+7 495 120-13-73 | 8 800 500-97-74

(для регионов бесплатно)

Содержание

Коэффициент полезного действия | Физика

Используя тот или иной механизм, мы совершаем работу, всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную или затраченную работу Aз и полезную работу Aп. Если, например, наша цель — поднять груз массой m на высоту h, то полезная работа — это та, которая обусловлена лишь преодолением силы тяжести, действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:

    Aп = Fтh = mgh.      (24.1)

Если же мы применяем для подъема груза блок или какой-либо другой механизм, то, кроме силы тяжести груза, нам приходится преодолевать еще и силу тяжести частей механизма, а также действующую в механизме силу трения. Например, используя подвижный блок, мы вынуждены будем совершать дополнительную работу по подъему самого блока с тросом и по преодолению силы трения в оси блока. Кроме того, выигрывая в силе, мы всегда проигрываем в пути (об этом подробнее будет рассказано ниже), что также влияет на работу. Все это приводит к тому, что затраченная нами работа оказывается больше полезной:

Aз > Aп

Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм.

Физическая величина, показывающая, какую долю составляет полезная работа от всей затраченной работы, называется коэффициентом полезного действия механизма.

Сокращенное обозначение коэффициента полезного действия — КПД.

Чтобы найти КПД механизма, надо полезную работу разделить на ту, которая была затрачена при использовании данного механизма.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой η (читается «эта»):

    η =* 100%    (24.2)

Поскольку числитель Aп в этой формуле всегда меньше знаменателя Aз, то КПД всегда оказывается меньше 1 (или 100%).

Конструируя механизмы, стремятся увеличить их КПД. Для этого уменьшают трение в осях механизмов и их массу. В тех случаях, когда трение ничтожно мало и используемые механизмы имеют массу, пренебрежимо малую по сравнению с массой поднимаемого груза, коэффициент полезного действия оказывается лишь немного меньше 1. В этом случае затраченную работу можно считать примерно равной полезной работе:

    Aз ≈ Aп     (24.3)

Следует помнить, что выигрыша в работе с помощью простого механизма получить нельзя.

Поскольку каждую из работ в равенстве (24.3) можно выразить в виде произведения соответствующей силы на пройденный путь, то это равенство можно переписать так:

    F1s1 ≈ F2s2     (24.4)

Отсюда следует, что,

выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот.

Этот закон называют

«золотым правилом» механики. Его автором является древнегреческий ученый Герон Александрийский, живший в I в. н. э.

«Золотое правило» механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу мы сразу можем сказать, что рабочему, изображенному на рисунке 47, при двукратном выигрыше в силе для подъема груза на 10 см придется опустить противоположный конец рычага на 20 см. То же самое будет и в случае, изображенном на рисунке 58. Когда рука человека, держащего веревку, опустится на 20 см, груз, прикрепленный к подвижному блоку, поднимется лишь на 10 см.

1. Почему затраченная при использовании механизмов работа оказывается все время больше полезной работы? 2. Что называют коэффициентом полезного действия механизма? 3. Может ли КПД механизма быть равным 1 (или 100%)? Почему? 4. Каким образом увеличивают КПД? 5. В чем заключается «золотое правило» механики? Кто его автор? 6. Приведите примеры проявления «золотого правила» механики при использовании различных простых механизмов.

Коэффициент полезного действия

Допустим, мы отдыхаем на даче, и нам нужно принести из колодца воды. Мы опускаем в него ведро, зачерпываем воду и начинаем поднимать. Не забыли, какова наша цель? Правильно: набрать воды. Но взгляните: мы поднимаем не только воду, но и само ведро, а также тяжёлую цепь, на которой оно висит. Это символизирует двухцветная стрелка: вес поднимаемого нами груза складывается из веса воды и веса ведра и цепи.

Рассматривая ситуацию качественно, мы скажем: наряду с полезной работой по подъёму воды мы совершаем и другую работу – подъём ведра и цепи. Разумеется, без цепи и ведра мы не смогли бы набрать воды, однако, с точки зрения конечной цели, их вес «вредит» нам. Если бы этот вес был бы меньше, то и полная совершённая работа тоже была бы меньше (при той же полезной).

Теперь перейдём к количественному изучению этих работ и введём физическую величину, называемую коэффициентом полезного действия.

Задача. Яблоки, отобранные для переработки, грузчик высыпает из корзин в грузовик. Масса пустой корзины 2 кг, а яблок в ней – 18 кг. Чему равна доля полезной работы грузчика от его полной работы?

Решение. Полной работой является перемещение яблок в корзинах. Эта работа складывается из подъёма яблок и подъёма корзин. Важно: поднятие яблок – полезная работа, а поднятие корзин – «бесполезная», потому что цель работы грузчика – переместить только яблоки.

Введём обозначения: Fя – сила, с которой руки поднимают вверх только яблоки, а Fк – сила, с которой руки поднимают вверх только корзину. Каждая из этих сил равна соответствующей силе тяжести: F=mg.

Пользуясь формулой  A = ±( F||· l ) , «распишем» работы этих двух сил:

Aполезн  =  +Fя · lя  =  mя g · h       и       Aбесполезн  =  +Fк · lк  =  mк g · h

Полная работа складывается из двух работ, то есть равна их сумме:

Aполн  =  Aполезн  +  Aбесполезн  =  mя g h  +  mк g h  =  ( mя + mк ) · g h

В задаче нас просят вычислить долю полезной работы грузчика от его полной работы. Сделаем это, поделив полезную работу на полную:

Доля  = Aполезн  =mя · g h  =18 кг  =18 кг  =  0,9
Aполн( mя + mк ) · g h( 18 + 2 ) кг20 кг

В физике такие доли принято выражать в процентах и обозначать греческой буквой «η» (читается: «эта»). В итоге получим:

η = 0,9     или     η = 0,9 ·100% = 90% ,   что то же самое.

Это число показывает, что из 100% полной работы грузчика доля его полезной работы составляет 90%. Задача решена.

Физическая величина, равная отношению полезной работы к полной совершённой работе, в физике имеет собственное название – КПД – коэффициент полезного действия:

      η  =  Aполезнη – коэффициент полезного действия
Aполезн – полезная работа, Дж
Aполн – полная работа, Дж
Aполн

После вычисления КПД по этой формуле его принято умножать на 100%. И наоборот: для подстановки КПД в эту формулу его значение нужно перевести из процентов в десятичную дробь, поделив на 100%.

Коэффициент полезного действия механизмов: расчет, формула + примеры

 

Известно, что вечный двигатель невозможен. Это связано с тем, что для любого механизма справедливо утверждение: совершённая с помощью этого механизма полная работа (в том числе на нагревание механизма и окружающей среды, на преодоление силы трения) всегда больше полезной работы.

Например, больше половины работы двигателя внутреннего сгорания совершается впустую тратится на нагревание составных частей двигателя; некоторое количество теплоты уносят выхлопные газы.

Часто необходимо оценивать эффективность механизма, целесообразность его использования. Поэтому, чтобы рассчитывать, какая часть от совершённой работы тратится впустую и какая часть с пользой,  вводится специальная физическая величина, которая показывает эффективность механизма.

Эта величина называется коэффициентом полезного действия механизма

Коэффициент полезного действия механизма равен отношению полезной работы к полной работе. Очевидно, коэффициент полезного действия всегда меньше единицы. Эту величину часто выражают в процентах. Обычно её обозначают греческой буквой η (читается «эта»). Сокращённо коэффициент полезного действия записывают КПД.

η = (А_полн /А_полезн) * 100 %,

где η КПД, А_полн полная работа, А_полезн полезная работа.

Среди двигателей наибольший коэффициент полезного действия имеет электрический двигатель (до 98 %). Коэффициент полезного действия двигателей внутреннего сгорания 20 % — 40 %, паровой турбины примерно 30 %.

Отметим, что для увеличения коэффициента полезного действия механизма часто стараются уменьшить силу трения. Это можно сделать, используя различные смазки или шарикоподшипники, в которых трение скольжения заменяется трением качения.

Примеры расчета КПД

Рассмотрим пример. Велосипедист массой 55 кг поднялся на велосипеде массой 5 кг на холм, высота которого 10 м, совершив при этом работу 8 кДж. Найдите коэффициент полезного действия велосипеда. Трение качения колёс о дорогу не учитывайте.

Решение. Найдём общую массу велосипеда и велосипедиста:

m = 55 кг + 5 кг = 60 кг

Найдем их общий вес:

P = mg = 60 кг * 10 Н/кг = 600 Н

Найдём работу, совершённую на подъём велосипеда и велосипедиста:

Aполезн = РS = 600 Н * 10 м = 6 кДж

Найдём КПД велосипеда:

= А_полн /А_полезн  * 100 %  = 6 кДж / 8 кДж * 100 % = 75 %

Ответ: КПД велосипеда равен 75 %.

Рассмотрим ещё один пример. На конец  плеча рычага подвешено тело массой m. К другому плечу прилагают силу F, направленную вниз, и его конец опускается на h. Найдите, насколько поднялось тело, если коэффициент полезного действия рычага равен η %.

Решение. Найдём работу, совершённую  силой F:

A = Fh

 η % от этой работы совершено на то, чтобы поднять тело массой m. Следовательно, на поднятие тела затрачено  Fhη / 100. Так как вес тела равен mg, тело поднялось на высоту Fhη / 100 / mg.

Ответ: тело поднялось на высоту Fhη / 100 / mg.

Нужна помощь в учебе?



Предыдущая тема: Приложение закона равновесия рычага к блоку: золотое правило механики
Следующая тема:&nbsp&nbsp&nbspЭнергия: потенциальная и кинетическая энергия

Кпд какая буква в физике

Η, η (название: э́та, греч. ήτα ) — 7-я буква греческого алфавита. В системе греческой алфавитной записи чисел имеет числовое значение 8. Происходит от финикийской буквы

— хет. От буквы «эта» произошли латинская буква H и кириллическая И c Й.

В современном греческом языке (новогреческий язык) эта буква произносится как закрытый передний гласный /i/ и называется и́та. В древнегреческом языке она произносилась как долгий полуоткрытый передний гласный /ɛː/ . Первоначально знак Η использовался для обозначения придыхания — глухого гортанного фрикатива /h/ . В ионическом диалекте, где этот звук исчез к VI веку до н. э., буква стала использоваться для обозначения долгого /ɛː/ . Когда ионический алфавит был принят в 403 до н. э. в Афинах, /ɛː/ (ранее записывавшийся как Ε) стал также изображаться и как Η, отсюда современное использование.

Обозначения

Прописная Η

Строчная η

  • В оптике — показатель преломления оптической среды (хотя буква n используется чаще).
  • В термодинамике — КПДтепловой машины Карно.
  • В физике элементарных частиц есть η-мезоны.
  • В статистикеη² — «коэффициент частичной регрессии».
  • В лямбда-исчислении — η-конверсия
  • В гидрогазодинамике — динамическая вязкость, обозначаемая также буквой μ.

Wikimedia Foundation . 2010 .

Смотреть что такое «Эта (буква)» в других словарях:

Ү (буква) — Буква кириллицы Ү Кириллица А Б В Г Ґ Д … Википедия

Ө (буква) — Буква кириллицы Ө Кириллица А Б В Г Ґ Д … Википедия

эта — буква, каста, сия Словарь русских синонимов. эта сущ., кол во синонимов: 3 • буква (103) • каста … Словарь синонимов

Эта — Греческий алфавит Αα Альфа Νν Ню Ββ … Википедия

Ѫ (буква) — Большой юс Кириллица А Б В Г Ґ Д … Википедия

ЭТА — У этого термина существуют и другие значения, см. ETA. У этого термина существуют и другие значения, см. Эта (буква). Страна басков и свобода баск. Euskadi Ta Askatasuna … Википедия

Эта страшная буква «Р» — The Big C Жанр комедия … Википедия

Буква зю — Эта статья о фразеологизме. О компьютерной программе см. Bukva zu. В Викисловаре есть статья « … Википедия

буква — Знак (азбучный), письмена (множ. ч.), иероглиф (гиероглиф), каракуля, руны. Нагородил какие то каракули, и читай. … Ср. знак. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. буква … Словарь синонимов

Буква А — Буква кириллицы А Кириллица А Б В Г Ґ Д … Википедия

Допустим, мы отдыхаем на даче, и нам нужно принести из колодца воды. Мы опускаем в него ведро, зачерпываем воду и начинаем поднимать. Не забыли, какова наша цель? Правильно: набрать воды. Но взгляните: мы поднимаем не только воду, но и само ведро, а также тяжёлую цепь, на которой оно висит. Это символизирует двухцветная стрелка: вес поднимаемого нами груза складывается из веса воды и веса ведра и цепи.

Рассматривая ситуацию качественно, мы скажем: наряду с полезной работой по подъёму воды мы совершаем и другую работу – подъём ведра и цепи. Разумеется, без цепи и ведра мы не смогли бы набрать воды, однако, с точки зрения конечной цели, их вес «вредит» нам. Если бы этот вес был бы меньше, то и полная совершённая работа тоже была бы меньше (при той же полезной).

Теперь перейдём к количественному изучению этих работ и введём физическую величину, называемую коэффициентом полезного действия.

Задача. Яблоки, отобранные для переработки, грузчик высыпает из корзин в грузовик. Масса пустой корзины 2 кг, а яблок в ней – 18 кг. Чему равна доля полезной работы грузчика от его полной работы?

Решение. Полной работой является перемещение яблок в корзинах. Эта работа складывается из подъёма яблок и подъёма корзин. Важно: поднятие яблок – полезная работа, а поднятие корзин – «бесполезная», потому что цель работы грузчика – переместить только яблоки.

Введём обозначения: F я – сила, с которой руки поднимают вверх только яблоки, а F к – сила, с которой руки поднимают вверх только корзину. Каждая из этих сил равна соответствующей силе тяжести: F=mg.

Пользуясь формулой A = ±( F || · l ) , «распишем» работы этих двух сил:

Полная работа складывается из двух работ, то есть равна их сумме:

В задаче нас просят вычислить долю полезной работы грузчика от его полной работы. Сделаем это, поделив полезную работу на полную:

Доля = A полезн = m я · g h = 18 кг = 18 кг = 0,9
A полн ( m я + m к ) · g h ( 18 + 2 ) кг 20 кг

В физике такие доли принято выражать в процентах и обозначать греческой буквой «η» (читается: «эта»). В итоге получим:

η = 0,9 или η = 0,9 ·100% = 90% , что то же самое.

Это число показывает, что из 100% полной работы грузчика доля его полезной работы составляет 90%. Задача решена.

Физическая величина, равная отношению полезной работы к полной совершённой работе, в физике имеет собственное название – КПД – коэффициент полезного действия:

η – коэффициент полезного действия
A полезн – полезная работа, Дж
A полн – полная работа, Дж

A полн

После вычисления КПД по этой формуле его принято умножать на 100%. И наоборот: для подстановки КПД в эту формулу его значение нужно перевести из процентов в десятичную дробь, поделив на 100%.

Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей

Физика — это наука, которая изучает процессы, происходящие в природе. Наука эта очень интересная и любопытная, ведь каждому из нас хочется удовлетворить себя ментально, получив знания и понимание того, как и что в нашем мире устроено. Физика, законы которой выводились не одно столетие и не одним десятком ученных, помогает нам с этой задачей, и мы должны только радоваться и поглощать предоставленные знания.

Но в то же время физика — наука далеко непростая, как, собственно, и сама природа, но разобраться в ней было бы очень интересно. Сегодня мы будем говорить о коэффициенте полезного действия. Мы узнаем, что такое КПД и зачем он нужен. Рассмотрим все наглядно и интересно.

Определение и расшифровка КПД

Расшифровка аббревиатуры — коэффициент полезного действия. Однако и такое толкование с первого раза может оказаться не особо понятным. Этим коэффициентом характеризуется эффективность системы или какого-либо отдельного тела, а чаще — механизма. Эффективность характеризуется отдачей или преобразованием энергии.

Этот коэффициент применим практически ко всему, что нас окружает, и даже к нам самим, причём в большей степени. Ведь совершаем мы полезную работу все время, только вот как часто и насколько это важно, уже другой вопрос, с ним и используется термин «КПД».

Важно учесть, что этот коэффициент — величина неограниченная, она, как правило, представляет собой либо математические значения, к примеру, 0 и 1, либо же, как это чаще бывает — в процентах.

В физике этот коэффициент обозначается буквой Ƞ, или, как её привыкли называть, Эта.

Полезная работа

При использовании каких-либо механизмов или устройств мы обязательно совершаем работу. Она, как правило, всегда больше той, что необходима нам для выполнения поставленной задачи. Исходя из этих фактов различается два типа работы: это затраченная, которая обозначается большой буквой, А с маленькой з (Аз), и полезная — А с буквой п (Ап). Для примера, возьмем такой случай: у нас есть задача поднять булыжник определенной массой на определенную высоту. В этом случае работа характеризует только преодоление силы тяжести, которая, в свою очередь, действует на груз.

В случае когда для подъема применяется какое-либо устройство, кроме силы тяжести булыжника, важно учесть еще и силу тяжести частей этого устройства. И кроме всего этого, важно помнить, что, выигрывая в силе, мы всегда будем проигрывать в пути. Все эти факты приводят к одному выводу, что затрачиваемая работа в любом варианте окажется больше полезной, Аз > Ап, вопрос как раз заключается в том, насколько её больше, ведь можно максимально сократить эту разницу и тем самым увеличить КПД, наш или нашего устройства.

Полезная работа — это часть затрачиваемой, которую мы совершаем, используя механизм. А КПД — это как раз та физическая величина, которая показывает, какую часть составляет полезная работа от всей затраченной.

Итог:

  • Затрачиваемая работа Aз всегда больше полезной Ап.
  • Чем больше отношение полезной к затрачиваемой, тем выше коэффициент, и наоборот.
  • Ап находится произведением массы на ускорение свободного падения и на высоту подъема.

Физическая формула КПД

Существует определенная формула для нахождения КПД. Она звучит следующим образом: чтобы найти КПД в физике, нужно количество энергии разделить на проделанную системой работу. То есть КПД — это отношение затраченной энергии к выполненной работе. Отсюда можно сделать простой вывод, что тем лучше и эффективнее система или тело, чем меньше энергии затрачивается на выполнение работы.

Сама формула выглядит кратко и очень просто Ƞ будет равняться A/Q. То есть Ƞ = A/Q. В этой краткой формулы и фиксируют нужные нам элементы для вычисления. То есть A в этом случае является использованной энергией, которая потребляется системой во время работы, а большая буква Q, в свою очередь, будет являться затраченной A, или опять же затраченной энергией.

В идеале КПД равен единице. Но, как это обычно бывает, он её меньше. Так происходит по причине физики и по причине, конечно же, закона о сохранении энергии.

Все дело в том, что закон сохранения энергии предполагает, что не может быть получено больше А, чем получено энергии. И даже единице этот коэффициент будет равняться крайне редко, поскольку энергия тратится всегда. И работа сопровождается потерями: к примеру, у двигателя потеря заключается в его обильном нагреве.

Итак, формула КПД:

Ƞ=А/Q, где

  • A — полезная работа, которую выполняет система.
  • Q — энергия, которую потребляет система.

Применение в разных сферах физики

Примечательно, что КПД не существует как понятие нейтральное, для каждого процесса есть свой КПД, это не сила трения, он не может существовать сам по себе.

Рассмотрим несколько из примеров процессов с наличием КПД.

К примеру, возьмем электрический двигатель. Задача электрического двигателя — преобразовывать электрическую энергию в механическую. В этом случае коэффициентом будет являться эффективность двигателя в отношении преобразования электроэнергии в энергию механическую. Для этого случая также существует формула, и выглядит она следующим образом: Ƞ=P2/P1. Здесь P1 — это мощность в общем варианте, а P2 — полезная мощность, которую вырабатывает сам двигатель.

Нетрудно догадаться что структура формулы коэффициента всегда сохраняется, меняются в ней лишь данные, которые нужно подставить. Они зависят от конкретного случая, если это двигатель, как в случае выше, то необходимо оперировать затрачиваемой мощностью, если работа, то исходная формула будет другая.

Теперь мы знаем определение КПД и имеем представление об этом физическом понятии, а также об отдельных его элементах и нюансах. Физика — это одна из самых масштабных наук, но её можно разобрать на маленькие кусочки, чтобы понять. Сегодня мы исследовали один из этих кусочков.

Видео

Это видео поможет вам понять, что такое КПД.

КПД — что это такое? Расшифровка, определение, перевод

Аббревиатура КПД расшифровывается как «коэффициент полезного действия». Этот термин пришел из механики — одного из разделов физики, но сейчас часто употребляется в разных видах деятельности. КПД определяется как отношение полезной работы к затраченной энергии. Коэффициент полезного действия не имеет размерности, но указывается обычно в процентах.

КПД используют для оценки эффективности каких-либо устройств, машин или даже человеческих усилий. В идеальных механизмах КПД = 100% или 1 (единице). Но, как известно, идеальных механизмов не существует. В реальных механизмах, применяемых на практике, полезная работа меньше полной, и поэтому КПД меньше 100%. По закону сохранения энергии невозможно получить полезной работы больше, чем затрачено энергии. Ученые умы всегда были заняты поиском максимально эффективных по КПД устройств.

Пример. Разность верхнего и нижнего уровня воды на Красноярской ГЭС составляет почти 100 метров. Каждую секунду с плотины падает по водоводу 7000 тонн воды. Поэтому полная мощность падающей воды составляет 7 миллиардов ватт. Эта вода вращает турбины, присоединенные к электрогенераторам. Полезная мощность всех 12 электрогенераторов Красноярской ГЭС соcтавляет 6 миллиардов ватт. Таким образом КПД электростанции примерно равен 85%.



Вы узнали, откуда произошло слово КПД, его объяснение простыми словами, перевод, происхождение и смысл.
Пожалуйста, поделитесь ссылкой «Что такое КПД?» с друзьями:

И не забудьте подписаться на самый интересный паблик ВКонтакте!

 



Аббревиатура КПД расшифровывается как «коэффициент полезного действия». Этот термин пришел из механики — одного из разделов физики, но сейчас часто употребляется в разных видах деятельности. КПД определяется как отношение полезной работы к затраченной энергии. Коэффициент полезного действия не имеет размерности, но указывается обычно в процентах.

КПД используют для оценки эффективности каких-либо устройств, машин или даже человеческих усилий. В идеальных механизмах КПД = 100% или 1 (единице). Но, как известно, идеальных механизмов не существует. В реальных механизмах, применяемых на практике, полезная работа меньше полной, и поэтому КПД меньше 100%. По закону сохранения энергии невозможно получить полезной работы больше, чем затрачено энергии. Ученые умы всегда были заняты поиском максимально эффективных по КПД устройств.

Пример. Разность верхнего и нижнего уровня воды на Красноярской ГЭС составляет почти 100 метров. Каждую секунду с плотины падает по водоводу 7000 тонн воды. Поэтому полная мощность падающей воды составляет 7 миллиардов ватт. Эта вода вращает турбины, присоединенные к электрогенераторам. Полезная мощность всех 12 электрогенераторов Красноярской ГЭС соcтавляет 6 миллиардов ватт. Таким образом КПД электростанции примерно равен 85%.

Что такое эффективность. Разбираемся, что такое КПД

КПД, по своему определению, это отношение полученной энергии к затраченной. Если двигатель сжигает бензин и только треть образовавшегося тепла превращается в энергию движения автомобиля, то КПД равен одной трети или (округляя до целых) 33%. Если лампочка дает световой энергии в пятьдесят раз меньше потребляемой электрической, ее КПД равен 1/50 или 2%. Однако тут сразу возникает вопрос: а если лампочка продается как инфракрасный обогреватель? После того как продажа ламп накаливания была запрещена, точно такие же по конструкции устройства стали продаваться как «инфракрасные обогреватели», поскольку именно в тепло преобразуется свыше 95% электроэнергии.

(Бес)полезное тепло

Обычно тепло, выделяющееся при работе чего-либо, записывают в потери. Но это далеко не бесспорно. Электростанция, например, превращает в электроэнергию примерно треть выделяющегося при сгорании газа или угля тепла, однако еще часть энергии может при этом пойти на нагрев воды. Если горячее водоснабжение и теплые батареи тоже записать в полезные результаты работы ТЭЦ, то КПД вырастет на 10-15%.

Схожим примером может служить автомобильная «печка»: она передает в салон часть тепла, образующегося при работе двигателя. Это тепло может быть полезным и необходимым, а может рассматриваться как потери: по этой причине оно обычно не фигурирует в расчетах КПД автомобильного мотора.

Инженер осматривает паровую турбину. Фото Christian Kuhna / Wikimedia, с разрешения производителя — Siemens.

Особняком стоят такие устройства, как тепловые насосы. Их КПД, если считать его по соотношению выданного тепла и затраченного электричества, больше 100%, однако это не опровергает основы термодинамики. Тепловой насос перекачивает тепло от менее нагретого тела к более нагретому и затрачивает на это энергию, так как без затрат энергии подобное перераспределение теплоты запрещено той же термодинамикой. Если тепловой насос берет из розетки киловатт, а выдает пять киловатт тепла, то четыре киловатта будут взяты из воздуха, воды или грунта вне дома. Окружающая среда в том месте, откуда устройство черпает тепло, остынет, а дом прогреется. Но потом эта теплота вместе с потраченной насосом энергией все равно рассеется в пространстве.

Внешний контур теплового насоса: через эти пластиковые трубы прокачивается жидкость, забирающая тепло из толщи воды в отапливаемое здание. Mark Johnson / Wikimedia

Много или эффективно?

Некоторые устройства имеют очень высокий КПД, но при этом — неподходящую мощность.

Электрические моторы тем эффективнее, чем они больше, однако поставить электровозный двигатель в детскую игрушку физически невозможно и экономически бессмысленно. Поэтому КПД двигателей в локомотиве превышает 95%, а в маленькой машинке на радиоуправлении — от силы 80%. Причем в случае с электрическим двигателем его эффективность зависит так же от нагрузки: недогруженный или перегруженный мотор работает с меньшим КПД. Правильный подбор оборудования может значить даже больше, чем просто выбор устройства с максимальным заявленным КПД.

Самый мощный серийный локомотив, шведский IORE. Второе место удерживает советский электровоз ВЛ-85. Kabelleger / Wikimedia

Если электрические моторы выпускаются для самых разных целей, от вибраторов в телефонах до электровозов, то вот ионный двигатель имеет гораздо меньшую нишу. Ионные двигатели эффективны, экономичны, долговечны (работают без выключения годами), но включаются только в вакууме и дают очень малую тягу. Они идеально подходят для отправки в дальний космос научных аппаратов, которые могут лететь к цели несколько лет и для которых экономия топлива важнее затрат времени.

Электрические моторы, кстати, потребляют почти половину всей вырабатываемой человечеством электроэнергии, так что даже разница в одну сотую процента в мировом масштабе может означать необходимость построить еще один ядерный реактор или еще один энергоблок ТЭЦ.

Эффективно или дешево?

Энергетическая эффективность далеко не всегда тождественна экономической. Наглядный пример — светодиодные лампы, которые до недавнего времени проигрывали лампам накаливания и флуоресцентным «энергосберегайкам». Сложность изготовления белых светодиодов, дороговизна сырья и, с другой стороны, простота лампы накаливания заставляли выбирать менее эффективные, но зато дешевые источники света.

Кстати, за изобретение синего светодиода, без которого бы нельзя было сделать яркую белую лампу, японские исследователи получили в 2014 году Нобелевскую премию. Это не первая премия, вручаемая за вклад в развитие освещения: в 1912 году наградили Нильса Далена, изобретателя, который усовершенствовал ацетиленовые горелки для маяков.

Синие светодиоды нужны для получения белого света в сочетании с красными и зелеными. Эти два цвета научились получать в достаточно ярких светодиодах намного раньше; синие долгое время оставались слишком тусклыми и дорогими для массового применения

Другой пример эффективных, но очень дорогих устройств — солнечные батареи на основе арсенида галлия (полупроводник с формулой GaAs). Их КПД достигает почти 30%, что в полтора-два раза выше используемых на Земле батарей на основе куда более распространенного кремния. Высокая эффективность оправдывает себя только в космосе, куда доставка одного килограмма груза может стоить почти как килограмм золота. Тогда экономия на массе батареи будет оправдана.

КПД линий электропередач можно поднять за счет замены меди на лучше проводящее ток серебро, однако серебряные кабели слишком дороги и потому используются разве что в единичных случаях. А вот к идее построить сверхпроводящие ЛЭП из дорогой и требующей охлаждения жидким азотом редкоземельной керамики в последние годы несколько раз обращались на практике. В частности, такой кабель уже проложен и подключен в германском городе Эссене. Он рассчитан на 40 мегаватт электрической мощности при напряжении в десять киловольт. Кроме того что потери на нагрев сведены к нулю (однако взамен нужно питать криогенные установки), такой кабель намного компактнее обычного и за счет этого можно сэкономить на покупке дорогой земли в центре города или отказаться от прокладки дополнительных туннелей.

Не по общим правилам

Из школьного курса многие помнят, что КПД не может превышать 100% и что он тем выше, чем больше разница температур между холодильником и нагревателем. Однако это верно лишь для так называемых тепловых двигателей: паровая машина, двигатель внутреннего сгорания, реактивные и ракетные двигатели, газовые и паровые турбины.

Электродвигатели и все электрические устройства этому правилу не подчиняются, поскольку они не тепловые машины. Для них верно только то, что КПД не может превышать ста процентов, а частные ограничения в каждом случае определяются по-разному.

В случае с солнечной батареей потери определяются как квантовыми эффектами при поглощении фотонов, так и потерями на отражение света от поверхности батареи и на поглощение в фокусирующих зеркалах. Проведенные расчеты показали, что выйти за 90% солнечная батарея не может в принципе, а на практике достижимы значения около 60-70%, да и те при весьма сложной структуре фотоячеек.

Великолепным КПД обладают топливные элементы. В эти устройства поступают некие вещества, которые вступают в химическую реакцию друг с другом и дают электрический ток. Этот процесс опять-таки не является циклом тепловой машины, поэтому КПД получается достаточно высоким, порядка 60%, в то время как дизель или бензиновый двигатель не выходят обычно за 50%.

Именно топливные элементы стояли на летавших к Луне космических кораблях «Аполло», и они могут работать, например, на водороде и кислороде. Их недостаток заключается только в том, что водород должен быть достаточно чистым и к тому же его надо где-то хранить и как-то передавать от завода к потребителям. Технологии, позволяющие заменить водородом обычный метан, пока что не доведены до массового использования. На водороде и топливных элементах работают лишь экспериментальные автомобили и некоторое количество подводных лодок.

Плазменные двигатели серии СПД. Их делает ОКБ «Факел», и они используются для удержания спутников на заданной орбите. Тяга создается за счет потока ионов, которые возникают после ионизации инертного газа электрическим разрядом. КПД этих двигателей достигает 60 процентов

Ионные и плазменные двигатели уже существуют, но тоже работают лишь в вакууме. Кроме того, их тяга слишком мала и на порядки ниже веса самого устройства — с Земли они не взлетели бы даже при отсутствии атмосферы. Зато во время межпланетных полетов длительностью в многие месяцы и даже годы слабая тяга компенсируется экономичностью и надежностью.

 Алексей Тимошенко

Коэффициент полезного действия | 7 класс Онлайн

Конспект по физике для 7 класса «Коэффициент полезного действия «. ВЫ УЗНАЕТЕ: Что такое полная и полезная работа. Что такое коэффициент полезного действия механизма. Как определить КПД простого механизма.

Конспекты по физике    Учебник физики    Тесты по физике


Коэффициент полезного действия

На предыдущих уроках мы познакомились с простыми механизмами. Изучая их принцип действия, мы не учитывали вес рычагов, блоков и других частей механизмов, а также существующую силу трения и т.п. Условия работы механизмов, при которых не учитывают все эти факторы, называют идеальными. В этих условиях вся работа, совершённая приложенной силой (эту работу называют полной или совершённой), равна полезной работе по подъёму грузов или преодолению какого-либо сопротивления.

ПОЛНАЯ И ПОЛЕЗНАЯ РАБОТА

На практике совершённая с помощью механизма полная работа всегда несколько больше полезной работы.

При использовании наклонной плоскости часть от полной работы тратится на работу против сил трения.

При работе рычага часть полной работы затрачивается на совершение работы против сил трения, а также на совершение работы по перемещению самого рычага, на который действует сила тяжести.

При подъёме грузов с помощью блоков часть полной работы также затрачивается на работу против сил трения. Другая часть полной работы тратится на перемещение перекинутой через блок веревки. Если же мы используем подвижный блок, то ещё совершаем дополнительную работу по его подъёму, так как на него действует сила тяжести.

Какой бы механизм мы не взяли, полезная работа Ап, совершённая с его помощью, всегда составляет лишь часть полной (затраченной) работы Аз:   Ап < Аз,   или Апз < 1.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

Характеристику механизма, определяющую какую долю полезная работа составляет от полной, называют коэффициентом полезного действия механизма — КПД.

Для определения КПД нужно полезную работу разделить на полную. КПД обозначают греческой буквой η (читается «эта»). КПД можно выражать либо в процентах, либо числом, которое меньше единицы.

КПД любого механизма всегда меньше 100 %. Конструируя механизмы, люди стремятся увеличить их КПД. Для этого, например, уменьшают массу движущихся частей и трение между деталями. Созданы машины и механизмы, у которых КПД достигает 95–99 %. Но построить машину с КПД, равным 100 %, невозможно.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОЛЕЗНОГО ДЕЙСТВИЯ

Пусть на коротком плече рычага закреплён груз массой 100 кг. Для его подъёма к длинному плечу приложили силу, равную 250 Н. Груз подняли на высоту h1 = 0,08 м, при этом точка приложения движущей силы опустилась на высоту h2 = 0,4 м. Найдите КПД рычага. Запишем условие задачи и решим её.

Ответ: КПД рычага η = 78,4 %.

В настоящее время наиболее распространённым способом получения электроэнергии является способ её производства на тепловых электростанциях. В котлах сжигается топливо и образуется пар. который вращает паровую турбину, соединённую с электрогенератором, вырабатывающим электрический ток. При этом КПД лучших котлов составляет 50-55 %, КПД паровых турбин — 30-40 %. КПД современных генераторов достигает 95 %, а КПД передающих электрических линий — 60-70 %. При получении электричества таким способом общий КПД будет 11–16%.

Для двигателя легкового автомобиля КПД составляет 25– 30%. Это значит, что 25–30 % сгоревшего топлива используется на передвижение автомобиля с грузом. Полезный груз — пассажиры — составляет максимум 30% от веса гружёного автомобиля. Тогда полезное использование топлива в автомобилях получается равным от 4,5 до 7,5 %.

 


Вы смотрели Конспект по физике для 7 класса «Коэффициент полезного действия «: .
Вернуться к Списку конспектов по физике (В оглавление).

Пройти онлайн-тест «»

Efficiency — Energy Education

Рис. 1. Потребляемая мощность в тепловом двигателе измеряется в МВт, а выходная мощность, полученная в виде электричества, измеряется в МВт. [1] Отношение выходной мощности к входящей — это КПД.

Слово может иметь множественные и неоднозначные значения в повседневном языке, но в науке они имеют точные значения. Эффективность в физике (и часто в химии) — это сравнение выходной энергии с вложенной энергией в данной системе.Он определяется как процентное отношение выходной энергии к входной энергии, определяемое уравнением:

[math] Эффективность = \ frac {E_ {out}} {E_ {in}} \ times 100 \% [/ math]

Это уравнение обычно используется для представления энергии в виде тепла или мощности.

«Эффективность» часто путают с «эффективностью», и при анализе энергетических систем их следует различать. Энергоэффективность измеряет, сколько система извлекает из потока топлива или первичной энергии, которую она использует.Если энергетическая система эффективна, она использует эту энергию для достижения правильной цели. Например, автомобиль является очень эффективным средством передвижения, поскольку он может перемещать людей на большие расстояния и в определенные места. Однако автомобиль может не очень эффективно перевозить людей из-за того, как он расходует топливо. [2]

Типы эффективности

Тепловой КПД

Эффективность очень часто используется в науке для описания эффективности теплового двигателя и называется термической эффективностью. [3] Этот КПД описывает, сколько работы двигатель может получить от используемого топлива. Согласно второму закону термодинамики, известному как КПД Карно, существуют верхние пределы того, насколько эффективными могут быть двигатели. Этот КПД Карно зависит только от температуры источника тепла и поглотителя холода и предназначен для идеального (невозможного) двигателя, у которого нет изменения энтропии. Хотя такой двигатель мог бы максимизировать эффективность , с точки зрения эффективности он ужасно непрактичен, поскольку его идеализированные процессы требуют так много времени для выполнения значительного объема работы.По словам Шредера, «не беспокойтесь об установке двигателя Карно в свой автомобиль; хотя это увеличит расход топлива, вас будут обгонять пешеходы». [4] [5]

Эффективность передачи электроэнергии

Электроэнергия имеет тенденцию терять энергию в электрической сети, поскольку она передается из одного места в другое, в зависимости от величины электрического тока, конкретных проводников и длины линии передачи. По мере увеличения напряжения эти потери значительно снижаются из-за их связи с током.Типичные потери от электростанции для пользователя в их доме колеблются от 8% до 15%. [6]

КПД ветряной турбины

Ветровые турбины ограничены максимальным теоретическим КПД 59,3%, который известен как предел Беца. [7] Этот закон получен путем анализа сохранения массы и количества движения в потоке жидкости вокруг привода ветряной турбины. Эффективность ветряной турбины означает, сколько энергии она может получить от ветра, проходящего через роторы.

Последствия

Эффективность используется для описания энергии, которую определенная система может извлекать и использовать из своего источника энергии. К таким системам относятся силовые установки, двигатели и турбины. Любая система , которая использует энергию топлива или первичного потока, имеет определенный КПД.

КПД электростанций, работающих на угле и природном газе, составляет от 32% до 42%. [8] Если электростанция имеет КПД 35%, то на каждые 100 Дж тепла от угля около 35 Дж превращается в электричество, а остальные 65 Дж — в тепло.Это тепло идет на нагревание атмосферы или, возможно, водоема, такого как река или озеро.

Это не технический сбой, а ограничение, налагаемое термодинамикой, с максимальной эффективностью таких установок, определяемой КПД Карно. Чем ниже эффективность таких установок, тем более пагубно они воздействуют на окружающую среду, поскольку необходимо использовать больше этих видов топлива для удовлетворения энергетических потребностей. Возможность повышения эффективности является предметом постоянных исследований, в первую очередь из-за того, что возможность повышения эффективности снизит воздействие на окружающую среду от использования энергии и сократит потребности в ресурсах в будущем.Наряду с эффективностью для окружающей среды и здоровья людей важно, чтобы подходящие виды топлива были доступны.

Когенерационные установки используют отходящее тепло электростанций и других тепловых систем (например, двигатель автомобиля, работающий с обогревателем) для питания других частей системы, тем самым повышая общий КПД. [9]

Для дальнейшего чтения

Список литературы

  1. Сделано внутри команды Encyclopedia
  2. ↑ Diffen, Эффективность и эффективность [Онлайн], Доступно: http: // www.diffen.com/difference/Effectiveness_vs_Efficiency
  3. ↑ Р. Вольфсон, «Энтропия, тепловые двигатели и второй закон термодинамики» в Энергия, окружающая среда и климат , 2-е изд., Нью-Йорк, Нью-Йорк: W.W. Norton & Company, 2012, гл. 4, сек. 7. С. 81-84.
  4. ↑ Hyperphysics, Cycle Carnot [Online], Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/carnot.html
  5. ↑ McMaster Physics and Astronomy, Цикл Карно [Online], Доступно: http: // www.Physics.mcmaster.ca/~morozov/3K03/Lecture9.pdf
  6. ↑ IEC, ЭФФЕКТИВНАЯ ПЕРЕДАЧА И РАСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ [Онлайн], Доступно: http://www.iec.ch/about/brochures/pdf/technology/transmission.pdf
  7. ↑ Программа WindPower, The Betz limit [Online], Доступно: http://www.wind-power-program.com/betz.htm
  8. ↑ Bright Hub Engineering, Эффективность различных типов электростанций [Онлайн], Доступно: http: //www.brighthubengineering.ru / электростанции / 72369-сравнить-эффективность-разных-электростанций /
  9. ↑ Forbes, Самые эффективные электростанции [Онлайн], Доступно: http://www.forbes.com/2008/07/03/energy-efficiency-cogeneration-biz-energy_cx_jz_0707efficiency_horror.html

Efficiency — Energy Education

Рис. 1. Потребляемая мощность в тепловом двигателе измеряется в МВт, а выходная мощность, полученная в виде электричества, измеряется в МВт. [1] Отношение выходной мощности к входящей — это КПД.

Слово может иметь множественные и неоднозначные значения в повседневном языке, но в науке они имеют точные значения. Эффективность в физике (и часто в химии) — это сравнение выходной энергии с вложенной энергией в данной системе. Он определяется как процентное отношение выходной энергии к входной энергии, определяемое уравнением:

[math] Эффективность = \ frac {E_ {out}} {E_ {in}} \ times 100 \% [/ math]

Это уравнение обычно используется для представления энергии в виде тепла или мощности.

«Эффективность» часто путают с «эффективностью», и при анализе энергетических систем их следует различать. Энергоэффективность измеряет, сколько система извлекает из потока топлива или первичной энергии, которую она использует. Если энергетическая система эффективна, она использует эту энергию для достижения правильной цели. Например, автомобиль является очень эффективным средством передвижения, поскольку он может перемещать людей на большие расстояния и в определенные места. Однако автомобиль может не очень эффективно перевозить людей из-за того, как он расходует топливо. [2]

Типы эффективности

Тепловой КПД

Эффективность очень часто используется в науке для описания эффективности теплового двигателя и называется термической эффективностью. [3] Этот КПД описывает, сколько работы двигатель может получить от используемого топлива. Согласно второму закону термодинамики, известному как КПД Карно, существуют верхние пределы того, насколько эффективными могут быть двигатели. Этот КПД Карно зависит только от температуры источника тепла и поглотителя холода и предназначен для идеального (невозможного) двигателя, у которого нет изменения энтропии.Хотя такой двигатель мог бы максимизировать эффективность , с точки зрения эффективности он ужасно непрактичен, поскольку его идеализированные процессы требуют так много времени для выполнения значительного объема работы. По словам Шредера, «не беспокойтесь об установке двигателя Карно в свой автомобиль; хотя это увеличит расход топлива, вас будут обгонять пешеходы». [4] [5]

Эффективность передачи электроэнергии

Электроэнергия имеет тенденцию терять энергию в электрической сети, поскольку она передается из одного места в другое, в зависимости от величины электрического тока, конкретных проводников и длины линии передачи.По мере увеличения напряжения эти потери значительно снижаются из-за их связи с током. Типичные потери от электростанции для пользователя в их доме колеблются от 8% до 15%. [6]

КПД ветряной турбины

Ветровые турбины ограничены максимальным теоретическим КПД 59,3%, который известен как предел Беца. [7] Этот закон получен путем анализа сохранения массы и количества движения в потоке жидкости вокруг привода ветряной турбины. Эффективность ветряной турбины означает, сколько энергии она может получить от ветра, проходящего через роторы.

Последствия

Эффективность используется для описания энергии, которую определенная система может извлекать и использовать из своего источника энергии. К таким системам относятся силовые установки, двигатели и турбины. Любая система , которая использует энергию топлива или первичного потока, имеет определенный КПД.

КПД электростанций, работающих на угле и природном газе, составляет от 32% до 42%. [8] Если электростанция имеет КПД 35%, то на каждые 100 Дж тепла от угля около 35 Дж превращается в электричество, а остальные 65 Дж — в тепло.Это тепло идет на нагревание атмосферы или, возможно, водоема, такого как река или озеро.

Это не технический сбой, а ограничение, налагаемое термодинамикой, с максимальной эффективностью таких установок, определяемой КПД Карно. Чем ниже эффективность таких установок, тем более пагубно они воздействуют на окружающую среду, поскольку необходимо использовать больше этих видов топлива для удовлетворения энергетических потребностей. Возможность повышения эффективности является предметом постоянных исследований, в первую очередь из-за того, что возможность повышения эффективности снизит воздействие на окружающую среду от использования энергии и сократит потребности в ресурсах в будущем.Наряду с эффективностью для окружающей среды и здоровья людей важно, чтобы подходящие виды топлива были доступны.

Когенерационные установки используют отходящее тепло электростанций и других тепловых систем (например, двигатель автомобиля, работающий с обогревателем) для питания других частей системы, тем самым повышая общий КПД. [9]

Для дальнейшего чтения

Список литературы

  1. Сделано внутри команды Encyclopedia
  2. ↑ Diffen, Эффективность и эффективность [Онлайн], Доступно: http: // www.diffen.com/difference/Effectiveness_vs_Efficiency
  3. ↑ Р. Вольфсон, «Энтропия, тепловые двигатели и второй закон термодинамики» в Энергия, окружающая среда и климат , 2-е изд., Нью-Йорк, Нью-Йорк: W.W. Norton & Company, 2012, гл. 4, сек. 7. С. 81-84.
  4. ↑ Hyperphysics, Cycle Carnot [Online], Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/carnot.html
  5. ↑ McMaster Physics and Astronomy, Цикл Карно [Online], Доступно: http: // www.Physics.mcmaster.ca/~morozov/3K03/Lecture9.pdf
  6. ↑ IEC, ЭФФЕКТИВНАЯ ПЕРЕДАЧА И РАСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ [Онлайн], Доступно: http://www.iec.ch/about/brochures/pdf/technology/transmission.pdf
  7. ↑ Программа WindPower, The Betz limit [Online], Доступно: http://www.wind-power-program.com/betz.htm
  8. ↑ Bright Hub Engineering, Эффективность различных типов электростанций [Онлайн], Доступно: http: //www.brighthubengineering.ru / электростанции / 72369-сравнить-эффективность-разных-электростанций /
  9. ↑ Forbes, Самые эффективные электростанции [Онлайн], Доступно: http://www.forbes.com/2008/07/03/energy-efficiency-cogeneration-biz-energy_cx_jz_0707efficiency_horror.html

Эффективность (физика): определение, формула и примеры

Обновлено 28 декабря 2020 г.

Эми Дусто

Эффективность — это способ описания количества полезного результата , который процесс или машина может произвести в процентах от вход , необходимый для его работы.Другими словами, он сравнивает, сколько энергии используется для выполнения работы, с тем, сколько теряется или тратится впустую для окружающей среды. Чем эффективнее машина, тем меньше тратится энергии.

Например, если тепловой двигатель способен приводить в движение 75 процентов получаемого топлива, а 25 процентов теряется в виде тепла в процессе, это будет 75 процентов эффективности. Из исходных 100 процентов топлива 75 процентов было произведено как полезная работа.

Тепловые двигатели

В физике термин тепловые двигатели может относиться к нескольким типам машин или процессов.Формально тепловой двигатель — это любая термодинамическая система, преобразующая тепловую энергию в механическую энергию или движение.

Базовый рецепт теплового двигателя включает в себя следующее:

  • Тепловая баня или какой-либо тип высокотемпературного источника тепла
  • Низкотемпературный холодный резервуар, в который отводится тепло
  • Сам двигатель , который поглощает тепло из горячего резервуара, чтобы создать некоторую форму расширения системы, которая воздействует на окружающую среду (например, вращает двигатель), а затем выделяет тепловую энергию в холодный резервуар, когда он возвращается в исходное состояние.

Например, в автомобиле горящее топливо является источником тепла, среда вокруг автомобиля является резервуаром холода, а двигатель внутреннего сгорания выполняет работу по преобразованию тепла в выхлопные газы, когда он перемещает поршни и вращает коленчатый вал, позволяющий машине двигаться.

Энергоэффективность теплового двигателя

Эффективность теплового двигателя — это отношение полезной работы, выполняемой системой (также называемой полезной энергией или выходной энергией системы), к тепловой энергии, добавленной к системе. (входная энергия).

Это показатель того, насколько хорошо тепловой двигатель превращает тепловую энергию в механическую работу.

Если W — это работа, Q — добавленное тепло, и оба значения указаны в единицах СИ для энергии: джоули.

Поскольку КПД — это коэффициент, он всегда выражается в процентах или в виде значения от 0 (нет КПД) до 1 (общий КПД — вся входная энергия преобразуется в полезную выходную мощность). Эффективность никогда не может быть больше 1 или 100 процентов, потому что это нарушило бы закон сохранения энергии, если бы количество выходной энергии было больше, чем вложенная энергия! Это означало бы, что энергия создавалась из ничего, что невозможно в этой вселенной.

КПД Карно

Цикл Карно — это термодинамический цикл с максимально возможной эффективностью. Поскольку никакие процессы в природе не являются полностью обратимыми — часть энергии всегда теряется в виде тепла благодаря второму закону термодинамики — цикл Карно описывает идеальный тепловой двигатель . Другими словами, никто не мог его построить.

Ценность цикла Карно заключается в установке верхних границ того, насколько эффективным может быть любой действующий двигатель.Он выражается в терминах T h и T c , температуры резервуаров горячей и холодной энергии, соответственно, в единицах СИ в Кельвинах.

Его также можно выразить через Q h и Q c , добавленное тепло и отдаваемое тепло, соответственно, оба в джоулях.

Эффективность и расчеты — Физика рассказа

Простой вид двигателя

Один вид двигателя — это сложная сборка проводов, магнитов, осей, щеток и коммутаторов.Существует множество различных конструкций электродвигателей (например, щеточного постоянного тока, шагового постоянного тока, синхронного переменного тока), и для адаптации конструкции к конкретной задаче требуются значительные навыки. Это может быть приложение с особенно высоким крутящим моментом, возможно, для создания больших ускорений для электрического спортивного автомобиля, или приложение, в котором рабочая мощность очень мала, но очень мало энергии может быть потрачено впустую, например, в автомобиле на солнечной энергии.

Намного более простое представление можно получить, разработав описание с точки зрения запасов энергии или мощности в проводящих путях.

Рабочая мощность и максимальная мощность

У двигателей много рабочих мощностей. Даже в быту можно найти моторы, предназначенные для перемешивания одежды в стиральной машине, приготовления супа, измельчения кофе или вращения жесткого диска портативного музыкального плеера. В последнем примере требуется точное движение, но, возможно, ненадолго. Воспроизведение музыки зависело от точного вращения синглов с 78 об / мин (оборотов в минуту) через стабильную высокую скорость для аудио CD-ROM до стабильно высокой скорости для жестких дисков (7200 об / мин обычно доступны на момент написания. ).Возможно, плееры с флэш-памятью вытеснят как жесткие диски, так и портативные аудиокассетные плееры, поскольку им нужны очень точные двигатели, чтобы протягивать ленту по голове со скоростью 178 дюймов в секунду. Тем не менее, если роботы будут играть какую-либо роль в будущем, инженерам будет очень необходимо разрабатывать двигатели с диапазоном точности и номинальной мощности.

Но есть более простая точка зрения (а физикам нравятся более простые точки зрения), которая дает руководство для всей этой инженерной мысли. Двигатель — это просто устройство, предназначенное для переключения с электрического пути на механический, поэтому это своего рода преобразователь.Идеальный двигатель переключит всю мощность — без потерь.

Используйте аккумулятор для привода двигателя, который поднимает поддон (например, на автопогрузчике). Затем описание устройства / пути обеспечивает полезный уровень детализации для одного стратегического представления инженерных требований. Еще более абстрактное представление дает описание магазинов — оно еще меньше касается , как? , а так даже больше ориентировался на сколько? .

Идеальное и несовершенное переключение с одного пути на другой

Инженеры очень озабочены настоящими двигателями, которые не идеальны.Совершенство — это всего лишь недостижимая цель: инженерия — это правильный компромисс.

Любой двигатель имеет значительную длину провода, в котором есть ток и на котором есть разность потенциалов, величина ограничена этим соотношением: V = R × I . Следовательно, эти провода двигателя будут нагреваться. Таким образом, более реалистичный вид двигателя — это устройство, которое переключается с электрического пути на механический рабочий путь и на путь нагрева частицами.

Менее расточительный, более эффективный двигатель — это двигатель, у которого большая часть мощности уходит на механический рабочий путь.

Поскольку двигатели не очень сильно светятся, мы можем пренебречь нагревом от пути излучения; Другими словами, на этом пути для большинства двигателей не так много мощности, пока они не выйдут за пределы своей проектной мощности, что часто приводит к сгоранию двигателя . Это происходит, когда мощность, переключаемая с входного (электрического) пути, превышает три выходных пути (механическая обработка, нагрев частицами, нагрев излучением).Сдвинутая энергия превышает смещенную, а запас тепла увеличивается, поэтому проволока становится все горячее и горячее, пока в конце концов не расплавится.

Как посчитать скопления в магазинах в результате подъема

Обратно к мотору автопогрузчика, поднимающего поддон. Как мотор работает, так аккумулятор разряжается и груз поднимается. Чем быстрее поднимается груз, тем с большей скоростью химические вещества вступают в реакцию в батарее, и поэтому она разряжается с большей скоростью.

Двигатель переключается с электрического пути — энергия, передаваемая из химического накопителя батареи, в гравитационный накопитель, накапливается с течением времени.

Мощность в электрическом тракте (задается током и разностью потенциалов, как и раньше) и время устанавливают накопление.

Сила в двух направлениях

Энергия, переданная в гравитационный накопитель, зависит как от силы (масса × напряженность гравитационного поля), так и от расстояния — здесь от высоты.Вы можете проверить эти связи в темах SPT: Forces и SPT: Energy. Таким образом, вы можете рассчитать энергию, смещенную в гравитационный накопитель, накапливающуюся при изменении высоты. Усилие фиксируется содержимым поддона, который поднимает вилочный погрузчик.

Энергия, накопленная в гравитационном накопителе в результате изменения высоты, может быть вычислена как масса × напряженность гравитационного поля × изменение высоты. Проверить это имеет смысл, используя единицы: килограмм × ньютон килограмм -1 × метр, что упрощается до: ньютон × метр.Возвращаясь от единиц к количеству, это сила × расстояние.

Это вычисляет энергию (см. Тему SPT: Energy для более подробной информации).

Эти два накопления из-за электрических и механических путей будут равны, если двигатель идеален. Мы часто используем эту упрощенную модель, потому что она часто является хорошим руководством к действию. Но для реальных двигателей некоторая часть энергии неизбежно будет перемещена в тепловые накопители, поэтому накопление, рассчитанное на основе электрического пути, будет равно энергии, перемещенной в гравитационный накопитель и в эти тепловые накопители.

Эффективность машин Рона Куртуса

SfC Home> Физические науки> Машины>

Рона Куртуса (от 27 июня 2016 г.)

Коэффициент КПД машины показывает, насколько хорошо его входная энергия преобразуется в полезную выходную энергию или работу. Это главный фактор полезности машины и представляет собой долю или процент выхода, деленный на вход.

Согласно Закону сохранения энергии , общая выходная энергия или работа должна равняться общей входной энергии. Однако часть входящей энергии не влияет на выходную работу и теряется на трение и тепло.

Примеры эффективности машины: рычаг, автомобиль и вечный двигатель.

Вопросы, которые могут у вас возникнуть:

  • Что такое уравнение эффективности?
  • Каким образом уместны убытки?
  • Какие примеры эффективности?

Этот урок ответит на эти вопросы.Полезный инструмент: Конвертация единиц



Уравнение эффективности

Эффективность машины зависит от того, сколько энергии теряется на трение и тепло во время ее работы. Поскольку работа — это изменение кинетической энергии, эффективность машины может быть выражена как процент выходной работы, деленный на входную работу за вычетом работы, потерянной на трение и тепло.

Eff = W O / W I

где

  • Eff — десятичная дробь эффективности
  • W O — выходная работа или энергия
  • Вт I — вход или усилие, работа или энергия

Умножьте Eff на 100% , чтобы получить процент эффективности .

Потери

Согласно закону сохранения энергии , выходная работа или энергия равна входной работе за вычетом работы, потерянной из-за трения и тепла:

W O = W I — W Потери

Подставив W O в уравнение эффективности:

Eff = (W I — W Потери ) / W I

или

Eff = 1 — W Потери / W I

Примеры

Примеры эффективности включают рычаг и автомобиль.

Рычаг

Простой рычаг теряет около 2% или 0,02 подводимой энергии на внутреннее трение в своей точке опоры:

Вт Потери = 0,02 Вт I

Таким образом:

Eff = 1 — 0,02 Вт I / W I

Эфф = 1 — 0,02

Эфф = 0,98 или 98%

Автомобиль

С другой стороны, КПД автомобиля составляет всего около 15%.Около 75% энергии теряется из-за потерь тепла от двигателя, а еще 10% теряется из-за внутреннего трения, включая потери из-за трения в шинах.

Вечный двигатель

Если потери на трение и тепло равны нулю, КПД машины составляет:

Eff = W O / W O

Эфф = 1,0 или 100%

Такая машина называется вечным двигателем , поскольку после запуска она будет работать вечно.Изобретатели годами работали над созданием такой машины, но безуспешно.

Сводка

Полезность машины определяется ее эффективностью. Машина преобразует силу, создаваемую входящей энергией, в выходную работу. Закон сохранения энергии требует, чтобы общая входная энергия равнялась общей выходной энергии.

Согласно Закону сохранения энергии , общая выходная энергия или работа должна равняться общей входной энергии.Однако часть входящей энергии не влияет на выходную работу и теряется на трение и тепло.

Примеры эффективности машины: рычаг, автомобиль и вечный двигатель.


Использование науки для повышения эффективности


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайтов

Эффективность машин (PDF) — Учебный план Каролины

Механическая эффективность — Википедия

Машины Ресурсы

Книги

Книги по простым машинам с самым высоким рейтингом

Книги по машинам с самым высоким рейтингом


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если да, отправьте свой отзыв по электронной почте.Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/machines/
эффективность.htm

Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или диссертации.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

Станки

КПД машин

Эффективность человеческого тела — Физика тела: движение к метаболизму

Это сканирование с помощью фМРТ показывает повышенный уровень потребления энергии в зрительном центре мозга. Здесь пациента просили узнавать лица.Изображение предоставлено: NIH через Wikimedia Commons

Все функции организма, от мышления до подъема тяжестей, требуют энергии. Многие мелкие мышечные движения, сопровождающие любую спокойную деятельность, от сна до чесания головы, в конечном итоге превращаются в тепловую энергию, как и менее заметные мышечные действия сердца, легких и пищеварительного тракта. Показатель , с которым организм использует энергию пищи для поддержания жизни и выполнения различных действий, называется скоростью метаболизма. Общий коэффициент преобразования энергии человека в состоянии покоя называется скоростью основного обмена (BMR) и делится между различными системами в организме, как показано в следующей таблице:

Скорость основного обмена (BMR)
Орган Мощность, потребляемая в состоянии покоя (Вт) Потребление кислорода (мл / мин) Процент от BMR
Печень и селезенка 23 67 27
Мозг 16 47 19
Скелетная мышца 15 45 18
Почки 9 26 10
Сердце 6 17 7
Другое 16 48 19
Итого 85 Вт 250 мл / мин 100%

Наибольшая часть энергии поступает в печень и селезенку, а затем в мозг.Около 75% калорий, сжигаемых за день, идет на эти основные функции. Полные 25% всей основной метаболической энергии, потребляемой организмом, используется для поддержания электрических потенциалов во всех живых клетках. (Нервные клетки используют этот электрический потенциал в нервных импульсах.) Эта биоэлектрическая энергия в конечном итоге становится в основном тепловой энергией, но некоторая часть используется для питания химических процессов, таких как в почках и печени, а также при производстве жира. BMR — это функция возраста, пола, общей массы тела и количества мышечной массы (которая сжигает больше калорий, чем телесный жир).Благодаря этому последнему фактору у спортсменов больше BMR. Конечно, во время интенсивных упражнений потребление энергии скелетными мышцами и сердцем заметно возрастает. Следующая диаграмма суммирует основные энергетические функции человеческого тела.

Самые основные функции человеческого тела сопоставлены с основными концепциями, рассматриваемыми в этом учебнике (химическая потенциальная энергия на самом деле является формой электрической потенциальной энергии, но мы не будем специально обсуждать электрическую потенциальную энергию в этом учебнике, поэтому мы разделили их.)

Тепло

Тело способно накапливать химическую потенциальную энергию и тепловую энергию внутри. Помня, что тепловая энергия — это просто кинетическая энергия атомов и молекул, мы признаем, что эти два типа энергии хранятся микроскопически и внутри тела. Поэтому мы часто объединяем эти два типа микроскопической энергии во внутреннюю энергию (). Когда объект теплее, чем его окружение, тогда тепловая энергия будет передаваться от объекта к окружению, но если объект холоднее, чем его окружение, тогда тепловая энергия будет передаваться объекту из окружающей среды.Количество тепловой энергии, передаваемой из-за разницы температур, часто называют теплом (). Когда тепло передается из тела в окружающую среду, мы говорим, что это тепло выхлопных газов, как показано на предыдущем рисунке. Мы узнаем больше о том, как связаны температура и теплопередача, в следующем разделе.

Энергосбережение

Принцип сохранения энергии гласит, что энергия не может быть создана или уничтожена. Следовательно, если тело выполняет полезную работу по передаче механической энергии своему окружению () или передаче тепловой энергии в окружающую среду в виде тепла, то эта энергия должна исходить из внутренней энергии тела.Мы наблюдаем это повсюду в природе как Первый закон термодинамики:

.

(1)

Тепловые двигатели

Ваше тело использует химическую потенциальную энергию, хранящуюся внутри, для выполнения работы, и этот процесс также генерирует тепловую энергию, которую вы выделяете в виде тепла выхлопных газов. Двигатели внутреннего сгорания, которыми оснащено большинство автомобилей, работают аналогичным образом, преобразуя химическую потенциальную энергию топлива в тепловую энергию посредством сгорания, затем преобразуя часть тепловой энергии в полезную работу и сбрасывая часть в тепло выхлопных газов.Ваше тело способно высвобождать химическую потенциальную энергию из вашей пищи без возгорания, и это хорошо, потому что вы не можете использовать тепловую энергию вашей внутренней энергии для выполнения работы. Машины, которые могут использовать тепловую энергию для работы, например двигатель внутреннего сгорания, известны как тепловые двигатели. Тепловые двигатели по-прежнему подчиняются Первому закону термодинамики, поэтому любое тепло выхлопных газов должно быть тепловой энергией, которая не использовалась для работы. Тепловая энергия, которую можно использовать для работы, а не тратить впустую в виде тепла выхлопных газов, определяет эффективность теплового двигателя.

Эффективность человеческого тела в преобразовании химической потенциальной энергии в полезную работу известна как механическая эффективность тела. Мы часто вычисляем механический КПД тела в процентах:

(2)

Механическая эффективность тела ограничена, потому что энергия, используемая для метаболических процессов, не может использоваться для полезной работы. Дополнительная тепловая энергия, генерируемая во время химических реакций, приводящих в действие мышечные сокращения наряду с трением в суставах и других тканях, еще больше снижает эффективность людей..

«Увы, наши тела не 100 % эффективны в преобразовании энергии пищи в механическую продукцию. Но при КПД около 25 %, мы на удивление хороши, учитывая, что большинство автомобилей составляют около 20 % , а кукурузное поле Айовы составляет всего 1,5 % при преобразовании поступающего солнечного света в химическое хранилище [потенциальной энергии]. ” Для превосходного обсуждения механической эффективности человека и сравнения с другими машинами и источниками топлива см. MPG of a Human Тома Мерфи, источника предыдущей цитаты.

Повседневный пример: энергия для подъема по лестнице

Предполагая, что механический КПД при подъеме по лестнице составляет 20%, насколько уменьшится ваша внутренняя энергия, когда человек весом 65 кг поднимется по лестнице высотой 15 м ? Сколько тепловой энергии человек передает в окружающую среду в виде тепла выхлопных газов?

Во-первых, давайте вычислим изменение потенциальной энергии гравитации:

Человек действительно работал над преобразованием химической потенциальной энергии своего тела в механическую энергию, в частности, в потенциальную гравитационную энергию.Однако их эффективность составляет всего 20%, а это означает, что только 1/5 химической потенциальной энергии, которую они используют, идет на полезную работу. Следовательно, изменение химической потенциальной энергии должно быть в 5 раз больше, чем мощность механической работы

.

Используемая химическая потенциальная энергия возникла из внутренней энергии человека, поэтому:

Мы можем использовать Первый закон термодинамики, чтобы найти тепловую энергию, исчерпываемую человеком:

(3)

Перестановка на:

Мы обнаружили, что тепло отрицательно, что имеет смысл, потому что человек истощает тепловую энергию из тела в окружающую среду, поднимаясь по лестнице.

В качестве альтернативы, мы могли бы сразу знать, что выхлопное тепло должно составлять 4/5 от общей потери внутренней энергии, потому что только 1/5 идет на выполнение полезной работы. Итак, тепло выхлопа должно быть:

По историческим причинам мы часто измеряем тепловую энергию и тепло в единицах калорий ( кал ) вместо джоулей. Есть 4,184 Джоулей на калорию. Мы измеряем химическую потенциальную энергию, хранящуюся в пище, в единицах 1000 калорий или килокалорий ( ккал ), и иногда мы записываем килокалории как калории ( кал ) с заглавной буквы C вместо строчной буквы c .Например, бублик с 350 кал содержит 350 ккал или 350 000 кал . Если перевести в Джоули, это будет бублик.

Примеры на каждый день

Какую долю бублика вам нужно съесть, чтобы восполнить потерю внутренней энергии (в виде химической потенциальной энергии) 47 775 Дж , которую мы рассчитали в предыдущем повседневном примере с подъемом по лестнице?

Есть 1,464,400 J / бублик

Следовательно нам нужно съесть:

Пульсоксиметр — это прибор, который измеряет количество кислорода в крови.Оксиметры можно использовать для определения скорости метаболизма человека, то есть скорости преобразования пищевой энергии в другую форму. Такие измерения могут указывать на уровень спортивной подготовки, а также на наличие определенных медицинских проблем. (кредит: UusiAjaja, Wikimedia Commons)

Пищеварительный процесс — это в основном процесс окисления пищи, поэтому потребление энергии прямо пропорционально потреблению кислорода. Таким образом, мы можем определить реальную энергию, потребляемую во время различных видов деятельности, измеряя использование кислорода.В следующей таблице показаны уровни потребления кислорода и соответствующей энергии для различных видов деятельности.

Нормы потребления энергии и кислорода в среднем для мужчин 76 кг
Действия Энергопотребление в ваттах Расход кислорода в литрах O 2 / мин
Спящий 83 0,24
Сидя в состоянии покоя 120 0.34
Стоя расслабленно 125 0,36
Сидят в классе 210 0.60
Ходьба (5 км / ч) 280 0,80
Езда на велосипеде (13–18 км / ч) 400 1,14
Дрожь 425 1,21
Игра в теннис 440 1,26
Плавание брасс 475 1.36
Катание на коньках (14,5 км / ч) 545 1,56
Подъем по лестнице (116 об / мин) 685 1,96
Езда на велосипеде (21 км / ч) 700 2,00
Бег по пересеченной местности 740 2,12
Играющий в баскетбол 800 2,28
Велоспорт, профессиональный гонщик 1855 5.30
Спринт 2415 6,90

Примеры на каждый день: снова восхождение по лестнице

В предыдущих примерах мы предполагали, что наша механическая эффективность при подъеме по лестнице составляет 20%. Давайте воспользуемся данными из приведенной выше таблицы, чтобы проверить это предположение. Данные в таблице приведены для человека весом 76 кг и , который поднимается по 116 ступеням в минуту. Давайте посчитаем скорость, с которой этот человек выполнял механическую работу, поднимаясь по лестнице, и сравним скорость, с которой он израсходовал внутреннюю энергию (первоначально из пищи).

Минимальная стандартная высота ступеньки в США составляет 6,0 дюйма (0,15 м ), тогда потенциальная энергия гравитации человека весом 76 кг будет увеличиваться на 130 Дж с каждым шагом, как рассчитано ниже:

При подъеме по 116 ступеням в минуту скорость использования энергии или мощности будет:

Согласно нашей таблице данных, тело использует 685 W для подъема по лестнице с такой скоростью. Подсчитаем КПД:

В процентном отношении этот человек имеет 32% механической эффективности при подъеме по лестнице.Возможно, мы недооценили в предыдущих примерах, когда предполагали, что эффективность подъема по лестнице составляет 20%.

Мы часто говорим о «сжигании» калорий, чтобы похудеть, но что это на самом деле означает с научной точки зрения ?. Во-первых, мы действительно имеем в виду потерю массы, потому что это мера того, сколько веществ находится в нашем теле, а вес зависит от того, где вы находитесь (на Луне все по-другому). Во-вторых, наши тела не могут просто обмениваться массой и энергией — это разные физические величины и даже не одинаковые единицы.Так как же нам похудеть, тренируясь? На самом деле мы не удаляем атомы и молекулы, из которых состоят ткани тела, например жир, путем их «сжигания». Вместо этого мы расщепляем молекулы жира на более мелкие молекулы, а затем разрываем связи внутри этих молекул, чтобы высвободить химическую потенциальную энергию, которую мы в конечном итоге преобразуем в работу и отводим тепло. Атомы и более мелкие молекулы, образующиеся в результате разрыва связей, объединяются, образуя углекислый газ и водяной пар (CO 2 и H 2 O), и мы выдыхаем их.Мы также выделяем небольшое количество H 2 O с потом и мочой. Процесс похож на сжигание дров в костре — в итоге у вас остается намного меньше массы золы, чем у оригинальной древесины. Куда делась остальная масса? В воздух как CO 2 и H 2 O. То же самое верно и для топлива, сжигаемого вашей машиной. Подробнее об этой концепции смотрите в первом видео ниже. Поистине удивительный факт заключается в том, что ваше тело завершает этот химический процесс без чрезмерных температур, связанных с сжиганием древесины или топлива, которые могут повредить ваши ткани.Уловка организма заключается в использовании ферментов, которые представляют собой узкоспециализированные молекулы, которые действуют как катализаторы для повышения скорости и эффективности химических реакций, как описано и показано в начале второго видео ниже.

Подобно эффективности тела, эффективность любого энергетического процесса может быть описана как количество энергии, преобразованной из входной формы в желаемую форму, деленное на исходное входное количество.Следующая диаграмма показывает эффективность различных систем при преобразовании энергии в различные формы. Диаграмма не учитывает стоимость, риск опасности или воздействие на окружающую среду, связанное с требуемым топливом, строительством, техническим обслуживанием и побочными продуктами каждой системы.

Эффективность человеческого тела по сравнению с другими системами
Система Форма входной энергии Желаемая форма вывода Макс.эффективность
Человеческое тело Химический потенциал Механический 25%
Автомобильный двигатель Химический потенциал Механический 25%
Турбинные электростанции, работающие на угле / нефти / газе Химический потенциал Электрооборудование 47%
Газовые электростанции комбинированного цикла Химический потенциал Электрооборудование 58%
Биомасса / Биогаз кинетическая Электрооборудование 40%
Ядерная кинетическая Электрооборудование 36%
Солнечно-фотоэлектрическая электростанция Солнечный свет (электромагнитный) Электрооборудование 15%
Солнечно-тепловая электростанция Солнечный свет (электромагнитный) Электрооборудование 23%
Гидроэлектростанции и приливные электростанции Гравитационный потенциал Электрооборудование 90% +

Проверьте вкладку энергетических систем в этом моделировании, чтобы визуализировать различные системы преобразования энергии

APS Physics — Отчет об энергоэффективности: энергия = будущее

Думайте об эффективности

Отчет об энергоэффективности другого типа

Научно-технический акцент

Энергетика будущего: думайте об эффективности отличается от других отчетов об энергоэффективности тем, что делает упор на научные и технологические возможности и анализ.Разработанный группой ведущих экспертов в области энергетической политики с опытом работы в области физики, инженерии, экономики и политики, Energy Future: Think Efficiency исследует, что работает, что может сработать в ближайшее время и что осуществимо в будущем. Основываясь на новых технологиях, этот отчет нацелен на то, какие исследования и разработки принесут Америке максимальную отдачу от вложенных в нее денег.

Новости хорошие

Основные выводы по энергоэффективности

После научной оценки широкого спектра идей энергосбережения и альтернативных источников энергии, таких как гибридные автомобили, автомобили на водородных топливных элементах, солнечная энергия и энергия ветра, в отчете рекомендуется множество краткосрочных и долгосрочных целей.Хорошая новость в том, что новости хорошие.

  • Повышение энергоэффективности относительно просто и недорого.
  • Уже существует множество технологий для повышения энергоэффективности и экономии денег потребителей.

Строительство и транспорт

Максимальное потребление

Сосредоточившись на транспорте и зданиях, двух областях, которые потребляют две трети нашей энергии, Energy Future: Think Efficiency конкретно очерчивает приоритеты энергетической политики следующей администрации — на ближайшее будущее и на десятилетия вперед.

APS

Ведущая профессиональная организация физиков

APS — Американское физическое общество, общество, созданное столетие назад с целью продвижения и распространения знаний по физике. APS предлагает этот знаменательный отчет, чтобы определить наиболее эффективные стратегии энергосбережения Америки.

.
Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *