+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Что такое MIMO антенна? — 3G-aerial

Мы с вами живем в эпоху цифровой революции, уважаемый аноним. Не успели мы привыкнуть к какой-то новой технологии, нам уже со всех сторон предлагают еще более новую и продвинутую. И пока мы томимся размышлениями, действительно ли эта технология реально поможет нам получить более быстрый интернет или нас просто очередной раз разводят на деньги, конструкторы в это время разрабатывают еще более новую технологию, которую нам предложат взамен текущей уже буквально через 2 года. Это касается и технологии MIMO антенн.

Что же это за технология — MIMO? Multiple Input Multiple Output — множественный вход множественный выход. Прежде всего, технология MIMO является комплексным решением и касается не только антенн. Для лучшего понимания этого факта стоит совершить небольшой экскурс в историю развития мобильной связи. Перед разработчиками стоит задача передать больший объем информации в единицу времени, т.е. увеличить скорость. По аналогии с водопроводом — доставить пользователю больший объем воды в единицу времени. Мы можем сделать это увеличив «диаметр трубы», или, по аналогии, — расширив полосу частот связи. Первоначально стандарт GSM был заточен под голосовой трафик и имел ширину канала равную 0.2 МГц. Это было вполне достаточно. Кроме того есть проблема обеспечения многопользовательского доступа. Ее можно решить разделив абонентов по частоте (FDMA) или по времени (TDMA). В GSM применяются оба способа одновременно. В итоге мы имеем баланс между максимально возможным количеством абонентов в сети и минимально возможной полосой для голосового трафика. С развитием мобильного интернета эта минимальная полоса стала полосой препятствия для увеличения скорости. Две технологии основанные на платформе GSM — GPRS и EDGE достигли предельной скорости 384 кБит/с. Для дальнейшего увеличения скорости необходимо было расширить полосу для интернет трафика одновременно по возможности используя инфраструктуру GSM. В результате был разработан стандарт UMTS. Основным отличием здесь является расширение полосы сразу до 5 МГц, а для обеспечения многопользовательского доступа — применение технологии кодового доступа CDMA, при котором несколько абонентов одновременно работают в одном частотном канале. Такую технологию назвали W-CDMA, подчеркивая этим, что она работает в широкой полосе. Эта система была названа системой третьего поколения — 3G, но при этом она является надстройкой над GSM. Итак, мы получили широкую «трубу» в 5МГц, что позволило первоначально увеличить скорость до 2 МБит/с.

Как еще можно увеличить скорость, если у нас нет возможности дальше увеличивать «диаметр трубы»? Мы можем распараллелить поток на несколько частей, пустить каждую часть по отдельной небольшой трубе и затем сложить эти отдельные потоки на приемной стороне в один широкий поток. Кроме того, скорость зависит от вероятности ошибок в канале. Уменьшая эту вероятность путем избыточного кодирования, упреждающей коррекции ошибок, применения более совершенных способов модуляции радиосигнала, мы также можем увеличить скорость. Все эти наработки (совместно с расширением «трубы» путем увеличения числа несущих на канал) последовательно применялись в дальнейшем усовершенствовании стандарта UMTS и получили наименование HSPA. Это не замена для W-CDMA, а soft+hard upgrade этой основной платформы.

Разработкой стандартов для 3G занимается международный консорциум 3GPP. В таблицу сведены некоторые особенности разных релизов этого стандарта:

3G HSPA скорость & главные технологические особенности
3GPP релизТехнологииСкорость Downlink (MBPS)Скорость Uplink (MBPS)
Rel 6 HSPA 14.4 5.7
Rel 7 HSPA+
5 MHz, 2×2 MIMO downlink
28 11
Rel 8
DC-HSPA+
2×5 MHz, 2×2 MIMO downlink
42 11
Rel 9 DC-HSPA+
2×5 MHz, 2×2 MIMO downlink,
2×5 MHz uplink
84 23
Rel 10 MC-HSPA+
4×5 MHz, 2×2 MIMO downlink,
2×5 MHz uplink
168 23
Rel 11 MC-HSPA+
8×5 MHz 2×2/4×4 MIMO downlink,
2×5 MHz 2×2 MIMO uplink
336 — 672 70

Технология 4G LTE, помимо обратной совместимости с 3G сетями, что позволило ей одержать верх над WiMAX, способна в перспективе развить еще большие скорости, до 1Гбит/с и выше. Здесь применяются еще более продвинутые технологии переноса цифрового потока в радиоинтерфейс, например OFDM модуляция, которая очень хорошо интегрируется с MIMO технологией.


 Итак, что же такое MIMO? Распараллелив поток на несколько каналов можно пустить их разными путями через несколько антенн «по воздуху», и принять их такими же независимыми антеннами на приемной стороне. Таким образом мы получаем несколько независимых «труб» по радиоинтерфейсу не расширяя полосы. Это основная идея MIMO. При распространении радиоволн в радиоканале наблюдаются селективные замирания. Это особенно заметно в условиях плотной городской застройки, если абонент находится в движении или на краю зоны обслуживания соты. Замирания в каждой пространственной «трубе» происходят не одновременно. Поэтому если мы передадим по двум каналам MIMO одну и ту же информацию с небольшой задержкой, предварительно наложив на нее специальный код (метод Аламуоти, наложение кода в виде магического квадрата), мы можем восстановить потерянные символы на приемной стороне, что эквивалентно улучшению отношения сигнал/шум до 10-12 дБ. В итоге такая технология опять же приводит к возрастанию скорости. По сути это давно известный разнесенный прием (Rx Diversity) органично встроенный в MIMO технологию.

В конечном счете, мы должны понимать, что MIMO должно поддерживаться как на базе, так и у нашего модема. Обычно в 4G число каналов MIMO кратно двум — 2, 4, 8 (в Wi-Fi системах получила распространение трехканальная система 3×3) и рекомендуется, чтобы их число совпадало и на базе и на модеме. Поэтому для фиксации этого факта MIMO определяют с каналами прием∗передача — 2×2 MIMO, 4×4 MIMO и т.д. Пока в настоящее время мы имеем дело преимущественно с 2×2 MIMO.

Какие антенны применяются в технологии MIMO? Это обычные антенны, просто их должно быть две (для 2×2 MIMO). Для разделения каналов применяется ортогональная, так называемая X-поляризация. При этом поляризация каждой антенны относительно вертикали сдвинута на 45°, а относительно друг друга — 90°. Такой угол поляризации ставит оба канала в равные условия, поскольку при горизонтально/вертикальной ориентации антенн один из каналов неизбежно получил бы большее затухание из-за влияния земной поверхности. При этом 90° сдвиг поляризации между антеннами позволяет развязать каналы между собой не менее чем на 18-20 дБ.

Для MIMO нам с вами потребуется модем с двумя антенными входами и две антенны на крыше. Однако остается открытым вопрос поддерживается ли эта технология на базовой станции. В стандартах 4G LTE и WiMAX такая поддержка есть как на стороне абонентских устройств, так и на базе. В 3G сети не все так однозначно. В сети уже работают тысячи устройств не поддерживающих MIMO, для которых внедрение этой технологии приносит обратный эффект — пропускная способность сети понижается. Поэтому операторы пока не спешат повсеместно внедрять MIMO в 3G сетях. Чтобы база могла предоставить абонентам высокую скорость она сама должна иметь хороший транспорт, т.е. к ней должна быть подведена «толстая труба», желательно оптиковолокно, что тоже не всегда имеет место. Поэтому в 3G сетях технология MIMO в настоящий момент находится в стадии становления и развития, проходит тестирование как операторами, так и пользователями, причем последними не всегда успешно. Поэтому возлагать надежды на MIMO антенны стоит только в 4G сетях. На краю зоны обслуживания соты можно применять антенны с большим усилением, например зеркальные, для которых уже есть в продаже MIMO облучатели

 

 В сетях Wi-Fi технология MIMO зафиксирована в стандартах IEEE 802.11n и IEEE 802.11ac и поддерживается уже многими устройствами. Пока мы наблюдаем приход в 3G-4G сети технологии 2×2 MIMO, разработчики не сидят на месте. Уже сейчас разрабатываются технологии 64×64 MIMO с умными антеннами имеющими адаптивную диаграмму направленности. Т.е. если мы пересядем с дивана на кресло или уйдем на кухню, наш планшет заметит это и развернет диаграмму направленности встроенной антенны в нужном направлении. Нужен ли кому-то будет этот сайт в то время?

 

3g-aerial.biz

что это и с чем её едят?

27.08.2015

Наверняка, многие уже слышали про технологию MIMO, в последние годы её частенько пестрят рекламные проспекты и плакаты, особенно в компьютерных магазинах и журналах. Но что же такое MIMO (МИМО) и с чем её едят? Давайте разберёмся поподробнее.

Технология MIMO

MIMO (Multiple Input Multiple Output; множественные входы, множественные выходы) — метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, при котором для передачи данных используются две и более антенны и такое же количество антенн для приёма. Передающие и приёмные антенны разнесены настолько, чтобы достичь минимального взаимного влияния друг на друга между соседними антеннами. Технология MIMO используется в беспроводных связи Wi-Fi, WiMAX, LTE для увеличения  пропускной способности и более эффективного использования частотной полосы. Фактически MIMO позволяет в одном частотном диапазоне и заданном частотном коридоре передавать больше данных, т.е. увеличить скорость. Достигается это за счёт использования нескольких передающих и принимающих антенн.

История MIMO

Технологию MIMO можно отнести к достаточно моложим разработкам. Её история начинается в 1984 году, когда был зарегистрирован первый патент на использования данной технологии. Начальные разработки и исследования проходили в компании Bell Laboratories, а 1996 году компание Airgo Networks был выпущен первый MIMO-чипсет под названием True MIMO. Наибольшее развитие технология MIMO получила в начале XXI века, когда бурными темпами начали развиваться беспроводные сети Wi-Fi и сотовые сети 3G. А сейчас технология MIMO вовсю используется в сетях 4G LTE и Wi-Fi 802.11b/g/ac.

Что даёт технология MIMO?

Для конечного пользователя MIMO даёт значительный прирост в скорости передачи данных. В зависимости от конфигурации оборудования и количества используемых антенн, можно получить двухкратный, трёкратный и до восьмикратного увеличения скорости. Обычно в беспроводных сетях используется одинаковое количество передающих и принимающих антенн, и записывается это как, например, 2х2 или 3х3. Т.е. если видим запись MIMO 2×2, значит две антенны передают сигнал и две принимают. Например, в стандарте Wi-Fi

802.11ac один канал шириной 20 Мгц даёт пропускную способность 866 Мбит/с, тогда как в конфигурации MIMO 8×8 объединяются 8 каналов, что даёт максимальную скорость около 7 Гбит/с. Аналогично и в LTE MIMO — потенциальный рост скорости в несколько раз. Для полноценного использования MIMO в сетях LTE необходимы MIMO антенны, т.к. как правило встроенные антенны недостаточно разнесены и дают малый эффект. И конечно, должна быть поддержка MIMO со стороны базовой станции.

LTE-антенна с поддержкой MIMO передаёт и принимает сигнал в горизонтальной и вертикальной плоскостях. Это называется поляризация. Отличительной особенностью MIMO-антенн является наличие двух антенных разъёмов, и соответственно использование двух проводов для подключения к модему/роутеру.

Несмотря на то, что многие говорят, и не безосновательно, что MIMO-антенна для сетей 4G LTE фактически представляет собой две антенны в одной, не стоит думать, что при использовании такой антенны будет двухкратный рост скорости. Таковым он может быть только в теории, а на практике разница между обычной и MIMO-антенной в сети 4G LTE не превышает 20-25%. Однако, более важным в данном случае будет стабильный сигнал, который может обеспечить MIMO-антенна.

Мы рекомендуем установку MIMO-антенн для получения максимально быстрого и стабильного интернета в сети 4G LTE.

kubaninternet.ru

Модем LTE (2G,3G,4G ) — установка лучшей антенны для интернета своими руками и тест, что такое поддержка MIMO в роутере

Всем привет.Сегодня мы будем тестировать антенну для скоростного интернета.Такая антенна пригодится там где есть проблемы с качеством сигнала или скоростью.
Антенна универсальная и подойдет под любые диапазоны и стандарты мобильной связи (2 G,3G,4G ) от 700 до 2600 мегагерц. Благодаря такой «всеядности» частотных диапазонов, вам не придется ломать голову, для какой частоты подойдёт эта антенна.



Размеры антенны чуть больше планшета в 7 дюймов.Технология подключения мимо.Кабеля по 2 метра, на концах можно выбрать 2 разных разъёма под ваш роутер или модем. Учитывайте это при заказе данной антенны!

Что же не будем долго про нее рассказывать, начнем непосредственно сам тест!

Что бы приблизится к максимально плохим условиям, я уехал в лес, почти на 10 км от ближайшей 4г базовой станции.
Мы находимся в замечательном парке Горького.Еще 10 лет назад здесь не было совсем ничего.Не лавочек, велодорожек, да и вход был платным.ОЙ, что-то меня не туда понесло!)


Тестировать буду на своем 4г роутере MR6400. Из теста на штатных антеннах, мне не удалось получить минимальный сигнал, но если роутер поднять немного выше, удавалось словить 25 процентов сигнала.При этом скорость не превышала не более 3 мегабит. Совсем плохой результат!..

Что же, прикрутим вместо штатных антенн, панельную антенну 4г из обзора.Благодаря отверстиям на задней крышке можно без проблем закрепить антенну на высоте.


После небольшой настройки и поиска направления бс, мне удалось получить такие результаты.
Как видим из теста удалось выжить чуть больше 50 мегабит на вход и около 30 на выход! Конечно, это не 1 гигабит, но для дачи и под минимальные задачи, 50 мегабит должно хватить для повседневного пользования.


Немного расчлененки: 18+



Вывод.Антенна показала себя с крайне хорошей стороны.Низкая цена, легкий монтаж, не трудная настройка.Все эти положительные факторы помогут решить ваши проблемы с мобильным интернетом.

mysku.ru

Mimo wifi расстояние между антеннами. Вы здесь: Что такое MIMO антенна

MIMO (Multiple Input Multiple Output – множественный вход множественный выход) – это технология, используемая в беспроводных системах связи (WIFI, сотовые сети связи), позволяющая значительно улучшить спектральную эффективность системы, максимальную скорость передачи данных и емкость сети. Главным способом достижения указанных выше преимуществ является передача данных от источника к получателю через несколько радио соединений, откуда данная технология и получила свое название. Рассмотрим предысторию данного вопроса, и определим основные причины, послужившие широкому распространению технологии MIMO.

Необходимость в высокоскоростных соединениях, предоставляющих высокие показатели качества обслуживания (QoS) с высокой отказоустойчивостью растет от года в год. Этому в значительной мере способствует появление таких сервисов как VoIP (), VoD () и др. Однако большинство беспроводных технологий не позволяют предоставить абонентам высокое качество обслуживания на краю зоны покрытия. В сотовых и других беспроводных системах связи качество соединения, также как и доступная скорость передачи данных стремительно падает с удалением от (BTS). Вместе с этим падает и качество услуг, что в итоге приводит к невозможности предоставления услуг реального времени с высоким качеством на всей территории радио покрытия сети. Для решения данной проблемы можно попробовать максимально плотно установить базовые станции и организовать внутреннее покрытие во всех местах с низким уровнем сигнала. Однако это потребует значительных финансовых затрат что в конечном счете приведет к росту стоимости услуги и снижению конкурентоспособности. Таким образом, для решения данной проблемы требуется оригинальное нововведение, использующее, по возможности, текущий частотный диапазон и не требующее строительства новых объектов сети.

Особенности распространения радиоволн

Для того чтобы понять принципы действия технологии MIMO необходимо рассмотреть общие в пространстве. Волны, излучаемые различными системами беспроводной радиосвязи в диапазоне свыше 100 МГц, во многом ведут себя как световые лучи. Когда радиоволны при распространении встречают какую-либо поверхность, то в зависимости от материала и размера препятствия часть энергии поглощается, часть проходит насквозь, а оставшаяся – отражается. На соотношение долей поглощенной, отраженной и прошедшей насквозь частей энергий влияет множество внешних факторов, в том числе и частота сигнала. Причем отраженная и прошедшая насквозь энергии сигнала могут изменить направление своего дальнейшего распространения, а сам сигнал разбивается на несколько волн.

Распространяющийся по вышеуказанным законам сигнал от источника к получателю после встречи с многочисленным препятствиями разбивается на множество волн, лишь часть из которых достигнет приемник. Каждая из дошедших до приемника волн образует так называемый путь распространения сигнала. Причем из-за того, что разные волны отражаются от разного числа препятствий и проходят разное расстояние, различные пути имеют разные .


В условиях плотной городской постройки, из-за большого числа препятствий, таких как здания, деревья, автомобили и др., очень часто возникает ситуация когда между (MS) и антеннами базовой станции (BTS) отсутствует прямая видимость. В этом случае, единственным вариантом достижения сигнала приемника являются отраженные волны. Однако, как отмечалось выше, многократно отраженный сигнал уже не обладает исходной энергией и может прийти с запозданием. Особую сложность также создает тот факт, что объекты не всегда остаются неподвижными и обстановка может значительно измениться с течением времени. В связи с этим возникает проблема – одна из наиболее существенных проблем в беспроводных системах связи.

Многолучевое распространение – проблема или преимущество?

Для борьбы с многолучевым распространением сигналов применяется несколько различных решений. Одной из наиболее распространенных технологий является Receive Diversity – . Суть его заключается в том, что для приема сигнала используется не одна, а сразу несколько антенн (обычно две, реже четыре), расположенные на расстоянии друг от друга. Таким образом, получатель имеет не одну, а сразу две копии переданного сигнала, пришедшего различными путями. Это дает возможность собрать больше энергии исходного сигнала, т.к. волны, принятые одной антенной, могут не быть принятыми другой и наоборот. Также сигналы, приходящие в противофазе к одной антенне, могут приходить к другой синфазно. Эту схему организации радио интерфейса можно назвать Single Input Multiple Output (SIMO), в противовес стандартной схеме Single Input Single Output (SISO). Также может быть применен обратный подход: когда используется несколько антенн на передачу и одна на прием. Благодаря этому также увеличивается общая энергия исходного сигнала, полученная приемником. Эта схема называется Multiple Input Single Output (MISO). В обеих схемах (SIMO и MISO) несколько антенн устанавливаются на стороне базовой станции, т.к. реализовать разнесение антенн в мобильном устройстве на достаточно большое расстояние сложно без увеличения габаритов самого оконечного оборудования.


В результате дальнейших рассуждений мы приходим к схеме Multiple Input Multiple Output (MIMO). В этом случае устанавливаются несколько антенн на передачу и прием. Однако в отличие от указанных выше схем эта схема разнесения позволяет не только бороться с многолучевым распространением сигнала, но и получить некоторые дополнительные преимущества. За счет использования нескольких антенн на передаче и приеме каждой паре передающей/приемной антенне можно сопоставить отдельный тракт для передачи информации. При этом разнесенный прием будет выполняться оставшимися антеннами, а данная антенна также будет выполнять функции дополнительной антенны для других трактов передачи. В результате, теоретически, можно увеличить скорость передачи данных во столько раз, сколько дополнительных антенн будет использоваться. Однако существенное ограничение накладывается качеством каждого радио тракта.

Принцип работы MIMO

Как уже отмечалось выше, для организации технологии MIMO необходима установка нескольких антенн на передающей и на приемной стороне. Обычно устанавливается равное число антенн на входе и выходе системы, т.к. в этом случае достигается максимальная скорость передачи данных. Чтобы показать число антенн на приеме и передаче вместе с названием технологии «MIMO» обычно упоминается обозначение «AxB», где A – число антенн на входе системы, а B – на выходе. Под системой в данном случае понимается радио соединение.

Для работы технологии MIMO необходимы некоторые изменения в структуре передатчика по сравнению с обычными системами. Рассмотрим лишь один из возможных, наиболее простых, способов организации технологии MIMO. В первую очередь, на передающей стороне необходим делитель потоков, который будет разделять данные, предназначенные для передачи на несколько низкоскоростных подпотоков, число которых зависит от числа антенн. Например, для MIMO 4х4 и скорости поступления входных данных 200 Мбит/сек делите

iuni.ru

Поддерживает ли базовая станция mimo. MIMO антенна

April 9th, 2014

В свое время как то тихо и незаметно ушло ИК-соединение, потом перестали пользоваться Bluetooth для обмена данными. И теперь вот настала очередь Wi-Fi …

Разработана многопользовательская система с множеством входов и выходов, позволяющая сети обмениваться данными с более чем одним компьютером одновременно. Создатели утверждают, что при использовании того же самого диапазона радиоволн, отведённого под Wi-Fi, скорость обмена может быть утроена.

Компания Qualcomm Atheros разработала многопользовательскую систему с множеством входов и выходов (протокол MU-MIMO), позволяющая сети обмениваться данными с более чем одним компьютером одновременно. Компания планирует начать демонстрацию технологии в течение ближайших нескольких месяцев, прежде чем начать поставки клиентам в начале следующего года.

Однако, для того, чтобы получить эту высокую скорость обмена, пользователям придётся обновить и свои компьютеры и сетевые маршрутизаторы.

По протоколу Wi-Fi, клиенты обслуживаются последовательно — в течение определённого интервала времени задействуется только одно устройство передачи и приема информации — так что используется только небольшая часть пропускной способности сети.

Накопление этих последовательных событий создаёт падение скорости обмена, поскольку всё большее количество устройств подключаются к сети.

Протокол MU-MIMO (multi-user, multiple input, multiple output) обеспечивает одновременную передачу информации группе клиентов, что даёт более эффективное использование имеющейся пропускной способности сети Wi-Fi и тем самым ускоряет передачу.

Qualcomm полагает, что такие возможности будут особенно полезны конференц-центрам и интернет-кафе, когда несколько пользователей подключаются к одной и той же сети.

В компании также считают, что речь идёт не только об увеличении абсолютной скорости, но и о более эффективном использовании сети и эфирного времени для поддержки растущего числа подключённых устройств, услуг и приложений.

Чипы MU-Mimo Qualcomm собирается продавать производителям маршрутизаторов, точек доступа, смартфонов, планшетов и прочих устройств с поддержкой Wi-Fi. Первые чипы смогут работать одновременно с четырьмя потоками данных; поддержка технологии будет включена в чипы Atheros 802.11ac и мобильные процессоры Snapdragon 805 и 801. Демонстрация работы технологии состоится в нынешнем году, и первые поставки чипов запланированы на 1-й квартал будущего года.

Ну а теперь кому хочется подробнее вникнуть в эту технологию продолжаем …

MIMO (Multiple Input Multiple Output – множественный вход множественный выход) – это технология, используемая в беспроводных системах связи (WIFI,WI-MAX , сотовые сети связи), позволяющая значительно улучшить спектральную эффективность системы, максимальную скорость передачи данных и емкость сети. Главным способом достижения указанных выше преимуществ является передача данных от источника к получателю через несколько радио соединений, откуда данная технология и получила свое название. Рассмотрим предысторию данного вопроса, и определим основные причины, послужившие широкому распространению технологии MIMO.

Необходимость в высокоскоростных соединениях, предоставляющих высокие показатели качества обслуживания (QoS) с высокой отказоустойчивостью растет от года в год. Этому в значительной мере способствует появление таких сервисов как VoIP (Voice over Internet Protocol),видеоконференции , VoD (Video on Demand) и др. Однако большинство беспроводных технологий не позволяют предоставить абонентам высокое качество обслуживания на краю зоны покрытия. В сотовых и других беспроводных системах связи качество соединения, также как и доступная скорость передачи данных стремительно падает с удалением от базовой станции (BTS). Вместе с этим падает и качество услуг, что в итоге приводит к невозможности предоставления услуг реального времени с высоким качеством на всей территории радио покрытия сети. Для решения данной проблемы можно попробовать максимально плотно установить базовые станции и организовать внутреннее покрытие во всех местах с низким уровнем сигнала. Однако это потребует значительных финансовых затрат что в конечном счете приведет к росту стоимости услуги и снижению конкурентоспособности. Таким образом, для решения данной проблемы требуется оригинальное нововведение, использующее, по возможности, текущий частотный диапазон и не требующее строительства новых объектов сети.

Особенности распространения радиоволн

Для того чтобы понять принципы действия технологии MIMO необходимо рассмотреть общие принципы распространения радио волн в пространстве. Волны, излучаемые различными системами беспроводной радиосвязи в диапазоне свыше 100 МГц, во многом ведут себя как световые лучи. Когда радиоволны при распространении встречают какую-либо поверхность, то в зависимости от материала и размера препятствия часть энергии поглощается, часть проходит насквозь, а оставшаяся – отражается. На соотношение долей поглощенной, отраженной и прошедшей насквозь частей энергий влияет множество внешних факторов, в том числе и частота сигнала. Причем отраженная и прошедшая насквозь энергии сигнала могут изменить направление своего дальнейшего распространения, а сам сигнал разбивается на несколько волн.

Распространяющийся по вышеуказанным законам сигнал от источника к получателю после встречи с многочисленным препятствиями разбивается на множество волн, лишь часть из которых достигнет приемник. Каждая из дошедших до приемника волн образует так называемый путь распространения сигнала. Причем из-за того, что разные волны отражаются от разного числа препятствий и проходят разное расстояние, различн

erfa.ru

Что такое Mimo в wifi?

Технология MIMO сыграла огромную роль в развитии  WiFi. Несколько лет назад невозможно было представить  точки доступа Wi-Fi и другие устройства с пропускной способностью в 300 Мбит/сек и выше. Появление новых скоростных стандартов связи, к примеру, 802.11n произошло во многом благодаря MIMO.

Вообще тут стоит упомянуть, что когда  мы говорим о технологии WiFi, то на самом деле имеем в виду один из стандартов связи, а конкретно – IEEE 802.11. Брендом WiFi стал после того, как обрисовались заманчивые перспективы использования беспроводной передачи данных. Чуть подробнее о технологии вай-фай и стандарте 802.11 можно прочесть в этой статье.

Что представляет собой технология MIMO?

Если дать как можно более простое определение, то MIMO – это многопотоковая передача данных. Аббревиатуру можно перевести с английского как «несколько входов, несколько выходов» В отличие от предшественника (SingleInput/SingleOutput), в устройствах с поддержкой MIMO сигнал транслируется на одном радиоканале с помощью не одного, а нескольких приемников и передатчиков. При обозначении технических характеристик устройств WiFi рядом с аббревиатурой указывают их количество. Например, 3х2  — это 3 передатчика сигнала и 2 принимающих антенны.

Кроме того, в MIMO используется пространственное мультиплексирование. За устрашающим названием кроется технология одновременной передачи нескольких пакетов данных по одному каналу. Благодаря такому «уплотнению» канала его пропускную способность можно увеличить в два раза и более.

MIMO и WiFi

С ростом популярности беспроводной передачи данных по WiFi соединениям,  конечно же, возросли требования к их скорости. И именно технология MIMO и другие разработки, взявшие ее за основу, позволили увеличить пропускную способность в несколько раз. Развитие WiFi идет по пути развития стандартов 802.11 – a, b, g, n и так далее. Мы не зря упомянули возникновение стандарта 802.11n. Multiple Input Multiple Output – его ключевой компонент, позволивший увеличить канальную скорость беспроводного соединения с 54 Мбит/сек  до более 300 Мбит/сек.

Стандарт 802.11n позволяет применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц с более высокими показателями пропускной способности. Как уже упоминалось выше, сигнал многократно отражается, тем самым используя множество потоков на одном канале связи.

Благодаря этому доступ в интернет на основе WiFi теперь позволяет не только серфинг, проверку почты и общение в аське, но и онлайн-игры, онлайн-видео, общение в скайпе и прочий «тяжелый» трафик.

Более новый стандарт — 802.11ac также использует технологию MIMO.

Проблемы применения MIMO в WIFI

На заре становления технологии существовало затруднение совмещения устройств, работающих с поддержкой MIMO и без нее. Однако сейчас это уже не так актуально – практически каждый уважающий себя производитель беспроводного оборудования использует ее в своих устройствах.

Также одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков являлась цена устройства. Однако здесь настоящую ценовую революцию совершила компания Ubiquiti. Ей не только удалось наладить производство беспроводного оборудования с поддержкой MIMO, но и сделать это по очень демократичным ценам. Посмотрите, к примеру, стоимость типичного комплекта компании — Ubiquiti Rocket M5 (базовая станция), Ubiquiti NanoStation M5 (на стороне клиента). И в этих устройствах не просто MIMO, а фирменная улучшенная технология airMax на ее основе.

Проблемой остается только увеличение количества антенн и передатчиков (сейчас максимум 3) для устройств с PoE. Обеспечить питанием более энергоемкую конструкцию затруднительно, но опять-таки, постоянные сдвиги в этом направлении делает Ubiquiti.

Технология AirMAX

Компания Ubiquiti Networks  является признанным лидером разработки и реализации  инновационных технологий WiFi, в том числе  и MIMO. Именно на  ее основе Ubiquiti была разработана и запатентована технология AirMAX. Суть ее в том, что прием-передача сигнала несколькими антеннами на одном канале упорядочивается и структурируется протоколом TDMA с аппаратным ускорением: пакеты данных разнесены в отдельные временные слоты, очереди передачи координируются.

Это позволяет расширить пропускную способность канала, увеличить количество подключаемых абонентов без потери качества связи. Данное решение эффективно, удобно в использовании и, что немаловажно – недорого. В отличие от аналогичного оборудования, используемого в WiMAX – сетях, оборудование от Ubiquiti Networks  с технологией AirMAX приятно радует ценами.


lantorg.com

что это и с чем её едят

Кратко о MIMO.

Технология на базе стандарта WiFi IEEE 802.11n.

Wi — Life представляет краткий обзор по технологии WiFi IEEE 802.11 n .
Расширенная информация к нашей видеопубликации .

Первое поколение устройств с поддержкой стандарта WiFi 802.11n появилось на рынке несколько лет назад. Технология MIMO (MIMO — multiple input / multiple output -множественные входы/множественные выходы) является стержнем 802.11n. Это радиосистема с множеством раздельных путей передачи и приема. MIMO-системы описываются с использованием количества передатчиков и приемников. Стандарт WiFi 802.11n определяет набор возможных комбинаций от 1х1 до 4х4.


В типичном случае развертывания сети стандарта Wi-Fi внутри помещения, например в офисе, цеху, ангаре, больнице радиосигнал редко идет по кратчайшему пути между передатчиком и приемником из-за стен, дверей и других препятствий. Большинство подобных окружений имеют много различных поверхностей, которые отражают радиосигнал (электромагнитную волну) подобно зеркалу, отражающему свет. После переотражения образуются множественные копии исходного сигнала WiFi. Когда множественные копии WiFi-сигнала перемещаются различными путями от передатчика к приемнику сигнал шедший кратчайшим путем будет первым, а следующие копии (или переотраженное эхо сигнала) придут чуть позже из-за более длинных путей. Это называют многолучевым распространением сигнала (multipath). Условия множественного распространения постоянно меняются, т.к. Wi-Fi-устройства часто перемещаются (смартфон с Wi-Fi в руках пользователя), движутся вокруг различные объекты создавая помехи (люди, машины и т.п.). В случае прибытия сигналов в разное время и под разными углами это может вызывать искажения и возможное затухание сигнала.

Важно помнить, что поддержка WiFi 802.11 n c MIMO и большим количеством приемников может снизить эффект многолучевого распространения и деструктивную интерференцию, но в любом случае лучше уменьшать условия многолучевого распространения где и как только возможно. Один из важнейших моментов — держите антенны как можно дальше от металлических предметов (прежде всего омни антенны WiFi, которые имеют круговую или всенаправленную диаграмму направленности).

Необходимо четко понимать, что далеко не все Wi -Fi клиенты и Точки Доступа стандарта WiFi одинаковы с точки зрения MIMO .
Существуют клиенты 1х1, 2х1, 3х3 и т.д. Например мобильные устройства типа сматрфона чаще всего поддерживают MIMO 1x 1, иногда 1x 2. Это связано с двумя ключевыми проблемами:
1. необходимость обеспечения низкого потребления энергии и долгой жизни аккумулятора,
2. сложность в расположении нескольких антенн с адекватным их разнесением в небольшом корпусе.
Это же касается и других мобильных устройств: планшетных компьютеров, КПК и т.п..

Ноутбуки выского уровня довольно часто уже сейчас поддерживают MIMO вплоть до 3х3 (MacBook Pro и тп).



Давайте рассмотрим основные типы MIMO в сетях стандарта WiFi .
Сейчас мы опустим детализацию количества передатчиков и приемников. Важно понять принцип.

Первый тип : Разнесение при Получении сигнала на WiFi устройстве

Если в точке приема есть не менее двух связанных приемников с разнесенными антеннами,
то вполне реально провести анализ всех копий на каждом приемнике для выбора лучших сигналов.
Далее с этими сигналами можно проводить различные манипуляции, но нас интересует, прежде всего,
возможность их комбинирования с помощью технологии MRC (Maximum Ratio Combined ). Технология MRC подробнее будет рассмотрена далее.

Второй тип : Разнесение при Отправке сигнала на WiFi устройстве

Если в точке отправки есть не менее двух связанных передатчиков WiFi с разнесенными антеннами, то появляется возможность отправки группы идентичных сигналов для увеличения количества копий информации, повышения надежности на передаче и снижения необходимости перепосылки данных в радиоканале, в случае их потерь.

Третий тип : Пространственное мультиплексирование сигналов на устройстве стандарта WiFi
(объединение сигналов)

Если в точке отправки и в точке приема есть не менее двух связанных передатчиков WiFi с разнесенными антеннами, то появляется возможность отправки набора разной информации поверх разных сигналов с целью создания возможности виртуального объединения таких информационных потоков в один канал передачи данных, общая пропускная способность которого стремится к сумме отдельных потоков, из которых он состоит. Это называется Пространственным мультиплексированием. Но здесь крайне важно обеспечить возможность качественного разделения всех исходных сигналов, что требует большой величины SNR — соотношения сигнал/шум.

Технология MRC (maximum ratio combined ) используется во многих современных Точках Доступа Wi — Fi корпоративного класса.
MRC направлен на подъем уровня сигнала в направлении от Wi — Fi клиента к Точке Доступа WiFi 802.11.
Алгоритм работы MRC подразумевает сбор на нескольких антеннах и приемниках всех прямых и переотраженных при многолучевом распространении сигналов. Далее специальный процессор (DSP ) отбирает лучший сигнал с каждого приемника и выполняет комбинирование. Фактически математическая обработка реализует виртуальный фазовый сдвиг для создания положительной интерференции со сложением сигналов. Таким образом результирующий суммарный сигнал значительно лучше по характеристикам, чем все исходные.

MRC позволяет обеспечивать значительно лучшие условия работы маломощных мобильных устройств в сети стандарта Wi — Fi .


В системах WiFi 802.11n достоинства многолучевого распространения используются для одновременной передачи нескольких радиосигналов. Каждый из этих сигналов, называемых «пространственными

phocs.ru

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о