный и дорогой процесс, который по силам только автопроизводителям и серьезным гоночным командам.

Для менее точного замера мощности используют динамометрические мощностные стенды (такие как на фото), позволяющие снять показания «с колес». Влияние на результат могут оказать: давление в шинах, их сцепные свойства, температура шин (во время замера протектор сильно нагревается) и даже степень притяжки автомобиля страховочными стропами.

Методика замера

Прогретый автомобиль трогается на первой передаче, разгоняется до 40–50 км/ч, после чего включается последняя передача, педаль газа нажимается до упора и начинается имитация разгона. По достижении максимальных оборотов (с момента начала падения мощности, видимого на мониторе), включается нейтральная передача.

Результат измерения выводится в виде графика, на котором отображена зависимость мощности от оборотов двигателя (синяя кривая — в лошадиных силах).

Шкала, дающая примерное представление о диапазоне мощности двигателей

Для того, чтобы иметь представление о диапазоне мощности двигателей, ознакомьтесь со следующим рисунком:

  • 0-100 л. с. — малолитражные автомобили;
  • 100-200 л. с. — автомобили с двигателем средней мощности;
  • 200-500 л. с. — спортивные автомобили;
  • 500 л. с. и более — гоночные болиды и суперкары.

avtoberloga.ru

Почему мощность двигателя измеряется в лошадиных силах

Довольно часто автомобилисты даже и не задумываются о том, почему мощность двигателя, установленного на транспортное средство, измеряется в таких единицах как лошадиные силы.

Ведь время лошадей как основного вида транспорта давно прошло. И не совсем понятно, какое отношение эти великолепные животные имеют к автомобилям.

Но связь действительно есть. Лошадиные силы или просто ЛС давно стали основной единицей измерения мощности в отношении двигателей автомобилей и мотоциклов. И чем больше этих сил в авто, тем считается лучше. Целый табун позволяет развивать большую скорость и быстрее разгоняться.

При этом нужно понять, что означают лошадиные силы, почему их используют и каким образом делаются подсчёты.

Что это такое

Не все знают, почему мощность двигателей измеряют в лошадиных силах. На самом деле здесь достаточно интересная история.

Многим будет интересно узнать, откуда пошла такая единица измерения и почему всё дело в лошадях. Во многом это связано с маркетингом своего времени. Благодаря нему, в настоящее время мы измеряем мощность силовых агрегатов в лошадиных силах. Теперь стоит рассказать, почему так произошло.

Такая единица измерения как ЛС была введена ещё в 18 веке Джеймсом Уаттом. Именно в честь него названа другая единица, то есть Ватт.

Ещё в 70-х годах 18 века он создал первый паровой двигатель, который значительно превосходил по своим техническим параметрам паровую установку, изобретённую Ньюкоменом. При этом Уатт не знал, как лучше и выгоднее продать свою разработку. Одним из его аргументов выступал тот факт, что для работы его двигателя нужно на 75% меньше топлива.

Изначально продажа осуществлялась по несколько необычной схеме. Клиенты, покупавшие двигатель, отдавали треть денег, которые им удалось сэкономить на покупке топлива. Но те времена были периодом, когда в мире транспорта доминировали лошади. В итоге паровые машины мало кого интересовали.

В результате Уатт решил, что нужно сравнивать его двигатель не с другим паровым агрегатом, а именно с животными. В итоге его схема продаж была отменена, и Джеймс попробовал несколько иную тактику продаж. Он хотел убедить людей в том, что нужно покупать его двигатель.

Так была придумана единица измерения, которую мы все сегодня знаем как лошадиную силу. Подобное решение принималось в связи с тем, что клиент интуитивно понимал, о чём идёт речь, сравнивая возможности паровой установки и рабочей лошади. Фактически это был хитрый маркетинговый ход. Но свои слова Уатт подкреплял соответствующими вычислениями.

Он взял в качестве основы среднюю рабочую лошадь и посчитал, сколько энергии она способна выработать. Никто точно не знает, на каких конкретно экспериментах основывались его расчёты. Но было выявлено, что за 60 секунд работы лошадь вырабатывает примерно 45 тысячи джоулей. И это соответствовало одной лошадиной силе.

В действительности результаты оказались несколько завышенными. Редкие лошади могли работать в подобном режиме в течение целого дня. Но поняв, что возможности животных была переоценены, Уатт убедился в более высокой производительности своей разработки. Именно об этом он начал активно рассказывать потенциальным покупателям.

История необычная и достаточно интересная. Но факт в том, что такой хитрый маркетинговый ход в итоге обернулся своего рода революцией. Двигатель Уатта сыграл огромную роль в дальнейшем развитии промышленности, а его рекламные лошадиные силы стали стандартной единицей измерения.

Нюансы измерения мощности

Теперь стоит разобраться в том, как именно измеряются лошадиные силы в автомобилях, и что берётся за основу этих измерений.

Согласно принятым стандартам, 1 ЛС равняется мощности, которая нужна, чтобы поднять груз весом 75 килограмм на высоту 1 метр за 1 секунду времени. Иногда лошадиные силы переводят в другую единицу измерений. Речь идёт о ваттах. Тут на 1 силу лошади приходится 735,5 Ватт, что равняется 0,735 кВт.

Если в техническом паспорте мощность указывается в кВт, узнать о количестве лошадиных сил для этого конкретного двигателя не составит труда. Нужно взять паспортное значение, и разделить эту цифру на 0,735. Тем самым получается количество лошадиных сил.

Чтобы лучше понять принцип расчётов, можно рассмотреть несколько примеров.

  1. Стандартный городской ситикар Micra от компании Nissan оснащается двигателем объём 1,0 литра с заявленной мощностью 48 кВт. Если разделить это значение на 0,735, мы получаем 65 лошадиных сил.
  2. Современный двигатель TSI от Volkswagen, который устанавливается на модель Golf, имеет рабочий объём 2,0 литра. В техническом паспорте заявлена мощность 155 кВт. Простые математические подсчёты дают понять, что в этом автомобиле 210 лошадиных сил.
  3. Отечественная Нива производства компании АвтоВАЗ по паспорту выдаёт 58 кВт мощности. А это означает, что в лошадиных силах здесь 79. Хотя зачастую, чтобы сделать цифру более внушительной, её округляют до 80 л.с.

При этом часто встречается вопрос относительно того, как можно перевести объём автомобильного двигателя в лошадиные силы. Никак. Сделать это невозможно, поскольку объём и мощность напрямую между собой не связаны.

На мощность влияют такие параметры как крутящий момент и частота вращения движения. Они и определяют во многом лошадиные силы.

В некоторой степени объём двигателя в автомобиле влияет на лошадиные силы, но напрямую не зависит от них. И наоборот. Это зависящая от иных параметров единица измерения, для чего и были разработаны соответствующие методы подсчёта.

Если на авто отсутствует техническая документация, номинально определить, сколько лошадиных сил в этом авто, нельзя, опираясь только на объём мотора. Это не определяющая характеристика. Существует иной вариант, как можно узнать мощность в ЛС. Причём он будет более точным.

Для этих целей проводится определённый тест машины. Её устанавливают на специальный стенд ведущими колёсами. Практически все крупные автосервисы оснащены таким оборудованием. Зафиксировав машину на платформе, запускается двигатель, включается передачи и начинается имитация движения. Постепенно машина набирает максимальную скорость, когда педаль выжата до упора. Считывая информацию с контроллеров на платформе, компьютер подсчитывает, сколько лошадиных сил или киловатт в конкретном автомобиле.

Такое испытание крайне актуальное и более точное, чем подсчёты с помощью деления указанной в документации мощности в киловаттах на 0,735. И тому есть объективное объяснение.

Изначально все двигатели имеют указанную производителем мощность. Но постепенно мотор изнашивается, его ресурс сокращается, детали начинают хуже работать. Это не проявляется в каких-то серьёзных неполадках. Но постепенно реальная мощность падает, и уже не соответствует изначальным характеристикам.

Потому часто, когда проводится капитальный ремонт, либо двигатель подвергается тюнингу, а также просто люди покупают машины на вторичном рынке, им интересно узнать настоящую текущую мощность. Для этого автомобиль отправляют на специальный стенд, который и позволяет получить ответ на их вопрос.

Подводя итог, можно сказать, чему в автомобильном двигателе равна 1 (одна) лошадиная сила. Это значение мощности в кВт, которое делят на 0,735.

Если отталкиваться от научной литературы, то киловатты считаются метрической единицей, позволяющей измерять лошадиные силы. ЛС мощно сравнить с работой, которую выполняют за 1 секунду при поднятии на 1 метра 75 килограммового груза. При этом учитывается и фактор силы тяготения, то есть земное притяжение.

На что влияют

Все автомобилисты знают, что хорошо иметь достаточно мощный двигатель. И чем больше под капотом лошадей, тем лучше. Но что конкретно это означает и как лошадиные силы влияют на транспортное средство, ответить может не каждый автолюбитель.

Можно выделить несколько нюансов воздействия количества лошадиных сил на автотранспортное средство.

Мощность нужна, чтобы автомобиль мог преодолеть определённые сопротивления. Чем выше параметры мощности, тем с более сложными условиями может справиться автомобиль. Ведь машине приходится противостоять силе встречного ветра, трению, качению и пр. Если в машине будет мало лошадок, она попросту не сможет даже выехать в подъём или ехать, когда в лоб дует сильный ветер.

Но когда речь заходит о лошадиных силах, ни в коем случае нельзя забывать о таком параметре как крутящий момент. Про него всегда пишут возле параметров мощности, и крутящий момент обязательно присутствует в технической документации.

Крутящий момент является результатом воздействия на рычаг, что многие из вас могут помнить ещё со школьных уроков физики. Если говорить применительно к двигателям, то здесь в качестве рычага выступает коленчатый вал. Сила же образуется при сжигании топлива. Она воздействует на поршень, который создаёт тот самый крутящий момент.

А потому можно смело утверждать о том, что момент имеет важное значение, как и сама мощность. Сама мощность, измеряемая в рассматриваемых лошадиных силах, показывает, сколько раз за определённую единицу времени двигатель создаёт крутящий момент. Мощность зависит от амплитуды вращения двигателя, то есть оборотов. А потому напрямую связана с крутящим моментом.

И так часто описание лошадиных сил, с помощью которых производитель пытается показать своё превосходство над конкурентами, без крутящего момента – ничто. Именно момент определяет, насколько динамично сможет разгоняться автомобиль и сумеет ли мотор выдавать максимум своей мощности.

Более приземлённым фактором влияния лошадиных сил является транспортный налог. Он определяется законодательством каждой отдельно взятой страны. И чем больше у автомобиля лошадок под капотом, тем больше владельцу этого автомобиля придётся отдать государству в виде пошлины.

Для расчётов налогов используются специальные формулы. Их можно подсчитать своими силами, но для этого придётся знать текущую ставку и период владения ТС. Для разных регионов существуют свои ставки по транспортным налогам.

Мощные автомобили со всего мира

Не только автолюбители, но и самые производители постоянно спорят между собой, у какой машины больше всего под капотом лошадиных сил. Это своего рода гонка, где каждый пытается доказать своё превосходство.

При максимальном показателе мощности автомашины достигаются невероятные значения ускорения и предельной скорости движения. Но количество лошадиных сил, предусмотренных в автомобиле, должно обязательно идти параллельно с крутящим моментом, возможностями коробки передач и прочности кузова.

В теории даже в обычные Жигули можно установить мотор с самыми высокими значениями лошадиных сил, количество которых превзойдёт параметры в дорогой спортивной машине. Но большая мощность накладывает дополнительные ограничения. Большинство машин, которые обладают запредельными моторами, для дорог общего пользования не предназначены.

Чтобы подобный автомобиль не разорвало на части, его не занесло и не взмыло в воздух, здесь требуется:

  • предусмотреть максимально аэродинамический кузов;
  • использовать специальную тормозную систему;
  • установить высокоэффективную систему охлаждения;
  • обеспечить максимально прочный, но при этом лёгкий кузов;
  • создать идеально работающее рулевое управление;
  • адаптировать топливную систему под особые виды горючего.

Такие автомобили, мощность которых выходит далеко за пределы 500-800 лошадиных сил, выглядят красиво на картинках, на них интересно посмотреть в действии. Но вот о какой-то практичности здесь точно речи не идёт.

Зачем именно создают подобные машины, сказать сложно. Но они есть. И среди них существуют автомобили, которые считаются самыми мощными в мире.

  • Venom GT. Хотя автомобилей с мощностью порядка 1200 лошадиных сил не так мало, в качестве примера можно рассмотреть разработку компании Hennesey. Машина внешне выглядит великолепно, и внутреннее оснащение не лишает водителя многих преимуществ менее мощных, но более комфортабельных авто. Это настоящий гиперкар, модифицированный 8-цилиндровый двигатель которого развивает выдающиеся 1200 лошадок. При этом работает автомобиль на механической коробке передач с 6 ступенями;
  • Производителем этой модели выступает компания Locus. Отличительной особенностью автомобиля является полностью карбоновый кузов. Очень элегантная внешне машина выдаёт 1300 лошадиных сил мощности. Это стало возможным благодаря доработке двигателя V8 с рабочим объёмом 8,2 литра;
  • Ultimate Aero TT. Автомобиль бренда SSC, который несколько превзошёл своего предыдущего конкурента. Это превосходство составляет 50 лошадиных сил, то есть суммарно эта машина выдаёт 1350 л.с. Это двигатель Turbocharger от Chevrolet с объёмом всего 6,4 литра. При этом с места до сотни гиперкар разгоняется за какие-то 2,6 секунды;
  • Когда-то именно Bugatti начала гонку среди автопроизводителей. Но постепенно её Вейрон начал уступать позиции. Потому появилась новая модель, стоимостью около 3 миллионов долларов. При этом под капотом расположился 8-литровый двигатель с парой турбин и 16 цилиндрам. Всё это оборудование помогло выжать 1500 лошадиных сил;
  • Продукт компании Vector, разработанный в США. Всего для модели предлагается две версии силовых установок. Первая не сильно выделяется на фоне предыдущих рассмотренных авто, поскольку имеет 1250 лошадиных сил. Но вторая версия способна выдать уже 1850 лошадок. И это при рабочем объёме двигателя 10 литров и 8 цилиндрах. Причём ради безопасности блок цилиндров изготавливают из настоящего высокопрочного чугуна;
  • Лидером всё же оказался автомобиль от Devel. Это умопомрачительное транспортное средство, поскольку здесь под капотом размещён 16-цилиндровый мотор объёмом 12,3 литра. Это настоящий монстр с 4771 Нм крутящего момента. А мощность здесь составляет сумасшедшие 5000 л.с. Причём двигатель может работать в 3 разных режимах. В самом обычном мощность искусственно снижается до 1200 л.с. Средний режим рассчитан на 2500 л.с., а для выездов на трек можно выжать все 5 тысяч лошадок.

Все эти автомобили были включены в рейтинг не просто так. Существует целый ряд высокомощных автомобилей, которые могут превосходить некоторые рассмотренные машины.

Но особенностью эти авто является тот факт, что они, в отличие от многих других, имеют допуск на дороги общего пользования. То есть на таких автомобилях можно выезжать в город и ездить по обычным дорогам.

Лошадиные силы являются показателем мощности любого автомобильного двигателя. Но эта единица не предопределяет истинные возможности силовой установки. Они формируются из нескольких составляющих, в числе которых лошадиные силы, крутящий момент и прочие параметры.

drivertip.ru

Почему мощность двигателя обычно измеряется в лошадиных силах

Джеймс Уатт

Эту единицу измерения мощности двигателя ввёл в употребление шотландский инженер Джеймс Уатт (Ватт). В начале 1780-х годов он изобрёл паровой двигатель, значительно превосходивший по техническим характеристикам классический паровой двигатель Ньюкомена. Уатт искал способ продать своё изобретение и в качестве преимущества приводил тот факт, что двигатель использует на 75% меньше топлива.

Сначала он пытался продавать свой двигатель по схеме роялти — клиенты должны были отдать ему треть сэкономленных на топливе денег. В то время многие ещё пользовались лошадьми, а не паровыми машинами, так что сравнивать было целесообразно как раз с животными. Уатт отказался от схемы роялти и решил попробовать другую тактику, чтобы убедить людей покупать его двигатель.

Он придумал новую единицу измерения — лошадиные силы, которая была интуитивно понятна клиентам. За основу он взял одну среднюю тягловую лошадь и приблизительно подсчитал, сколько энергии может вырабатывать типичная лошадь. Какие именно эксперименты ставил Уатт неизвестно, но в результате он понял, что 60 секунд работы типичной лошади примерно равны 43 928,5 джоулям энергии. Затем он округлил полученный результат до 45 000 джоулей и получил одну лошадиную силу.

Двигатель Джеймса Уатта

По правде говоря, это завышенный результат — очень немногие лошади могут работать так весь день. Кроме того, переоценив то, что может сделать лошадь, Уатт убедился, что его продукт куда производительнее лошадей, о чём и заявил покупателям. Ловкий маркетинговый ход, не находите?

В конце концов, изобретённый Уаттом двигатель сыграл огромную роль в промышленной революции. Благодаря этому факту, введённая им единица измерения мощности двигателя тоже стала популярной. В наши дни мы часто используем систему СИ, и именно Ватт, названный в честь Джеймса Уатта, пришёл на смену лошадиной силе.

www.factroom.ru

Мощность двигателя автомобиля в чем измеряется


Лошадиная сила и другие единицы измерения мощности двигателя — Автоберлога

Лошадиная сила (л. с.) — это внесистемная единица измерения мощности. В настоящее время в России она официально выведена из употребления (стандартной единицей СИ для выражения мощности является ватт), но все равно продолжает широко использоваться в автоиндустрии как показатель мощности двигателей.

В 1789 году шотландский инженер и изобретатель Джеймс Уатт ввел термин «лошадиная сила», чтобы показать, работу скольких лошадей способны заменить его паровые машины.

Следует знать, что лошадиная сила — это не максимальный, а усредненный показатель мощности лошади, которую она может поддерживать длительное время. Кратковременно среднестатистическая лошадь может развивать мощность около 1000 кг*м/с, то есть мощность одной лошади равна 13,3 лошадиных сил.

Основные единицы измерения мощности двигателей и их обозначение

1. Лошадиная сила (735,49875 Вт). Обозначается как: hp (это netto мощность двигателя, измеряется с использованием вспомогательных агрегатов двигателя, таких как: глушитель, генератор), bhp (это брутто мощность двигателя, измеряется без использования дополнительных агрегатов).

Также можно встретить и другие обозначения: PS (нем.), CV (фр.), pk (нид.).

В англоязычных странах чаще до сих пор приравнивают лошадиные силы к 745,6999 Вт, что примерно равно 1,014 европейской лошадиной силы.

2. Ватт

Поскольку описание ватта выходит за рамки данной статьи, то здесь мы его касаться не будем.

Как рассчитывается лошадиная сила

Лошадиная сила является условной и неоднозначной единицей измерения мощности.

В России и почти во всех европейских странах, лошадиная сила определяется как 75 кг*м/с (метрическая лошадиная сила), то есть, как мощность, достаточная для поднятия груза массой в 75 кг на высоту 1 метр за 1 секунду. В таком случае 1 л. с. составляет ровно 735,49875 Вт.

Максимальную мощность, которую способна развивать лошадь, принято называть котловой лошадиной силой. Вы можете с легкостью рассчитать и свою максимальную мощность. Для этого нужно замерить время t, за которое вы вбежите на лестницу высотой h и подставить в формулу: m*h/t, где m — масса вашего тела.

Для определения мощности двигателя используются специальные стенды, подробнее об этом написано ниже.

Как замеряют мощность двигателя

Мощность двигателя замеряют в основном для оценки эффективности тюнинга.

Для определения мощности двигателя существует только один точный способ: снять его с автомобиля и установить на специальный стенд. Снятие и установка двигателя — довольно трудозатратный и дорогой процесс, который по силам только автопроизводителям и серьезным гоночным командам.

Для менее точного замера мощности используют динамометрические мощностные стенды (такие как на фото), позволяющие снять показания «с колес». Влияние на результат могут оказать: давление в шинах, их сцепные свойства, температура шин (во время замера протектор сильно нагревается) и даже степень притяжки автомобиля страховочными стропами.

Методика замера

Прогретый автомобиль трогается на первой передаче, разгоняется до 40–50 км/ч, после чего включается последняя передача, педаль газа нажимается до упора и начинается имитация разгона. По достижении максимальных оборотов (с момента начала падения мощности, видимого на мониторе), включается нейтральная передача.

Результат измерения выводится в виде графика, на котором отображена зависимость мощности от оборотов двигателя (синяя кривая — в лошадиных силах).

Шкала, дающая примерное представление о диапазоне мощности двигателей

Для того, чтобы иметь представление о диапазоне мощности двигателей, ознакомьтесь со следующим рисунком:

  • 0-100 л. с. — малолитражные автомобили;
  • 100-200 л. с. — автомобили с двигателем средней мощности;
  • 200-500 л. с. — спортивные автомобили;
  • 500 л. с. и более — гоночные болиды и суперкары.

avtoberloga.ru

Почему мощность машины измеряется в лошадиных силах и как их считают

Довольно часто автомобилисты даже и не задумываются о том, почему мощность двигателя, установленного на транспортное средство, измеряется в таких единицах как лошадиные силы.

Ведь время лошадей как основного вида транспорта давно прошло. И не совсем понятно, какое отношение эти великолепные животные имеют к автомобилям.

Скидки на новые автомобили! Выгодный кредит от 9.9%Рассрочка 0%

Но связь действительно есть. Лошадиные силы или просто ЛС давно стали основной единицей измерения мощности в отношении двигателей автомобилей и мотоциклов. И чем больше этих сил в авто, тем считается лучше. Целый табун позволяет развивать большую скорость и быстрее разгоняться.

При этом нужно понять, что означают лошадиные силы, почему их используют и каким образом делаются подсчёты.

Что это такое

Не все знают, почему мощность двигателей измеряют в лошадиных силах. На самом деле здесь достаточно интересная история.

Многим будет интересно узнать, откуда пошла такая единица измерения и почему всё дело в лошадях. Во многом это связано с маркетингом своего времени. Благодаря нему, в настоящее время мы измеряем мощность силовых агрегатов в лошадиных силах. Теперь стоит рассказать, почему так произошло.

Такая единица измерения как ЛС была введена ещё в 18 веке Джеймсом Уаттом. Именно в честь него названа другая единица, то есть Ватт.

Ещё в 70-х годах 18 века он создал первый паровой двигатель, который значительно превосходил по своим техническим параметрам паровую установку, изобретённую Ньюкоменом. При этом Уатт не знал, как лучше и выгоднее продать свою разработку. Одним из его аргументов выступал тот факт, что для работы его двигателя нужно на 75% меньше топлива.

Изначально продажа осуществлялась по несколько необычной схеме. Клиенты, покупавшие двигатель, отдавали треть денег, которые им удалось сэкономить на покупке топлива. Но те времена были периодом, когда в мире транспорта доминировали лошади. В итоге паровые машины мало кого интересовали.

В результате Уатт решил, что нужно сравнивать его двигатель не с другим паровым агрегатом, а именно с животными. В итоге его схема продаж была отменена, и Джеймс попробовал несколько иную тактику продаж. Он хотел убедить людей в том, что нужно покупать его двигатель.

Так была придумана единица измерения, которую мы все сегодня знаем как лошадиную силу. Подобное решение принималось в связи с тем, что клиент интуитивно понимал, о чём идёт речь, сравнивая возможности паровой установки и рабочей лошади. Фактически это был хитрый маркетинговый ход. Но свои слова Уатт подкреплял соответствующими вычислениями.

Он взял в качестве основы среднюю рабочую лошадь и посчитал, сколько энергии она способна выработать. Никто точно не знает, на каких конкретно экспериментах основывались его расчёты. Но было выявлено, что за 60 секунд работы лошадь вырабатывает примерно 45 тысячи джоулей. И это соответствовало одной лошадиной силе.

В действительности результаты оказались несколько завышенными. Редкие лошади могли работать в подобном режиме в течение целого дня. Но поняв, что возможности животных была переоценены, Уатт убедился в более высокой производительности своей разработки. Именно об этом он начал активно рассказывать потенциальным покупателям.

История необычная и достаточно интересная. Но факт в том, что такой хитрый маркетинговый ход в итоге обернулся своего рода революцией. Двигатель Уатта сыграл огромную роль в дальнейшем развитии промышленности, а его рекламные лошадиные силы стали стандартной единицей измерения.

Нюансы измерения мощности

Теперь стоит разобраться в том, как именно измеряются лошадиные силы в автомобилях, и что берётся за основу этих измерений.

Согласно принятым стандартам, 1 ЛС равняется мощности, которая нужна, чтобы поднять груз весом 75 килограмм на высоту 1 метр за 1 секунду времени. Иногда лошадиные силы переводят в другую единицу измерений. Речь идёт о ваттах. Тут на 1 силу лошади приходится 735,5 Ватт, что равняется 0,735 кВт.

Если в техническом паспорте мощность указывается в кВт, узнать о количестве лошадиных сил для этого конкретного двигателя не составит труда. Нужно взять паспортное значение, и разделить эту цифру на 0,735. Тем самым получается количество лошадиных сил.

Чтобы лучше понять принцип расчётов, можно рассмотреть несколько примеров.

  1. Стандартный городской ситикар Micra от компании Nissan оснащается двигателем объём 1,0 литра с заявленной мощностью 48 кВт. Если разделить это значение на 0,735, мы получаем 65 лошадиных сил.
  2. Современный двигатель TSI от Volkswagen, который устанавливается на модель Golf, имеет рабочий объём 2,0 литра. В техническом паспорте заявлена мощность 155 кВт. Простые математические подсчёты дают понять, что в этом автомобиле 210 лошадиных сил.
  3. Отечественная Нива производства компании АвтоВАЗ по паспорту выдаёт 58 кВт мощности. А это означает, что в лошадиных силах здесь 79. Хотя зачастую, чтобы сделать цифру более внушительной, её округляют до 80 л.с.

При этом часто встречается вопрос относительно того, как можно перевести объём автомобильного двигателя в лошадиные силы. Никак. Сделать это невозможно, поскольку объём и мощность напрямую между собой не связаны.

На мощность влияют такие параметры как крутящий момент и частота вращения движения. Они и определяют во многом лошадиные силы.

В некоторой степени объём двигателя в автомобиле влияет на лошадиные силы, но напрямую не зависит от них. И наоборот. Это зависящая от иных параметров единица измерения, для чего и были разработаны соответствующие методы подсчёта.

Если на авто отсутствует техническая документация, номинально определить, сколько лошадиных сил в этом авто, нельзя, опираясь только на объём мотора. Это не определяющая характеристика. Существует иной вариант, как можно узнать мощность в ЛС. Причём он будет более точным.

Для этих целей проводится определённый тест машины. Её устанавливают на специальный стенд ведущими колёсами. Практически все крупные автосервисы оснащены таким оборудованием. Зафиксировав машину на платформе, запускается двигатель, включается передачи и начинается имитация движения. Постепенно машина набирает максимальную скорость, когда педаль выжата до упора. Считывая информацию с контроллеров на платформе, компьютер подсчитывает, сколько лошадиных сил или киловатт в конкретном автомобиле.

Такое испытание крайне актуальное и более точное, чем подсчёты с помощью деления указанной в документации мощности в киловаттах на 0,735. И тому есть объективное объяснение.

Изначально все двигатели имеют указанную производителем мощность. Но постепенно мотор изнашивается, его ресурс сокращается, детали начинают хуже работать. Это не проявляется в каких-то серьёзных неполадках. Но постепенно реальная мощность падает, и уже не соответствует изначальным характеристикам.

Потому часто, когда проводится капитальный ремонт, либо двигатель подвергается тюнингу, а также просто люди покупают машины на вторичном рынке, им интересно узнать настоящую текущую мощность. Для этого автомобиль отправляют на специальный стенд, который и позволяет получить ответ на их вопрос.

Подводя итог, можно сказать, чему в автомобильном двигателе равна 1 (одна) лошадиная сила. Это значение мощности в кВт, которое делят на 0,735.

Если отталкиваться от научной литературы, то киловатты считаются метрической единицей, позволяющей измерять лошадиные силы. ЛС мощно сравнить с работой, которую выполняют за 1 секунду при поднятии на 1 метра 75 килограммового груза. При этом учитывается и фактор силы тяготения, то есть земное притяжение.

На что влияют

Все автомобилисты знают, что хорошо иметь достаточно мощный двигатель. И чем больше под капотом лошадей, тем лучше. Но что конкретно это означает и как лошадиные силы влияют на транспортное средство, ответить может не каждый автолюбитель.

Можно выделить несколько нюансов воздействия количества лошадиных сил на автотранспортное средство.

Мощность нужна, чтобы автомобиль мог преодолеть определённые сопротивления. Чем выше параметры мощности, тем с более сложными условиями может справиться автомобиль. Ведь машине приходится противостоять силе встречного ветра, трению, качению и пр. Если в машине будет мало лошадок, она попросту не сможет даже выехать в подъём или ехать, когда в лоб дует сильный ветер.

Но когда речь заходит о лошадиных силах, ни в коем случае нельзя забывать о таком параметре как крутящий момент. Про него всегда пишут возле параметров мощности, и крутящий момент обязательно присутствует в технической документации.

Крутящий момент является результатом воздействия на рычаг, что многие из вас могут помнить ещё со школьных уроков физики. Если говорить применительно к двигателям, то здесь в качестве рычага выступает коленчатый вал. Сила же образуется при сжигании топлива. Она воздействует на поршень, который создаёт тот самый крутящий момент.

А потому можно смело утверждать о том, что момент имеет важное значение, как и сама мощность. Сама мощность, измеряемая в рассматриваемых лошадиных силах, показывает, сколько раз за определённую единицу времени двигатель создаёт крутящий момент. Мощность зависит от амплитуды вращения двигателя, то есть оборотов. А потому напрямую связана с крутящим моментом.

И так часто описание лошадиных сил, с помощью которых производитель пытается показать своё превосходство над конкурентами, без крутящего момента — ничто. Именно момент определяет, насколько динамично сможет разгоняться автомобиль и сумеет ли мотор выдавать максимум своей мощности.

Более приземлённым фактором влияния лошадиных сил является транспортный налог. Он определяется законодательством каждой отдельно взятой страны. И чем больше у автомобиля лошадок под капотом, тем больше владельцу этого автомобиля придётся отдать государству в виде пошлины.

Для расчётов налогов используются специальные формулы. Их можно подсчитать своими силами, но для этого придётся знать текущую ставку и период владения ТС. Для разных регионов существуют свои ставки по транспортным налогам.

Мощные автомобили со всего мира

Не только автолюбители, но и самые производители постоянно спорят между собой, у какой машины больше всего под капотом лошадиных сил. Это своего рода гонка, где каждый пытается доказать своё превосходство.

При максимальном показателе мощности автомашины достигаются невероятные значения ускорения и предельной скорости движения. Но количество лошадиных сил, предусмотренных в автомобиле, должно обязательно идти параллельно с крутящим моментом, возможностями коробки передач и прочности кузова.

В теории даже в обычные Жигули можно установить мотор с самыми высокими значениями лошадиных сил, количество которых превзойдёт параметры в дорогой спортивной машине. Но большая мощность накладывает дополнительные ограничения. Большинство машин, которые обладают запредельными моторами, для дорог общего пользования не предназначены.

Чтобы подобный автомобиль не разорвало на части, его не занесло и не взмыло в воздух, здесь требуется:

  • предусмотреть максимально аэродинамический кузов;
  • использовать специальную тормозную систему;
  • установить высокоэффективную систему охлаждения;
  • обеспечить максимально прочный, но при этом лёгкий кузов;
  • создать идеально работающее рулевое управление;
  • адаптировать топливную систему под особые виды горючего.

Такие автомобили, мощность которых выходит далеко за пределы 500-800 лошадиных сил, выглядят красиво на картинках, на них интересно посмотреть в действии. Но вот о какой-то практичности здесь точно речи не идёт.

Зачем именно создают подобные машины, сказать сложно. Но они есть. И среди них существуют автомобили, которые считаются самыми мощными в мире.

  • Venom GT. Хотя автомобилей с мощностью порядка 1200 лошадиных сил не так мало, в качестве примера можно рассмотреть разработку компании Hennesey. Машина внешне выглядит великолепно, и внутреннее оснащение не лишает водителя многих преимуществ менее мощных, но более комфортабельных авто. Это настоящий гиперкар, модифицированный 8-цилиндровый двигатель которого развивает выдающиеся 1200 лошадок. При этом работает автомобиль на механической коробке передач с 6 ступенями;
  • Производителем этой модели выступает компания Locus. Отличительной особенностью автомобиля является полностью карбоновый кузов. Очень элегантная внешне машина выдаёт 1300 лошадиных сил мощности. Это стало возможным благодаря доработке двигателя V8 с рабочим объёмом 8,2 литра;
  • Ultimate Aero TT. Автомобиль бренда SSC, который несколько превзошёл своего предыдущего конкурента. Это превосходство составляет 50 лошадиных сил, то есть суммарно эта машина выдаёт 1350 л.с. Это двигатель Turbocharger от Chevrolet с объёмом всего 6,4 литра. При этом с места до сотни гиперкар разгоняется за какие-то 2,6 секунды;
  • Когда-то именно Bugatti начала гонку среди автопроизводителей. Но постепенно её Вейрон начал уступать позиции. Потому появилась новая модель, стоимостью около 3 миллионов долларов. При этом под капотом расположился 8-литровый двигатель с парой турбин и 16 цилиндрам. Всё это оборудование помогло выжать 1500 лошадиных сил;
  • Продукт компании Vector, разработанный в США. Всего для модели предлагается две версии силовых установок. Первая не сильно выделяется на фоне предыдущих рассмотренных авто, поскольку имеет 1250 лошадиных сил. Но вторая версия способна выдать уже 1850 лошадок. И это при рабочем объёме двигателя 10 литров и 8 цилиндрах. Причём ради безопасности блок цилиндров изготавливают из настоящего высокопрочного чугуна;
  • Лидером всё же оказался автомобиль от Devel. Это умопомрачительное транспортное средство, поскольку здесь под капотом размещён 16-цилиндровый мотор объёмом 12,3 литра. Это настоящий монстр с 4771 Нм крутящего момента. А мощность здесь составляет сумасшедшие 5000 л.с. Причём двигатель может работать в 3 разных режимах. В самом обычном мощность искусственно снижается до 1200 л.с. Средний режим рассчитан на 2500 л.с., а для выездов на трек можно выжать все 5 тысяч лошадок.

Все эти автомобили были включены в рейтинг не просто так. Существует целый ряд высокомощных автомобилей, которые могут превосходить некоторые рассмотренные машины.

Но особенностью эти авто является тот факт, что они, в отличие от многих других, имеют допуск на дороги общего пользования. То есть на таких автомобилях можно выезжать в город и ездить по обычным дорогам.

Лошадиные силы являются показателем мощности любого автомобильного двигателя. Но эта единица не предопределяет истинные возможности силовой установки. Они формируются из нескольких составляющих, в числе которых лошадиные силы, крутящий момент и прочие параметры.

drivertip.ru

Как измерить мощность двигателя

 

Некоторые автовладельцы спустя время не хотят уже ездить на стандартном автомобиле. Вот почему они переходят на тюнинг своего транспортного средства, заключающийся в тех или иных изменениях технической конструкции, чтобы в результате добиться увеличения возможностей автомобиля. Но, даже выполнив модернизацию необходимо знать насколько мощным стало авто. Каким образом измеряется мощность двигателя, вы узнаете далее.

Для измерения мощности двигателя вам понадобится компьютер, специальная программа, кабель, а также динамометрический стенд.

Существует несколько методик по измерению мощности двигателя авто. Следует заметить, что все они неточные, то есть обладают некоторой погрешностью. Вы можете выполнить установку специального электронного оборудования, которое следит за изменением параметров работы двигателя в онлайн режиме.

Это оборудование обладает средней степенью погрешности. Но имеет недостаток в виде большой стоимости. Кроме того для установки этого оборудования необходимы специалисты, чьи услуги обойдутся недешево. Обслуживание дорогой аппаратуры может значительно превысить затраты на техническое обслуживание автомобиля. Использование данного оборудования целесообразно лишь при наличии спортивного автомобиля, требующего постоянного контроля.

Кроме этого имеются менее дорогие варианты по определению мощности вашего ТС. Для этого потребуется компьютер со специальным кабелем и программой, чтобы измерять крутящий момент. Эта программа должна иметь инструкцию по использованию. Ее нужно внимательно изучить, так как там подробно расписана очередность всех действий. Найдите разъем, чтобы произвести диагностику вашей машины. Вам нужно снять заглушку с него, подключить ноутбук, загрузить приложение. Далее нужно проехаться несколько раз с разными скоростями. Приложение запомнит эти показатели, затем произойдет автоматическое вычисление мощности вашего мотора, а также будут указаны погрешности в вычислениях.

Самым точным способом для измерения мощности двигателя является установка автомобиля на динамометрическом стенде. Для этих целей необходимо воспользоваться сервисом, где имеются такие установки. Вам нужно загнать свое авто передней частью к вентилятору на стенд. Колеса необходимо разместить ровно между двумя барабанами. Выполните закрепление специальных ремней за несущей конструкцией автомобиля и подключите аппаратуру к автомобилю воспользовавшись диагностическим разъемом.

На выхлопной трубе нужно надеть гофрированный каркас, выводящий газ из бокса. После нужно включить вентилятор, для имитации сопротивления от встречного воздуха, и до максимума разогнать свое авто. Параллельно вам необходимо следить какое состояние имеют соединяющие ремни. Вы должны сделать несколько попыток, для исключения вероятности ошибки. При совершении каждой попытки компьютером будет выдаваться распечатка, с указанием максимальной скорости, а также мощности.

avtooverview.ru

Как определить мощность авто

Вам понадобится

  • ваттметр, амперметр, вольтметр, отвертка, нож, провода.

Инструкция

Проще всего определить мощность по технической документации, прилагаемой к электроприбору. Мощность устройства указывается, как правило, на первых страницах таких документов.Откройте руководство (инструкцию) и найдите там такие слова и выражения, как мощность, потребляемая мощность, средняя мощность, максимальная мощность и т.п. Стоящее после них число (диапазон, обозначенный двумя числами через черточку) и будет мощностью электроприбора. После числа должно стоять обозначение единицы измерения мощности: Ватт (Вт), Киловатт (кВт), Милливатт (мВт) или ее международное обозначение – Watt, W, kW, mW, если инструкция не на русском языке.

Если инструкция и иная документация к электроприбору отсутствует, определить мощность можно по надписям на приборе. Также как и в вышеописанном случае, ориентируйтесь на слова, обозначающие мощность, и на обозначения единиц измерения мощности.

Если устройство сравнительно современное, то информация о нем наверняка имеется в интернете. Наберите в поисковике наименование и марку Вашего электроприбора. Большинство производителей бытовой и электронной техники предоставляют на официальных сайтах всю необходимую информацию. Если нужной информации найти не удается (так нередко случается со старыми или самодельными электроприборами), измерьте мощность с помощью приборов. Для этого обесточьте электрическую цепь, выключив входной автомат или выключатель. Подготовьте разрыв в цепи, отсоединив один из проводов питания от входного устройства. На это место присоедините отрезок провода, зачистив концы на нужную длину. Подготовьте два куска провода достаточной длины. Длина проводов подбирается исходя из размещения электрооборудования и измерительных электроприборов.

Подключите к электрической цепи ваттметр. Цепь тока подключите в подготовленный разрыв. Цепь напряжения подключите с помощью проводов к входному устройству. Подайте напряжение, включив автомат или выключатель. По индикатору или шкале ваттметра определите величину потребляемой мощности.

Если ваттметра поблизости не оказалось, то можно обойтись мультиметром или парой приборов – амперметром и вольтметром. Для этого подключите амперметр или мультиметр в подготовленный заранее разрыв электрической цепи. Если это мультиметр, то переведите его в режим измерения тока. Включите автомат или выключатель, чтобы подать напряжение. Запишите или запомните показания тока на индикаторе (шкале). Отключите напряжение. Отсоедините амперметр (мультиметр) и восстановите цепь в прежнем виде.

Снова подайте напряжение. Возьмите вольтметр или переведите мультиметр в режим для измерения напряжения. Измерьте питающее напряжение, прикоснувшись щупами прибора к выходным контактам коммутационного устройства. Измеренное значение напряжения запомните или запишите. Затем вычислите потребляемую мощность, умножив значение тока на величину напряжения. Если напряжение измерялось в вольтах, а ток в амперах, то мощность получится в Ваттах (Вт).

Если питание электроприбора производится от бытовой розетки электропитания, то напряжение можно не измерять и принять равным 220 Вольт (В). Если для электропитания используются элементы питания с известным напряжением, то измерение напряжения также можно не производить.

Видео по теме

Обратите внимание

Все операции с электрооборудованием (кроме измерений) следует проводить при обесточенной электроцепи.

www.kakprosto.ru

 

«Питер — АТ»
ИНН 780703320484
ОГРНИП 313784720500453

piter-at.ru

формула, правила расчета, виды и классификация электродвигателей

В электромеханике существует много приводов, которые работают с постоянными нагрузками без изменения скорости вращения. Их используют в промышленном и бытовом оборудовании как, например, вентиляторы, компрессоры и другие. Если номинальные характеристики неизвестны, то для расчетов используют формулу мощности электродвигателя. Вычисления параметров особенно актуальны для новых и малоизвестных приводов. Калькуляция выполняется с использованием специальных коэффициентов, а также на основе накопленного опыта работы с подобными механизмами. Данные необходимы для правильной эксплуатации электрических установок.

Что такое электродвигатель?

Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.

Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока

P = U х I,

где P — мощность, U — напряжение, I — сила тока.

Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.

Конструкция электрического двигателя

Привод включает в себя:

  • Ротор.
  • Статор.
  • Подшипники.
  • Воздушный зазор.
  • Обмотку.
  • Коммутатор.

Ротор — единственная подвижная деталь привода, которая вращается вокруг своей оси. Ток, проходя через проводники, образует индукционное возмущение в обмотке. Формируемое магнитное поле взаимодействует с постоянными магнитами статора, что приводит в движение вал. Их рассчитывают по формуле мощности электродвигателя по току, для которой берется КПД и коэффициент мощности, в том числе все динамические характеристики вала.

Подшипники расположены на валу ротора и способствуют его вращению вокруг своей оси. Внешней частью они крепятся к корпусу двигателя. Вал проходит через них и выходит наружу. Поскольку нагрузка выходит за пределы рабочей зоны подшипников, ее называют нависающей.

Статор является неподвижным элементом электромагнитной цепи двигателя. Может включать в себя обмотку или постоянные магниты. Сердечник статора выполнен из тонких металлических пластин, которые называют пакетом якоря. Он призван снижать потери энергии, что часто происходит с твердыми стержнями.

Воздушный зазор — расстояние между ротором и статором. Эффективным является небольшой промежуток, так как он влияет на низкий коэффициент работы электродвигателя. Ток намагничивания растет с увеличением размера зазора. Поэтому его всегда стараются делать минимальным, но до разумных пределов. Слишком маленькое расстояние приводит к трению и ослаблению фиксирующих элементов.

Обмотка состоит из медной проволоки, собранной в одну катушку. Обычно укладывается вокруг мягкого намагниченного сердечника, состоящего из нескольких слоев металла. Возмущение индукционного поля происходит в момент прохождения тока через провода обмотки. В этот момент установка переходит в режим конфигурации с явными и неявными полюсами. В первом случае магнитное поле установки создает обмотка вокруг полюсного наконечника. Во втором случае, в распределенном поле рассредотачивается слотов полюсного наконечника ротора. Двигатель с экранированными полюсами имеет обмотку, которое сдерживает магнитное возмущение.

Коммутатор используют для переключения входного напряжения. Состоит из контактных колец, расположенных на валу и изолированных друг от друга. Ток якоря подается на щетки контактов ротационного коммутатора, который приводит к изменению полярности и заставляет вращаться ротор от полюса к полюсу. При отсутствии напряжения мотор прекращает крутиться. Современные установки оборудованы дополнительными электронным средствами, которые контролируют процесс вращения.

Принцип действия

По закону Архимеда ток в проводнике создает магнитное поле, в котором действует сила F1. Если из этого проводника изготовить металлическую рамку и поместить ее в поле под углом 90°, то края будут испытывать силы, направленные в противоположную сторону относительно друг друга. Они создают крутящий момент относительно оси, который начинает ее вращать. Витки якоря обеспечивают постоянное кручение. Поле создается электрическими или постоянными магнитами. Первый вариант выполнен в виде обмотки катушки на стальном сердечнике. Таким образом, ток рамки генерирует индукционное поле в обмотке электромагнита, которое порождает электродвижущую силу.

Рассмотрим более подробно работу асинхронных двигателей на примере установок с фазным ротором. Такие машины работают от переменного тока с частотой вращения якоря, не равной пульсации магнитного поля. Поэтому их еще называют индукционными. Ротор приводится в движение за счет взаимодействия электрического тока в катушках с магнитным полем.

Когда во вспомогательной обмотке отсутствует напряжение, устройство находится в состоянии покоя. Как только на контактах статора появляется электрический ток, образуется постоянное в пространстве магнитное поле с пульсацией +Ф и -Ф. Его можно представить в виде следующей формулы:

nпр = nобр = f1 × 60 ÷ p = n1

где:

nпр — количество оборотов, которое совершает магнитное поле в прямом направлении, об/мин;

nобр — число оборотов поля в обратном направлении, об/мин;

f1 — частота пульсации электрического тока, Гц;

p — количество полюсов;

n1 — общее число оборотов в минуту.

Испытывая пульсации магнитного поля, ротор получает начальное движение. По причине неоднородности воздействия потока, он будет развиваться крутящий момент. По закону индукции, в короткозамкнутой обмотке образуется электродвижущая сила, которая генерирует ток. Его частота пропорциональна скольжению ротора. Благодаря взаимодействию электрического тока с магнитным полем создается крутящий момент вала.

Для расчетов производительности существуют три формулы мощности асинхронного электродвигателя. По сдвигу фаз используют

S = P ÷ cos (alpha), где:

S — полная мощность, измеряемая в Вольт-Амперах.

P — активная мощность, указываемая в Ваттах.

alpha — сдвиг фаз.

Под полной мощностью понимаются реальный показатель, а под активной — расчетный.

Виды электродвигателей

По источнику питания приводы разделяют на работающие от:

  • Постоянного тока.
  • Переменного тока.

По принципу работы их, в свою очередь, делят на:

  • Коллекторные.
  • Вентильные.
  • Асинхронные.
  • Синхронные.

Вентильные двигатели не относят к отдельному классу, так как их устройство является вариацией коллекторного привода. В их конструкцию входит электронный преобразователь и датчик положения ротора. Обычно их интегрируют вместе с платой управления. За их счет происходит согласованная коммутация якоря.

Синхронные и асинхронные двигатели работают исключительно от переменного тока. Управление оборотами происходит с помощью сложной электроники. Асинхронные делятся на:

  • Трехфазные.
  • Двухфазные.
  • Однофазные.

Теоретическая формула мощности трехфазного электродвигателя при соединении в звезду или треугольником

P = 3 * Uф * Iф * cos(alpha).

Однако для линейных значений напряжения и тока она выглядит как

P = 1,73 × Uф × Iф × cos(alpha).

Это будет реальный показатель, сколько мощности двигатель забирает из сети.

Синхронные подразделяются на:

  • Шаговые.
  • Гибридные.
  • Индукторные.
  • Гистерезисные.
  • Реактивные.

В своей конструкции шаговые двигатели имеют постоянные магниты, поэтому их не относят к отдельной категории. Управление работой механизмов производится с помощью частотных преобразователей. Существуют также универсальные двигатели, которые функционируют от постоянного и переменного тока.

Общие характеристики двигателей

Все моторы имеют общие параметры, которые используются в формуле определения мощности электродвигателя. На их основе можно рассчитать свойства машины. В разной литературе они могут называться по-разному, но означают они одно и то же. В список таких параметров входит:

  • Крутящий момент.
  • Мощность двигателя.
  • Коэффициент полезного действия.
  • Номинальное количество оборотов.
  • Момент инерции ротора.
  • Расчетное напряжение.
  • Электрическая константа времени.

Вышеуказанные параметры необходимы, прежде всего, для определения эффективности электрических установок, работающих за счет механической силы двигателей. Расчетные величины дают лишь приблизительное представление о реальных характеристиках изделия. Однако эти показатели часто используют в формуле мощность электродвигателя. Именно она определяет результативность машин.

Вращательный момент

Этот термин имеет несколько синонимов: момент силы, момент двигателя, Вращательный момент, вертящий момент. Все они используются для обозначения одного показателя, хотя с точки зрения физики эти понятия не всегда тождественны.

В целях унификации терминологии были разработаны стандарты, которые приводят все к единой системе. Поэтому в технической документации всегда используются словосочетание «крутящий момент». Он представляет собой векторную физическую величину, которая равна произведению векторных значений силы и радиуса. Вектор радиуса проводится от оси вращения к точке приложенной силы. С точки зрения физики разница между крутящим и вращательным моментом заключается в точке прикладывания силы. В первом случае это внутреннее усилие, во втором — внешнее. Измеряется величина в ньютон-метрах. Однако в формуле мощности электродвигателя крутящий момент используется как основное значение.

Рассчитывается он как

M = F × r, где:

M — крутящий момент, Нм;

F — прикладываемая сила, H;

r — радиус, м.

Для расчета номинального вращающего момента привода используют формулу

Мном = 30Рном ÷ pi × нном, где:

Рном — номинальная мощность электрического двигателя, Вт;

нном — номинальное число оборотов, мин-1.

Соответственно, формула номинальной мощности электродвигателя бедует выглядеть следующим образом:

Рном = Мном * pi*нном / 30.

Обычно все характеристики указаны в спецификации. Но бывает, что приходится работать с совершенно новыми установками, информацию о которых найти очень сложно. Для расчета технических параметров таких устройств берут данные их аналогов. Также всегда известны только номинальные характеристики, которые даются в спецификации. Реальные данные необходимо рассчитывать самостоятельно.

Мощность двигателя

В общем смысле данный параметр представляет собой скалярную физическую величину, которая выражена в скорости потребления или преобразования энергии системы. Он показывает, какую работу механизм выполнит за определенную единицу времени. В электротехнике характеристика отображает полезную механическую мощность на центральном вале. Для обозначения показателя используют литеру P или W. Основной единицей измерения является Ватт. Общая формула расчета мощности электродвигателя может быть представлена как:

P = dA ÷ dt, где:

A — механическая (полезная) работа (энергия), Дж;

t — затраченное время, сек.

Механическая работа также является скалярной физической величиной, выражаемой действием силы на объект, и зависящей от направления и перемещения этого объекта. Она представляет собой произведение вектора силы на путь:

dA = F × ds, где:

s — пройденное расстояние, м.

Она выражает дистанцию, которую преодолеет точка приложенной силы. Для вращательных движений она выражается как:

ds = r × d(teta), где:

teta — угол оборота, рад.

Таким образом можно вычислить угловую частоту вращения ротора:

omega = d(teta) ÷ dt.

Из нее следует формула мощности электродвигателя на валу: P = M × omega.

Коэффициент полезного действия электромотора

КПД — это характеристика, которая отражает эффективность работы системы при преобразовании энергии в механическую. Выражается отношением полезной энергии к потраченной. По единой системе единиц измерений он обозначается как «eta» и является безразмерным значением, исчисляемым в процентах. Формула КПД электродвигателя через мощность:

eta = P2 ÷ P1, где:

P1 — электрическая (подаваемая) мощность, Вт;

P2 — полезная (механическая) мощность, Вт;

Также он может быть выражен как:

eta = A ÷ Q × 100 %, где:

A — полезная работа, Дж;

Q — затраченная энергия, Дж.

Чаще коэффициент вычисляют по формуле потребляемой мощности электродвигателя, так как эти показатели всегда легче измерить.

Снижение эффективности работы электродвигателя происходит по причине:

  • Электрических потерь. Это происходит в результате нагрева проводников от прохождения по ним тока.
  • Магнитных потерь. Вследствие излишнего намагничивания сердечника появляется гистерезис и вихревые токи, что важно учитывать в формуле мощности электродвигателя.
  • Механических потерь. Они связаны с трением и вентиляцией.
  • Дополнительных потерь. Они появляются из-за гармоник магнитного поля, так как статор и ротор имеют зубчатую форму. Также в обмотке присутствуют высшие гармоники магнитодвижущей силы.

Следует отметить, что КПД является одним из самых важных компонентов формулы расчета мощности электродвигателя, так как позволяет получить цифры, наиболее приближенные к действительности. В среднем этот показатель варьирует от 10% до 99%. Она зависит от конструктивного устройства механизма.

Номинальное количество оборотов

Еще одним ключевым показателем электромеханических характеристик двигателя является частота вращения вала. Он выражается в числе оборотов в минуту. Часто его используют в формуле мощности электродвигателя насоса, чтобы узнать его производительность. Но необходимо помнить, что показатель всегда разный для холостого хода и работы под нагрузкой. Показатель представляет физическую величину, равной количеству полных оборотов за некий промежуток времени.

Расчетная формула частоты оборотов:

n = 30 × omega ÷ pi, где:

n — частота вращения двигателя, об/мин.

Для того, чтобы найти мощность электродвигателя по формуле оборотистости вала, необходимо привести ее к расчету угловой скорости. Поэтому P = M × omega будет выглядеть следующим образом:

P = M × (2pi × n ÷ 60) = M × (n ÷ 9,55), где

t = 60 секунд.

Момент инерции

Этот показатель представляет собой скалярную физическую величину, которая отражает меру инертности вращательного движения вокруг собственной оси. При этом масса тела является величиной его инертности при поступательном движении. Основная характеристика параметра выражена распределением масс тела, которая равна сумме произведений квадрата расстояния от оси до базовой точки на массы объекта.В Международной системе единиц измерения он обозначается как кг·м2 и имеет рассчитывается по формуле:

J = ∑ r2 × dm, где

J — момент инерции, кг·м2 ;

m — масса объекта, кг.

Моменты инерции и силы связаны между собой соотношением:

M — J × epsilon, где

epsilon — угловое ускорение, с-2.

Показатель рассчитывается как:

epsilon = d(omega) × dt.

Таким образом, зная массу и радиус ротора, можно рассчитать параметры производительности механизмов. Формула мощности электродвигателя включает в себя все эти характеристики.

Расчетное напряжение

Его еще называют номинальным. Оно представляет собой базовое напряжение, представленное стандартным набором вольтажа, которые определяется степенью изоляции электрического оборудования и сети. В действительности оно может отличаться в разных точках оборудования, но не должно превышать предельно допустимых норм рабочих режим, рассчитанных на продолжительное функционирование механизмов.

Для обычных установок под номинальным напряжением понимают расчетные величины, для которых они предусмотрены разработчиком в нормальном режиме работы. Перечень стандартного вольтажа сети предусмотрен в ГОСТ. Эти параметры всегда описаны в технических характеристиках механизмов. Для расчета производительности используют формулу мощности электродвигателя по току:

P = U × I.

Электрическая константа времени

Представляет собой время, необходимое для достижения уровня тока до 63 % после подачи напряжения на обмотки привода. Параметр обусловлен переходными процессами электромеханических характеристик, так как они быстротечны ввиду большого активного сопротивления. Общая формула расчета постоянной времени:

te = L ÷ R.

Однако электромеханическая константа времени tm всегда больше электромагнитной te. Первый параметр получается из уравнения динамических характеристики двигателя при сохранении условии, когда ротор разгоняется с нулевой скоростью до максимальных оборотов холостого хода. В этом случае уравнение принимает вид

M = Mст + J × (d(omega) ÷ dt), где

Mст = 0.

Отсюда получаем формулу:

M = J × (d(omega) ÷ dt).

По факту электромеханическую константу времени рассчитывают по пусковому момент — Mп. Механизм, работающий в идеальных условиях, с прямолинейными характеристиками будем иметь формулу:

M = Mп × (1 — omega ÷ omega0), где

omega0 — скорость на холостом ходу.

Такие расчеты используют в формуле мощности электродвигателя насоса, когда ход поршня напрямую зависит от оборотистости вала.

Основные формулы расчета мощности двигателей

Для вычисления реальных характеристик механизмов всегда нужно учитывать много параметров. в первую очередь нужно знать, какой ток подается на обмотки электродвигателя: постоянный или переменный. Принцип их работы отличается, следовательно, отличаются метод вычислений. Если упрощенный вид расчета мощности привода выглядит как:

Pэл = U × I, где

I — сила тока, А;

U — напряжение, В;

Pэл — подведенная электрическая мощность. Вт.

В формуле мощности электродвигателя переменного тока необходимо также учитывать сдвиг фаз (alpha). Соответственно, расчеты для асинхронного привода выглядят как:

Pэл = U × I × cos(alpha).

Кроме активной (подведенной) мощности существует также:

  • S — реактивная, ВА. S = P ÷ cos(alpha).
  • Q — полная, ВА. Q = I × U × sin(alpha).

В расчетах также необходимо учитывать тепловые и индукционные потери, а также трение. Поэтому упрощенная модель формулы для электродвигателя постоянного тока выглядит как:

Pэл = Pмех + Ртеп +Ринд + Ртр, где

Рмех — полезная вырабатываемая мощность, Вт;

Ртеп — потери на образование тепла, ВТ;

Ринд — затраты на заряд в индукционной катушке, Вт;

Рт — потери в результате трения, Вт.

Заключение

Электродвигатели находят применение практически во всех областях жизни человека: в быту, в производстве. Для правильного использования привода необходимо знать не только его номинальные характеристики, но и реальные. Это позволит повысить его эффективность и снизить затраты.

fb.ru

Что такое лошадиная сила

Чему равна 1 лошадиная сила? Если взять любую энциклопедию и посмотреть в ней, что такое лошадиная сила, то мы прочитаем, что это внесистемная единица измерения мощности, которая в России не используется. Хотя на любом сайте дилерских автосалонов мощность двигателя указывается именно в лошадиных силах.

Что же это за единица, чему она равна?

Говоря о лошадиных силах двигателя, большинство из нас представляет простую картину: если взять табун из 80-ти лошадей и автомобиль с мощностью двигателя 80 л.с., то силы их окажутся равными и никто не сможет перетянуть канат.

Если попытаться воссоздать такую ситуацию в реальной жизни, то победит все же табун лошадей, поскольку для того, чтобы двигатель смог развить такую мощность, ему нужно раскрутить коленчатый вал до определенного количества оборотов в минуту. Лошади же рвануться с места и потащат автомобиль за собой, сломав ему таким образом коробку передач.

К тому же нужно понимать, что лошадиная сила — это стандартная единица мощности, тогда как каждая лошадь — индивидуальна и некоторые особи могут быть намного сильнее других.

В оборот лошадиные силы были введены еще в 1789 году. Известный изобретатель Джеймс Уатт хотел продемонстрировать, насколько выгоднее использовать паровые машины, а не лошадей для выполнения работы. Он просто взял и посчитал, сколько энергии тратит лошадь, чтобы с помощью простейшего подъемного механизма — колеса с закрепленными на нем веревками — вытаскивать из шахты бочки с углем или выкачивать воду с помощью насоса.

Оказалось, что одна лошадь может вытаскивать груз весом 75 килограмм со скоростью 1 м/с. Если перевести эту мощность в ватты, то получится, что 1 л.с. составляет 735 ватт. Мощность же современных автомобилей измеряют в киловаттах, соответственно 1 л.с. = 0,74 кВт.

Чтобы убедить владельцев шахты перейти с лошадиной тяги на паровую, Уатт предложил простой способ: измерить, какую работу смогут за день проделать лошади, а потом подключить паровой двигатель и посчитать, скольких лошадей он сможет заменить. Понятно, что паровой двигатель оказался более выгодным, потому что смог заменить определенное количество лошадей. Владельцы шахты поняли, что им дешевле содержать машину, чем целую конюшню со всеми вытекающими последствиями: сено, овес, навоз и так далее.

Стоит также сказать, что Уатт неправильно рассчитал силу одной лошадки. Поднимать вес 75 кг со скоростью 1 м/с способны только очень крепкие животные, кроме того долго работать в таких условиях они не смогут. Хотя есть свидетельства того, что кратковременно одна лошадь может развивать мощность до 9 кВт ( 9/0,74 кВт = 12,16 л.с.).

Виды лошадиных сил

  • Метрическая лошадиная сила равна подъёму 75 кг в секунду на 1 метр. Применяется в Европе
  • Механическая лошадиная сила равна 745.7. очень редко используется как единица измерения в англоязычных странах
  • Электрическая лошадиная сила равна 746 Вт., иногда обозначается табличках электродвигателей.
  • Котловая лошадиная сила равна 1000 кгс·м/с. или 9,8 кВт или 33 475 Btu/час. (единица измерений используется в США)
  • Гидравлическая лошадиная сила равна 745.7 Вт.

Как определяется мощность двигателя

На сегодняшний момент самый простой способ замерить реальную мощность двигателя — с помощью диностенда. Автомобиль загоняют на стенд, надежно его укрепляют, затем водитель разгоняет двигатель до максимальных оборотов и на табло отображается реальная мощность в л.с. Допустимая погрешность — +/- 0,1 л.с. Как свидетельствует практика, часто оказывается, что паспортная мощность не соответствует реальной, а это может говорить о наличии самых различных неисправностей — от некачественного топлива, до падения компрессии в цилиндрах.

Стоит сказать, что в силу того, что лошадиная сила — единица несистемная, в разных странах ее рассчитывают по-разному. В США и Англии, например, одна л.с. составляет 745 Ватт, а не 735 как в России.

Как бы там ни было, но все уже привыкли именно к этой единице измерения, поскольку она удобная и простая. Кроме того л.с. используется при расчете стоимости ОСАГО и КАСКО.

Согласитесь, если вы читаете в характеристиках автомобиля — мощность двигателя 150 л.с. — вам легче сориентироваться, на что он способен. А запись типа 110,33 кВт мало, что скажет. Хотя перевести киловатты в л.с. достаточно просто: 110,33 кВт делим на 0,74 кВт, получаем искомые 150 л.с.

Хотелось бы также напомнить, что само по себе понятие «мощность двигателя» не очень показательное, нужно еще учитывать и другие параметры: максимальный крутящий момент, обороты в минуту, вес автомобиля. Известно, что дизельные двигатели являются низкооборотистыми и максимальная мощность достигается на 1500-2500 об/мин, тогда как бензиновые разгоняются дольше, но на длинных дистанциях показывают лучшие результаты.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

calcsbox.com

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о