+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Магнитный поток измеряется. Магнитный поток — Гипермаркет знаний

МАГНИТНЫЙ ПОТОК

МАГНИТНЫЙ ПОТОК (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m — магнитная ПРОНИЦАЕМОСТЬ среды, а Н — интенсивность магнитного поля. Плотность магнитного потока — это поток на единицу площади (символ В), который равен Н. Изменение магнитного потока через электрический проводник наводит ЭЛЕКТРОДВИЖУЩУЮ СИЛУ.

Научно-технический энциклопедический словарь .

Смотреть что такое «МАГНИТНЫЙ ПОТОК» в других словарях:

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

    — (поток магнитной индукции), поток Ф вектора магн.

    индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

    магнитный поток — Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

    МАГНИТНЫЙ ПОТОК — поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

    Величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

    Магнитный поток — скалярная величина, равная потоку магнитной индукции. .. Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

    Классическая электродинамика … Википедия

    магнитный поток — , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

    Магнитный поток — 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было…
  • Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…

Среди физических величин важное место занимает магнитный поток. В этой статье рассказывается о том, что это такое, и как определить его величину.

Formula-magnitnogo-potoka-600×380.jpg?x15027″ alt=»Формула магнитного потока»>

Формула магнитного потока

Что такое магнитный поток

Это величина, определяющая уровень магнитного поля, проходящего через поверхность. Обозначается «ФФ» и зависит от силы поля и угла прохождения поля через эту поверхность.

Рассчитывается она по формуле:

ФФ=B⋅S⋅cosα, где:

  • ФФ – магнитный поток;
  • В – величина магнитной индукции;
  • S – площадь поверхности, через которую проходит это поле;
  • cosα – косинус угла между перпендикуляром к поверхности и потоком.

Единицей измерения в системе СИ является «вебер» (Вб). 1 вебер создаётся полем величиной 1 Тл, проходящим перпендикулярно поверхности площадью 1 м².

Таким образом, поток максимален при совпадении его направления с вертикалью и равен «0», если он параллелен с поверхностью.

Интересно. Формула магнитного потока аналогична формуле, по которой рассчитывается освещённость.

Постоянные магниты

Одним из источников поля являются постоянные магниты. Они известны много веков. Из намагниченного железа изготавливалась стрелка компаса, а в Древней Греции существовала легенда об острове, притягивающем к себе металлические части кораблей.

Постоянные магниты есть различной формы и изготавливаются из разных материалов:

  • железные – самые дешёвые, но обладают меньшей притягивающей силой;
  • неодимовые – из сплава неодима, железа и бора;
  • альнико – сплав железа, алюминия, никеля и кобальта.

Все магниты являются двухполюсными. Это заметнее всего в стержневых и подковообразных устройствах.

Если стержень подвесить за середину или положить на плавающий кусочек дерева или пенопласта, то он развернётся по направлению «север-юг». Полюс, показывающий на север, называют северным и на лабораторных приборах красят в синий цвет и обозначают «N». Противоположный, показывающий на юг, – красный и обозначен » S». Одноимёнными полюсами магниты притягиваются, а противоположными – отталкиваются.

В 1851 году Майкл Фарадей предложил понятие о замкнутых линиях индукции. Эти линии выходят из северного полюса магнита, проходят по окружающему пространству, входят в южный и внутри устройства возвращаются к северному. Ближе всего линии и напряжённость поля у полюсов. Здесь также выше притягивающая сила.

Если на устройство положить кусок стекла, а сверху тонким слоем насыпать железные опилки, то они расположатся вдоль линий магнитного поля. При расположении рядом нескольких приборов опилки покажут взаимодействие между ними: притяжение или отталкивание.

Magnit-i-zheleznye-opilki-600×425.jpeg?x15027″ alt=»Магнит и железные опилки»>

Магнит и железные опилки

Магнитное поле Земли

Нашу планету можно представить в виде магнита, ось которого наклонена на 12 градусов. Пересечения этой оси с поверхностью называют магнитными полюсами. Как и у любого магнита, силовые линии Земли идут от северного полюса к южному. Возле полюсов они проходят перпендикулярно поверхности, поэтому там стрелка компаса ненадёжна, и приходится использовать другие способы.

Частицы «солнечного ветра» имеют электрический заряд, поэтому при движении вокруг них появляется магнитное поле, взаимодействующее с полем Земли и направляющее эти частицы вдоль силовых линий. Тем самым это поле защищает земную поверхность от космической радиации. Однако возле полюсов эти линии направлены перпендикулярно поверхности, и заряженные частицы попадают в атмосферу, вызывая северное сияние.

Электромагниты

В 1820 году Ганс Эрстед, проводя эксперименты, увидел воздействие проводника, по которому протекает электрический ток, на стрелку компаса.

Через несколько дней Андре-Мари Ампер обнаружил взаимное притяжение двух проводов, по которым протекал ток одного направления.

Интересно. Во время электросварочных работ рядом расположенные кабеля двигаются при изменении силы тока.

Позже Ампер предположил, что это связано с магнитной индукцией тока, протекающего по проводам.

В катушке, намотанной изолированным проводом, по которому протекает электрический ток, поля отдельных проводников усиливают друг друга. Для увеличения силы притяжения катушку наматывают на незамкнутом стальном сердечнике. Этот сердечник намагничивается и притягивает железные детали или вторую половину сердечника в реле и контакторах.

Elektromagnit-1-600×424.jpg?x15027″ alt=»Электромагниты»>

Электромагниты

Электромагнитная индукция

При изменении магнитного потока в проводе наводится электрический ток. Этот факт не зависит от того, какими причинами было вызвано это изменение: перемещением постоянного магнита, движением провода или изменением силы тока в рядом расположенном проводнике.

Это явление было открыто Майклом Фарадеем 29 августа 1831 года. Его эксперименты показали, что ЭДС (электродвижущая сила), появляющаяся в контуре, ограниченном проводниками, прямопропорциональна скорости изменения потока, проходящего через площадь этого контура.

Важно! Для возникновения ЭДС провод должен пересекать силовые линии. При движении вдоль линий ЭДС отсутствует.

Если катушка, в которой возникает ЭДС, включена в электрическую цепь, то в обмотке возникает ток, создающий в катушке индуктивности своё электромагнитное поле.

Правило правой руки

При движении проводника в магнитном поле в нём наводится ЭДС. Её направленность зависит от направления движения провода. Метод, при помощи которого определяется направление магнитной индукции, называется «метод правой руки».

Pravilo-pravoj-ruki-600×450.jpg?x15027″ alt=»Правило правой руки»>

Правило правой руки

Расчёт величины магнитного поля важен для проектирования электрических машин и трансформаторов.

Видео

Если электрический ток, как показали опыты Эрстеда, создает магнитное поле, то не может ли в свою очередь магнитное поле вызывать электрический ток в проводнике? Многие ученые с помощью опытов пытались найти ответ на этот вопрос, но первым решил эту задачу Майкл Фарадей (1791 — 1867).
В 1831 г. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает электрический ток. Этот ток назвали индукционным током.
Индукционный ток в катушке из металлической проволоки возникает при вдвигании магнита внутрь катушки и при выдвигании магнита из катушки (рис. 192),

а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку (рис. 193).

Явление возникновения электрического тока в замкнутом проводящем контуре при изменениях магнитного поля, пронизывающего контур, называется электромагнитной индукцией.
Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектростатической природы или о возникновении ЭДС индукции. Количественное описание явления электромагнитной индукции дается на основе установления связи между ЭДС индукции и физической величиной, называемой магнитным потоком.
Магнитный поток. Для плоского контура, расположенного в однородном магнитном поле (рис. 194), магнитным потоком Ф через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и на косинус угла между вектором и нормалью к поверхности:

Правило Ленца. Опыт показывает, что направление индукционного тока в контуре зависит от того, возрастает или убывает магнитный поток, пронизывающий контур, а также от направления вектора индукции магнитного поля относительно контура. Общее правило, позволяющее определить направление индукционного тока в контуре, было установлено в 1833 г. Э. X. Ленцем.
Правило Ленца можно наглядно показать с помощью легкого алюминиевого кольца (рис. 195).

Опыт показывает, что при внесении постоянного магнита кольцо отталкивается от него, а при удалении притягивается к магниту. Результат опытов не зависит от полярности магнита.
Отталкивание и притяжение сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. Очевидно, что при вдвигании магнита в кольцо индукционный ток в нем имеет такое направление, что созданное этим током магнитное поле противодействует внешнему магнитному полю, а при выдвигании магнита индукционный ток в нем имеет такое направление, что вектор индукции его магнитного поля совпадает по направлению с вектором индукции внешнего поля.
Общая формулировка правила Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение магнитного потока, которым вызывается данный ток.
Закон электромагнитной индукции. Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции: ЭДС индукции в замкнутом контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.
В СИ единица магнитного потока выбрана такой, чтобы коэффициент пропорциональности между ЭДС индукции и изменением магнитного потока был равен единице. При этом закон электромагнитной индукции формулируется следующим образом: ЭДС индукции в замкнутом контуре равна модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

С учетом правила Ленца закон электромагнитной индукции записывается следующим образом:

ЭДС индукции в катушке. Если в последовательно соединенных контурах происходят одинаковые изменения магнитного потока, то ЭДС индукции в них равна сумме ЭДС индукции в каждом из контуров. Поэтому при изменении магнитного потока в катушке, состоящей из n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС индукции в одиночном контуре:

Для однородного магнитного поля на основании уравнения (54.1) следует, что его магнитная индукция равна 1 Тл, если магнитный поток через контур площадью 1 м 2 равен 1 Вб:

.

Вихревое электрическое поле. Закон электромагнитной индукции (54.3) по известной скорости изменения магнитного потока позволяет найти значение ЭДС индукции в контуре и при известном значении электрического сопротивления контура вычислить силу тока в контуре. Однако при этом остается нераскрытым физический смысл явления электромагнитной индукции. Рассмотрим это явление подробнее.

Возникновение электрического тока в замкнутом контуре свидетельствует о том, что при изменении магнитного потока, пронизывающего контур, на свободные электрические заряды в контуре действуют силы. Провод контура неподвижен, неподвижными можно считать свободные электрические заряды в нем. На неподвижные электрические заряды может действовать только электрическое поле. Следовательно, при любом изменении магнитного поля в окружающем пространстве возникает электрическое поле. Это электрическое поле и приводит в движение свободные электрические заряды в контуре, создавая индукционный электрический ток. Электрическое поле, возникающее при изменениях магнитного поля, называют вихревым электрическим полем.

Работа сил вихревого электрического поля по перемещению электрических зарядов и является работой сторонних сил, источником ЭДС индукции.

Вихревое электрическое поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электри ческого заряда по замкнутой линии может быть отлична от нуля.

ЭДС индукции в движущихся проводниках. Явление электромагнитной индукции наблюдается и в тех случаях, когда магнитное поле не изменяется во времени, но магнитный поток через контур изменяется из-за движения проводников контура в магнитном поле. В этом случае причиной возникновения ЭДС индукции является не вихревое электрическое поле, а сила Лоренца.

МАГНИТНОЕ ПОЛЕ

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В — физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция — векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

Единица магнитной индукции . В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

СИЛА ЛОРЕНЦА

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера F А = IBlsin a , а сила Лоренца действует на движущийся заряд:

где a — угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила м, постоянная по модулю и направленная перпендикулярно вектору скорости.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условияоткуда следует,

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца л равна магнитной силе м:

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

МАГНИТНЫЙ ПОТОК

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S — величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором и нормалью к поверхности:

Ф=BScos

В СИ единица магнитного потока 1 Вебер (Вб) — магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

Электромагнитная индукция -явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока I i в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции ε i .

По закону Ома для замкнутой цепи

Так как R не зависит от , то

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Ф = L*I .

Индуктивность контура L — коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция — явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция — частный случай электромагнитной индукции.

Индуктивность — величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела :

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I — начальное значение тока, t — промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = I cp t . Так как I cp = (I + 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1 . Следовательно,

На картинке показано однородное магнитное поле. Однородное означает одинаковое во всех точках в данном объеме. В поле помещена поверхность с площадью S. Линии поля пересекают поверхность.

Определение магнитного потока :

Магнитным потоком Ф через поверхность S называют количество линий вектора магнитной индукции B, проходящих через поверхность S.

Формула магнитного потока:

здесь α — угол между направлением вектора магнитной индукции B и нормалью к поверхности S.

Из формулы магнитного потока видно, что максимальным магнитный поток будет при cos α = 1, а это случится, когда вектор B параллелен нормали к поверхности S. Минимальным магнитный поток будет при cos α = 0, это будет, когда вектор B перпендикулярен нормали к поверхности S, ведь в этом случае линии вектора B будут скользить по поверхности S, не пересекая её.

А по определению магнитного потока учитываются только те линии вектора магнитной индукции, которые пересекают данную поверхность.

Измеряется магнитный поток в веберах (вольт-секундах): 1 вб = 1 в * с. Кроме того, для измерения магнитного потока применяют максвелл: 1 вб = 10 8 мкс. Соответственно 1 мкс = 10 -8 вб.

Магнитный поток является скалярной величиной.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии. В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока. Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? — выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

4.1. Закон электромагнитной индукции. Самоиндукция. Индуктивность

Основные формулы

· Закон электромагнитной индукции (закон Фарадея):

, (39)

где – эдс индукции;– полный магнитный поток (потокосцепление).

· Магнитный поток, создаваемый током в контуре,

где – индуктивность контура;– сила тока.

· Закон Фарадея применительно к самоиндукции

· Эдс индукции, возникающая при вращении рамки с током в магнитном поле,

где – индукция магнитного поля;– площадь рамки;– угловая скорость вращения.

· Индуктивность соленоида

, (43)

где – магнитная постоянная;– магнитная проницаемость вещества;– число витков соленоида;– площадь сечения витка;– длина соленоида.

· Сила тока при размыкании цепи

где – установившаяся в цепи сила тока;– индуктивность контура,– сопротивление контура;– время размыкания.

· Сила тока при замыкании цепи

. (45)

· Время релаксации

Примеры решения задач

Пример 1.

Магнитное поле изменяется по закону , где= 15 мТл,. В магнитное поле помещен круговой проводящий виток радиусом = 20 см под угломк направлению поля (в начальный момент времени). Найти эдс индукции, возникающую в витке в момент времени= 5 с.

Решение

По закону электромагнитной индукции возникающая в витке эдс индукции , где– магнитный поток, сцепленный в витке.

где – площадь витка,;– угол между направлением вектора магнитной индукциии нормалью к контуру:.

Подставим числовые значения: = 15 мТл,,= 20 см = = 0,2 м,.

Вычисления дают .

Пример 2

В однородном магнитном поле с индукцией = 0,2 Тл расположена прямоугольная рамка, подвижная сторона которой длиной= 0,2 м перемещается со скоростью= 25 м/с перпендикулярно линиям индукции поля (рис. 42). Определить эдс индукции, возникающую в контуре.

Решение

При движении проводника АВ в магнитном поле площадь рамки увеличивается, следовательно, возрастает магнитный поток сквозь рамку и возникает эдс индукции.

По закону Фарадея , где, тогда, но, поэтому.

Знак «–» показывает, что эдс индукции и индукционный ток направлены против часовой стрелки.

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции. Это явление называется самоиндукцией.Самоиндукция — явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны). В результатеЛ1 загорается позже, чем Л2.

Размыкание цепи При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает. Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью. Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Для характеристики намагниченности вещества в магнитном поле используетсямагнитный момент (Р м ). Он численно равен механическому моменту, испытываемому веществом в магнитном поле с индукцией в 1 Тл.

Магнитный момент единицы объема вещества характеризует его намагниченность — I , определяется по формуле:

I = Р м /V , (2.4)

где V — объем вещества.

Намагниченность в системе СИ измеряется, как и напряженность, в А/м , величина векторная.

Магнитные свойства веществ характеризуются объемной магнитной восприимчивостью c о , величина безразмерная.

Если какое-либо тело поместить в магнитное поле с индукцией В 0 , то происходит его намагничивание. Вследствие этого тело создает свое собственное магнитное поле с индукцией В » , которое взаимодействует с намагничивающим полем.

В этом случае вектор индукции в среде (В) будет слагаться из векторов:

В = В 0 + В » (знак вектора опущен), (2.5)

где В » индукция собственного магнитного поля намагнитившегося вещества.

Индукция собственного поля определяется магнитными свойствами вещества, которые характеризуются объемной магнитной восприимчивостью — c о , справедливо выражение:В » = c о В 0 (2.6)

Разделим на m 0 выражение (2.6):

В » / m о = c о В 0 /m 0

Получим: Н » = c о Н 0 , (2.7)

но Н » определяет намагниченность вещества I , т.е. Н » = I , тогда из (2.7):

I = c о Н 0 . (2.8)

Таким образом, если вещество находится во внешнем магнитном поле с напряженностьюН 0 , то внутри него индукция определяется выражением:

В=В 0 + В » = m 0 Н 0 +m 0 Н » = m 0 0 + I) (2.9)

Последнее выражение строго справедливо, когда сердечник (вещество) находится полностью во внешнем однородном магнитном поле (замкнутый тор, бесконечно длинный соленоид и т.д.).

 

Единица измерения индукции магнитного поля в международной системе …

10. Единица измерения индукции магнитного поля в Международной системе — …

А) Ом. Б) Кл. В) Н. Г) Тл.

11. Индукция магнитного поля показывает, чему равна сила …

А) Действующая на элемент проводника с током единичной длины, если по нему идет ток единичной силы.

Б) Действующая на проводник с током, если по нему идет ток единичной силы.

В) Тока, действующая на элемент проводника с током единичной длины.

Г) Тока, действующая на проводник с током единичной длины.

12. Сила, действующая со стороны магнитного поля на отдельно взятую движущуюся заряженную частицу, называется …

А) Силой Ампера.

Б) Силой Архимеда.

В) Силой взаимодействия.

Г) Силой Лоренца.

13. При увеличении тока в контуре в 4 раза, индукция магнитного поля …

А) Увеличится в 4 раза.

Б) Уменьшится в 4 раза.

В) Увеличится в 16 раз.

Г) Не изменится.

14. Единица измерения магнитного потока в Международной системе — …

А) Тл. Б) Омм. В) Вб. Г) А.

15. На рисунке изображен проводник с током. Символ «+» означает, что ток в проводнике направлен от наблюдателя. Укажите направление вектора магнитной индукции поля в точке а.

А) Только 1.

Б) Только 2.

В) 1 или 3.

Г) Только 4.

16. На рисунке изображены линии индукции магнитного поля прямого проводника с током и показано положение точек 1, 2, 3. Сравните индукции магнитного поля в этих точках.

А) В > В> В.

Б) В< В< В.

В) В= В= В.

Г) Нет правильного ответа.

17. Магнитный поток, пронизывающий катушку, изменяется со временем так, как показано на рисунке. Укажите промежуток времени, при котором модуль ЭДС индукции имеет максимальное значение.

А) От 0 до 5 с.

Б) От 5 до 10 с.

В) От 10 до 20 с.

Г) Везде одинаков.

18. За 2 с магнитный поток, пронизывающий проволочную рамку, увеличивается с 4 до 12 Вб. Модуль ЭДС индукции, наведенный в рамке, равен …

А) 8 В. Б) 4 В. В) 12 В. Г) 16 В.

19. Если силу тока в катушке увеличить вдвое, то энергия магнитного поля …

А) Увеличится в 2 раза.

Б) Уменьшится в 2 раза.

В) Не изменится.

Г) Увеличится в 4 раза.

20. Три частицы влетели в однородное магнитное поле. На рисунке траектории их движения показаны штриховой линией. Линии магнитной индукции направлены от наблюдателя. Отрицательный заряд имеет …

А) Только 1.

Б) Только 2.

В) Только 3.

Г) 2 и 3.

21. Магнит вводится в алюминиевое кольцо так, как показано на рисунке. Направление тока в кольце указано стрелкой. Каким полюсом магнит вводится в кольцо?

А) Положительным.

Б) Отрицательным.

В) Северным.

Г) Южным.

22. В горизонтально расположенном проводнике длиной 50 см и массой 10 г сила тока равна 20 А. Найдите индукцию магнитного поля, в которое нужно поместить проводник, чтобы сила тяжести уравновесилась силой Ампера.

А) 10 Тл. Б) 10 Тл. В) 0,1 мТл. Г) Нет правильного ответа.

23. Когда металлический стержень присоединили к одному из полюсов источника тока, то вокруг него обра­зовалось … поле.


А) Электрическое.

Б) Магнитное.

В) Электрическое и магнитное.

Г) Нет правильного ответа.

24. Диамагнетики – это вещества, у которых магнитная проницаемость

А) Больше единицы и они слабо втягиваются в магнитное поле.

Б) Очень большая.

В) Меньше единицы и они слабо выталкиваются из магнитного поля.

Г) Очень маленькая.

25. Три одинаковые катушки включены последовательно в электрическую цепь постоянного тока. Катушка 1 без сердечника, в катушке 2 – сердечник из кобальта, в катушке 3 – сердечник из трансформаторной стали. В какой из катушек индукция магнитного поля будет наименьшей? Магнитная проницаемость воздуха равна 1, кобальта – 175, трансформаторной стали – 8000.

А) 1. Б) 2. В) 3. Г) Индукция магнитного поля во всех катушках одинакова.

Тест № 9 Электромагнитная индукция.

1. Индукционный ток – это направленное движение …

А) Заряженных частиц, по своим действиям в принципе не отличается от электрического тока, проявляется за счет сил неэлектрического происхождения.

Б) Нейтральных частиц, по своим действиям в принципе не отличается от электрического тока, проявляется за счет сил электрического происхождения.

В) Заряженных частиц, по своим действиям отличается от электрического тока, проявляется за счет сил неэлектрического происхождения.

Г) Нейтральных частиц, по своим действиям в принципе отличается от электрического тока, проявляется за счет сил электрического происхождения.

2. На каком опыте можно показать возникновение индук­ционного тока?

А) Проводник, концы которого присоединены к гальвано­метру, надо поместить в магнитное поле.

Б) Проводник, концы которого присоединены к гальвано­метру, надо двигать вдоль магнитных линий.

В) Магнит или проводник, концы которого присоединены к гальванометру, надо двигать так, чтобы магнитные линии пересекали проводник.

Г) Нет правильного ответа.

3. Какую задачу ставил перед собой Фарадей, приступая к работе, которая привела его к открытию явления электромагнитной индукции?

А) С помощью электрического тока получить магнитное поле.

Б) Превратить магнетизм в электричество.

В) С помощью электрического поля получить ток

Г) Нет правильного ответа.

4. Магнитный поток – это физическая величина, равная …

А) Отношению модуля вектора индукции магнитного поля на площадь контура, пронизываемого этим магнитным полем к синусу угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной контуром.

Б) Произведению модуля вектора индукции магнитного поля на площадь контура, пронизываемого этим магнитным полем и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной контуром.

В) Произведению модуля вектора индукции магнитного поля на площадь контура, пронизываемого этим магнитным полем и на синус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной контуром.

Г) Отношению вектора индукции магнитного поля на площадь контура, пронизываемого этим магнитным полем к косинусу угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной контуром.

5. Единица измерения магнитного потока в Международной системе — …

А) Тл. Б) Омм. В) Вб. Г) А.

6. Из предложенных вариантов выберите выражение магнитного потока.

А) ВSsin . Б) . В) ВScos . Г) Нет правильного ответа.

7. На острие укреплено коромысло с двумя уравновешивающими друг друга кольцами, изготовленными из немагнитного металла, например, алюминия. Одно кольцо сплошное, другое – разрезанное. Будем вдвигать в кольца постоянный магнит, при этом …

А) Сплошное и разрезанное кольца – оттолкнутся.

Б) Сплошное — оттолкнется, а разрезанное – нет.

В) Оба кольца останутся в первоначальном положении.

Г) Разрезанное оттолкнется, а сплошное – нет.

8. Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он был вызван, – это …

А) Правило правой руки.

Б) Правило левой руки.

В) Правило буравчика.

Г) Правило Ленца.

9. Направление индукционного тока зависит …

А) От направления магнитной индукции поля, пронизывающего контур.

Б) От направления силовых линий.

В) От магнитного потока.

Г) Нет правильного ответа.

10. Электромагнитной индукцией называют явление возник­новения …

А) Магнитного поля вокруг проводника при прохождении по нему электрического тока.

Б) Электрического тока в проводнике, пересекающем маг­нитные линии.

В) Электрического тока в проводнике.

Г) Правильного ответа нет.

11. Физическая величина, равная отношению работы сторонних сил по перемещению электрического заряда по электрической цепи к величине этого заряда, называется …

А) Электродвижущей силой.

Б) Электромагнитной индукцией.

В) Магнитным потоком.

Г) Правильного ответа нет.

12. Из предложенных вариантов выберите выражение закона электромагнитной индукции.

А) . Б) -. В) . Г) -.

13. Кто придал закону электромагнитной индукции именно такой вид: ?

А) М. Фарадей. Б) Х. Эрстед. В) А. Ампер. Г) Д. Максвелл.

14.Работа трансформатора основана на явлении …

А) Самоиндукции.

Б) Электромагнитной индукции.

В) Магнитной индукции.

Г) Нет правильного ответа.

15. ЭДС, вырабатываемая генератором, зависит от …

А) Периода.

Б) Индукции магнитного поля.

В) Частоты вращения рамки в магнитном поле.

Г) Нет правильного ответа.

16. Явление возникновения ЭДС индукции в катушке, по которой протекает переменный ток, называется…

А) Самоиндукцией.

Б) Электродвижущей силой.

В) Электромагнитной индукцией.

Г) Нет правильного ответа.

17. Из предложенных вариантов выберите выражение индуктивности.

А) . Б) . В) ФI. Г) Нет правильного ответа.

18. Индуктивность численно равна …

А) Магнитному потоку, охватываемому проводником, если сила тока, протекающая по проводнику, равна 1 А.

Б) Силе тока, протекающей по проводнику, если магнитный поток, охватываемый проводником, равен 1 Вб.

В) Магнитному потоку, охватываемому проводником, при изменении силы тока на 1 А за 1 с.

Г) Силе тока, протекающей по проводнику, если магнитная индукция равна 1 Тл.

19. . Что такое k?

А) Коэффициент пропорциональности.

Б) Коэффициент трансформации.

В) Постоянная Больцмана.

Г) Нет правильного ответа.

20. Если силу тока в катушке увеличить вдвое, то энергия магнитного поля …

А) Увеличится в 2 раза.

Б) Уменьшится в 2 раза.

В) Не изменится.

Г) Увеличится в 4 раза.

21. Какой магнитный поток возникает в контуре индуктивностью 3 мГн при силе тока 15 мА?

А) 45 мкВб. Б) 45 Вб. В) 45 мВб. Г) Нет правильного ответа.

22. Чему равна ЭДС самоиндукции в катушке с индуктивностью 0,4 Гн при равномерном уменьшении силы тока с 15 до 10 А за 0,2 с?

А) 0. Б) 10 В. В) 50 В. Г) 0,4 В.

23. По катушке индуктивностью L — 0,6 Гн течет ток I = 15 А, а по катушке с индуктивностью L = 15 Гн течет ток I = 0,6 А. Сравните энергии магнитного поля этих катушек.

А) W = W.

Б) W > W.

В) W < W.

Г) W = W = 0.

24. В катушке с индуктивностью 0,3 Гн сила тока равна 3 мА. Энергия магнитного поля этой катушки равна …

А) 1,35 Дж. Б) 1,35 мкДж. В) 0,45 мДж. Г) Нет правильного ответа.

25. Прямой проводник длиной 80 см движется в магнитном поле со скоростью 36 км/ч под углом 30° к вектору магнитной индукции. В проводнике возникает ЭДС 5 мВ. Магнитная индукция равна …

А) 1,25 мТл.

Б) 3 мТл.

В) 0,8 кТл.

Г) Нет правильного ответа.

Тест № 10. Основы молекулярно – кинетической теории строения вещества.

1. Выберите правильное утверждение:

А) Молекулы одного и того же вещества различны.

Б) Молекулы одного и того же вещества одинаковы.

В) При нагревании тела молекулы вещества увеличиваются в размерах.

Г) При нагревании тела увеличивается масса молекул.

2. Явление диффузии доказывает…

А) Только факт существования.

Б) Только факт движения молекул.

В) Факт существования и движения молекул.

Г) Факт взаимодействия молекул.

3. Опытным обоснованием существования промежутков между молекулами является…

А) Диффузия.

Б) Броуновское движение.

В) Испарение жидкости.

Г) Наблюдение с помощью оптического микроскопа.

4. Броуновское движение — это…

А) Проникновение молекул одного вещества в промежутки между молекулами другого вещества..

Б) Отрыв молекул с поверхности жидкости или твердых тел.

В) Хаотическое тепловое движение взвешенных частиц в жидкостях или газах.

Г) Движение молекул, объясняющее текучесть жидкости.

5. Выберите величину, которая соответствует порядку значения массы молекулы или соединения.

А) 10 кг. Б) 10 кг. В) 10 кг. Г) 10кг.

6. Физическая величина, определяемая числом структурных элементов, содержащихся в системе, называется…

А) Молярной массой.

Б) Относительной молекулярной массой.

В) Количеством вещества.

Г) Нет правильного ответа.

7. Молярная масса – это физическая величина, …

А) Определяемая отношением массы вещества к его количеству.

Б) Определяемая числом структурных элементов, содержащихся в системе.

В) Равная отношению массы молекулы данного вещества к 1/12 атома углерода.

Г) Определяемая произведением массы вещества к его количеству.

8. Единица измерения количества вещества в Международной системе — …

А) Моль. Б) кг. В) . Г) Моль.

9. Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде

А) 12 массой 0,012 кг.

Б) 14 массой 0,014 кг.

В) 16 массой 0,016 кг.

Г) 18 массой 0,018 кг.

10. Выберите из предложенных ответов выражение, позволяющее рассчитать число молекул данного вещества.

А) . Б) . В) . Г) .

11. Масса углекислого газа (CO) равна…

А) 7,3 кг.

Б) 7,3 кг.

В) 7,3 кг.

Г) 7,310 кг.

12. В … состоянии молекулы движутся равномерно и прямолинейно до столкновения друг с другом.

А) Газообразном.

Б) Жидком.

В) Твердом.

Г) Кристаллическом.

13. В опыте Штерна пары раскаленного металла проводника М оседали на вращающемся внешнем цилиндре (в т. О молекулы оседали при неподвижном цилиндре). Скорость молекул, осевших в точке 1 …


А) Наименьшая.

Б) Наибольшая.

В) Средняя.

Г) Может быть любой.

14. Графики 1, 2, 3 характеризуют распределение молекул газа по скоростям ( кривая Максвелла). Сравните температуру газов.

А) Т.

Б) Т<Т<Т.

В) Т>Т>Т.

Г) Т>Т<Т.

15. Разрушение твердых веществ является доказательством …

А) Существования сил взаимодействия между молекулами.

Б) Движения молекул.

В) Существования самих молекул.

Г) Броуновского движения.

16. Количество вещества определяется выражением …

А) . Б) . В) . Г) .

17. Единица измерения молярной массы в Международной системе — …

А) Моль. Б) кг. В) . Г) Моль.

18. Молярная масса показывает, …

А) Сколько молей находится в однородном веществе.

Б) Сколько молекул находится в однородном веществе.

В) Какова масса одного моля однородного вещества.

Г) Сколько молекул не находится в однородном веществе.

19. Число Авогадро равно…

А) 6,02 моль.

Б) 6,02 моль.

В) 6,02 кг.

Г) Нет правильного ответа.

20. Количество вещества, содержащееся в алюминиевой отливке массой 2,7 кг, равно …

А) 0,1 моль. Б) 10 моль. В) 100 моль. Г) 100 кг.

21. Число молекул, содержащихся в 56 г азота, равно …

А) 0. Б) 5. В) 12. Г) 12.

22. Масса молекулы воды равна…

А) 3 кг. Б) 0,3 кг. В) 0,3 кг. Г) 3 кг.

23.Массу одной молекулы определяет выражение…

А) . Б) . В) . Г) .

24. Укажите величину, соответствующую порядку линейных размеров молекул веществ.

А) 10 кг. Б) 10 кг. В) 10 кг. Г) 10кг.

25. Какой объем занимает 1 моль любого вещества в газообразном состоянии при нормальных условиях ( р = 101,325 Па и t = 0°)?

А) 23,4 л.

Б) 22,4 л.

В) 22,4 кг.

Г) 22,4 г.

Коды правильных ответов

Тест №1 Кинематика

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

А

А

Б

А

Г

А

А

В

Г

Г

В

В

Г

В

А

Б

В

В

А

Б

Г

В

А

Б

Г

Тест№2 Динамика

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

А

Б

В

В

Б

Б

Г

В

Б

В

Г

А

Г

В

В

В

Б

Б

А

В

Г

А

А

В

В

Тест №3. Законы сохранения в механике.

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

Б

В

А

А

А

Г

А

Б

Б

В

А

Б

В

В

Б

В

А

Б

Г

Б

В

Б

Б

Г

А

Тест№4 Механические колебания и волны.

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

А

В

Г

Б

А

А

Г

Б

А

Г

А

Б

В

Б

Б

А

А

Б

В

Б

Б

А

В

Б

А

Тест №5 Электростатика

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

Г

А

Б

А

Б

А

В

А

Б

Г

В

А

Б

В

Б

А

Г

А

А

В

Г

А

В

Г

А

Тест №6 Постоянный электрический ток

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

Г

В

В

Г

Б

В

Г

А

А

Г

Б

А

А

В

А

Б

В

Б

В

А

Г

В

Б

А

Г

Тест №7 Электрический ток в средах.

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

Б

А

А

В

А

В

А

Б

А

А

Б

А

А

Б

В

Г

А

А

В

Б

Г

Б

Г

А

А

Тест №8 Магнитостатика

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

Б

А

Б

Г

В

В

Б

А

Б

Г

А

Г

Б

В

А

А

А

Б

Г

А

В

А

А

В

А

Тест №9 Электромагнитная индукция.

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

А

Б

А

В

В

А

Б

Г

А

В

А

Г

Г

Б

В

А

Б

А

Б

Г

А

Б

Б

Б

А

Тест №10 Основы молекулярно – кинетической теории строения вещества.

вопроса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Ответ

Б

Б

А

В

Б

В

А

Г

А

Б

Г

А

А

Б

В

Б

В

В

Б

В

Г

А

Г

Г

Б

Магнитный поток, единицы измерения — Справочник химика 21

    Электрический ток, проходя по катушке, создает магнитное поле. Величина его характеризуется силой, с которой поле воздействует на другое магнитное поле (например, на проводник длиной 1 м, по которому проходит ток силой 1 А). Численную величину этой силы принято условно обозначать количеством магнитных силовых линий, проходящих через площадь сечения катушки и называемую потоком магнитной индукции, или магнитным потоком (обозначается Ф, единица измерения — Вебер). Магнитный поток, проходящий через единицу поверхности (плотность потока), называется магнитной индук- [c.101]
    Единица измерения магнитного потока в системе СИ — Вебер (Вб=В с). В соответствии с выражением (7.2″) магнитную индукцию В часто называют плотностью магнитного потока. [c.255]

    Из формулы (1.10) видно, что коэффициент преобразования ПТ-сквида пропорционален Я/Ьо. Возможности увеличения сопротивления джозефсоновского контакта К, в силу (1.8), связаны с уменьшением размера контакта и его емкости С. В этом направлении предел определяется возможностями миниатюризации при литографическом производстве. Увеличение коэффициента преобразования путем уменьшения индукщвности сквида о тоже имеет предел, но по другой причине. Индуктивность тем меньше, чем меньше кольцо сквида, а при литографическом производстве его можно сделать очень малым. На этом пути удалось получить сквиды с разрешением по энергии, приближающимся к квантовому пределу [20, 26, 27]. Но эти сквиды, имея высокое разрешение по магнитному потоку Ф, непригодны для измерения магнитного поля В = Ф/5, так как их площадь слишком мала — единицы квадратных микрон. Поэтому для целей магнитометрии делать петлю сквида слишком малой не имеет смысла. [c.19]

    В типичном масс-спектрометре проба вводится в вакуумную камеру в виде паров или газа. Следовательно, твердые вещества или очень высококипящие жидкости (с температурой кипения > 250°С), как правило, не могут быть подвергнуты анализу с использованием обычного масс-спектрометра. Давление внутри масс-спектрометра приблизительно в миллиард раз ниже нормального атмосферного давления, таким образом непрерывный ввод пробы при оп-1те-анализе представляет достаточно сложную техническую задачу. Для того чтобы поддержать низкое давление в масс-спектрометре без перегрузки его вакуумных насосов, необходимо использовать специальный ограничитель потока. Существует четыре способа подключения масс-спектрометра к котро-лируемым технологическим линиям капиллярный ввод, молекулярное натекание, пористая прокладка и мембранное соединение. После того как проба введена в масс-спектрометр, она ионизируется в ионизационной камере. Наиболее общий метод ионизации — ионизащя электронным ударом. Следующей стадией за ионизацией молекул пробы является разделение заряженных частиц в соответствии с их массой. Эта стадия в приборе выполняется в масс-анализаторе. Различают два основных типа масс-анализаторов, используемых в масс-спектрометрах для промышленного анализа магнитные и квадрупольные масс-анализаторы [16.4-32,16.4-33]. Магнитные анализаторы обычно дают наиболее стабильные показания. Масс-спектрометры, способные проводить измерения ионов с массой более чем 200 атомных единиц массы (а.е.м.), обычно имеют квадрупольные анализаторы, поскольку они менее дорогие и более компактные по сравнению с магнитными анализаторами. [c.661]


    Физический принцип изотопного разделения во вращающейся плазме подтвержден экспериментами с неоном, аргоном, криптоном и ураном. Кроме того, на криптоне была продемонстрирована непрерывная работа разделительного элемента при наличии массового потока. Было показано несколько путей для создания вращающейся урановой плазмы. Измеренные к настоящему времени значения в общем согласуются с теоретическими расчетами, поэтому можно рассчитывать и иа достижение больших коэффициентов разделения и разделительной мощности, предсказанных теорией. Но полученных данных еще недостаточно, чтобы сконструировать разделительный элемент, который мог бы работать экономично. Экспериментальные результаты указывают на более или менее подходящие условия работы, включая геометрию установки и диапазон параметров. Например, увеличение магнитного поля до нескольких тесл, а кольцевого анода — до нескольких десятков сантиметров при токе порядка 100 А приведет к движущей силе, которая при соответствующем выборе других параметров дуги вызовет очень высокую скорость вращения. Это обеспечит эффективное разделение около 100 кг ЕРР/год на разделительный элемент при удельном расходе эиергни в несколько сот киловатт-часов па килограммовую единицу работы разделения. Не решены пока технические проблемы, связанные с использованием урановых соединений в плазменной фазе. [c.297]

Магнитный поток формула единица измерения. Базовые формулы

Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

МАГНИТНЫЙ ПОТОК — (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

магнитный поток — Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

МАГНИТНЫЙ ПОТОК — (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m магнитная ПРОНИЦАЕМОСТЬ среды, а Н интенсивность магнитного поля. Плотность магнитного потока это поток… … Научно-технический энциклопедический словарь

МАГНИТНЫЙ ПОТОК — поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

МАГНИТНЫЙ ПОТОК — величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

Магнитный поток — скалярная величина, равная потоку магнитной индукции… Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

магнитный поток — поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

магнитный поток — , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

Магнитный поток — 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было… Купить за 2252 грн (только Украина)
  • Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…

МАГНИТНЫЙ ПОТОК

МАГНИТНЫЙ ПОТОК (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m — магнитная ПРОНИЦАЕМОСТЬ среды, а Н — интенсивность магнитного поля. Плотность магнитного потока — это поток на единицу площади (символ В), который равен Н. Изменение магнитного потока через электрический проводник наводит ЭЛЕКТРОДВИЖУЩУЮ СИЛУ.

Научно-технический энциклопедический словарь .

Смотреть что такое «МАГНИТНЫЙ ПОТОК» в других словарях:

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

    — (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

    магнитный поток — Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

    МАГНИТНЫЙ ПОТОК — поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

    Величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

    Магнитный поток — скалярная величина, равная потоку магнитной индукции… Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

    Классическая электродинамика … Википедия

    магнитный поток — , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

    Магнитный поток — 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было…
  • Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…

магнитная индукция — является плотностью магнитного потока в данной точке поля. Единицей магнитной индукции является тесла (1 Тл = 1 Вб/м 2).

Возвращаясь к полученному ранее выражению (1), можно количественно определить магнитный поток через некоторую поверхность как произведение величины заряда, протекающего через проводник совмещенный с границей этой поверхности при полном исчезновении магнитного поля, на сопротивление электрической цепи, по которой протекают эти заряды

.

В описанных выше опытах с пробным витком (кольцом), он удалялся на такое расстояние, при котором исчезали всякие проявления магнитного поля. Но можно просто перемещать этот виток в пределах поля и при этом в нем также будут перемещаться электрические заряды. Перейдем в выражении (1) к приращениям

Ф + Δ Ф = r (q — Δ q ) => Δ Ф = —rΔ q => Δ q = -Δ Ф/r

где Δ Ф и Δ q — приращения потока и количества зарядов. Разные знаки приращений объясняются тем, что положительный заряд в опытах с удалением витка соответствовал исчезновению поля, т.е. отрицательному приращению магнитного потока.

С помощью пробного витка можно исследовать все пространство вокруг магнита или катушки с током и построить линии, направление касательных к которым в каждой точке будет соответствовать направлению вектора магнитной индукции B (рис. 3)

Эти линии называются линиями вектора магнитной индукции или магнитными линиями .

Пространство магнитного поля можно мысленно разделить трубчатыми поверхностями, образованными магнитными линиями, причем, поверхности можно выбрать таким образом, чтобы магнитный поток внутри каждой такой поверхности (трубки) численно был равен единице и изобразить графически осевые линии этих трубок. Такие трубки называют единичными, а линии их осей — единичными магнитными линиями . Картина магнитного поля изображенная с помощью единичных линий дает не только о качественное, но и количественное представление о нем, т.к. при этом величина вектора магнитной индукции оказывается равной количеству линий, проходящих через единицу поверхности, нормальной вектору B , а количество линий, проходящих через любую поверхность равно значению магнитного потока .

Магнитные линии непрерывны и этот принцип можно математически представить в виде

т.е. магнитный поток, проходящий через любую замкнутую поверхность равен нулю .

Выражение (4) справедливо для поверхности s любой формы. Если рассматривать магнитный поток проходящий через поверхность, образованную витками цилиндрической катушки (рис. 4), то ее можно разделить на поверхности, образованные отдельными витками, т.е. s =s 1 +s 2 +…+s 8 . Причем через поверхности разных витков в общем случае будут проходить разные магнитные потоки. Так на рис. 4, через поверхности центральных витков катушки проходят восемь единичных магнитных линий, а через поверхности крайних витков только четыре.

Для того, чтобы определить полный магнитный поток, проходящий через поверхность всех витков, нужно сложить потоки, проходящие через поверхности отдельных витков, или, иначе говоря, сцепляющиеся с отдельными витками. Например, магнитные потоки, сцепляющиеся с четырьмя верхними витками катушки рис. 4, будут равны: Ф 1 =4; Ф 2 =4; Ф 3 =6; Ф 4 =8. Также, зеркально-симметрично с нижними.

Потокосцепление — виртуальный (воображаемый общий) магнитный поток Ψ, сцепляющийся со всеми витками катушки, численно равен сумме потоков, сцепляющихся с отдельными витками: Ψ = w э Ф m , где Ф m — магнитный поток, создаваемый током, проходящим по катушке, а w э — эквивалентное или эффективное число витков катушки. Физический смысл потокосцепления — сцепление магнитных полей витков катушки, которое можно выразить коэффициентом (кратностью) потокосцепления k = Ψ/Ф = w э.

То есть для приведенного на рисунке случая, двух зеркально-симметричных половинок катушки:

Ψ = 2(Ф 1 + Ф 2 + Ф 3 + Ф 4) = 48

Виртуальность, то есть воображаемость потокосцепления проявляется в том, что оно не представляет собой реального магнитного потока, который никакая индуктивность не может кратно увеличивать, но поведение импеданса катушки таково, что кажется, что магнитный поток увеличивается кратно эффективному количеству витков, хотя реально — это просто взаимодействие витков в том же самом поле. Если бы катушка увеличивала магнитный поток своим потокосцеплением, то можно было бы создавать умножители магнитного поля на катушке даже без тока, ибо потокосцепление не подразумевает замкнутости цепи катушки, но лишь совместную геометрию близости витков.

Часто реальное распределение потокосцепления по виткам катушки неизвестно, но его можно принять равномерным и одинаковым для всех витков, если реальную катушку заменить эквивалентной с другим числом витков w э, сохраняя при этом величину потокосцепления Ψ = w э Ф m , где Ф m — поток, сцепляющийся с внутренними витками катушки, а w э — эквивалентное или эффективное число витков катушки. Для рассмотренного на рис. 4 случая w э = Ψ/Ф 4 =48/8=6.

Что такое магнитный поток?

Для того чтобы дать точную количественную формулировку закона электромагнитной индукции Фарадея, нужно ввести новую величину — поток вектора магнитной индукции .

Вектор магнитной индукции характеризует магнитное поле в каждой точке пространства. Можно ввести еще одну величину, зависящую от значений вектора не в одной точке, а во всех точках поверхности, ограниченной плоским замкнутым контуром.

Для этого рассмотрим плоский замкнутый проводник (контур), ограничивающий поверхность площадью S и помещенный в однородное магнитное поле (рис. 2.4). Нормаль (вектор, модуль которого равен единице) к плоскости проводника составляет угол с направлением вектора магнитной индукции . Магнитным потоком Ф (потоком Вектора магнитной индукции) через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла между векторами и :

Произведение представляет собой проекцию вектора магнитной индукции на нормаль к плоскости контура. Поэтому

Магнитный поток тем больше, чем больше В n и S. Величина Ф названа «магнитным потоком» по аналогии с потоком воды, который тем больше, чем больше скорость течения воды и площадь сечения трубы.

Магнитный поток графически можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью S.

Единицей магнитного потока является вебер. в 1 вебер (1 Вб) создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Магнитный поток зависит от ориентации поверхности, которую пронизывает магнитное поле.

Обобщенные сведения о магнитном потоке

Сегодняшний урок по физике у нас с вами посвящен теме о магнитном потоке. Для того чтобы дать точную количественную формулировку закона электромагнитной индукции Фарадея нам нужно будет ввести новую величину, которая собственно называется магнитный поток или поток вектора магнитной индукции.

Из предыдущих классов вы уже знаете, что магнитное поле описывается вектором магнитной индукции B. Исходя из понятия вектор индукции B, мы и можем найти магнитный поток. Для этого мы с вами рассмотрим замкнутый проводник или контур с площадью S. Допустим, через него проходит однородное магнитное поле с индукцией B. Тогда магнитным потоком F вектор магнитной индукции через поверхность площадью S называют величину произведения модуля вектора магнитной индукции B на площадь контура S и на cos угла между вектором B и нормалью cos альфа:



В общем, мы с вами пришли к такому выводу, что если поместить в магнитное поле контур с током, то все линии индукции этого магнитного поля будут проходить через контур. То есть, можно смело говорить, что линия магнитной индукции и есть этой самой магнитной индукцией, которая находится в каждой точке этой линии. Или же можно сказать, что линии магнитной индукции являются потоком вектора индукции по ограниченному и описываемому этими линиями пространству, т.е магнитным потоком.

А теперь давайте вспомним, чему равняется единица магнитного потока:



Направление и количество магнитного потока

Но необходимо так же знать, что каждый магнитный поток имеет свое направление и количественное значение. В этом случае можно сказать, что контур проникает в определенный магнитный поток. И также, следует отметить, что от величины контура зависит и величина магнитного потока, то есть, чем больше размер контура, тем больший магнитный поток будет проходить через него.

Здесь можно подвести итог и сказать, что магнитный поток зависит от площади пространства, через которую он проходит. Если мы, например, возьмем неподвижную рамку определенного размера, которая пронизана постоянным магнитным полем, то в этом случае магнитный поток, который проходит через эту рамку, будет постоянным.

При увеличении силы магнитного поля, естественно и увеличится магнитная индукция. Кроме того и пропорционально возрастет величина магнитного потока в зависимости от возросшей величине индукции.

Практическое задание

1. Посмотрите внимательно на данный рисунок и дайте ответ на вопрос: Как может измениться магнитный поток, если контур будет вращаться вокруг оси ОО»?


2. Как вы думаете, как может измениться магнитный поток, если взять замкнутый контур, который расположен под некоторым углом к линиям магнитной индукции и его площадь уменьшить в два раза, а модуль вектора увеличить в четыре раза?
3. Посмотрите на варианты ответов и скажите, как нужно сориентировать рамку в однородном магнитном поле, чтобы поток через эту рамку равнялся нулю? Какой из ответов будет правильным?



4. Внимательно посмотрите на рисунок изображенных контуров I и II и дайте ответ, как при их вращении может измениться магнитный поток?



5. Как вы думаете, от чего зависит направление индукционного тока?
6. В чем отличие магнитной индукции от магнитного потока? Назовите эти отличия.
7. Назовите формулу магнитного потока и величины, которые входят в эту формулу.
8. Какие вы знаете способы измерения магнитного потока?

Это интересно знать

А известно ли вам, что повышенная солнечная активность влияет на магнитное поле Земли и приблизительно каждые одиннадцать с половиной лет она возрастает так, что может нарушить радиосвязь, вызвать сбой работы компаса и отрицательно сказываться на самочувствии человека. Такие процессы называют магнитными бурями.

Мякишев Г. Я., Физика . 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с: ил.

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Электронные термометры получили широкое распространение в качестве измерителей температуры. Ознакомиться с контактными и бесконтактными цифровыми термометрами можно на сайте http://mera-tek.ru/termometry/termometry-elektronnye . Этими приборами в основном и обеспечивается измерение температуры на технологических установках благодаря высокой точности измерения и большой скорости регистрации.

В электронных потенциометрах, как показывающих, так и регистрирующих, применяются автоматическая стабилизация тока в цепи потенциометра и непрерывная компенсация термопары.

Соединение токопроводящих жил — часть технологического процесса соединения кабеля. Многопроволочные токопроводящие жилы с площадью сечения от 0,35 до 1,5 мм 2 соединяют пайкой после скрутки отдельных проволок (рис. 1). Если восстанавливают изоляционными трубками 3, то перед скруткой проволок их необходимо надеть на жилу и сдвинуть к срезу оболочки 4.

Рис. 1. Соединение жил скруткой: 1 — жила токопроводящая; 2 — изоляция жилы; 3 — трубка изоляционная; 4 — оболочка кабеля; 5 — луженые проволоки; 6 — паяная поверхность

Однопроволочные жилы соединяют внахлест, скрепляя перед пайкой двумя бандажами из двух-трех витков медной луженой проволоки диаметром 0,3 мм (рис. 2). Также можно использовать специальные клеммы wago 222 415 , которые сегодня стали очень популярны за счет простоты использования и надежности эксплуатации.

При монтаже электрических исполнительных механизмов корпус их необходимо заземлять проводом сечением не менее 4 мм 2 через винт заземления. Место присоединения заземляющего проводника тщательно зачищают, а после присоединения наносят на него слой консистентной смазки ЦИАТИМ-201 для предохранения от коррозии. По окончании монтажа с помощью проверяют значение , которое должно быть не менее 20 МОм, и заземляющего устройства, которое не должно превышать 10 Ом.

Рис. 1. Схема электрических соединений блока датчиков однооборотного электрического механизма. А — блок усилителя БУ-2, Б — блок магнитного датчика, В — электрический исполнительный механизм


Монтаж блока датчиков однооборотных электрических исполнительных механизмов производится по схеме электрических соединений, показанной на рис. 1, проводом сечением не менее 0,75 мм 2 . Перед установкой датчика необходимо проверить его работоспособность по схеме, изображенной на рис. 2.

21.03.2019

Типы газоанализаторов

Используя газ в печах, различных устройствах и установках, необходимо контролировать процесс его сжигания, чтобы обеспечить безопасную эксплуатацию и эффективную работу оборудования. При этом качественный и количественный состав газовой среды определяется с помощью приборов, называемых

физика.лабы4.5.6

Лабораторная работа №5

Магнитное поле кругового и прямого токов

Контрольные вопросы:

  1. Сформулируйте закон Био-Савара-Лапласа.

Закон Био Савара Лапласа определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

Элемент проводника dl с током I создаёт в некоторой точке А индукцию поля

Где r – радиус вектор, проведённый из элемента проводника dl в точку А.

  1. Как определить направление вектора магнитной индукции?

Если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции.(правило правой руки)

  1. Что такое магнитный поток?

Магнитным потоком называют поток вектора магнитной индукции В через некую поверхность.

где α — угол между вектором магнитной индукции и нормалью к плоскости площади

  1. Каков принцип измерения магнитного потока в данной работе?

Закон Био-Савара-Лапласа

Каждый сколь угодно малый элемент длины проводника по которому течёт ток, создаёт в некоторой произвольной точке пространства магнитное поле.

  1. Как влияют размеры измерительной катушки на точность измерения магнитного потока?

Чем меньше радиус катушки, тем точнее результат измерения.

Лабораторная работа №6

Изучение ферромагнетиков

Контрольные вопросы:

  1. В чём заключаются особые свойства ферромагнетиков?

Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.

При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.

Для ферромагнетиков характерно явление гистерезиса.

Ферромагнетики притягиваются магнитом.

Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля.

  1. Что называется температурой Кюри?

Температура перехода между ферромагнитным и парамагнитным состоянием

(При которой ферромагнетик теряет свои свойства)

  1. Что называют доменами?

Ферромагнетные домены (области самопроизвольной намагниченности) намагниченные до насыщения части объёма ферромагнетика, на которые он разбивается ниже температуры Кюри. Векторы намагниченности доменов в отсутствие внешнего магнитного поля ориентированы так что результирующая намагниченность ферромагнитного образца в целом, как правило, равна нулю.

Применение на практике:

хранение данных на жестких дисках осуществляется с использованием горизонтально или вертикально расположенных магнитных доменов.

магнитные домены, перемещаемые по специальных трекам, могут быть использованы при создании перспективной трековой памяти

  1. Какими процессами происходит намагничивание?

Смещением доменных границ и вращением вектора намагниченности.

  1. В чём причина магнитного гистерезиса?

Гистере́зис (греч. ὑστέρησις — «отстающий») — свойство систем (обычно физических), которые не сразу следуют приложенным силам. Реакция этих систем зависит от сил, действовавших ранее, то есть системы зависят от собственной истории.

Магнитный гистерезис — явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

Br – остаточная магнитная индукция

Bs – магнитная индукция насыщения

Hc – коэрцитивная сила (поле при котором ферромагнетик не намагничен)

  1. Как по петле гистерезиса определить потери энергии при перемагничивании образца?

Площадь петли гистерезиса пропорциональна энергии, затрачиваемой на перемагничивание ферромагнетика.

Потери энергии:

Где – энергия, расходуемая на перемагничивание за один цикл в расчёте на одну клетку координатной сетки осциллографа.

  1. Какие материалы относят к магнитомягким и магнитожёстким? Где они применяются в технике?

Магнитомягкие материалы характеризуются высокой магнитной проницаемостью, малой коэрцитивной силой, относительно небольшими потерями на гистерезис. Их широко используют для изготовления магнитопроводов электрических машин, трансформаторов и других изделий. Наиболее распространенными магнитомягкими материалами являются железо и электротехнические стали.

МАГНИТОТВЕРДЫЕ МАТЕРИАЛЫ (магнитожесткиематериалы) , намагничиваются до насыщения и перемагничиваются в сравнительно сильных магнитных полях напряженностью в тысячи и десятки тысяч А/м. Характеризуются высокими значениями коэрцитивной силы, остаточной магнитной индукции, магнитной энергии на участке размагничивания («спинка» петли гистерезиса). В качестве магнитотвердых материалов используются, напр., сплавы типа магнико, ални, викаллой, некоторые ферриты, соединения редкоземельных элементов с кобальтом. Из магнитотвердых материалов изготовляют постоянные магниты.

  1. В каких единицах измеряются В и Н?

В измеряется в теслах (Тл) магнитная индукция

Н измеряется в ампер на метр (А/м) напряжённость магнитного поля

  1. В чём заключается явление электромагнитной индукции?

И где оно применяется в настоящей работе?

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Лабораторная работа №4

Изучение свойств поляризованного света.

Контрольные вопросы:

  1. Что представляет собой свет с точки зрения электромагнитной теории?

Свет — электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра.

  1. Какой свет называют плоскополяризованным и чем он отличается от естественного?

Плоскополяризованный свет. Колебания световых волн лежат в одной плоскости.

Естественный. Колебания волн по всем направлениям перпендикулярно направлению распространения.

  1. Какая плоскость называется плоскостью поляризации?

Плоскость, проходящая через направление колебаний светового вектора плоскополяризованной волны и направление распространения этой волны, называется плоскостью поляризации.

  1. Какая плоскость называется плоскостью пропускания поляроида?

  1. Вывести и пояснить закон Малюса.

Интенсивность света IA, прошедшего через анализатор, равна произведению интенсивности света , падающего на анализатор, умноженной на квадрат косинуса угла между двумя плоскостями.

  1. В чём заключается закон Брюстера?

Когда угол падения луча света на границу раздела удовлетворяет условию

то отражённый луч полностью поляризован.

  1. Почему свет, отражённый от диэлектрика под углом Брюстера, является плоскополяризованным?

При угле падения равном углу Брюстера отражённый луч перпендикулярен преломлённому и, следовательно, параллелен осям осцилляторов, обуславливающих преломлённый луч. Так как эти осцилляторы не излучают свет в направлении своего движения, то они вклада в отражённую волну не дают, поэтому отражённый луч будет полностью линейно поляризован.

Электромагнитная индукция — материалы для подготовки к ЕГЭ по Физике

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: явление электромагнитной индукции, магнитный поток, закон электромагнитной индукции Фарадея, правило Ленца.

Опыт Эрстеда показал, что электрический ток создаёт в окружающем пространстве магнитное поле. Майкл Фарадей пришёл к мысли, что может существовать и обратный эффект: магнитное поле, в свою очередь, порождает электрический ток.

Иными словами, пусть в магнитном поле находится замкнутый проводник; не будет ли в этом проводнике возникать электрический ток под действием магнитного поля?

Через десять лет поисков и экспериментов Фарадею наконец удалось этот эффект обнаружить. В 1831 году он поставил следующие опыты.

1. На одну и ту же деревянную основу были намотаны две катушки; витки второй катушки были проложены между витками первой и изолированы. Выводы первой катушки подключались к источнику тока, выводы второй катушки — к гальванометру (гальванометр — чувствительный прибор для измерения малых токов). Таким образом, получались два контура: «источник тока — первая катушка» и «вторая катушка — гальванометр».

Электрического контакта между контурами не было, только лишь магнитное поле первой катушки пронизывало вторую катушку.

При замыкании цепи первой катушки гальванометр регистрировал короткий и слабый импульс тока во второй катушке.

Когда по первой катушке протекал постоянный ток, никакого тока во второй катушке не возникало.

При размыкании цепи первой катушки снова возникал короткий и слабый импульс тока во второй катушке, но на сей раз в обратном направлении по сравнению с током при замыкании цепи.

Вывод.

Меняющееся во времени магнитное поле первой катушки порождает (или, как говорят, индуцирует) электрический ток во второй катушке. Этот ток называется индукционным током.

Если магнитное поле первой катушки увеличивается (в момент нарастания тока при замыкании цепи), то индукционный ток во второй катушке течёт в одном направлении.

Если магнитное поле первой катушки уменьшается (в момент убывания тока при размыкании цепи), то индукционный ток во второй катушке течёт в другом направлении.

Если магнитное поле первой катушки не меняется (постоянный ток через неё), то индукционного тока во второй катушке нет.

Обнаруженное явление Фарадей назвал электромагнитной индукцией (т. е. «наведение электричества магнетизмом»).

2. Для подтверждения догадки о том, что индукционный ток порождается переменным магнитным полем, Фарадей перемещал катушки друг относительно друга. Цепь первой катушки всё время оставалась замкнутой, по ней протекал постоянный ток, но за счёт перемещения (сближения или удаления) вторая катушка оказывалась в переменном магнитном поле первой катушки.

Гальванометр снова фиксировал ток во второй катушке. Индукционный ток имел одно направление при сближении катушек, и другое — при их удалении. При этом сила индукционного тока была тем больше, чем быстрее перемещались катушки.

3. Первая катушка была заменена постоянным магнитом. При внесении магнита внутрь второй катушки возникал индукционный ток. При выдвигании магнита снова появлялся ток, но в другом направлении. И опять-таки сила индукционного тока была тем больше, чем быстрее двигался магнит.

Эти и последующие опыты показали, что индукционный ток в проводящем контуре возникает во всех тех случаях, когда меняется «количество линий» магнитного поля, пронизывающих контур. Сила индукционного тока оказывается тем больше, чем быстрее меняется это количество линий. Направление тока будет одним при увеличении количества линий сквозь контур, и другим — при их уменьшении.

Замечательно, что для величины силы тока в данном контуре важна лишь скорость изменения количества линий. Что конкретно при этом происходит, роли не играет — меняется ли само поле, пронизывающее неподвижный контур, или же контур перемещается из области с одной густотой линий в область с другой густотой.

Такова суть закона электромагнитной индукции. Но, чтобы написать формулу и производить расчёты, нужно чётко формализовать расплывчатое понятие «количество линий поля сквозь контур».

Магнитный поток

Понятие магнитного потока как раз и является характеристикой количества линий магнитного поля, пронизывающих контур.

Для простоты мы ограничиваемся случаем однородного магнитного поля. Рассмотрим контур площади , находящийся в магнитном поле с индукцией .

Пусть сначала магнитное поле перпендикулярно плоскости контура (рис. 1).

Рис. 1.

В этом случае магнитный поток определяется очень просто — как произведение индукции магнитного поля на площадь контура:

(1)

Теперь рассмотрим общий случай, когда вектор образует угол с нормалью к плоскости контура (рис. 2).

Рис. 2.

Мы видим, что теперь сквозь контур «протекает» лишь перпендикулярная составляющая вектора магнитной индукции (а та составляющая, которая параллельна контуру, не «течёт» сквозь него). Поэтому, согласно формуле (1), имеем . Но , поэтому

(2)

Это и есть общее определение магнитного потока в случае однородного магнитного поля. Обратите внимание, что если вектор параллелен плоскости контура (то есть ), то магнитный поток становится равным нулю.

А как определить магнитный поток, если поле не является однородным? Укажем лишь идею. Поверхность контура разбивается на очень большое число очень маленьких площадок, в пределах которых поле можно считать однородным. Для каждой площадки вычисляем свой маленький магнитный поток по формуле (2), а затем все эти магнитные потоки суммируем.

Единицей измерения магнитного потока является вебер (Вб). Как видим,

Вб = Тл · м = В · с. (3)

Почему же магнитный поток характеризует «количество линий» магнитного поля, пронизывающих контур? Очень просто. «Количество линий» определяется их густотой (а значит, величиной — ведь чем больше индукция, тем гуще линии) и «эффективной» площадью, пронизываемой полем (а это есть не что иное, как ). Но множители и как раз и образуют магнитный поток!

Теперь мы можем дать более чёткое определение явления электромагнитной индукции, открытого Фарадеем.

Электромагнитная индукция — это явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего контур.

ЭДС индукции

Каков механизм возникновения индукционного тока? Это мы обсудим позже. Пока ясно одно: при изменении магнитного потока, проходящего через контур, на свободные заряды в контуре действуют некоторые силы — сторонние силы, вызывающие движение зарядов.

Как мы знаем, работа сторонних сил по перемещению единичного положительного заряда вокруг контура называется электродвижущей силой (ЭДС): . В нашем случае, когда меняется магнитный поток сквозь контур, соответствующая ЭДС называется ЭДС индукции и обозначается .

Итак, ЭДС индукции — это работа сторонних сил, возникающих при изменении магнитного потока через контур, по перемещению единичного положительного заряда вокруг контура.

Природу сторонних сил, возникающих в данном случае в контуре, мы скоро выясним.

Закон электромагнитной индукции Фарадея

Сила индукционного тока в опытах Фарадея оказывалась тем больше, чем быстрее менялся магнитный поток через контур.

Если за малое время изменение магнитного потока равно , то скорость изменения магнитного потока — это дробь (или, что тоже самое, производная магнитного потока по времени).

Опыты показали, что сила индукционного тока прямо пропорциональна модулю скорости изменения магнитного потока:

Модуль поставлен для того, чтобы не связываться пока с отрицательными величинами (ведь при убывании магнитного потока будет ). Впоследствии мы это модуль снимем.

Из закона Ома для полной цепи мы в то же время имеем: . Поэтому ЭДС индукции прямо пропорциональна скорости изменения магнитного потока:

(4)

ЭДС измеряется в вольтах. Но и скорость изменения магнитного потока также измеряется в вольтах! Действительно, из (3) мы видим, что Вб/с = В. Стало быть, единицы измерения обеих частей пропорциональности (4) совпадают, поэтому коэффициент пропорциональности — величина безразмерная. В системе СИ она полагается равной единице, и мы получаем:

(5)

Это и есть закон электромагнитной индукции или закон Фарадея. Дадим его словесную формулировку.

Закон электромагнитной индукции Фарадея. При изменении магнитного потока, пронизывающего контур, в этом контуре возникает ЭДС индукции, равная модулю скорости изменения магнитного потока.

Правило Ленца

Магнитный поток, изменение которого приводит к появлению индукционного тока в контуре, мы будем называть внешним магнитным потоком. А само магнитное поле, которое создаёт этот магнитный поток, мы будем называть внешним магнитным полем.

Зачем нам эти термины? Дело в том, что индукционный ток, возникающий в контуре, создаёт своё собственное магнитное поле, которое по принципу суперпозиции складывается с внешним магнитным полем.

Соответственно, наряду с внешним магнитным потоком через контур будет проходить собственный магнитный поток, создаваемый магнитным полем индукционного тока.

Оказывается, эти два магнитных потока — собственный и внешний — связаны между собой строго определённым образом.

Правило Ленца . Индукционный ток всегда имеет такое направление, что собственный магнитный поток препятствует изменению внешнего магнитного потока .

Правило Ленца позволяет находить направление индукционного тока в любой ситуации.

Рассмотрим некоторые примеры применения правила Ленца.

Предположим, что контур пронизывается магнитным полем, которое возрастает со временем (рис. (3)). Например, мы приближаем снизу к контуру магнит, северный полюс которого направлен в данном случае вверх, к контуру.

Магнитный поток через контур увеличивается. Индукционный ток будет иметь такое направление, чтобы создаваемый им магнитный поток препятствовал увеличению внешнего магнитного потока. Для этого магнитное поле, создаваемое индукционным током, должно быть направлено против внешнего магнитного поля.

Индукционный ток течёт против часовой стрелки, если смотреть со стороны создаваемого им магнитного поля. В данном случае ток будет направлен по часовой стрелке, если смотреть сверху, со стороны внешнего магнитного поля, как и показано на (рис. (3)).

Рис. 3. Магнитный поток возрастает

Теперь предположим, что магнитное поле, пронизывающее контур, уменьшается со временем (рис. 4). Например, мы удаляем магнит вниз от контура, а северный полюс магнита направлен на контур.

Рис. 4. Магнитный поток убывает

Магнитный поток через контур уменьшается. Индукционный ток будет иметь такое направление, чтобы его собственный магнитный поток поддерживал внешний магнитный поток, препятствуя его убыванию. Для этого магнитное поле индукционного тока должно быть направлено в ту же сторону , что и внешнее магнитное поле.

В этом случае индукционный ток потечёт против часовой стрелки, если смотреть сверху, со стороны обоих магнитных полей.

Взаимодействие магнита с контуром

Итак, приближение или удаление магнита приводит к появлению в контуре индукционного тока, направление которого определяется правилом Ленца. Но ведь магнитное поле действует на ток! Появится сила Ампера, действующая на контур со стороны поля магнита. Куда будет направлена эта сила?

Если вы хотите хорошо разобраться в правиле Ленца и в определении направления силы Ампера, попробуйте ответить на данный вопрос самостоятельно. Это не очень простое упражнение и отличная задача для С1 на ЕГЭ. Рассмотрите четыре возможных случая.

1. Магнит приближаем к контуру, северный полюс направлен на контур.
2. Магнит удаляем от контура, северный полюс направлен на контур.
3. Магнит приближаем к контуру, южный полюс направлен на контур.
4. Магнит удаляем от контура, южный полюс направлен на контур.

Не забывайте, что поле магнита не однородно: линии поля расходятся от северного полюса и сходятся к южному. Это очень существенно для определения результирующей силы Ампера. Результат получается следующий.

Если приближать магнит, то контур отталкивается от магнита. Если удалять магнит, то контур притягивается к магниту. Таким образом, если контур подвешен на нити, то он всегда будет отклоняться в сторону движения магнита, словно следуя за ним. Расположение полюсов магнита при этом роли не играет .

Уж во всяком случае вы должны запомнить этот факт — вдруг такой вопрос попадётся в части А1

Результат этот можно объяснить и из совершенно общих соображений — при помощи закона сохранения энергии.

Допустим, мы приближаем магнит к контуру. В контуре появляется индукционный ток. Но для создания тока надо совершить работу! Кто её совершает? В конечном счёте — мы, перемещая магнит. Мы совершаем положительную механическую работу, которая преобразуется в положительную работу возникающих в контуре сторонних сил, создающих индукционный ток.

Итак, наша работа по перемещению магнита должна быть положительна . Это значит, что мы, приближая магнит, должны преодолевать силу взаимодействия магнита с контуром, которая, стало быть, является силой отталкивания .

Теперь удаляем магнит. Повторите, пожалуйста, эти рассуждения и убедитесь, что между магнитом и контуром должна возникнуть сила притяжения.

Закон Фарадея + Правило Ленца = Снятие модуля

Выше мы обещали снять модуль в законе Фарадея (5). Правило Ленца позволяет это сделать. Но сначала нам нужно будет договориться о знаке ЭДС индукции — ведь без модуля, стоящего в правой части (5), величина ЭДС может получаться как положительной, так и отрицательной.

Прежде всего, фиксируется одно из двух возможных направлений обхода контура. Это направление объявляется положительным . Противоположное направление обхода контура называется, соответственно, отрицательным . Какое именно направление обхода мы берём в качестве положительного, роли не играет — важно лишь сделать этот выбор.

Магнитный поток через контур считается положительным , если магнитное поле, пронизывающее контур, направлено туда, глядя откуда обход контура в положительном направлении совершается против часовой стрелки. Если же с конца вектора магнитной индукции положительное направление обхода видится по часовой стрелке, то магнитный поток считается отрицательным .

ЭДС индукции считается положительной , если индукционный ток течёт в положительном направлении. В этом случае направление сторонних сил, возникающих в контуре при изменении магнитного потока через него, совпадает с положительным направлением обхода контура.

Наоборот, ЭДС индукции считается отрицательной , если индукционный ток течёт в отрицательном направлении. Сторонние силы в данном случае также будут действовать вдоль отрицательного направления обхода контура.

Итак, пусть контур находится в магнитном поле . Фиксируем направление положительного обхода контура. Предположим, что магнитное поле направлено туда, глядя откуда положительный обход совершается против часовой стрелки. Тогда магнитный поток положителен: .

Предположим, далее, что магнитный поток увеличивается . Согласно правилу Ленца индукционный ток потечёт в отрицательном направлении (рис. 5).

Рис. 5. Магнитный поток возрастает

Стало быть, в данном случае имеем . Знак ЭДС индукции оказался противоположен знаку скорости изменения магнитного потока. Проверим это в другой ситуации.

А именно, предположим теперь, что магнитный поток убывает . По правилу Ленца индукционный ток потечёт в положительном направлении. Стало быть, (рис. 6).

Рис. 6. Магнитный поток возрастает

Таков в действительности общий факт: при нашей договорённости о знаках правило Ленца всегда приводит к тому, что знак ЭДС индукции противоположен знаку скорости изменения магнитного потока :

(6)

Тем самым ликвидирован знак модуля в законе электромагнитной индукции Фарадея.

Вихревое электрическое поле

Рассмотрим неподвижный контур, находящийся в переменном магнитном поле. Каков же механизм возникновения индукционного тока в контуре? А именно, какие силы вызывают движение свободных зарядов, какова природа этих сторонних сил?

Пытаясь ответить на эти вопросы, великий английский физик Максвелл открыл фундаментальное свойство природы: меняющееся во времени магнитное поле порождает поле электрическое . Именно это электрическое поле и действует на свободные заряды, вызывая индукционный ток.

Линии возникающего электрического поля оказываются замкнутыми, в связи с чем оно было названо вихревым электрическим полем . Линии вихревого электрического поля идут вокруг линий магнитного поля и направлены следующим образом.

Пусть магнитное поле увеличивается. Если в нём находится проводящий контур, то индукционный ток потечёт в соответствии с правилом Ленца — по часовой стрелке, если смотреть с конца вектора . Значит, туда же направлена и сила, действующая со стороны вихревого электрического поля на положительные свободные заряды контура; значит, именно туда направлен вектор напряжённости вихревого электрического поля.

Итак, линии напряжённости вихревого электрического поля направлены в данном случае по часовой стрелке (смотрим с конца вектора , (рис. 7).

Рис. 7. Вихревое электрическое поле при увеличении магнитного поля

Наоборот, если магнитное поле убывает, то линии напряжённости вихревого электрического поля направлены против часовой стрелки (рис. 8).

Рис. 8. Вихревое электрическое поле при уменьшении магнитного поля

Теперь мы можем глубже понять явление электромагнитной индукции. Суть его состоит именно в том, что переменное магнитное поле порождает вихревое электрическое поле. Данный эффект не зависит от того, присутствует ли в магнитном поле замкнутый проводящий контур или нет; с помощью контура мы лишь обнаруживаем это явление, наблюдая индукционный ток.

Вихревое электрическое поле по некоторым свойствам отличается от уже известных нам электрических полей: электростатического поля и стационарного поля зарядов, образующих постоянный ток.

1. Линии вихревого поля замкнуты, тогда как линии электростатического и стационарного полей начинаются на положительных зарядах и оканчиваются на отрицательных.
2. Вихревое поле непотенциально: его работа перемещению заряда по замкнутому контуру не равна нулю. Иначе вихревое поле не могло бы создавать электрический ток! В то же время, как мы знаем, электростатическое и стационарное поля являются потенциальными.

Итак, ЭДС индукции в неподвижном контуре — это работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура .

Пусть, например, контур является кольцом радиуса и пронизывается однородным переменным магнитным полем. Тогда напряжённость вихревого электрического поля одинакова во всех точках кольца. Работа силы , с которой вихревое поле действует на заряд , равна:

Следовательно, для ЭДС индукции получаем:

ЭДС индукции в движущемся проводнике

Если проводник перемещается в постоянном магнитном поле, то в нём также появляется ЭДС индукции. Однако причиной теперь служит не вихревое электрическое поле (оно не возникает — ведь магнитное поле постоянно), а действие силы Лоренца на свободные заряды проводника.

Рассмотрим ситуацию, которая часто встречается в задачах. В горизонтальной плоскости расположены параллельные рельсы, расстояние между которыми равно . Рельсы находятся в вертикальном однородном магнитном поле . По рельсам движется тонкий проводящий стержень со скоростью ; он всё время остаётся перпендикулярным рельсам (рис. 9).

Рис. 9. Движение проводника в магнитном поле

Возьмём внутри стержня положительный свободный заряд . Вследствие движения этого заряда вместе со стержнем со скоростью на заряд будет действовать сила Лоренца:

Направлена эта сила вдоль оси стержня, как показано на рисунке (убедитесь в этом сами — не забывайте правило часовой стрелки или левой руки!).

Сила Лоренца играет в данном случае роль сторонней силы: она приводит в движение свободные заряды стержня. При перемещении заряда от точки к точке наша сторонняя сила совершит работу:

(Длину стержня мы также считаем равной .) Стало быть, ЭДС индукции в стержне окажется равной:

(7)

Таким образом, стержень аналогичен источнику тока с положительной клеммой и отрицательной клеммой . Внутри стержня за счёт действия сторонней силы Лоренца происходит разделение зарядов: положительные заряды двигаются к точке , отрицательные — к точке .

Допустим сначала,что рельсы непроводят ток.Тогда движение зарядов в стержне постепенно прекратится. Ведь по мере накопления положительных зарядов на торце и отрицательных зарядов на торце будет возрастать кулоновская сила, с которой положительный свободный заряд отталкивается от и притягивается к — и в какой-то момент эта кулоновская сила уравновесит силу Лоренца. Между концами стержня установится разность потенциалов, равная ЭДС индукции (7).

Теперь предположим, что рельсы и перемычка являются проводящими. Тогда в цепи возникнет индукционный ток; он пойдёт в направлении (от «плюса источника» к «минусу» N). Предположим, что сопротивление стержня равно (это аналог внутреннего сопротивления источника тока), а сопротивление участка равно (сопротивление внешней цепи). Тогда сила индукционного тока найдётся по закону Ома для полной цепи:

Замечательно, что выражение (7) для ЭДС индукции можно получить также с помощью закона Фарадея. Сделаем это.
За время наш стержень проходит путь и занимает положение (рис. 9). Площадь контура возрастает на величину площади прямоугольника :

Магнитный поток через контур увеличивается. Приращение магнитного потока равно:

Скорость изменения магнитного потока положительна и равна ЭДС индукции:

Мы получили тот же самый результат, что и в (7). Направление индукционного тока, заметим, подчиняется правилу Ленца. Действительно, раз ток течёт в направлении , то его магнитное поле направлено противоположно внешнему полю и, стало быть, препятствует возрастанию магнитного потока через контур.

На этом примере мы видим, что в ситуациях, когда проводник движется в магнитном поле, можно действовать двояко: либо с привлечением силы Лоренца как сторонней силы, либо с помощью закона Фарадея. Результаты будут получаться одинаковые.

Дайте определение единицы измерения индукции магнитного поля

Те́сла (русское обозначение: Тл; международное обозначение: T) — единица измерения индукции магнитного поля в СИ.

Через другие единицы измерения СИ 1 Тесла выражается следующим образом:

Что такое магнитный поток, в чем он измеряется?

Магнитный поток,поток магнитной индукции В через какую-либо поверхность.

В СИ единицей магнитного потока является Вебер (Вб, размерность — В·с = кг·м²·с −2 ·А −1 ),

Сформулируйте закон электромагнитной индукции (по Максвеллу)

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Как формулируется закон электромагнитной индукции по опытам Ампера?

Что такое электродвижущая сила, в чем она измеряется?

Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Измеряется эдс, как и напряжение, в вольтах.

В чем суть правила Ленца?

Правило Ленца, правило для определения направления индукционного тока: Индукционный ток, возникающий при относительном движении проводящего контура и источника магнитного поля, всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшего этот ток.

Что такое активное электрическое сопротивление?

Активным, или резистивным, сопротивлением обладает элемент цепи, в котором происходит необратимый процесс превращения электрической энергии в тепловую.

Что такое электрическая емкость?

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд.

Что такое индуктивность?

Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10096 — | 7530 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Магнитная индукция (обозначается символом В) – главная характеристика магнитного поля (векторная величина ), которая определяет силу воздействия на перемещающийся электрический заряд (ток) в магнитном поле, направленной в перпендикулярном направлении скорости движения.

Магнитная индукция определяется способностью влиять на объект с помощью магнитного поля. Эта способность проявляется при перемещении постоянного магнита в катушке, в результате чего в катушке индуцируется (возникает) ток, при этом магнитный поток в катушке также увеличивается.

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

Если же металл попадает под действие переменного магнитного поля (из-за перемещения постоянного магнита внутри катушки — именно перемещения), то заряды начинают двигаться под действием этого магнитного поля.

В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий магнитного поля.

Чем выше сила магнитного поля, тем больше количество частиц поворачиваются и тем более однородным будет являться их расположение.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Формула магнитной индукции

где, В — вектор магнитной индукции, F — максимальная сила действующая на проводник с током, I — сила тока в проводнике, l — длина проводника.

Магнитный поток

Магнитный поток это скалярная величина, которая характеризует действие магнитной индукции на некий металлический контур.

Магнитная индукция определяется числом силовых линий, проходящих через 1 см2 сечения металла.

Магнитометры, используемые для ее измерения, называют теслометрами.

Единицей измерения магнитной индукции в системе СИ является Тесла (Тл).

После прекращения движение электронов в катушке сердечник, если он выполнен из мягкого железа, теряет магнитные качества. Если он изготовлен из стали, то он имеет способность некоторое время сохранять свои магнитные свойства.

Магнитное взаимодействие движущихся электрических зарядов согласно представлениям теории поля объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле, способное действовать на другие движущиеся электрические заряды.

В — физическая величина, являющаяся силовой характеристикой магнитного поля. Она называется магнитной индукцией (или индукцией магнитного поля).

Магнитная индукция — векторная величина. Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока в проводнике и его длине:

Единица магнитной индукции. В Международной системе единиц за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (сокращенно: Тл), в честь выдающегося югославского физика Н. Тесла:

Движение проводника с током в магнитном поле показывает, что магнитное поле действует на движущиеся электрические заряды. На проводник действует сила Ампера FА = IBlsin a , а сила Лоренца действует на движущийся заряд:

где a — угол между векторами B и v .

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует силам , постоянная по модулю и направленная перпендикулярно вектору скорости.Под действием магнитной силы частица приобретает ускорение, модуль которого равен:

В однородном магнитном поле эта частица движется по окружности. Радиус кривизны траектории, по которой движется частица, определяется из условияоткуда следует,

Радиус кривизны траектории является величиной постоянной, поскольку сила, перпендикулярная вектору скорости, меняется только ее направление, но не модуль. А это и означает, что данная траектория является окружностью.

Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле не зависит от скорости и радиуса траектории ее движения.

Если напряженность электрического поля равна нулю, то сила Лоренца л равна магнитной силе м :

Явление электромагнитной индукции открыл Фарадей, который установил, что в замкнутом проводящем контуре возникает электрический ток при любом изменении магнитного поля, пронизывающего контур.

Магнитный поток Ф (поток магнитной индукции) через поверхность площадью S — величина, равная произведению модуля вектора магнитной индукции на площадь S и косинус угла а между вектором и нормалью к поверхности:

Ф=BScos

В СИ единица магнитного потока 1 Вебер (Вб) — магнитный поток через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл:

Электромагнитная индукция-явление возникновения электрического тока в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего контур.

Возникающий в замкнутом контуре, индукционный ток имеет такое направление, что своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (правило Ленца).

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Опыты Фарадея показали, что сила индукционного тока Ii в проводящем контуре прямо пропорциональна скорости изменения числа линий магнитной индукции , пронизывающих поверхность, ограниченную этим контуром.

Поэтому сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что если в цепи появился ток, это значит, что на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного заряда вдоль замкнутого контура называется электродвижущей силой (ЭДС). Найдем ЭДС индукции εi.

По закону Ома для замкнутой цепи

Так как R не зависит от , то

ЭДС индукции совпадает по направлению с индукционным током, а этот ток в соответствии с правилом Ленца направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего контур:

Опыт показывает, что магнитный поток Ф , связанный с контуром, прямо пропорционален силе тока в этом контуре:

Индуктивность контура L — коэффициент пропорциональности между проходящим по контуру током и созданным им магнитным потоком.

Индуктивность проводника зависит от его формы, размеров и свойств окружающей среды.

Самоиндукция — явление возникновения ЭДС индукции в контуре при изменении магнитного потока, вызванном изменением тока, проходящего через сам контур.

Самоиндукция — частный случай электромагнитной индукции.

Индуктивность — величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на единицу за единицу времени. В СИ за единицу индуктивности принимают индуктивность такого проводника, в котором при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В. Эта единица называется генри (Гн):

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Явление самоиндукции аналогично явлению инерции. Индуктивность при изменении тока играет ту же роль, что и масса при изменении скорости тела. Аналогом скорости является сила тока.

Значит энергию магнитного поля тока можно считать величиной, подобной кинетической энергии тела :

Предположим, что после отключения катушки от источника,ток в цепи убывает со временем по линейному закону.

ЭДС самоиндукции имеет в этом случае постоянное значение:

где I — начальное значение тока, t — промежуток времени, за который сила тока убывает от I до 0.

За время t в цепи проходит электрический заряд q = Icpt . Так как Icp = (I + 0)/2 = I/2 , то q=It/2 . Поэтому работа электрического тока:

Эта работа совершается за счет энергии магнитного поля катушки. Таким образом, снова получаем:

Пример. Определите энергию магнитного поля катушки, в которой при токе 7,5 А магнитный поток равен 2,3*10 -3 Вб. Как изменится энергия поля, если сила тока уменьшиться вдвое?

Энергия магнитного поля катушки W 1 = LI 1 2 /2. По определению, индуктивность катушки L = Ф/I 1. Следовательно,

Ответ: энергия поля равна 8,6 Дж; при уменьшении тока вдвое она уменьшится в 4 раза.

Разница между измерением магнитного потока и магнитных полей

Проще говоря, магнитное поле аналогично электрическому напряжению, а магнитный поток аналогичен электрическому току. Магнитная цепь аналогична электрической цепи с важными отличиями. Электродвижущая сила в электрической цепи соответствует магнитодвижущей силе. Сопротивление и обратная ему проводимость в электрической цепи соответствуют сопротивлению и его обратной магнитной проницаемости в цепи магнита.Но есть тонкие способы, в которых силы соответствуют лишь приблизительно, а сравнения несовершенные.

Другими словами, напряженность магнитного поля (H в амперах на метр) — это величина силы намагничивания. Эта сила прямо пропорциональна току, переносимому проводником, и длине проводника. Плотность магнитного потока (B в теслах или Вебер / м 2 ) — это величина магнитной силы, наведенной на данное тело из-за силы намагничивания H. Величина индуцированной магнитной силы зависит от силы H и природы магнитного поля. Средняя.

Намагниченное тело имеет северный и южный полюсы, и эти полюса всегда существуют в связанных парах. Если разрезать стержневой магнит пополам, чтобы получить два более коротких стержневых магнита, каждый из новых магнитов будет иметь северный и южный полюса. Магнитный монополь так и не был обнаружен.

Железные опилки образуют магнитомагнитные силовые линии.

Магнитное поле, связанное с постоянным магнитом, можно продемонстрировать, поместив лист бумаги поверх магнита и беспорядочно посыпав его железными опилками.Каждая частица быстро намагничивается своим собственным северным и южным полюсами, и поскольку их противоположные полюса притягиваются, они образуют линии, представляющие магнитное поле. Плотность линий (количество линий на миллиметр) и направление линий показывают, что магнитное поле является векторным полем. Линии меняют направление и становятся ближе друг к другу или дальше друг от друга по мере изменения плотности поля.

Железные опилки могут показывать направление и напряженность магнитного поля, но это не само векторное поле.Они похожи на следы на песке или рябь в движущемся потоке, а не на воду. B и H пропорциональны в вакууме, но расходятся внутри магнитных материалов. Намагниченность, обозначаемая буквой M в верхнем регистре, является мерой степени реакции материалов на приложенное поле B. Диамагнитные материалы создают намагниченность, противодействующую приложенному полю. Парамагнитные материалы создают намагниченность в том же направлении, что и приложенное поле.

В обоих случаях M обычно пропорционально приложенному магнитному полю.Связь между B и H такова: B = μH, где μ — проницаемость среды, через которую проходит поток. Проницаемость различается для разных материалов и часто является гистерезисной, что означает, что она демонстрирует гистерезис в своей реакции на магнитные поля. Железо очень проницаемо для магнитного потока.

Магнитный поток сначала определяется количественно путем создания воображаемой поверхности. Эта поверхность представляет собой строго математическую конструкцию и может совпадать с поверхностью магнита или пересекать ее. Магнитный поток — это величина потока, протекающего через поверхность.В частности, это большее количество линий, проходящих через поверхность в одном направлении, за вычетом небольшого количества линий, проходящих через поверхность в противоположном направлении, или ноль, если они равны.

Соответствующее уравнение для плотности магнитного потока Φ: Φ = BA cosθ. A представляет собой площадь поверхности. Если поверхность перпендикулярна магнитному полю, cosθ = 1. Если поверхность расположена под углом к ​​силовым линиям, cosθ меньше единицы. Единица измерения магнитного потока в системе СИ — Вебер.Плотность магнитного потока — это магнитный поток, деленный (векторно, если он находится под углом) на площадь поверхности в единицах тесла.

Электрический ток в проводке, созданной человеком, протекает по изолированным проводам. В магнитной области нет абсолютных изоляторов, но вместо этого все материалы имеют большее или меньшее сопротивление, то есть меньшую или большую магнитную проницаемость. Вот почему в эксперименте с железными опилками линии, представляющие магнитное поле, выходят далеко за пределы реального магнита. В двигателях, трансформаторах и подобных устройствах магнитный поток проходит через железные сердечники для выполнения желаемой работы.

Магнитный поток, передаваемый через магнитную цепь приложенной магнитодвижущей силой, выражается как F = ϕR, где F — магнитодвижущая сила, действующая во всей или части магнитной цепи, ϕ — магнитный поток, проходящий через данный сегмент, а R — магнитный поток. сопротивление сегмента.

Определяющее различие между электрической цепью и цепью магнитодвижущей силы состоит в том, что рассеяние мощности связано с сопротивлением, а не с реактивным сопротивлением. Электрическое поле заставляет ток следовать по пути наименьшего сопротивления, а магнитное поле заставляет магнитный поток следовать по пути наименьшего сопротивления.

Уравнения Максвелла утверждают, что магнитный поток всегда образует замкнутый контур. Магнитные цепи нелинейны. Сопротивление различается в зависимости от магнитного поля. Когда магнитный поток поднимается выше определенного уровня, проницаемый материал насыщается, поэтому не может быть дальнейшего увеличения магнитного потока, который ограничен сопротивлением убегающему сопротивлению. В резистивной электрической цепи такого явления не происходит.

Земной магнитометр в действии.

Типичный способ измерения магнитных полей — с помощью магнитометра.Векторные магнитометры измеряют векторные компоненты магнитного поля, тогда как магнитометры полного поля или скалярные магнитометры измеряют только величину векторного магнитного поля.

В магнитометрах используется несколько технологий. Обычный компас — это, по сути, простой магнитометр. Стрелка измеряет направление поля. Частота колебаний намагниченной иглы пропорциональна квадратному корню из силы окружающего магнитного поля.

Одной из самых простых технологий магнитометров является индуктивная считывающая катушка, которая измеряет намагниченность путем определения тока, индуцированного в катушке, вызванного изменением магнитного момента образца.Намагниченность образца можно изменить, приложив небольшое переменное магнитное поле (или быстро меняющееся постоянное поле), как в импульсных магнитах с конденсаторным приводом. Эти измерения требуют различения магнитного поля, создаваемого образцом, и внешнего приложенного поля, часто за счет использования катушек компенсации. Обычно половина приемной катушки намотана в одном направлении, а другая половина — в другом. Образец находится только в одной половине. Внешнее однородное магнитное поле обнаруживается обеими половинами катушки.Поскольку они намотаны встречной намоткой, внешнее магнитное поле не производит чистого сигнала.

Существует множество более экзотических технологий магнитометров. Магнитометры с вибрирующим образцом (VSM) обнаруживают намагничивание образца путем механической вибрации образца внутри индукционной сенсорной катушки или катушки SQUID. Измеряется наведенный ток или изменяющийся магнитный поток в катушке. Магнитометрия с извлечением импульсного поля также использует считывающие катушки для измерения намагниченности. Здесь образец закреплен, и внешнее магнитное поле быстро изменяется.Затем необходимо использовать один из нескольких методов, чтобы нейтрализовать внешнее поле, создаваемое образцом. К ним относятся катушки с противообмоткой, которые нейтрализуют внешнее однородное поле и измерения фона при удалении образца из катушки.

Флюксметр.

Магнитный поток обычно измеряется с помощью измерителя потока, который содержит измерительные катушки и электронику, которая оценивает изменение напряжения в измерительных катушках для расчета измерения магнитного потока.

Флюксметры

— это в основном интеграторы, используемые из-за физической взаимосвязи между катушками проволоки и магнитным потоком.Мгновенное напряжение, создаваемое на катушке, пропорционально количеству витков в катушке, умноженному на скорость изменения магнитного потока. Проблематично использовать это соотношение скорости изменения непосредственно для измерений постоянного тока, потому что напряжение исчезает, как только поток перестает изменяться. Напряжение также пропорционально скорости изменения магнитного потока, а не общему изменению магнитного потока, которое обычно является параметром, представляющим интерес.

Если напряжение на катушке интегрировать, чтобы посмотреть на область под ней, отображаемую в зависимости от времени, вышеуказанные проблемы исчезнут.Выход интегратора пропорционален общему изменению потока, и скорость изменения не имеет значения.

Магнитный поток: что это такое, уравнение, единицы, плотность

Обновлено 28 декабря 2020 г.

Кевин Бек

Электричество и магнетизм неразрывно связаны, что привело к принятию термина электромагнетизм для описания связанных явлений . Фактически, насколько это верно, ученым в значительной степени ускользало до второй половины 1800-х годов, когда Джеймс Клерк Максвелл, опираясь на работы до него уважаемых физиков, создал свой знаменитый набор из четырех дифференциальных (расчетных) уравнений, связывающих воедино различные свойства магнитных полей и электрических полей.

Понимание магнитного потока или силовых линий магнитного поля, проходящих через заданную геометрическую плоскость, называемую векторной областью , приводит к нескольким важным физическим явлениям, включая электромагнитную индукцию или генерацию электродвижущей силы. сила (ЭДС).

Что такое магнитный поток?

Общий магнитный поток — это, по сути, мера того, сколько силовых линий магнитного поля проходит через заданную площадь поверхности A , то есть мера силы магнитного поля.Более формально это определяется как:

\ Phi_B = B \ cdot A = BA \ cos {\ theta}

, где θ — угол между магнитным полем B и , перпендикуляром к A в определенной области.

  • Магнитное поле B или плотность магнитного потока на единицу площади измеряется в теслах (Тл) в единицах СИ, а A — это площадь, через которую проходит поле, в м 2 . Единицей измерения магнитного потока в системе СИ является Вебер (Вб), где Вб = Тм 2 .

Если B не является однородным по поверхности A, определение исчисления таково, что Φ = ∫B⋅dA. Эта функция поверхностного интеграла означает, что значения потока через почти бесконечно малые участки A определяются независимо и суммируются для получения составного значения.

Какое значение имеет магнитный поток?

Закон Гаусса: Чистый магнитный поток через замкнутую поверхность равен 0 . Это второе из уравнений Максвелла, и оно согласуется с идеей об отсутствии магнитных монополей.

Независимо от того, насколько малый объем вы выберете, магнитное поле всегда можно описать как включающее диполь или крошечный невидимый стержневой магнит. Это контрастирует с электрическими полями, которые генерируются точечными зарядами (или массивами изолируемых точечных зарядов).

Закон электромагнетизма Фарадея: Индуцированная электродвижущая сила (ЭДС) в катушке провода с N витками равна N, умноженному на изменение потока во времени:

ЭДС = N \ frac {\ Delta \ Phi} {\ Delta t}

Поток может быть изменен во времени путем изменения B, изменения площади поперечного сечения A или изменения угла между B и A путем вращения катушки или источника поля.

  • ЭДС имеет единицы измерения напряжения (разности потенциалов), а не силы. Это называется «силой», потому что напряжение — это то, что заставляет заряды двигаться, в первую очередь создавая ток.

Закон Ленца: Индуцированный электрический ток течет в направлении, противоположном изменению, вызвавшему его. Например, у вас есть катушка с проводом, не подключенная к какому-либо источнику питания.

Представьте себе перемещение стержневого магнита в продольном направлении в середину катушки вдоль его оси, как если бы стержень вставлялся прямо в середину длинной трубки, не касаясь сторон трубки.Это увеличенное поле в катушке заставляет ток течь в таком направлении, что оно создает магнитное поле, противодействующее увеличению.

Если вы повторите эту процедуру после того, как поменяли местами концы южного и северного полюсов магнита, произведенное изменение будет одинаковым по величине и противоположным по направлению по сравнению с первым случаем, и в результате ток будет течь в противоположном направлении.

Магнитные единицы измерения

Если бремя двух систем измерения общих величин (английский vs.метрика) вводит в заблуждение, это не место для вас! Из-за отсутствия стандартизации в науке о магнетизме на раннем этапе нам пришлось столкнуться с не менее чем тремя полными системами измерения магнитных величин.

Во-первых, нам нужно познакомиться с различными величинами, связанными с магнетизмом. В магнитных системах приходится иметь дело с гораздо большим количеством величин, чем с электрическими системами. В случае электричества основными величинами являются напряжение (E), ток (I), сопротивление (R) и мощность (P).Первые три связаны друг с другом первым уравнением закона Ома (E = IR), в то время как мощность связана с напряжением и током другим (P = IE). Все остальные уравнения закона Ома могут быть выведены алгебраически из этих двух.

Что касается магнетизма, нам нужно иметь дело со следующими величинами:

  • Магнитодвижущая сила — Величина силы магнитного поля, или «толчка». Аналог электрического напряжения (электродвижущая сила).
  • Field Flux — Суммарный эффект поля или «субстанция» поля.Аналог электрического тока.
  • Интенсивность поля — величина силы поля (ммс), распределенная по длине электромагнита. Иногда обозначается как Сила намагничивания .
  • Плотность потока — величина потока магнитного поля, сконцентрированного в данной области.
  • Сопротивление — Противодействие потоку магнитного поля через данный объем пространства или материала. Аналогично электрическому сопротивлению.
  • Проницаемость — Специфическая мера восприятия материалом магнитного потока, аналогичная удельному сопротивлению проводящего материала (?), За исключением обратного (большая проницаемость означает более легкое прохождение магнитного потока, тогда как большее удельное сопротивление означает более трудное прохождение электрического тока).

Но подождите. . . веселье только начинается! У нас есть не только больше величин, которые нужно отслеживать с помощью магнетизма, чем с помощью электричества, но у нас есть несколько различных систем измерения для каждой из этих величин.Как и в случае с обычными величинами длины, веса, объема и температуры, у нас есть и английская, и метрическая системы. Однако на самом деле существует более одной метрической системы единиц, а при измерениях магнитного поля используются несколько метрических систем! Один называется cgs , что означает C entimeter- G ram- S econd, обозначающий корневые меры, на которых основана вся система. Другая изначально была известна как система mks , которая обозначала M eter- K ilogram- S econd, которая позже была преобразована в другую систему, названную rmks , что означает R ationalized . M eter- K ilogram- S econd.В итоге он был принят в качестве международного стандарта и переименован в SI ( S ysteme I nternational).

И да, символ µ действительно то же самое, что и метрический префикс «микро». Я нахожу это особенно запутанным, если использовать один и тот же алфавитный символ для обозначения как конкретной величины, так и общего префикса метрики!

Как вы уже могли догадаться, взаимосвязь между силой поля, потоком поля и сопротивлением во многом такая же, как между электрическими величинами электродвижущей силы (E), тока (I) и сопротивления (R).Это дает нечто вроде закона Ома для магнитных цепей:

И, учитывая, что проницаемость обратно пропорциональна удельному сопротивлению, уравнение для определения сопротивления магнитного материала очень похоже на уравнение для определения сопротивления проводника:

В любом случае более длинный кусок материала обеспечивает большее сопротивление при прочих равных условиях. Кроме того, большая площадь поперечного сечения снижает сопротивление при прочих равных условиях.

Главное предостережение здесь в том, что сопротивление материала магнитному потоку на самом деле изменяется на с концентрацией потока, проходящего через него. Это делает «закон Ома» для магнитных цепей нелинейным, и с ним гораздо труднее работать, чем с электрической версией закона Ома. Это было бы аналогично наличию резистора, который изменял сопротивление при изменении тока через него (схема, состоящая из var istors вместо res istors).


Уроки в электрических цепях авторское право (C) 2000-2002 Тони Р.Kuphaldt, в соответствии с условиями Лицензии на научный дизайн.

Измерение магнитных полей | Лист-Магнетик

Напряженность магнитного поля, намагниченность, проницаемость, магнитный поток — что это на самом деле?

С помощью магнитов можно определять различные измеряемые величины. Поскольку это часто приводит к путанице, вот краткий обзор. Для получения точного определения и физических основ мы просим вас поискать в специальной литературе.

Напряженность магнитного поля (H)

Единицей измерения напряженности магнитного поля является А / м (из-за результатов чаще используются А / см или кА / м), более старые — также Эрстед (Э).Поскольку плотность магнитного потока B, измеряемая в Гаусс (Гс) или Тесла (Тл), может быть преобразована с использованием постоянного множителя, напряженности магнитного поля и плотности потока (и, следовательно, единиц А / см, кА / м, Э, Гс, T) можно использовать поочередно.

Устройства для измерения напряженности магнитного поля называются магнитометрами, измерителями магнитного поля, гауссметрами или тесламетрами.

Остаточная намагниченность / остаточный магнетизм

Остаточный магнетизм — это особое рассмотрение напряженности магнитного поля, остаточной напряженности магнитного поля после воздействия магнита или после процесса размагничивания.
Остаточную намагниченность также можно измерить с помощью измерителей магнитного поля, гауссметров и тесламетров.

Проницаемость

Относительная проницаемость (µr) — это параметр того, насколько сильно вещество может быть намагничено. Ценность играет важную роль, особенно для нержавеющих сталей. Другой термин, используемый для этого, — магнитная проводимость. Единицы измерения нет, мкр безразмерен. Простые измерительные устройства исследуют диапазон от µr = 1 (проницаемость вакуума) до 2.
Устройство для измерения проницаемости от нашей компании — Ferromaster.

Магнитный поток

Магнитный поток (Φ) описывает полную мощность магнита и может быть измерен с помощью флюксметра в катушке. Единица измерения — вольт-секунда (Vs), также Weber (Wb) или более ранняя версия Maxwell (Mx).
Флюксметр необходим для измерения магнитного потока. По сравнению с портативными устройствами для измерения магнитных полей или проницаемости эти устройства более сложны; это лабораторные устройства с подключенной катушкой крутящего момента Гельмгольца.

Откуда возникает нежелательный магнетизм на стальных деталях?

Магнитные стальные детали могут создавать проблемы при дальнейшей обработке. Снижается чистота компонентов. Например, прилипают железные опилки, из-за чего инструменты изнашиваются. Или датчики неисправны. Откуда этот магнетизм?
Причина не может быть описана в общих чертах. Например, можно заметить, что стальной стержень легко намагничивается вибрацией во время транспортировки.
Однако, если вы используете магнитные подъемные инструменты, которые широко популярны и бережно относятся к материалам, у вас может быть причина остаточного магнетизма. Первый шаг: определить остаточную напряженность магнитного поля. Это в пределах вашей терпимости? В противном случае придется либо размагничивать детали, либо обойтись без магнитного крана.

Простые устройства: компас и датчик полюса

С помощью простых устройств, таких как компас и датчик полюса, можно сделать вывод о том, как проходят силовые линии, где лежат северный полюс и южный полюс, но не о силе.
Детектор полюса магнита M-8

Насколько сильно магнитное поле? — Измерение напряженности магнитного поля

Вопрос задается для определения максимального значения магнита или остаточного магнетизма. Устройства, которые выполняют эти задачи, называются магнитометрами, устройствами измерения магнитного поля, тесламетром или гауссметром. Здесь рассматривается постоянное поле без смены полюсов.
При измерении нужно исследовать: где полюса? В каком направлении зонд измеряет больше всего? Приводит ли поворот или наклон датчика к изменению? Таким образом, каждый отдельный магнит может быть исследован на предмет максимальной напряженности поля.

Положение измерения и конструкция датчика имеют решающее значение для измеряемого значения

Силовые линии магнитного поля проходят от северного полюса к южному полюсу магнита. В случае стержневого магнита, например полюса в основном находятся на двух концах. Вот где поле наиболее сильное. В зависимости от формы магнита силовые линии проходят по-разному; в подковообразном магните они параллельны внутри арки. Чем ближе вы измеряете напряженность магнитного поля к полюсу, тем она выше.В зонде так называемый датчик Холла регистрирует силу Лоренца, по которой рассчитывается напряженность поля. Чем ближе датчик Холла подходит к полюсу, тем больше силы действует. Разные конструкции зондов (осевые, тангенциальные) имеют разные формы установки датчика Холла и приводят к разным измеренным значениям.

Насколько силен магнит в целом? — Измерение потока

При тестировании постоянного магнита или магнитной системы решающий вопрос заключается в том, каково качество магнита и насколько сильна намагниченность магнита.Измерение напряженности магнитного поля с помощью устройства измерения магнитного поля возможно только выборочно и не учитывает объем магнита. Эту задачу выполняет измеритель потока. В сочетании с катушкой крутящего момента Гельмгольца магнитный поток постоянных магнитов может быть определен очень точно, потому что весь объем магнита измеряется независимо от положения. Воздействие магнита на катушку определяется в виде электрического напряжения и преобразуется в величину магнитного потока.
Флюксметр ФЛ-4

Низкий магнетизм — что такое проницаемость и остаточная магнитная проницаемость?

Магнитная проницаемость является показателем того, насколько сильно материал может быть намагничен. Утверждение имеет смысл там, где на самом деле не требуется магнетизма, например, с нержавеющей сталью. Магнитную проницаемость не следует путать с остаточным магнетизмом или остаточным магнетизмом: остаточный магнетизм говорит о том, насколько сильно объект намагничен, проницаемость говорит о том, насколько легко он может быть намагничен.

При всех измерениях магнитного поля необходимо учитывать, что сама Земля имеет магнитное поле. Он очень слабый при 0,2 А / см. В зависимости от ориентации датчика это значение будет увеличивать или уменьшать измеренное значение. Следовательно, допустимы отклонения в 10% в диапазоне остаточной намагниченности из-за поля земли, и для воспроизводимости измерения следует учитывать положение объекта и положение измерительного зонда.

Из-за технических ограничений при измерении проницаемости можно измерять только слабомагнитный материал.

Измеритель магнитной проницаемости Ferromaster

Измеритель остаточного магнитного поля МП-1

Измерительные приборы и щупы

В каких единицах вы должны измерять магнетизм? В зависимости от устройства в дополнение к базовой единице А / см также может отображаться значение Гаусс (Gs) или Милли-Тесла (мТл). Важный вопрос — какой максимальной напряженности поля можно ожидать.List-Magnetik предлагает широкий выбор устройств и датчиков для любых целей — будь то устройство для одной руки, с отдельным датчиком или лабораторное устройство.
Здесь следует упомянуть измерители магнитного поля МП-800, МП-1000, МП-2000, МП-5000.

Измеритель магнитного поля MP-800

В чем разница между осевым и тангенциальным щупами?

Осевые зонды измеряют в направлении наконечника зонда.Тангенциальные датчики измеряют под углом 90 ° к датчику. Тангенциальные зонды больше подходят для измерений в полостях или узких трубах. В конечном итоге можно сказать, что тангенциальный щуп — более универсальный инструмент. Потому что практически все измерения осевым щупом можно проводить тангенциально. Одним из преимуществ аксиального зонда List-Magnetik является расстояние 2 мм между датчиком Холла и крышкой зонда. При производстве шарикоподшипников это значение стало фактическим стандартом для датчика.

Что такое эталон калибровки и для чего он нужен?

Калибровочный эталон — это эталонный магнит — постоянный магнит, который всегда показывает одно и то же значение, когда один и тот же датчик находится в одном и том же положении. Благодаря этому вы можете быть уверены, что датчик по-прежнему работает правильно. В случае прецизионных калибровочных стандартов осевой или тангенциальный зонд удерживается в отверстии таким образом, чтобы его нельзя было трясти.В случае язычковых зондов зонд может быть поврежден, поэтому вам придется проводить проверку с помощью более простых накладных калибровочных стандартов. Комбинация прибора, зонда и эталона образует единое целое, которое калибруется и сертифицируется вместе. Использование датчика на калибровочном стандарте, согласованном с другим датчиком, может привести к минимальному отклонению эталонного значения. Это связано с тем, что зонды не всегда могут быть построены одинаково. Однако это отклонение всегда постоянно.

Аналоговый или цифровой дисплей?

Преимущество аналоговых дисплеев в том, что глаз может быстрее реагировать на отклонение указателя, чем на изменение числа.При поиске максимума магнитного поля аналоговое устройство может оказаться более практичным.


Подробнее об измерении магнитного поля:

Магнитный поток конвертер • Magnetostatyka, magnetyzm я ​​elektromagnetyzm • Kalkulator kompaktowy • Konwertery jednostek онлайн

Długość я odległośćMass ConverterDry Объем и общий Cooking MeasurementsPole powierzchniVolume и Общую Cooking измерения ConverterTemperature ConverterPressure, стресс, модуль Юнга ConverterEnergiaPower ConverterSiłaTime ConverterLinear Скорость и скорость ConverterKątWydajność zużycia Paliwa, zużycie Paliwa я Ekonomika zużycia paliwaNumbers ConverterJednostki Informacji я magazynowania danychKursy wymiany walutRozmiary ubrań я obuwia damskiegoRozmiary ubrań я obuwia męskiegoAngular Скорость и частота вращения ConverterPrzyspieszeniePrzyspieszenie kątoweMasa właściwaSpecific Объем ConverterMoment инерции ConverterMoment от силы ConverterTorque ConverterEnergia właściwa, ciepło spalania (на MASE) Энергия właściwa, ciepło spalania (na objętość) Преобразователь интервалов температурКоэффициент преобразователя теплового расширенияТепловое сопротивление istance ConverterThermal Проводимость ConverterSpecific Теплоемкость ConverterGęstość ciepła, gęstość obciążenia ogniowegoGęstość strumienia ciepłaWspółczynnik przenikania ciepłaObjętościowe natężenie przepływuMasowe natężenie przepływuMolowe natężenie przepływuMass Flux ConverterStężenie moloweStężenie Masy ш roztworzeDynamic (Absolute) Вязкость ConverterKinematic Вязкость ConverterSurface Tension ConverterPermeation, Проницаемость, Паропроницаемость ConverterMoisture Vapor скорость передачи ConverterSound уровня ConverterMicrophone Конвертер чувствительностиКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер яркости Конвертер плотности ти ConverterPrąd elektrycznyLinear Плотность тока ConverterSurface Плотность тока ConverterNatężenie Pola elektrycznegoPotencjał я napięcie elektryczneRezystancja elektrycznaRezystywność elektrycznaPrzewodność elektrycznaPrzewodność Elektryczna właściwaPojemność elektrycznaIndukcyjnośćReactive переменного тока ConverterAmerican Wire Gauge ConverterConversion уровней в дБм, дБВ, ваттах и ​​других UnitsMagnetomotive Force ConverterMagnetic Напряженность поля ConverterMagnetic Flux ConverterMagnetic Flux Density ConverterRadiation Поглощенная доза Частота , Конвертер мощности дозы ионизирующего излученияКонвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксовТрансмиссия danychКонвертер единиц типографии и цифровой визуализацииКонвертер единиц измерения объёма древесиныКалькулятор молярной массыПериодическая таблица

Пленка для просмотра магнитного поля может отображать стационарные и медленно изменяющиеся магнитные поля.

В повседневной жизни нас как никогда когда-либо окружают магниты. Магнит в динамике смартфона можно найти в кармане каждого человека. Однако до середины ХХ века в наших домах было всего несколько магнитов — магнит в громкоговорителе радиоприемника, телефона и, вероятно, несколько магнитных защелок шкафов.Сегодня магниты повсюду. Они находятся в вашем холодильнике, в вашем холодильнике, в ваших компьютерах, планшетах и ​​смартфонах, в электродвигателях, в ваших ушах (неодимовые магниты в наушниках и магнитных серьгах), в различных электродвигателях в автомобилях, грузовиках, DVD-плеерах и компьютерах. жесткие диски. Во многих чехлах для смартфонов для управления смартфоном используется магнит в крышке: телефон распознает открытую крышку и отображает экран блокировки или экран часов. Не забывайте о множестве вещей, которые работают с использованием магнитных и электромагнитных полей.Сюда входят трансформаторы, электродвигатели и генераторы, различные приводы, электромагнитные муфты и тормоза, антенны и волноводы. Список бесконечен. Нас окружают магнитные и электромагнитные поля. Земля создает собственное геомагнитное поле, которое простирается из недр Земли в космос, используется для навигации и защищает нас от смертоносного солнечного ветра.

Громоздкие подковообразные магниты, изготовленные из Alnico, использовались в магнетронах до разработки гораздо менее объемных ферритовых и редкоземельных магнитов

Магнитное поле — это область вокруг постоянного магнита или движущегося электрического заряда, внутри которой действует магнитная сила. движущиеся электрические заряды и ферромагнитные материалы.Магнитное поле является векторным полем, потому что оно может быть задано как направлением, так и величиной. Магнитные поля обычно визуализируются линиями магнитного потока. Сила поля визуализируется промежутками между линиями магнитного потока. Магнитные поля можно дополнительно визуализировать с помощью железных опилок или пленки для просмотра магнитного поля.

Определения и единицы измерения

Прежде чем мы начнем говорить о магнитном потоке, мы должны поговорить о двух векторных полях, которые описывают магнитное поле.Их называют B, -полем (также называемым магнитной индукцией) и H, -полем (также называемым напряженностью магнитного поля). В свободном пространстве (вакууме) эти два векторных поля связаны следующим уравнением:

B = μ 0 H

Здесь μ₀ = 4π × 10⁻⁷ H · m⁻¹ — проницаемость свободного пространства. пространство, которое является мерой сопротивления, возникающего при формировании магнитного поля в вакууме. Следовательно, в вакууме два магнитных поля B и H можно рассматривать как масштабированные версии друг друга.Однако в магнитном веществе взаимосвязь между B и H более сложная.

Измерение B-поля в промышленной среде (двигатели высоковольтных насосов на водонасосной станции)

B-Field

Магнитное поле можно определить и описать несколькими способами в зависимости от его воздействия на окружающую среду. Это часто определяется силой, которую он оказывает на движущиеся заряженные частицы, которая называется силой Лоренца . Это комбинация электрической и магнитной силы, действующей на точечный заряд, помещенный в магнитное поле.Если частица заряда q движется со скоростью v в электрическом поле E и магнитном поле B , на нее действует сила F , определяемая следующим образом:

F = q ( E + v × B )

Здесь × обозначает векторное произведение. Векторное магнитное поле B имеет несколько названий на английском языке ( B — поле, напряженность магнитного поля, плотность магнитного потока или просто магнитное поле) и измеряется в гауссах (Гс) в единицах сгс или в теслах ( T) в единицах СИ.1 T = 10,000 G.

H-Field

Существует еще одно векторное магнитное поле H , используемое для описания магнитного поля, которое иногда также называют магнитным полем. Это поле H создается за счет изменения электрических полей. Статическое электрическое поле E может создать ток намагничивания I , который, в свою очередь, создаст статическое поле H . В пространстве B пропорционален H с мультипликативной константой, зависящей от физических единиц.Однако в магнитных материалах B не прямо пропорционален H . По-английски поле H также называют интенсивностью магнитного поля, напряженностью магнитного поля, магнитным полем и намагничивающим полем, что довольно сбивает с толку. Поле H измеряется в амперах на метр (А / м) в единицах СИ и в эрстедах (Э) в единицах сгс.

Магнитный поток — полезный инструмент для описания эффектов магнитных сил на объекты, занимающие заданную область, например, индукторы или трансформаторы

Магнитный поток

Магнитный поток Φ м — это измерение общего магнитного поля B , который проходит через заданную область.Его можно представить как количество линий магнитного поля B , проходящих через замкнутую поверхность, например индукционную катушку. Поскольку количество линий магнитного поля, проходящих через любую небольшую область, обычно различно, магнитный поток является произведением среднего магнитного поля и площади перпендикулярно линиям магнитного поля, которые проникают через него. То есть

Φm = B A

Для более сложного случая, когда площадь является плоской поверхностью и не перпендикулярна магнитному полю, мы можем использовать выражение

Φm = B A ∙ Cos θ

Из этого выражения видно, что если испытательная поверхность расположена параллельно силовым линиям магнитного поля, результирующий магнитный поток будет равен нулю.В то же время наибольший поток можно получить, если поверхность перпендикулярна силовым линиям магнитного поля. Если наша тестовая зона не плоская и форма силовых линий магнитного поля сложная, то мы можем определить магнитный поток как интеграл магнитного поля B по площади тестовой поверхности:

Φm = ∫ B d s

Это выражение показывает, что любое устройство для измерения магнитного потока должно содержать механический или электронный интегратор. Об устройствах для измерения магнитного потока мы поговорим позже в этой статье.

Магнитный поток — полезный инструмент для описания эффектов магнитных сил на объекты, занимающие заданную область, например трансформаторы, электрические генераторы или соленоиды. Он используется инженерами-электриками для расчетов систем с электромагнитами и генераторами, а также физиками, разрабатывающими ускорители частиц. Обратите внимание, что из-за закона Гаусса для магнетизма сумма магнитного потока для замкнутой поверхности (например, сферы) всегда равна нулю:

Φm = ∯ B d s = 0

Обратите внимание также что мы можем использовать область любого размера и как угодно ориентировать ее относительно магнитного поля.Если силовые линии проходят через данную область под углом, только часть магнитного поля будет вносить вклад в магнитный поток. Только та часть поля, которая нормальна к нашей тестовой зоне, включается в расчет магнитного потока.

Магнитный поток измеряется в веберах (Wb) или в производных единицах в вольт-секундах (V ∙ s) в системе СИ и в максвеллах (Mx) в cgs. 1 Вт = 10⁸ Mx.

История

Слева направо: Феликс Савар, Жан-Батист Био, Андре-Мари Ампер, Ганс Кристиан Эрстед

Основные открытия, связанные с электромагнетизмом, произошли в первой половине XIX века.Понимание взаимосвязи между электричеством и магнетизмом началось с работ датского физика и химика Ганса Христиана Эрстеда , который обнаружил, что электрические токи создают магнитные поля. Читая лекцию в Копенгагенском университете в 1819 году, он обнаружил, что стрелка компаса вращается рядом с проводом, когда электрический ток в этом проводе включается и выключается.

Позже, в 1820 году, французский физик Андре-Мари Ампер обнаружил, что два параллельных провода, по которым проходит электрический ток, притягиваются или отталкиваются в зависимости от направления тока.Он применил математику, чтобы лучше понять это явление. Результат этих исследований теперь называется законом силы Ампера. Самый известный и самый простой пример этого закона гласит, что взаимное действие двух параллельных проводов с электрическим током пропорционально их длине и величине тока в них.

В то же время в 1820 году Жан-Батист Био и Феликс Савар открыли закон Био-Савара, который описывает связь между магнитным полем и величиной, направлением, длиной и близостью провода с электрический ток.

Слева направо: Майкл Фарадей, Карл Фридрих Гаусс, Джеймс Клерк Максвелл

Английский ученый Майкл Фарадей внес важный вклад в изучение электромагнетизма. В 1821 году он изобрел униполярный двигатель, первое вращательное устройство, которое преобразовывало электрическую энергию в круговое движение. Позже он обнаружил взаимную индукцию с использованием двух изолированных катушек, намотанных на железное кольцо. Устройство напоминало современный тороидальный трансформатор. Когда ток протекал в одной катушке, мгновенный ток индуцировался в другой катушке.Впоследствии он обнаружил, что если магнит перемещался через катушку или катушка перемещалась по магниту, в этой катушке обнаруживался электрический ток. То есть изменяющееся магнитное поле создает электрическое поле.

Во время своих экспериментов в 1831 году Фарадей изобрел униполярный генератор, который был первым прототипом современных электрических генераторов. Униполярный генератор продемонстрировал возможность выработки электроэнергии с помощью магнетизма.

Основной закон электромагнетизма, описывающий, как магнитное поле будет взаимодействовать с электрическим током для создания электродвижущей силы, был сформулирован Майклом Фарадеем в 1831 году.Закон гласит, что индуцированная электродвижущая сила в любой замкнутой цепи равна отрицательной скорости изменения магнитного потока, заключенного в цепи.

В 1835 году немецкий математик Карл Фридрих Гаусс сформулировал закон Гаусса или теорему Гаусса о потоке, которая описывает связь между электрическим зарядом и результирующим электрическим полем. Он не был опубликован до 1867 года после его смерти.

Уравнения Максвелла

В середине 1860-х годов шотландский ученый в области математической физики Джеймс Клерк Максвелл изучал электричество и магнетизм и их взаимосвязь.Читая лекции в Королевском колледже в Лондоне, он свел все современные знания об электромагнетизме к системе из 20 дифференциальных уравнений, которые были опубликованы в его работе «О физических силовых линиях» в марте 1861 года. Эти уравнения описывают поведение как электрических, так и магнитных сил. поля и их взаимодействие с веществом. Позже Максвелл вычислил скорость распространения электромагнитного поля. Он понял, что свет и магнетизм имеют одинаковую природу и что свет — это электромагнитное поле.

Электромагнетизм продолжает развиваться в 21 веке. За последние несколько десятилетий была разработана стандартная модель физики элементарных частиц. Он основан на калибровочных теориях, первой из которых была квантовая электродинамика, описывающая взаимодействия между заряженными частицами (например, электронами) и электромагнитным полем. Позже появилась электрослабая теория, описывающая электромагнитные и слабые ядерные взаимодействия. Наконец, во второй половине 20 века была разработана Стандартная модель физики элементарных частиц.Эта теория описывает электромагнитные, слабые и сильные ядерные взаимодействия и классифицирует все известные субатомные частицы. Открытие бозона Хиггса в 2012 году в ЦЕРНе, которое было постулировано британским физиком почти полвека назад, в 1964 году, стало последним краеугольным камнем этой модели. Как видите, электромагнетизм включен во все эти теории.

Измерение магнитного потока

Флюксметр Грассо

Устройство, используемое для измерения магнитного потока, называется флюксметром.Он основан на законе магнитной индукции в его интегральной форме. В прошлом для измерения магнитного потока использовались механические устройства. Одним из таких устройств был механический измеритель потока. Это был баллистический гальванометр особого типа, в котором управляющий момент был очень мал, а электромагнитное демпфирование было очень сильным. Его измерительная катушка подвешена без каких-либо восстанавливающих сил. Поисковая катушка (катушка, которая проверяла магнитное поле) была помещена в изменяющееся магнитное поле, и флюксметр обнаружил в катушке напряжение, пропорциональное скорости изменения магнитного потока.Этот тип флюксметра использовался Вильгельмом Эдуардом Вебером для изучения направления магнитного поля Земли. Механические флюксметры также использовались для определения судового магнетизма на военно-морских станциях размагничивания.

Современный флюксметр состоит из катушек и электроники, которая оценивает и интегрирует изменение напряжения в катушке для измерения магнитного потока. Измерение изменения магнитного потока требует интегрирования напряжения измерительной катушки за интервал времени во время измерения.Такое интегрирование напряжения катушки может быть выполнено с использованием либо аналогового интегрирования (обычно интегрирующего операционного усилителя), либо аналого-цифрового или числового интегратора.

Схема интегрирующего операционного усилителя и измеритель потока с измерительными катушками Гельмгольца

Измерительная катушка в измерителе потока может быть неподвижной или подвижной. Механическая жесткость и низкое тепловое расширение опоры, на которой намотана катушка, важны для достижения хороших результатов. Метод намотки катушек также очень важен для получения стабильных и воспроизводимых результатов.Катушки, используемые в электронных измерителях потока, можно разделить на точечные катушки, линейные и плоские катушки и катушки для гармоник. Все катушки должны быть правильно откалиброваны, потому что основным источником погрешности любого флюксметра является неопределенная чувствительность измерительной катушки. Катушки калибруются с помощью эталонных магнитов с хорошо известными свойствами.

Точечные катушки используются для измерения магнитного поля в небольшой точке пространства. Обычно они наматываются на небольшой сердечник. Такие катушки часто делают в форме шара.Линейные катушки предназначены для измерения интегрального значения магнитного поля вдоль прямой линии. Их ширина намного меньше их длины. Линейные катушки обычно отбирают небольшую площадь измеряемого пространства. Катушки площади предназначены для отбора проб на большой площади пространства. Длинные прямоугольные катушки часто используются для измерений на ускорителях частиц. Катушки с гармониками используются для измерения только выбранных гармоник поля. Это достигается путем придания формы обмоткам катушек или соединением между собой нескольких катушек, размещенных в измерительном пространстве.

Для измерения изменения магнитного потока, генерируемого одной из нескольких катушек измерения поля, используются разные методы. Во время измерения катушку можно переместить из области, где существует поле, в область, где поле равно нулю. Другой метод — отключение поля во время измерения. Еще один метод — вращение катушки для получения двойных показаний.

Для измерения, например, магнитного потока постоянного магнита в целях контроля качества с помощью электронного флюксметра используется следующая процедура.

  • Две клеммы измерительной катушки подключены к сигнальному входу измерителя потока.
  • После включения измерителя потока и выбора соответствующего диапазона измерения выполняется корректировка дрейфа. Обычно счетчик может поддерживать нулевой уровень всего несколько минут, после чего необходима дополнительная настройка.
  • Положительное измерение. С пустой измерительной катушкой нажмите кнопку сброса, затем поместите измеряемый магнит в измерительную катушку северным полюсом вверх.Запишите измеренное значение.
  • Отрицательное измерение. Сначала вставьте магнит в измерительную катушку северным полюсом вверх. Нажмите кнопку Reset и переместите магнит подальше от измерительной катушки. Прочтите и запишите измеренное значение.
  • Рассчитайте средний результат обоих измерений.
  • Пленка для наблюдения за магнитным полем может отображать стационарные и медленно изменяющиеся магнитные поля.

В трехфазном асинхронном двигателе переменного тока электрический ток в его роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля, создаваемого обмоткой статора

Artykuł został napisany przez Анатолий Золотков.

У вас есть трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

МАГНИТНЫЙ ПОЛЕ HiTESTER FT3470-51 | HIOKI E.E. CORPORATION

Плотность магнитного потока (ширина полосы) от 10 Гц до 400 кГц / от 10 Гц до 2 кГц / от 2 кГц до 400 кГц
Уровень воздействия Общественность / профессиональная деятельность
Дисплей Одиночные оси X, Y, Z (2000 отсчетов), составное среднеквадратичное значение R (3464 отсчета), плотность магнитного потока (единицы: Т, Г, А / м), Уровень экспозиции (единицы:%)
Плотность магнитного потока / диапазоны и точность [оси X, Y, Z] Эффективные диапазоны измерения: 2.От 000 мкТл до 2.000 мТл, 4 диапазона, точность: ± 3,5% показания. ± 0,5% полной шкалы
[Ось R] Эффективные диапазоны измерения: от 3,464 мкТл до 3,464 мТл, 4 диапазона, точность: ± 3,5% показания. ± 0,5% полной шкалы
[Действительный диапазон частот измерения]
в режиме 10 Гц — 400 кГц: от 50 Гц до 100 кГц
в режиме 10 Гц — 2 кГц: от 50 Гц до 1 кГц
в режиме 2 кГц — 400 кГц: от 5 кГц до 100 кГц
Уровень экспозиции / диапазоны и точность [оси X, Y, Z] Эффективные диапазоны измерения: 20.От 00% до 200,0%, 2 диапазона
[Ось R] Эффективные диапазоны измерения: от 34,64% до 346,4%, 2 диапазона,
Точность: сглаженные края от 50 Гц до 1 кГц ± 3,5% показания. ± 0,5% полной шкалы
Точность: сглаженные края от 1 кГц до 100 кГц ± 5,0% показания. ± 0,5% полной шкалы
Интерфейсы [Поддержка вывода] Результирующий выходной уровень RMS, выходной уровень экспозиции, выходной сигнал плотности магнитного потока X / Y / Z по каждой оси, выходная скорость: 0,1 мВ / количество отображаемых значений
[USB 1.1] Сохранение данных с помощью приложения для ПК
Прочие функции Функция памяти: до 99 данных измеренных значений, медленная функция, сохранение максимального значения, автоматическое отключение питания, включение / выключение звукового сигнала
Блок питания LR6 (AA) щелочная батарея × 4, 0,8 ВА (при работе от батареи), непрерывное использование в течение 10 часов, или адаптер переменного тока 9445-02 (макс. Потребление 1,0 ВА)
Размеры и масса Основной блок: 100 мм (3.2 Датчик × 1, Руководство по эксплуатации × 1, CD-R (программа просмотра данных для ПК для FT3470) × 1, USB-кабель × 1, щелочная батарея LR6 (AA) × 4, адаптер переменного тока 9445-02 × 1, чемодан для переноски × 1

Что означает Гаусс и что измеряет Гаусс? > Адамс Магнитик Продактс Ко.

Многие компании, которые работают с магнитами на производстве, используют термин «гаусс» каждый день. Некоторые могут не знать, что этот термин берет свое начало в работе немецкого математика Карла Фридриха Гаусса, который использовал математические принципы для измерения магнетизма.Конечно, вы, вероятно, могли бы обойтись и без этой мелочи. Более важно знать, что на самом деле означает «гаусс», а что не означает.

Что означает гаусс?

Удивительно, но этот термин все еще часто неправильно понимают, даже среди компаний, которые полагаются на магнитные компоненты.

По сути, гаусс относится к напряженности магнитного поля или, другими словами, к величине магнитного поля в данной области.

Одна единица Гаусса — это одна линия потока на квадратной площади поверхности 1 см.Другой способ думать об этом — это плотность потока. Итак, если вы можете представить себе кубик сахара и одну линию потока, идущую от Северного полюса к Южному полюсу, это и есть один гаусс. Это не обязательно относится к тому, насколько далеко распространяется магнитное поле, однако расстояние будет пропорционально плотности потока и геометрии магнита.

Говоря техническим языком, гаусс все еще является мерой напряженности поля; это переменная местоположения, а также вектор (с направлением), что означает, что другое местоположение в пространстве имеет другое значение гаусса и направление, связанное с ним.

Сила притяжения магнита и гаусс

Гаусс отличается от тягового усилия магнита в целом, и более высокий гаусс не обязательно приводит к более высокому тяговому усилию. Показание Гаусса используется в приложениях, в которых напряженность поля выступает в качестве основного параметра, например, в приложениях датчиков. В большинстве случаев уровень Гаусса не может использоваться для сравнения напряженности поля между магнитами, если магниты не имеют одинаковой геометрии, и показания Гаусса не измеряются в одном и том же месте.

Что измеряет Гаусс?

С точки зрения измерения, гаусс, сокращенно G или Gs, является единицей измерения магнитного поля B cgs, которая также известна как «плотность магнитного потока» или «магнитная индукция». Один гаусс определяется как один максвелл на квадратный сантиметр. Система cgs была дополнена системой SI, которая использует тесла (Т) в качестве единицы измерения B. Одна тесла = 10 000 гаусс!

Хорошо, обратно на Землю. Поскольку магнитное поле Земли около 0.5 гаусс, а магнит на холодильник в форме пиццы, который вы получили в местной пиццерии, составляет 10 гаусс, можно ошибочно заключить, что магнит от Al’s Pizza более мощный, чем тот, что есть на нашей планете. Это было бы пугающей мыслью. Магнитное поле может распространяться повсюду в пространстве, но его сила уменьшается с увеличением расстояния. Вот почему воздушные перевозки регулируют определенное значение гаусса на расстоянии 15 футов. Обычно уровень гаусса очень мал на таком расстоянии и может быть измерен только с помощью очень точного и чувствительного гауссметра.

Калькулятор магнитного поля

Расчет может быть полезен при оценке напряженности поля на расстоянии, но он не учитывает экранирование / упаковку.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *